Domain agnostic online semantic segmentation for multi-dimensional time series
Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segm...
Saved in:
Published in | Data mining and knowledge discovery Vol. 33; no. 1; pp. 96 - 130 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm’s superiority over current solutions. |
---|---|
AbstractList | Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm’s superiority over current solutions. Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm's superiority over current solutions.Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm's superiority over current solutions. |
Author | Gharghabi, Shaghayegh Kaplan, Andrew Keogh, Eamonn Yeh, Chin-Chia Michael LaMunion, Samuel Crouter, Scott E. Ding, Yifei Ding, Wei Hibbing, Paul |
Author_xml | – sequence: 1 givenname: Shaghayegh orcidid: 0000-0003-0258-7557 surname: Gharghabi fullname: Gharghabi, Shaghayegh email: sghar003@ucr.edu organization: Department of Computer Science and Engineering, University of California – sequence: 2 givenname: Chin-Chia Michael surname: Yeh fullname: Yeh, Chin-Chia Michael organization: Department of Computer Science and Engineering, University of California – sequence: 3 givenname: Yifei surname: Ding fullname: Ding, Yifei organization: Department of Computer Science and Engineering, University of California – sequence: 4 givenname: Wei surname: Ding fullname: Ding, Wei organization: Department of Computer Science, University of Massachusetts Boston – sequence: 5 givenname: Paul surname: Hibbing fullname: Hibbing, Paul organization: Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville – sequence: 6 givenname: Samuel surname: LaMunion fullname: LaMunion, Samuel organization: Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville – sequence: 7 givenname: Andrew surname: Kaplan fullname: Kaplan, Andrew organization: Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville – sequence: 8 givenname: Scott E. surname: Crouter fullname: Crouter, Scott E. organization: Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville – sequence: 9 givenname: Eamonn surname: Keogh fullname: Keogh, Eamonn organization: Department of Computer Science and Engineering, University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30828258$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctu1TAQhq2qiF7gAdhUkbphE5ix40s2SOiUm1TBBiR2luM4B1eJ3doJEm-Po7QUKtHFyOPx94_-8ZyQwxCDI-QFwisEkK8zgkBVwxpctTU7IMfIJaslF98PS85UU3OFcEROcr4CAE4ZPCVHDBRVlKtj8vkiTsaHyuxDzLO3VQyjD67KbjJhvWe3n1yYzexjqIaYqmkZZ1_3vlRzqZmxmkteuORdfkaeDGbM7vnteUq-vX_3dfexvvzy4dPu7WVtGwlz7RpwSvUwCGMsGwwKZQ0OzloJUhjeoOuQl-mGrueiFa4DamjfWknRMN6xU_Jm63u9dJPrbXGYzKivk59M-qWj8frfl-B_6H38qQWTjNGmNHh52yDFm8XlWU8-WzeOJri4ZE1RyZZLFLyg5w_Qq7ikMvhKIbaCKo6FOvvb0R8rd19dALkBNsWckxu09du3FoN-1Ah6XarelqphjbJUzYoSHyjvmj-moZsmFzbsXbo3_X_Rb9ketUU |
CitedBy_id | crossref_primary_10_2196_65968 crossref_primary_10_1109_TKDE_2023_3347356 crossref_primary_10_3390_en15082960 crossref_primary_10_1007_s10618_020_00702_y crossref_primary_10_3390_app12178902 crossref_primary_10_1038_s41598_021_84838_x crossref_primary_10_1016_j_visinf_2023_01_001 crossref_primary_10_1007_s10618_023_00923_x crossref_primary_10_1007_s00778_021_00655_8 crossref_primary_10_14254_1795_6889_2022_18_3_4 crossref_primary_10_14778_3659437_3659450 crossref_primary_10_3389_fpsyg_2023_992541 crossref_primary_10_32604_cmc_2024_054061 crossref_primary_10_1109_TMC_2022_3199015 crossref_primary_10_1016_j_ins_2023_120003 crossref_primary_10_1007_s10115_019_01366_x crossref_primary_10_1016_j_bspc_2021_103052 crossref_primary_10_1016_j_engappai_2024_108217 crossref_primary_10_3390_bios12121182 crossref_primary_10_1109_ACCESS_2019_2935613 crossref_primary_10_1145_3411832 crossref_primary_10_1016_j_aei_2022_101850 crossref_primary_10_1016_j_dib_2024_110619 crossref_primary_10_1109_TKDE_2024_3492339 crossref_primary_10_1007_s11280_023_01207_6 crossref_primary_10_1145_3396250 crossref_primary_10_1155_2022_5339664 crossref_primary_10_1007_s10462_022_10250_0 |
Cites_doi | 10.1080/01621459.2013.849605 10.1109/TMM.2014.2310701 10.1123/jpah.10.3.437 10.1023/A:1024988512476 10.1249/MSS.0000000000000502 10.1007/s00371-013-0902-5 10.1007/s10115-016-0987-z 10.1007/s10163-003-0086-6 10.1007/s10618-015-0415-0 10.1038/s41598-017-12401-8 10.1016/0002-8703(94)90561-4 10.1109/THMS.2015.2493536 10.1249/MSS.0b013e31820ce174 10.1007/s00024-016-1284-1 10.1249/MSS.0b013e3182a42a2d 10.1145/2528282.2528315 10.1109/ICDM.2014.62 10.1142/9789812565402_0001 10.1109/ISWC.2012.13 10.3389/fneur.2013.00200 10.1145/2983323.2983855 10.1109/ICIP.2009.5413671 10.1109/CIC.2003.1291141 10.1145/2556288.2557116 10.1007/978-3-642-04394-9_91 10.1007/978-3-540-74997-4_4 10.1145/2588555.2588556 10.1109/CVPR.1997.609382 10.1145/2487575.2487634 10.1681/ASN.V871179 10.1145/1989323.1989364 10.1109/EMBC.2016.7591400 10.1109/WACV.2016.7477722 |
ContentType | Journal Article |
Copyright | The Author(s) 2018. corrected publication 2019 Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2018, corrected publication 2019 |
Copyright_xml | – notice: The Author(s) 2018. corrected publication 2019 – notice: Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2018, corrected publication 2019 |
DBID | C6C AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1007/s10618-018-0589-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep ProQuest SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (OCUL) Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | ABI/INFORM Global (Corporate) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 130 |
ExternalDocumentID | PMC6373324 30828258 10_1007_s10618_018_0589_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health grantid: R01HD083431 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Science Foundation (US) grantid: 1510741 – fundername: NICHD NIH HHS grantid: R01 HD083431 – fundername: ; grantid: R01HD083431 – fundername: ; grantid: 1510741 |
GroupedDBID | -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR -Y2 1SB 2P1 2VQ AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG ADKFA AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHSBF AHWEU AIXLP AJBLW AMVHM ATHPR AYFIA CAG CITATION COF H13 N2Q O9- OVD PHGZM PHGZT RNI RZC RZE RZK S1Z TEORI NPM 3V. 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c470t-e40e88d0f6aac3fa168ca1fecc7076a541eb15106fbd5696eb02a2d9c721a35b3 |
IEDL.DBID | BENPR |
ISSN | 1384-5810 |
IngestDate | Thu Aug 21 14:14:09 EDT 2025 Fri Jul 11 11:48:52 EDT 2025 Sat Aug 16 06:20:57 EDT 2025 Thu Apr 03 07:10:05 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Tue Jul 01 00:40:31 EDT 2025 Fri Feb 21 02:33:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Semantic segmentation Online algorithms Time series |
Language | English |
License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-e40e88d0f6aac3fa168ca1fecc7076a541eb15106fbd5696eb02a2d9c721a35b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Responsible editor: Charu Aggarwal. |
ORCID | 0000-0003-0258-7557 |
OpenAccessLink | https://link.springer.com/10.1007/s10618-018-0589-3 |
PMID | 30828258 |
PQID | 2111962851 |
PQPubID | 43030 |
PageCount | 35 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6373324 proquest_miscellaneous_2187957165 proquest_journals_2111962851 pubmed_primary_30828258 crossref_citationtrail_10_1007_s10618_018_0589_3 crossref_primary_10_1007_s10618_018_0589_3 springer_journals_10_1007_s10618_018_0589_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationTitleAlternate | Data Min Knowl Discov |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Weiner, Charles (CR43) 1997; 8 CR18 CR39 CR16 Keogh, Kasetty (CR19) 2003; 7 CR38 CR15 CR14 CR36 CR13 CR35 CR12 CR34 CR11 CR33 CR32 CR31 Chuttani, Tischler, Pandian, Lee, Mohanty (CR9) 1994; 127 Serra, Muller, Grosche, Arcos (CR41) 2014; 16 Lyden, Keadle, Staudenmayer, Freedson (CR25) 2014; 46 Kozey-Keadle, Libertine, Lyden, Staudenmayer, Freedson (CR21) 2011; 43 Cassisi, Prestifilippo, Cannata, Montalto, Patanè, Privitera (CR7) 2016; 173 Machné, Murray, Stadler (CR26) 2017; 7 CR2 CR4 CR3 Hu, Chen, Keogh (CR17) 2016; 30 CR5 CR8 Cain, Sallis, Conway, Van Dyck, Calhoon (CR6) 2013; 10 CR29 Aminikhanghahi, Cook (CR1) 2017; 51 CR28 CR27 CR47 CR46 CR45 Crouter, Flynn, Bassett (CR10) 2015; 47 Nishino, Itoh, Ishinomori, Kubota, Uemichi (CR37) 2003; 5 CR44 CR20 CR42 CR40 Lainscsek, Hernandez, Weyhenmeyer, Sejnowski, Poizner (CR22) 2013 Matteson, James (CR30) 2014; 109 Lin, Karg, Kulić (CR24) 2016; 46 Lan, Sun (CR23) 2015; 31 589_CR45 589_CR44 589_CR47 589_CR46 589_CR27 ID Weiner (589_CR43) 1997; 8 589_CR29 589_CR28 R Machné (589_CR26) 2017; 7 KL Cain (589_CR6) 2013; 10 589_CR40 589_CR20 589_CR42 E Keogh (589_CR19) 2003; 7 J Nishino (589_CR37) 2003; 5 589_CR3 589_CR2 589_CR5 JF-S Lin (589_CR24) 2016; 46 589_CR4 K Chuttani (589_CR9) 1994; 127 J Serra (589_CR41) 2014; 16 K Lyden (589_CR25) 2014; 46 589_CR12 589_CR34 S Aminikhanghahi (589_CR1) 2017; 51 589_CR11 589_CR33 589_CR14 589_CR36 589_CR13 589_CR35 589_CR16 589_CR38 589_CR15 C Cassisi (589_CR7) 2016; 173 B Hu (589_CR17) 2016; 30 589_CR18 C Lainscsek (589_CR22) 2013 589_CR39 589_CR8 R Lan (589_CR23) 2015; 31 589_CR32 589_CR31 DS Matteson (589_CR30) 2014; 109 SE Crouter (589_CR10) 2015; 47 S Kozey-Keadle (589_CR21) 2011; 43 |
References_xml | – ident: CR45 – year: 2013 ident: CR22 article-title: Non-linear dynamical analysis of EEG time series distinguishes patients with Parkinson’s disease from healthy individuals publication-title: Front Neurol – ident: CR18 – volume: 109 start-page: 334 year: 2014 end-page: 345 ident: CR30 article-title: A nonparametric approach for multiple change point analysis of multivariate data publication-title: J Am Stat Assoc doi: 10.1080/01621459.2013.849605 – ident: CR47 – ident: CR4 – ident: CR14 – ident: CR39 – volume: 16 start-page: 1229 year: 2014 end-page: 1240 ident: CR41 article-title: Unsupervised music structure annotation by time series structure features and segment similarity publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2014.2310701 – ident: CR2 – ident: CR16 – ident: CR12 – volume: 10 start-page: 437 year: 2013 end-page: 450 ident: CR6 article-title: Using accelerometers in youth physical activity studies: a review of methods publication-title: J Phys Act Health doi: 10.1123/jpah.10.3.437 – ident: CR33 – ident: CR35 – ident: CR29 – ident: CR8 – ident: CR40 – ident: CR27 – ident: CR42 – ident: CR46 – volume: 7 start-page: 349 year: 2003 end-page: 371 ident: CR19 article-title: On the need for time series data mining benchmarks: a survey and empirical demonstration publication-title: Data Min Knowl Disc doi: 10.1023/A:1024988512476 – ident: CR44 – volume: 47 start-page: 944 year: 2015 ident: CR10 article-title: Estimating physical activity in youth using a wrist accelerometer publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0000000000000502 – volume: 31 start-page: 35 year: 2015 end-page: 53 ident: CR23 article-title: Automated human motion segmentation via motion regularities publication-title: Vis Comput doi: 10.1007/s00371-013-0902-5 – ident: CR3 – ident: CR15 – ident: CR38 – volume: 8 start-page: 1179 year: 1997 end-page: 1188 ident: CR43 article-title: Hypokalemia–consequences, causes, and correction publication-title: J Am Soc Nephrol – volume: 51 start-page: 339 year: 2017 end-page: 367 ident: CR1 article-title: A survey of methods for time series change point detection publication-title: Knowl Inf Syst doi: 10.1007/s10115-016-0987-z – volume: 5 start-page: 89 year: 2003 end-page: 93 ident: CR37 article-title: Development of a catalytic cracking process for converting waste plastics to petrochemicals publication-title: J Mater Cycles Waste Manag doi: 10.1007/s10163-003-0086-6 – volume: 30 start-page: 403 year: 2016 end-page: 437 ident: CR17 article-title: Classification of streaming time series under more realistic assumptions publication-title: Data Min Knowl Disc doi: 10.1007/s10618-015-0415-0 – ident: CR31 – ident: CR13 – ident: CR11 – volume: 7 start-page: 12355 year: 2017 ident: CR26 article-title: Similarity-based segmentation of multi-dimensional signals publication-title: Sci Rep doi: 10.1038/s41598-017-12401-8 – ident: CR32 – ident: CR34 – ident: CR36 – ident: CR5 – volume: 127 start-page: 913 year: 1994 end-page: 918 ident: CR9 article-title: Diagnosis of cardiac tamponade after cardiac surgery: relative value of clinical, echocardiographic, and hemodynamic signs publication-title: Am Heart J doi: 10.1016/0002-8703(94)90561-4 – volume: 46 start-page: 325 year: 2016 end-page: 339 ident: CR24 article-title: Movement primitive segmentation for human motion modeling: a framework for analysis publication-title: IEEE Trans Hum Mach Syst doi: 10.1109/THMS.2015.2493536 – ident: CR28 – volume: 43 start-page: 1561 year: 2011 end-page: 1567 ident: CR21 article-title: Validation of wearable monitors for assessing sedentary behavior publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e31820ce174 – volume: 173 start-page: 2365 year: 2016 end-page: 2386 ident: CR7 article-title: Probabilistic reasoning over seismic time series: volcano monitoring by hidden markov models at mt. etna publication-title: Pure appl Geophys doi: 10.1007/s00024-016-1284-1 – ident: CR20 – volume: 46 start-page: 386 year: 2014 ident: CR25 article-title: A method to estimate free-living active and sedentary behavior from an accelerometer publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e3182a42a2d – ident: 589_CR8 – ident: 589_CR39 doi: 10.1145/2528282.2528315 – volume: 46 start-page: 386 year: 2014 ident: 589_CR25 publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e3182a42a2d – ident: 589_CR32 – ident: 589_CR29 doi: 10.1109/ICDM.2014.62 – volume: 7 start-page: 12355 year: 2017 ident: 589_CR26 publication-title: Sci Rep doi: 10.1038/s41598-017-12401-8 – ident: 589_CR36 – volume: 173 start-page: 2365 year: 2016 ident: 589_CR7 publication-title: Pure appl Geophys doi: 10.1007/s00024-016-1284-1 – ident: 589_CR38 – ident: 589_CR13 – volume: 5 start-page: 89 year: 2003 ident: 589_CR37 publication-title: J Mater Cycles Waste Manag doi: 10.1007/s10163-003-0086-6 – ident: 589_CR20 doi: 10.1142/9789812565402_0001 – ident: 589_CR2 – ident: 589_CR45 – volume: 46 start-page: 325 year: 2016 ident: 589_CR24 publication-title: IEEE Trans Hum Mach Syst doi: 10.1109/THMS.2015.2493536 – volume: 51 start-page: 339 year: 2017 ident: 589_CR1 publication-title: Knowl Inf Syst doi: 10.1007/s10115-016-0987-z – ident: 589_CR40 doi: 10.1109/ISWC.2012.13 – year: 2013 ident: 589_CR22 publication-title: Front Neurol doi: 10.3389/fneur.2013.00200 – ident: 589_CR11 doi: 10.1145/2983323.2983855 – ident: 589_CR15 doi: 10.1109/ICIP.2009.5413671 – volume: 10 start-page: 437 year: 2013 ident: 589_CR6 publication-title: J Phys Act Health doi: 10.1123/jpah.10.3.437 – ident: 589_CR31 – ident: 589_CR16 doi: 10.1109/CIC.2003.1291141 – volume: 127 start-page: 913 year: 1994 ident: 589_CR9 publication-title: Am Heart J doi: 10.1016/0002-8703(94)90561-4 – ident: 589_CR35 – ident: 589_CR34 doi: 10.1145/2556288.2557116 – volume: 43 start-page: 1561 year: 2011 ident: 589_CR21 publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0b013e31820ce174 – volume: 31 start-page: 35 year: 2015 ident: 589_CR23 publication-title: Vis Comput doi: 10.1007/s00371-013-0902-5 – ident: 589_CR33 doi: 10.1007/978-3-642-04394-9_91 – ident: 589_CR12 – ident: 589_CR4 doi: 10.1007/978-3-540-74997-4_4 – volume: 47 start-page: 944 year: 2015 ident: 589_CR10 publication-title: Med Sci Sports Exerc doi: 10.1249/MSS.0000000000000502 – ident: 589_CR28 doi: 10.1145/2588555.2588556 – ident: 589_CR44 – volume: 30 start-page: 403 year: 2016 ident: 589_CR17 publication-title: Data Min Knowl Disc doi: 10.1007/s10618-015-0415-0 – ident: 589_CR5 doi: 10.1109/CVPR.1997.609382 – ident: 589_CR14 doi: 10.1145/2487575.2487634 – ident: 589_CR18 – volume: 8 start-page: 1179 year: 1997 ident: 589_CR43 publication-title: J Am Soc Nephrol doi: 10.1681/ASN.V871179 – ident: 589_CR46 – volume: 16 start-page: 1229 year: 2014 ident: 589_CR41 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2014.2310701 – ident: 589_CR42 doi: 10.1145/1989323.1989364 – ident: 589_CR3 doi: 10.1109/EMBC.2016.7591400 – ident: 589_CR27 – volume: 7 start-page: 349 year: 2003 ident: 589_CR19 publication-title: Data Min Knowl Disc doi: 10.1023/A:1024988512476 – volume: 109 start-page: 334 year: 2014 ident: 589_CR30 publication-title: J Am Stat Assoc doi: 10.1080/01621459.2013.849605 – ident: 589_CR47 doi: 10.1109/WACV.2016.7477722 |
SSID | ssj0005230 |
Score | 2.476463 |
Snippet | Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 96 |
SubjectTerms | Algorithms Artificial Intelligence Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Data transmission Information Storage and Retrieval Multidimensional data Parameters Physics Semantic segmentation Semantics Statistics for Engineering Time series |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VKiQuQLdQQrfISJyKLDl24jhH1LJaVYJTV9pbZDt2QWKziCz_v-O8YLuA1IMPke085mHPxDPfAJwLlfjcc0lN7DhF_yujqEWGMu15bpVFoy5kI1_fyOks-TVP510ed91Hu_dHks1K_SLZTcYh8ApbqnIqtuBjGlx3FOIZv3wR1yHa1GCV0FTFw1Hma7dY34w2LMzNQMl_TkubTWhyAHud9UguW3Z_gg-uGsF-X5mBdIo6gp0msNPWn-Hm53KBzj9pAupwFmmhMUjtFkhTvK7dn0WXf1QRtGBJE2JIy4D63yJ2kFB_ngRRdfUhzCZXv39MaVdDgdokYyvqEuaUKpmXWlvhdSyV1bFHxmUskzpNYlysUS-lN2Uqc-kM45qXuUXPUIvUiCPYrpaVOwZiy9hbE3uWcZuUjhvvmM28FCI3peEiAtYTs7AdwHioc3FfPEMjB_oXLDSkf4FTvg9THlp0jfcGj3sOFZ2i1QX6r7iGcLQbIzgbulFFwrmHrtzyKYwJFdXRMUwj-NIydHhaQOtBJ1lFkK2xehgQ4LfXe6q72waGW4pMoDkawUUvFM-v9eZHnPzX6K-wiwZa3v7yGcP26vHJfUMjaGVOG6H_C67MAFM priority: 102 providerName: Springer Nature |
Title | Domain agnostic online semantic segmentation for multi-dimensional time series |
URI | https://link.springer.com/article/10.1007/s10618-018-0589-3 https://www.ncbi.nlm.nih.gov/pubmed/30828258 https://www.proquest.com/docview/2111962851 https://www.proquest.com/docview/2187957165 https://pubmed.ncbi.nlm.nih.gov/PMC6373324 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6x2wsX3o_AUhmJE8jCsRPHOaFS2l2BqBCi0nKKbMcGJJoupPv_GSdOSlmxh0RKbCuxZ8ae8Yy_AXghVOZLzyU1qeMU7a-CohQZyrTnpVUWlbpwGvnjSp6ts_fn-XnccGtjWOUwJ3YTdb21YY_8NRoqyCwcFYQ3F79oyBoVvKsxhcYRTHAKVmh8Td4uVp8-_xXkIfpzwiqjuUpHv2Z_eE6mIZALr1yVVByuTFfUzatRk_-4TrsVaXkHbkVVksx62t-FG665B7eHNA0kSu19WL3bbtD-J11MHdYlPToGad0GhxWfW_dtE48gNQSVWNJFGdI6AP_3oB0kpKAngVtd-wDWy8WX-RmNaRSozQq2oy5jTqmaeam1FV6nUlmdeqRdwQqp8yzF-RpFU3pT57KUzjCueV1aNA61yI14CMfNtnGPgdg69daknhXcZrXjxjtmCy-FKE1tuEiADUNY2YgxHlJd_Kz26Mhh1CsWLhz1Cpu8HJtc9AAb11U-GehSRVlrqz1nJPB8LEYpCa4P3bjtZagTkqqjbZgn8Kgn4_i1ANiDdrJKoDgg8FghIHAfljQ_vndI3FIUAjXSBF4NrLD_rf924sn1nXgKN1EpK_ttnhM43v2-dM9Q8dmZKRyp5ekUJrPTrx8W08jr-HYu53hf89kfHRIGXQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKAS68H4ECRoILyKpjJ45zQAhRli1t99RKvQXbsaESmy1kK8RP8Y2M4yTLUtFbDz5EHifxPOwZex4AL4TKfOm5pCZ1nKL9VVCUIkOZ9ry0yqJSF6KRD2ZyepR9Os6PN-D3EAsT3CqHNbFbqOuFDWfk22ioILNwVBDenn6noWpUuF0dSmhEtthzv36iyda-2d1B-r7kfPLh8P2U9lUFqM0KtqQuY06pmnmptRVep1JZnXqcSoE2vc6zFJcv5FTpTZ3LUjrDuOZ1adFW0iI3At97Ba5mQpRBotTk418uJSJGJauM5iodb1FjqJ5Mg9sYtlyVVKzvg-eU2_M-mv9c1Hb73-QW3OgVV_Iuctpt2HDNHbg5FIUg_RpxF2Y7i7k-aUjnwYewJObiIK2bIxHxuXVf5n3AU0NQZSadTyOtQ5mBmCKEhIL3JMiGa-_B0aWg9z5sNovGPQRi69Rbk3pWcJvVjhvvmC28RMyb2nCRABtQWNk-o3korPGtWuViDlivWGiI9QqHvBqHnMZ0HhcBbw10qXrJbqsVHybwfOxGmQwXLbpxi7MAE0q4oyWaJ_AgknH8WkgPhFa5SqBYI_AIEPJ9r_c0J1-7vN9SFAL13wReD6yw-q3_TuLRxZN4Btemhwf71f7ubO8xXEd1sIwHTFuwufxx5p6gyrU0Tzs-J_D5sgXrD1L5Pq8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2EuJCeZNSwEhwAVl17MRxDggB21VLYVUhKvUWbMeGSmy2kK0Qv9av6zivZanorYdIiTxOYs-MPeN5ATwXKvG555Ka2HGK-ldGkYsMZdrz3CqLQl2IRv40lbuHyYej9GgNzvpYmOBW2a-JzUJdzm04I99GRQWJhaOAsO07t4iD8eTNyU8aKkgFS2tfTqMlkX335zeqb_XrvTHi-gXnk50v73dpV2GA2iRjC-oS5pQqmZdaW-F1LJXVscdhZajf6zSJcSlDqpXelKnMpTOMa17mFvUmLVIj8L3XYD1DrYiNYP3dzvTg818OJqKNUVYJTVU82FTbwD0ZBycyvFKVU7G6K14QdS96bP5jtm12w8ktuNmJseRtS3e3Yc1Vd2CjLxFBuhXjLkzH85k-rkjjz4ewpM3MQWo3Q5Tic-2-zbrwp4qgAE0aD0dahqIDbcIQssB7EjjF1ffg8Eom-D6MqnnlHgKxZeytiT3LuE1Kx413zGZeCpGb0nARAeunsLBdfvNQZuNHsczMHGa9YOHCWS-wy8uhy0mb3OMy4K0eL0XH53WxpMoIng3NyKHB7KIrNz8NMKGgO-qlaQQPWjQOXwvJglBHVxFkKwgeAEL279WW6vh7kwVcikygNBzBq54Ulr_130FsXj6Ip3Admar4uDfdfwQ3UDbM29OmLRgtfp26xyh_LcyTjtAJfL1q3joHaoBEQQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+agnostic+online+semantic+segmentation+for+multi-dimensional+time+series&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Shaghayegh+Gharghabi&rft.au=Chin-Chia%2C+Michael+Yeh&rft.au=Ding%2C+Yifei&rft.au=Ding%2C+Wei&rft.date=2019-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=33&rft.issue=1&rft.spage=96&rft.epage=130&rft_id=info:doi/10.1007%2Fs10618-018-0589-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |