Sufficient Dimension Reduction With Missing Predictors
In high-dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full regression information and imposing no parametric models. However, it is common in high-dimensional data that a subset of predictors may have missin...
Saved in:
Published in | Journal of the American Statistical Association Vol. 103; no. 482; pp. 822 - 831 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Alexandria, VA
Taylor & Francis
01.06.2008
American Statistical Association Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0162-1459 1537-274X |
DOI | 10.1198/016214508000000283 |
Cover
Abstract | In high-dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full regression information and imposing no parametric models. However, it is common in high-dimensional data that a subset of predictors may have missing observations. Existing SDR methods resort to the complete-case analysis by removing all the subjects with missingness in any of the predictors under inquiry. Such an approach does not make effective use of the data and is valid only when missingness is independent of both observed and unobserved quantities. In this article, we propose a new class of SDR estimators under a more general missingness mechanism that allows missingness to depend on the observed data. We focus on a widely used SDR method, sliced inverse regression, and propose an augmented inverse probability weighted sliced inverse regression estimator (AIPW-SIR). We show that AIPW-SIR is doubly robust and asymptotically consistent and demonstrate that AIPW-SIR is more effective than the complete-case analysis through both simulations and real data analysis. We also outline the extension of the AIPW strategy to other SDR methods, including sliced average variance estimation and principal Hessian directions. |
---|---|
AbstractList | In high-dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full regression information and imposing no parametric models. However, it is common in high-dimensional data that a subset of predictors may have missing observations. Existing SDR methods resort to the complete-case analysis by removing all the subjects with missingness in any of the predictors under inquiry. Such an approach does not make effective use of the data and is valid only when missingness is independent of both observed and unobserved quantities. In this article, we propose a new class of SDR estimators under a more general missingness mechanism that allows missingness to depend on the observed data. We focus on a widely used SDR method, sliced inverse regression, and propose an augmented inverse probability weighted sliced inverse regression estimator (AIPW–SIR). We show that AIPW–SIR is doubly robust and asymptotically consistent and demonstrate that AIPW–SIR is more effective than the complete-case analysis through both simulations and real data analysis. We also outline the extension of the AIPW strategy to other SDR methods, including sliced average variance estimation and principal Hessian directions. In high dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full regression information and imposing no parametric models. However, it is common in high-dimensional data that a subset of predictors may have missing observations. Existing SDR methods resort to the complete-case analysis by removing all the subjects with missingness in any of the predictors under inquiry. Such an approach does not make effective use of the data and is valid only when missingness is independent of both observed and unobserved quantities. In this article, we propose a new class of SDR estimators under a more general missingness mechanism that allows missingness to depend on the observed data. We focus on a widely used SDR method, sliced inverse regression, and propose an augmented inverse probability weighted sliced inverse regression estimator (AIPW-SIR). We show that AIPW-SIR is doubly robust and asymptotically consistent and demonstrate that AIPW-SIR is more effective than the complete-case analysis through both simulations and real data analysis. We also outline the extension of the AIPW strategy to other SDR methods, including sliced average variance estimation and principal Hessian directions. [PUBLICATION ABSTRACT] |
Author | Lu, Wenbin Li, Lexin |
Author_xml | – sequence: 1 givenname: Lexin surname: Li fullname: Li, Lexin – sequence: 2 givenname: Wenbin surname: Lu fullname: Lu, Wenbin |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20528567$$DView record in Pascal Francis |
BookMark | eNp9kV1LHDEUhoNsobtb_0BBWJR6N22-ZpK58ELWT7BUqkXvhmxyRrPMJtskg_jvm-laC4rmJgfO8x7ec94JGjnvAKHPBH8lpJbfMKko4SWW-O-jkm2hMSmZKKjgtyM0HoAiE_VHNIlxOUBCyjGqrvq2tdqCS7MjuwIXrXezn2B6nYbqxqb72Xcbo3V3s8sAxurkQ_yEPrSqi7D99E_Rr5Pj6_lZcfHj9Hx-eFFoLnAqQEssgHIDi8qwBbRSSKWY4abGgnOoCVGkBmzoYgFQUiKJxFLwVjNpcsGmaH8zdx387x5ialY2aug65cD3sWFVXZWiLjO4-wJc-j647K3JFxC1IJRlaO9NiAuKeWZIpr48USpq1bVBOW1jsw52pcJjQ3FJZVkN3uiG08HHGKB9RghuhlSa16lkkXwh0jap4dQpKNu9L93ZSJcxR_Dfj6g4Jpjn_sGmb13rw0o9-NCZJqnHzod_S7B35v8BdWyr6A |
CODEN | JSTNAL |
CitedBy_id | crossref_primary_10_1016_j_csda_2018_07_017 crossref_primary_10_1016_j_csda_2013_08_001 crossref_primary_10_1016_j_csda_2018_04_006 crossref_primary_10_1214_17_EJS1257 crossref_primary_10_1002_sam_10132 crossref_primary_10_52547_jsri_16_2_379 crossref_primary_10_1002_wics_1354 crossref_primary_10_1198_jasa_2011_tm10573 crossref_primary_10_1002_cjs_11700 crossref_primary_10_1360_SSM_2024_0034 crossref_primary_10_1007_s00362_013_0552_8 crossref_primary_10_1016_j_csda_2020_106910 crossref_primary_10_1111_stan_12321 crossref_primary_10_1080_10485252_2018_1438610 |
Cites_doi | 10.1093/biomet/63.3.581 10.1093/biostatistics/kxj011 |
ContentType | Journal Article |
Copyright | American Statistical Association 2008 Copyright 2008 American Statistical Association 2008 INIST-CNRS American Statistical Association. 2008 Copyright American Statistical Association Jun 2008 |
Copyright_xml | – notice: American Statistical Association 2008 – notice: Copyright 2008 American Statistical Association – notice: 2008 INIST-CNRS – notice: American Statistical Association. 2008 – notice: Copyright American Statistical Association Jun 2008 |
DBID | AAYXX CITATION IQODW 8BJ FQK JBE K9. |
DOI | 10.1198/016214508000000283 |
DatabaseName | CrossRef Pascal-Francis International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) ProQuest Health & Medical Complete (Alumni) |
DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-274X |
EndPage | 831 |
ExternalDocumentID | 1528210191 20528567 10_1198_016214508000000283 27640104 10710465 |
Genre | Article Feature |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | -DZ -~X ..I .7F .QJ 0BK 0R~ 29L 2AX 30N 4.4 5GY 5RE 692 7WY 85S 8FL AABCJ AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABBHK ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABPFR ABPPZ ABPQH ABTAI ABXSQ ABXUL ABXYU ABYAD ABYWD ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ACTWD ACUBG ADCVX ADGTB ADLSF ADMHG ADODI ADULT AEISY AELPN AENEX AEOZL AEPSL AEUPB AEYOC AFFNX AFSUE AFVYC AFXHP AGCQS AGDLA AGMYJ AHDZW AIJEM AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU ALRMG AQRUH AVBZW AWYRJ BLEHA CCCUG CJ0 CS3 D0L DGEBU DKSSO DQDLB DSRWC DU5 EBS ECEWR EJD E~A E~B F5P FEDTE FJW FVMVE GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HQ6 HZ~ H~9 H~P IAO IEA IGG IOF IPNFZ IPO IPSME J.P JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K60 K6~ KYCEM LU7 M4Z MS~ MVM MW2 N95 NA5 NY~ O9- OFU OK1 P2P RIG RNANH RNS ROSJB RTWRZ RWL RXW S-T SA0 SJN SNACF TAE TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ U5U UPT UT5 UU3 WH7 WZA YQT YYM YYP ZGOLN ~S~ AAGDL AAHIA AAWIL ABAWQ ACHJO ADYSH AFRVT AGLNM AIHAF AIYEW AMPGV AAYXX CITATION .-4 .GJ 07G 1OL 3R3 7X7 88E 88I 8AF 8C1 8FE 8FG 8FI 8FJ 8G5 8R4 8R5 AAAVZ AAFWJ AAIKQ AAKBW ABEFU ABJCF ABRLO ABUWG ACAGQ ACGEE ADBBV ADXHL AEUMN AFKRA AFQQW AGLEN AGROQ AHMOU AI. ALCKM AMATQ AMEWO AMVHM AMXXU AQUVI AZQEC BCCOT BENPR BEZIV BGLVJ BKNYI BKOMP BPHCQ BPLKW BVXVI C06 CCPQU CRFIH DMQIW DWIFK DWQXO E.L FRNLG FYUFA GNUQQ GROUPED_ABI_INFORM_RESEARCH GUQSH HCIFZ HGD HMCUK HVGLF IQODW IVXBP K9- KQ8 L6V LJTGL M0C M0R M0T M1P M2O M2P M7S NHB NUSFT P-O PADUT PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PQGLB PQQKQ PRG PROAC PSQYO PTHSS Q2X QCRFL S0X TAQ TASJS TFMCV TOXWX UB9 UKHRP UQL VH1 VOH WHG YXB ZCG ZGI ZUP ZXP 8BJ ACTCW FQK JBE K9. |
ID | FETCH-LOGICAL-c470t-ec807e24deb6d3bef878aa3d4d90744e911a19e0d2bbee5218180874fc38d0873 |
ISSN | 0162-1459 |
IngestDate | Fri Sep 05 08:43:20 EDT 2025 Wed Aug 13 05:45:10 EDT 2025 Wed Aug 13 06:20:12 EDT 2025 Mon Jul 21 09:16:36 EDT 2025 Tue Jul 01 03:15:09 EDT 2025 Thu Apr 24 23:11:17 EDT 2025 Thu May 29 08:44:08 EDT 2025 Wed Dec 25 09:09:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 482 |
Keywords | Variance estimation Missing at random Probability distribution Parametric model Asymptotic convergence Variance Parametric method Sufficient dimension reduction Missing covariates Data analysis Covariance analysis Average Probability Variance analysis Mean estimation Data reduction Statistical method Statistical regression Dimension reduction Reduction method Simulation Double robustness Observation data Application Sliced inverse regression |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c470t-ec807e24deb6d3bef878aa3d4d90744e911a19e0d2bbee5218180874fc38d0873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Feature-1 ObjectType-Article-2 content type line 23 |
PQID | 2472042331 |
PQPubID | 41715 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1198_016214508000000283 informaworld_taylorfrancis_310_1198_016214508000000283 jstor_primary_27640104 proquest_journals_2472042331 pascalfrancis_primary_20528567 crossref_citationtrail_10_1198_016214508000000283 proquest_miscellaneous_36965795 proquest_journals_274797123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-06-01 |
PublicationDateYYYYMMDD | 2008-06-01 |
PublicationDate_xml | – month: 06 year: 2008 text: 2008-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Alexandria, VA |
PublicationPlace_xml | – name: Alexandria, VA – name: Alexandria |
PublicationTitle | Journal of the American Statistical Association |
PublicationYear | 2008 |
Publisher | Taylor & Francis American Statistical Association Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: American Statistical Association – name: Taylor & Francis Ltd |
References | Statistics (p_24) 1992 p_20 p_32 p_23 |
References_xml | – ident: p_23 – ident: p_32 doi: 10.1093/biomet/63.3.581 – ident: p_20 doi: 10.1093/biostatistics/kxj011 – year: 1992 ident: p_24 publication-title: Journal of |
SSID | ssj0000788 |
Score | 1.963525 |
Snippet | In high-dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full... In high dimensional data analysis, sufficient dimension reduction (SDR) methods are effective in reducing the predictor dimension, while retaining full... |
SourceID | proquest pascalfrancis crossref jstor informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 822 |
SubjectTerms | Analytical estimating Applications Covariance Data analysis Data lines Dimensional analysis Dimensionality reduction Double robustness Estimate reliability Estimation Estimation methods Estimators Exact sciences and technology General topics Linear inference, regression Linear regression Mathematics Missing at random Missing covariates Missing data Modeling Multivariate analysis Parametric models Probability and statistics Reduction Regression analysis Sciences and techniques of general use Sliced inverse regression Statistical analysis Statistical inference Statistical methods Statistical models Statistics Sufficient dimension reduction Theory and Methods |
Title | Sufficient Dimension Reduction With Missing Predictors |
URI | https://www.tandfonline.com/doi/abs/10.1198/016214508000000283 https://www.jstor.org/stable/27640104 https://www.proquest.com/docview/2472042331 https://www.proquest.com/docview/274797123 https://www.proquest.com/docview/36965795 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtesmlpI9QN2nqQ2_Bra23jqVJCCXZFuqFvRnLlmmhOCXrhZBfnxn5tYs3S9uLsWXLNvONNKPRPAj5UAnhSqpMJHOnI84KGxltFVxaK5LC0LJCg_71TF7O-deFWIw1Nn10SWM_Fvdb40r-B1VoA1wxSvYfkB1eCg1wDvjCERCG419h_GPlE0Dgdv4ZZulHyxcQrGwzwsKIb36eXgNl0Rzw_Ra3ZLC2ziP66FqMia_q2_gUzlsQRPedNqba3f0am1beXc_VtmvrTQl6dHny4KeTqh5rrkXe-ChplPAug7frJ0wVwcp2sTGjxmyNdXhbXaibIXUbhtwL21YETOdx08YmSEykjkpt7O2AbJRa_U797Ft2Mb-6ytLzRfqUPKNK-d16Fs9Ggax8-dHh9_vYKaM_Tb-woZ9sZK_tPVbRfTZfAv2rlkgTKe5Vk_SAPO8wDD-3DPKCPHH1S7I_QLh8ReTIKeHAKeHAKSFySthxSjhyymsyvzhPv1xGXcWMqOAqbiJX6Fg5yktnZcmsq7TSec5KXqINhDuQbHliXFxSa50TqN7pWCteFUyXcMIOyV59U7s3JGSCQUchK8wmZGKWF9JWytAkrwpllAlI0tMpK7p08ljV5Hfml5VGZ1PaBuR06POnTaay82m5Tv6s8ezZET1juzoeeqCGb1AlOdodAnKygdz4QCyoFlIF5LiHMuvG-TKjHAs5UcaSgBxtuQ0LcqNAAQzI--EuzNG48ZbX7mYF_yqNFMqIt7tff0T2x1F5TPaa25V7BypvY088Qz8AQ5Kjng |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB619AAXoFDUFAo5cEOhid8-IijatuyqKqByS2PHVhFot2Kzl_76epxkYQvi0N4S2ZPEnvF4Zjz5BmDfc-5qInUmKqcyRq3JtDIy3BrDC6tJ7TGgPxyJwSX7fMWvujqn0y6tEn1o3wJFRF2NixuD0e0K1-pDMFMQYBuNnTzGh-hLeMWD4Y4iTvPRvSqWsfAk9s8Cge7_mnnyGQs70wJuaZ-riImT1TTMnW-LXjzS33FTOl2DH_1w2lyUm8NZYw7t77-QHv9jvOuw2hms6VErYa_hhRtvwAraqC3E8yaI81nEoQjbV3qCxQIwAJd-Q0xY5Hr6_br5mQ4Dg8MumX69w5MhLPHzBi5PP14cD7KuHENmmcybzFmVS0dY7YyoqXFeSVVVtGY1OtjMBbVZFdrlNTHGOY62g8qVZN5SVYcLugVL48nYvYWUchoIufAIVaNzWllhvNSkqLyVWuoEip4Vpe2wyrFkxm0ZfRatysdTksDBnOZXi9TxbG_xkMNlE-MjHV9L-hzhVpSF-TuIFAyd2gR2F4TjvkPOieJCJrDTS0vZKYppSRhWCSKUFglsP9EcvD0tg3WRwN68NSgAPNWpxm4yC98qtOBS83f_OqI9WB5cDM_Ks0-jL9uw0ibEYJhpB5aau5l7H6yuxuzGlfUHpH0cOQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9VAEJ8oJoaL4gexgtCDN1Ns93uPRnwBlBeiErltul_RaB6E13fxr3dn2z58QDhwa7M7bXdndnZmdvobgLeR8-CJ1JVog6oYdbbSysp0ay1vnCY-YkD_eCoOTtnRGT8bAm7zIa0SfejYA0VkXY2L-8LHfoFr9T5ZKYivjbZOncND9CE8Esk2wZQ-Wk-vNLHMdSexf5UI9PjTzK3PWNmYVmBLx1RFzJts52nqYl_z4ob6znvS5CmYcTR9KsrvvUVn99zfa0CP9x_uBjwZzNXyQy9fz-BBmD2HdbRQe4DnFyC-LTIKRdq8yn0sFYDht_IrIsIiz8sfv7qf5XFib9ojy5NLPBfCAj8v4XTy6fvHg2ooxlA5JuuuCk7VMhDmgxWe2hCVVG1LPfPoXrOQlGbb6FB7Ym0IHC0HVSvJoqPKpwu6CWuz81l4BSXlNBFyERGoRte0dcJGqUnTRie11AU0IyeMG5DKsWDGH5M9Fq3MzSkp4N2S5qLH6bizt_ifwabL0ZGBrYbeRbiZRWH5DiIFQ5e2gJ0V2bjqUHOiuJAFbI_CYgY1MTeEYY0gQmlTwNYtzcnX0zLZFgXsLlvT8scznXYWzhfpW4UWXGr--r4j2oXHJ_sT8-Vw-nkL1vtsGIwxbcNad7kIb5LJ1dmdvK7-Af6aGt0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sufficient+Dimension+Reduction+With+Missing+Predictors&rft.jtitle=Journal+of+the+American+Statistical+Association&rft.au=Li%2C+Lexin&rft.au=Lu%2C+Wenbin&rft.date=2008-06-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0162-1459&rft.eissn=1537-274X&rft.volume=103&rft.issue=482&rft.spage=822&rft.epage=831&rft_id=info:doi/10.1198%2F016214508000000283&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-1459&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-1459&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-1459&client=summon |