Sufficient Dimension Reduction With Missing Predictors

In high-dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full regression information and imposing no parametric models. However, it is common in high-dimensional data that a subset of predictors may have missin...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Statistical Association Vol. 103; no. 482; pp. 822 - 831
Main Authors Li, Lexin, Lu, Wenbin
Format Journal Article
LanguageEnglish
Published Alexandria, VA Taylor & Francis 01.06.2008
American Statistical Association
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0162-1459
1537-274X
DOI10.1198/016214508000000283

Cover

Abstract In high-dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full regression information and imposing no parametric models. However, it is common in high-dimensional data that a subset of predictors may have missing observations. Existing SDR methods resort to the complete-case analysis by removing all the subjects with missingness in any of the predictors under inquiry. Such an approach does not make effective use of the data and is valid only when missingness is independent of both observed and unobserved quantities. In this article, we propose a new class of SDR estimators under a more general missingness mechanism that allows missingness to depend on the observed data. We focus on a widely used SDR method, sliced inverse regression, and propose an augmented inverse probability weighted sliced inverse regression estimator (AIPW-SIR). We show that AIPW-SIR is doubly robust and asymptotically consistent and demonstrate that AIPW-SIR is more effective than the complete-case analysis through both simulations and real data analysis. We also outline the extension of the AIPW strategy to other SDR methods, including sliced average variance estimation and principal Hessian directions.
AbstractList In high-dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full regression information and imposing no parametric models. However, it is common in high-dimensional data that a subset of predictors may have missing observations. Existing SDR methods resort to the complete-case analysis by removing all the subjects with missingness in any of the predictors under inquiry. Such an approach does not make effective use of the data and is valid only when missingness is independent of both observed and unobserved quantities. In this article, we propose a new class of SDR estimators under a more general missingness mechanism that allows missingness to depend on the observed data. We focus on a widely used SDR method, sliced inverse regression, and propose an augmented inverse probability weighted sliced inverse regression estimator (AIPW–SIR). We show that AIPW–SIR is doubly robust and asymptotically consistent and demonstrate that AIPW–SIR is more effective than the complete-case analysis through both simulations and real data analysis. We also outline the extension of the AIPW strategy to other SDR methods, including sliced average variance estimation and principal Hessian directions.
In high dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full regression information and imposing no parametric models. However, it is common in high-dimensional data that a subset of predictors may have missing observations. Existing SDR methods resort to the complete-case analysis by removing all the subjects with missingness in any of the predictors under inquiry. Such an approach does not make effective use of the data and is valid only when missingness is independent of both observed and unobserved quantities. In this article, we propose a new class of SDR estimators under a more general missingness mechanism that allows missingness to depend on the observed data. We focus on a widely used SDR method, sliced inverse regression, and propose an augmented inverse probability weighted sliced inverse regression estimator (AIPW-SIR). We show that AIPW-SIR is doubly robust and asymptotically consistent and demonstrate that AIPW-SIR is more effective than the complete-case analysis through both simulations and real data analysis. We also outline the extension of the AIPW strategy to other SDR methods, including sliced average variance estimation and principal Hessian directions. [PUBLICATION ABSTRACT]
Author Lu, Wenbin
Li, Lexin
Author_xml – sequence: 1
  givenname: Lexin
  surname: Li
  fullname: Li, Lexin
– sequence: 2
  givenname: Wenbin
  surname: Lu
  fullname: Lu, Wenbin
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20528567$$DView record in Pascal Francis
BookMark eNp9kV1LHDEUhoNsobtb_0BBWJR6N22-ZpK58ELWT7BUqkXvhmxyRrPMJtskg_jvm-laC4rmJgfO8x7ec94JGjnvAKHPBH8lpJbfMKko4SWW-O-jkm2hMSmZKKjgtyM0HoAiE_VHNIlxOUBCyjGqrvq2tdqCS7MjuwIXrXezn2B6nYbqxqb72Xcbo3V3s8sAxurkQ_yEPrSqi7D99E_Rr5Pj6_lZcfHj9Hx-eFFoLnAqQEssgHIDi8qwBbRSSKWY4abGgnOoCVGkBmzoYgFQUiKJxFLwVjNpcsGmaH8zdx387x5ialY2aug65cD3sWFVXZWiLjO4-wJc-j647K3JFxC1IJRlaO9NiAuKeWZIpr48USpq1bVBOW1jsw52pcJjQ3FJZVkN3uiG08HHGKB9RghuhlSa16lkkXwh0jap4dQpKNu9L93ZSJcxR_Dfj6g4Jpjn_sGmb13rw0o9-NCZJqnHzod_S7B35v8BdWyr6A
CODEN JSTNAL
CitedBy_id crossref_primary_10_1016_j_csda_2018_07_017
crossref_primary_10_1016_j_csda_2013_08_001
crossref_primary_10_1016_j_csda_2018_04_006
crossref_primary_10_1214_17_EJS1257
crossref_primary_10_1002_sam_10132
crossref_primary_10_52547_jsri_16_2_379
crossref_primary_10_1002_wics_1354
crossref_primary_10_1198_jasa_2011_tm10573
crossref_primary_10_1002_cjs_11700
crossref_primary_10_1360_SSM_2024_0034
crossref_primary_10_1007_s00362_013_0552_8
crossref_primary_10_1016_j_csda_2020_106910
crossref_primary_10_1111_stan_12321
crossref_primary_10_1080_10485252_2018_1438610
Cites_doi 10.1093/biomet/63.3.581
10.1093/biostatistics/kxj011
ContentType Journal Article
Copyright American Statistical Association 2008
Copyright 2008 American Statistical Association
2008 INIST-CNRS
American Statistical Association. 2008
Copyright American Statistical Association Jun 2008
Copyright_xml – notice: American Statistical Association 2008
– notice: Copyright 2008 American Statistical Association
– notice: 2008 INIST-CNRS
– notice: American Statistical Association. 2008
– notice: Copyright American Statistical Association Jun 2008
DBID AAYXX
CITATION
IQODW
8BJ
FQK
JBE
K9.
DOI 10.1198/016214508000000283
DatabaseName CrossRef
Pascal-Francis
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
ProQuest Health & Medical Complete (Alumni)
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences (IBSS)


DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-274X
EndPage 831
ExternalDocumentID 1528210191
20528567
10_1198_016214508000000283
27640104
10710465
Genre Article
Feature
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -DZ
-~X
..I
.7F
.QJ
0BK
0R~
29L
2AX
30N
4.4
5GY
5RE
692
7WY
85S
8FL
AABCJ
AAENE
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBHK
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABPFR
ABPPZ
ABPQH
ABTAI
ABXSQ
ABXUL
ABXYU
ABYAD
ABYWD
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ACTWD
ACUBG
ADCVX
ADGTB
ADLSF
ADMHG
ADODI
ADULT
AEISY
AELPN
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFFNX
AFSUE
AFVYC
AFXHP
AGCQS
AGDLA
AGMYJ
AHDZW
AIJEM
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CJ0
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
FEDTE
FJW
FVMVE
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HQ6
HZ~
H~9
H~P
IAO
IEA
IGG
IOF
IPNFZ
IPO
IPSME
J.P
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K60
K6~
KYCEM
LU7
M4Z
MS~
MVM
MW2
N95
NA5
NY~
O9-
OFU
OK1
P2P
RIG
RNANH
RNS
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SJN
SNACF
TAE
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UPT
UT5
UU3
WH7
WZA
YQT
YYM
YYP
ZGOLN
~S~
AAGDL
AAHIA
AAWIL
ABAWQ
ACHJO
ADYSH
AFRVT
AGLNM
AIHAF
AIYEW
AMPGV
AAYXX
CITATION
.-4
.GJ
07G
1OL
3R3
7X7
88E
88I
8AF
8C1
8FE
8FG
8FI
8FJ
8G5
8R4
8R5
AAAVZ
AAFWJ
AAIKQ
AAKBW
ABEFU
ABJCF
ABRLO
ABUWG
ACAGQ
ACGEE
ADBBV
ADXHL
AEUMN
AFKRA
AFQQW
AGLEN
AGROQ
AHMOU
AI.
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
AQUVI
AZQEC
BCCOT
BENPR
BEZIV
BGLVJ
BKNYI
BKOMP
BPHCQ
BPLKW
BVXVI
C06
CCPQU
CRFIH
DMQIW
DWIFK
DWQXO
E.L
FRNLG
FYUFA
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
IQODW
IVXBP
K9-
KQ8
L6V
LJTGL
M0C
M0R
M0T
M1P
M2O
M2P
M7S
NHB
NUSFT
P-O
PADUT
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
Q2X
QCRFL
S0X
TAQ
TASJS
TFMCV
TOXWX
UB9
UKHRP
UQL
VH1
VOH
WHG
YXB
ZCG
ZGI
ZUP
ZXP
8BJ
ACTCW
FQK
JBE
K9.
ID FETCH-LOGICAL-c470t-ec807e24deb6d3bef878aa3d4d90744e911a19e0d2bbee5218180874fc38d0873
ISSN 0162-1459
IngestDate Fri Sep 05 08:43:20 EDT 2025
Wed Aug 13 05:45:10 EDT 2025
Wed Aug 13 06:20:12 EDT 2025
Mon Jul 21 09:16:36 EDT 2025
Tue Jul 01 03:15:09 EDT 2025
Thu Apr 24 23:11:17 EDT 2025
Thu May 29 08:44:08 EDT 2025
Wed Dec 25 09:09:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 482
Keywords Variance estimation
Missing at random
Probability distribution
Parametric model
Asymptotic convergence
Variance
Parametric method
Sufficient dimension reduction
Missing covariates
Data analysis
Covariance analysis
Average
Probability
Variance analysis
Mean estimation
Data reduction
Statistical method
Statistical regression
Dimension reduction
Reduction method
Simulation
Double robustness
Observation data
Application
Sliced inverse regression
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c470t-ec807e24deb6d3bef878aa3d4d90744e911a19e0d2bbee5218180874fc38d0873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Feature-1
ObjectType-Article-2
content type line 23
PQID 2472042331
PQPubID 41715
PageCount 10
ParticipantIDs crossref_primary_10_1198_016214508000000283
informaworld_taylorfrancis_310_1198_016214508000000283
jstor_primary_27640104
proquest_journals_2472042331
pascalfrancis_primary_20528567
crossref_citationtrail_10_1198_016214508000000283
proquest_miscellaneous_36965795
proquest_journals_274797123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-06-01
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: Alexandria
PublicationTitle Journal of the American Statistical Association
PublicationYear 2008
Publisher Taylor & Francis
American Statistical Association
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: American Statistical Association
– name: Taylor & Francis Ltd
References Statistics (p_24) 1992
p_20
p_32
p_23
References_xml – ident: p_23
– ident: p_32
  doi: 10.1093/biomet/63.3.581
– ident: p_20
  doi: 10.1093/biostatistics/kxj011
– year: 1992
  ident: p_24
  publication-title: Journal of
SSID ssj0000788
Score 1.963525
Snippet In high-dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full...
In high dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full...
SourceID proquest
pascalfrancis
crossref
jstor
informaworld
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 822
SubjectTerms Analytical estimating
Applications
Covariance
Data analysis
Data lines
Dimensional analysis
Dimensionality reduction
Double robustness
Estimate reliability
Estimation
Estimation methods
Estimators
Exact sciences and technology
General topics
Linear inference, regression
Linear regression
Mathematics
Missing at random
Missing covariates
Missing data
Modeling
Multivariate analysis
Parametric models
Probability and statistics
Reduction
Regression analysis
Sciences and techniques of general use
Sliced inverse regression
Statistical analysis
Statistical inference
Statistical methods
Statistical models
Statistics
Sufficient dimension reduction
Theory and Methods
Title Sufficient Dimension Reduction With Missing Predictors
URI https://www.tandfonline.com/doi/abs/10.1198/016214508000000283
https://www.jstor.org/stable/27640104
https://www.proquest.com/docview/2472042331
https://www.proquest.com/docview/274797123
https://www.proquest.com/docview/36965795
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtesmlpI9QN2nqQ2_Bra23jqVJCCXZFuqFvRnLlmmhOCXrhZBfnxn5tYs3S9uLsWXLNvONNKPRPAj5UAnhSqpMJHOnI84KGxltFVxaK5LC0LJCg_71TF7O-deFWIw1Nn10SWM_Fvdb40r-B1VoA1wxSvYfkB1eCg1wDvjCERCG419h_GPlE0Dgdv4ZZulHyxcQrGwzwsKIb36eXgNl0Rzw_Ra3ZLC2ziP66FqMia_q2_gUzlsQRPedNqba3f0am1beXc_VtmvrTQl6dHny4KeTqh5rrkXe-ChplPAug7frJ0wVwcp2sTGjxmyNdXhbXaibIXUbhtwL21YETOdx08YmSEykjkpt7O2AbJRa_U797Ft2Mb-6ytLzRfqUPKNK-d16Fs9Ggax8-dHh9_vYKaM_Tb-woZ9sZK_tPVbRfTZfAv2rlkgTKe5Vk_SAPO8wDD-3DPKCPHH1S7I_QLh8ReTIKeHAKeHAKSFySthxSjhyymsyvzhPv1xGXcWMqOAqbiJX6Fg5yktnZcmsq7TSec5KXqINhDuQbHliXFxSa50TqN7pWCteFUyXcMIOyV59U7s3JGSCQUchK8wmZGKWF9JWytAkrwpllAlI0tMpK7p08ljV5Hfml5VGZ1PaBuR06POnTaay82m5Tv6s8ezZET1juzoeeqCGb1AlOdodAnKygdz4QCyoFlIF5LiHMuvG-TKjHAs5UcaSgBxtuQ0LcqNAAQzI--EuzNG48ZbX7mYF_yqNFMqIt7tff0T2x1F5TPaa25V7BypvY088Qz8AQ5Kjng
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619AAXoFDUFAo5cEOhid8-IijatuyqKqByS2PHVhFot2Kzl_76epxkYQvi0N4S2ZPEnvF4Zjz5BmDfc-5qInUmKqcyRq3JtDIy3BrDC6tJ7TGgPxyJwSX7fMWvujqn0y6tEn1o3wJFRF2NixuD0e0K1-pDMFMQYBuNnTzGh-hLeMWD4Y4iTvPRvSqWsfAk9s8Cge7_mnnyGQs70wJuaZ-riImT1TTMnW-LXjzS33FTOl2DH_1w2lyUm8NZYw7t77-QHv9jvOuw2hms6VErYa_hhRtvwAraqC3E8yaI81nEoQjbV3qCxQIwAJd-Q0xY5Hr6_br5mQ4Dg8MumX69w5MhLPHzBi5PP14cD7KuHENmmcybzFmVS0dY7YyoqXFeSVVVtGY1OtjMBbVZFdrlNTHGOY62g8qVZN5SVYcLugVL48nYvYWUchoIufAIVaNzWllhvNSkqLyVWuoEip4Vpe2wyrFkxm0ZfRatysdTksDBnOZXi9TxbG_xkMNlE-MjHV9L-hzhVpSF-TuIFAyd2gR2F4TjvkPOieJCJrDTS0vZKYppSRhWCSKUFglsP9EcvD0tg3WRwN68NSgAPNWpxm4yC98qtOBS83f_OqI9WB5cDM_Ks0-jL9uw0ibEYJhpB5aau5l7H6yuxuzGlfUHpH0cOQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9VAEJ8oJoaL4gexgtCDN1Ns93uPRnwBlBeiErltul_RaB6E13fxr3dn2z58QDhwa7M7bXdndnZmdvobgLeR8-CJ1JVog6oYdbbSysp0ay1vnCY-YkD_eCoOTtnRGT8bAm7zIa0SfejYA0VkXY2L-8LHfoFr9T5ZKYivjbZOncND9CE8Esk2wZQ-Wk-vNLHMdSexf5UI9PjTzK3PWNmYVmBLx1RFzJts52nqYl_z4ob6znvS5CmYcTR9KsrvvUVn99zfa0CP9x_uBjwZzNXyQy9fz-BBmD2HdbRQe4DnFyC-LTIKRdq8yn0sFYDht_IrIsIiz8sfv7qf5XFib9ojy5NLPBfCAj8v4XTy6fvHg2ooxlA5JuuuCk7VMhDmgxWe2hCVVG1LPfPoXrOQlGbb6FB7Ym0IHC0HVSvJoqPKpwu6CWuz81l4BSXlNBFyERGoRte0dcJGqUnTRie11AU0IyeMG5DKsWDGH5M9Fq3MzSkp4N2S5qLH6bizt_ifwabL0ZGBrYbeRbiZRWH5DiIFQ5e2gJ0V2bjqUHOiuJAFbI_CYgY1MTeEYY0gQmlTwNYtzcnX0zLZFgXsLlvT8scznXYWzhfpW4UWXGr--r4j2oXHJ_sT8-Vw-nkL1vtsGIwxbcNad7kIb5LJ1dmdvK7-Af6aGt0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sufficient+Dimension+Reduction+With+Missing+Predictors&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Li%2C+Lexin&rft.au=Lu%2C+Wenbin&rft.date=2008-06-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=103&rft.issue=482&rft.spage=822&rft.epage=831&rft_id=info:doi/10.1198%2F016214508000000283&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon