Domain agnostic online semantic segmentation for multi-dimensional time series

Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segm...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 33; no. 1; pp. 96 - 130
Main Authors Gharghabi, Shaghayegh, Yeh, Chin-Chia Michael, Ding, Yifei, Ding, Wei, Hibbing, Paul, LaMunion, Samuel, Kaplan, Andrew, Crouter, Scott E., Keogh, Eamonn
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm’s superiority over current solutions.
AbstractList Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm’s superiority over current solutions.
Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm's superiority over current solutions.Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in poorly understood data. However, the current techniques have several shortcomings, which have limited the adoption of time series semantic segmentation beyond academic settings for four primary reasons. First, most methods require setting/learning many parameters and thus may have problems generalizing to novel situations. Second, most methods implicitly assume that all the data is segmentable and have difficulty when that assumption is unwarranted. Thirdly, many algorithms are only defined for the single dimensional case, despite the ubiquity of multi-dimensional data. Finally, most research efforts have been confined to the batch case, but online segmentation is clearly more useful and actionable. To address these issues, we present a multi-dimensional algorithm, which is domain agnostic, has only one, easily-determined parameter, and can handle data streaming at a high rate. In this context, we test the algorithm on the largest and most diverse collection of time series datasets ever considered for this task and demonstrate the algorithm's superiority over current solutions.
Author Gharghabi, Shaghayegh
Kaplan, Andrew
Keogh, Eamonn
Yeh, Chin-Chia Michael
LaMunion, Samuel
Crouter, Scott E.
Ding, Yifei
Ding, Wei
Hibbing, Paul
Author_xml – sequence: 1
  givenname: Shaghayegh
  orcidid: 0000-0003-0258-7557
  surname: Gharghabi
  fullname: Gharghabi, Shaghayegh
  email: sghar003@ucr.edu
  organization: Department of Computer Science and Engineering, University of California
– sequence: 2
  givenname: Chin-Chia Michael
  surname: Yeh
  fullname: Yeh, Chin-Chia Michael
  organization: Department of Computer Science and Engineering, University of California
– sequence: 3
  givenname: Yifei
  surname: Ding
  fullname: Ding, Yifei
  organization: Department of Computer Science and Engineering, University of California
– sequence: 4
  givenname: Wei
  surname: Ding
  fullname: Ding, Wei
  organization: Department of Computer Science, University of Massachusetts Boston
– sequence: 5
  givenname: Paul
  surname: Hibbing
  fullname: Hibbing, Paul
  organization: Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville
– sequence: 6
  givenname: Samuel
  surname: LaMunion
  fullname: LaMunion, Samuel
  organization: Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville
– sequence: 7
  givenname: Andrew
  surname: Kaplan
  fullname: Kaplan, Andrew
  organization: Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville
– sequence: 8
  givenname: Scott E.
  surname: Crouter
  fullname: Crouter, Scott E.
  organization: Department of Kinesiology, Recreation, and Sport Studies, The University of Tennessee Knoxville
– sequence: 9
  givenname: Eamonn
  surname: Keogh
  fullname: Keogh, Eamonn
  organization: Department of Computer Science and Engineering, University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30828258$$D View this record in MEDLINE/PubMed
BookMark eNp9kctu1TAQhq2qiF7gAdhUkbphE5ix40s2SOiUm1TBBiR2luM4B1eJ3doJEm-Po7QUKtHFyOPx94_-8ZyQwxCDI-QFwisEkK8zgkBVwxpctTU7IMfIJaslF98PS85UU3OFcEROcr4CAE4ZPCVHDBRVlKtj8vkiTsaHyuxDzLO3VQyjD67KbjJhvWe3n1yYzexjqIaYqmkZZ1_3vlRzqZmxmkteuORdfkaeDGbM7vnteUq-vX_3dfexvvzy4dPu7WVtGwlz7RpwSvUwCGMsGwwKZQ0OzloJUhjeoOuQl-mGrueiFa4DamjfWknRMN6xU_Jm63u9dJPrbXGYzKivk59M-qWj8frfl-B_6H38qQWTjNGmNHh52yDFm8XlWU8-WzeOJri4ZE1RyZZLFLyg5w_Qq7ikMvhKIbaCKo6FOvvb0R8rd19dALkBNsWckxu09du3FoN-1Ah6XarelqphjbJUzYoSHyjvmj-moZsmFzbsXbo3_X_Rb9ketUU
CitedBy_id crossref_primary_10_2196_65968
crossref_primary_10_1109_TKDE_2023_3347356
crossref_primary_10_3390_en15082960
crossref_primary_10_1007_s10618_020_00702_y
crossref_primary_10_3390_app12178902
crossref_primary_10_1038_s41598_021_84838_x
crossref_primary_10_1016_j_visinf_2023_01_001
crossref_primary_10_1007_s10618_023_00923_x
crossref_primary_10_1007_s00778_021_00655_8
crossref_primary_10_14254_1795_6889_2022_18_3_4
crossref_primary_10_14778_3659437_3659450
crossref_primary_10_3389_fpsyg_2023_992541
crossref_primary_10_32604_cmc_2024_054061
crossref_primary_10_1109_TMC_2022_3199015
crossref_primary_10_1016_j_ins_2023_120003
crossref_primary_10_1007_s10115_019_01366_x
crossref_primary_10_1016_j_bspc_2021_103052
crossref_primary_10_1016_j_engappai_2024_108217
crossref_primary_10_3390_bios12121182
crossref_primary_10_1109_ACCESS_2019_2935613
crossref_primary_10_1145_3411832
crossref_primary_10_1016_j_aei_2022_101850
crossref_primary_10_1016_j_dib_2024_110619
crossref_primary_10_1109_TKDE_2024_3492339
crossref_primary_10_1007_s11280_023_01207_6
crossref_primary_10_1145_3396250
crossref_primary_10_1155_2022_5339664
crossref_primary_10_1007_s10462_022_10250_0
Cites_doi 10.1080/01621459.2013.849605
10.1109/TMM.2014.2310701
10.1123/jpah.10.3.437
10.1023/A:1024988512476
10.1249/MSS.0000000000000502
10.1007/s00371-013-0902-5
10.1007/s10115-016-0987-z
10.1007/s10163-003-0086-6
10.1007/s10618-015-0415-0
10.1038/s41598-017-12401-8
10.1016/0002-8703(94)90561-4
10.1109/THMS.2015.2493536
10.1249/MSS.0b013e31820ce174
10.1007/s00024-016-1284-1
10.1249/MSS.0b013e3182a42a2d
10.1145/2528282.2528315
10.1109/ICDM.2014.62
10.1142/9789812565402_0001
10.1109/ISWC.2012.13
10.3389/fneur.2013.00200
10.1145/2983323.2983855
10.1109/ICIP.2009.5413671
10.1109/CIC.2003.1291141
10.1145/2556288.2557116
10.1007/978-3-642-04394-9_91
10.1007/978-3-540-74997-4_4
10.1145/2588555.2588556
10.1109/CVPR.1997.609382
10.1145/2487575.2487634
10.1681/ASN.V871179
10.1145/1989323.1989364
10.1109/EMBC.2016.7591400
10.1109/WACV.2016.7477722
ContentType Journal Article
Copyright The Author(s) 2018. corrected publication 2019
Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2018, corrected publication 2019
Copyright_xml – notice: The Author(s) 2018. corrected publication 2019
– notice: Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2018, corrected publication 2019
DBID C6C
AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1007/s10618-018-0589-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (OCUL)
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList ABI/INFORM Global (Corporate)
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 130
ExternalDocumentID PMC6373324
30828258
10_1007_s10618_018_0589_3
Genre Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01HD083431
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Science Foundation (US)
  grantid: 1510741
– fundername: NICHD NIH HHS
  grantid: R01 HD083431
– fundername: ;
  grantid: R01HD083431
– fundername: ;
  grantid: 1510741
GroupedDBID -59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
-Y2
1SB
2P1
2VQ
AAPKM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
CAG
CITATION
COF
H13
N2Q
O9-
OVD
PHGZM
PHGZT
RNI
RZC
RZE
RZK
S1Z
TEORI
NPM
3V.
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c470t-e40e88d0f6aac3fa168ca1fecc7076a541eb15106fbd5696eb02a2d9c721a35b3
IEDL.DBID BENPR
ISSN 1384-5810
IngestDate Thu Aug 21 14:14:09 EDT 2025
Fri Jul 11 11:48:52 EDT 2025
Sat Aug 16 06:20:57 EDT 2025
Thu Apr 03 07:10:05 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Tue Jul 01 00:40:31 EDT 2025
Fri Feb 21 02:33:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Semantic segmentation
Online algorithms
Time series
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-e40e88d0f6aac3fa168ca1fecc7076a541eb15106fbd5696eb02a2d9c721a35b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Responsible editor: Charu Aggarwal.
ORCID 0000-0003-0258-7557
OpenAccessLink https://link.springer.com/10.1007/s10618-018-0589-3
PMID 30828258
PQID 2111962851
PQPubID 43030
PageCount 35
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6373324
proquest_miscellaneous_2187957165
proquest_journals_2111962851
pubmed_primary_30828258
crossref_citationtrail_10_1007_s10618_018_0589_3
crossref_primary_10_1007_s10618_018_0589_3
springer_journals_10_1007_s10618_018_0589_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationTitleAlternate Data Min Knowl Discov
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Weiner, Charles (CR43) 1997; 8
CR18
CR39
CR16
Keogh, Kasetty (CR19) 2003; 7
CR38
CR15
CR14
CR36
CR13
CR35
CR12
CR34
CR11
CR33
CR32
CR31
Chuttani, Tischler, Pandian, Lee, Mohanty (CR9) 1994; 127
Serra, Muller, Grosche, Arcos (CR41) 2014; 16
Lyden, Keadle, Staudenmayer, Freedson (CR25) 2014; 46
Kozey-Keadle, Libertine, Lyden, Staudenmayer, Freedson (CR21) 2011; 43
Cassisi, Prestifilippo, Cannata, Montalto, Patanè, Privitera (CR7) 2016; 173
Machné, Murray, Stadler (CR26) 2017; 7
CR2
CR4
CR3
Hu, Chen, Keogh (CR17) 2016; 30
CR5
CR8
Cain, Sallis, Conway, Van Dyck, Calhoon (CR6) 2013; 10
CR29
Aminikhanghahi, Cook (CR1) 2017; 51
CR28
CR27
CR47
CR46
CR45
Crouter, Flynn, Bassett (CR10) 2015; 47
Nishino, Itoh, Ishinomori, Kubota, Uemichi (CR37) 2003; 5
CR44
CR20
CR42
CR40
Lainscsek, Hernandez, Weyhenmeyer, Sejnowski, Poizner (CR22) 2013
Matteson, James (CR30) 2014; 109
Lin, Karg, Kulić (CR24) 2016; 46
Lan, Sun (CR23) 2015; 31
589_CR45
589_CR44
589_CR47
589_CR46
589_CR27
ID Weiner (589_CR43) 1997; 8
589_CR29
589_CR28
R Machné (589_CR26) 2017; 7
KL Cain (589_CR6) 2013; 10
589_CR40
589_CR20
589_CR42
E Keogh (589_CR19) 2003; 7
J Nishino (589_CR37) 2003; 5
589_CR3
589_CR2
589_CR5
JF-S Lin (589_CR24) 2016; 46
589_CR4
K Chuttani (589_CR9) 1994; 127
J Serra (589_CR41) 2014; 16
K Lyden (589_CR25) 2014; 46
589_CR12
589_CR34
S Aminikhanghahi (589_CR1) 2017; 51
589_CR11
589_CR33
589_CR14
589_CR36
589_CR13
589_CR35
589_CR16
589_CR38
589_CR15
C Cassisi (589_CR7) 2016; 173
B Hu (589_CR17) 2016; 30
589_CR18
C Lainscsek (589_CR22) 2013
589_CR39
589_CR8
R Lan (589_CR23) 2015; 31
589_CR32
589_CR31
DS Matteson (589_CR30) 2014; 109
SE Crouter (589_CR10) 2015; 47
S Kozey-Keadle (589_CR21) 2011; 43
References_xml – ident: CR45
– year: 2013
  ident: CR22
  article-title: Non-linear dynamical analysis of EEG time series distinguishes patients with Parkinson’s disease from healthy individuals
  publication-title: Front Neurol
– ident: CR18
– volume: 109
  start-page: 334
  year: 2014
  end-page: 345
  ident: CR30
  article-title: A nonparametric approach for multiple change point analysis of multivariate data
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2013.849605
– ident: CR47
– ident: CR4
– ident: CR14
– ident: CR39
– volume: 16
  start-page: 1229
  year: 2014
  end-page: 1240
  ident: CR41
  article-title: Unsupervised music structure annotation by time series structure features and segment similarity
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2014.2310701
– ident: CR2
– ident: CR16
– ident: CR12
– volume: 10
  start-page: 437
  year: 2013
  end-page: 450
  ident: CR6
  article-title: Using accelerometers in youth physical activity studies: a review of methods
  publication-title: J Phys Act Health
  doi: 10.1123/jpah.10.3.437
– ident: CR33
– ident: CR35
– ident: CR29
– ident: CR8
– ident: CR40
– ident: CR27
– ident: CR42
– ident: CR46
– volume: 7
  start-page: 349
  year: 2003
  end-page: 371
  ident: CR19
  article-title: On the need for time series data mining benchmarks: a survey and empirical demonstration
  publication-title: Data Min Knowl Disc
  doi: 10.1023/A:1024988512476
– ident: CR44
– volume: 47
  start-page: 944
  year: 2015
  ident: CR10
  article-title: Estimating physical activity in youth using a wrist accelerometer
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0000000000000502
– volume: 31
  start-page: 35
  year: 2015
  end-page: 53
  ident: CR23
  article-title: Automated human motion segmentation via motion regularities
  publication-title: Vis Comput
  doi: 10.1007/s00371-013-0902-5
– ident: CR3
– ident: CR15
– ident: CR38
– volume: 8
  start-page: 1179
  year: 1997
  end-page: 1188
  ident: CR43
  article-title: Hypokalemia–consequences, causes, and correction
  publication-title: J Am Soc Nephrol
– volume: 51
  start-page: 339
  year: 2017
  end-page: 367
  ident: CR1
  article-title: A survey of methods for time series change point detection
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-016-0987-z
– volume: 5
  start-page: 89
  year: 2003
  end-page: 93
  ident: CR37
  article-title: Development of a catalytic cracking process for converting waste plastics to petrochemicals
  publication-title: J Mater Cycles Waste Manag
  doi: 10.1007/s10163-003-0086-6
– volume: 30
  start-page: 403
  year: 2016
  end-page: 437
  ident: CR17
  article-title: Classification of streaming time series under more realistic assumptions
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-015-0415-0
– ident: CR31
– ident: CR13
– ident: CR11
– volume: 7
  start-page: 12355
  year: 2017
  ident: CR26
  article-title: Similarity-based segmentation of multi-dimensional signals
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-12401-8
– ident: CR32
– ident: CR34
– ident: CR36
– ident: CR5
– volume: 127
  start-page: 913
  year: 1994
  end-page: 918
  ident: CR9
  article-title: Diagnosis of cardiac tamponade after cardiac surgery: relative value of clinical, echocardiographic, and hemodynamic signs
  publication-title: Am Heart J
  doi: 10.1016/0002-8703(94)90561-4
– volume: 46
  start-page: 325
  year: 2016
  end-page: 339
  ident: CR24
  article-title: Movement primitive segmentation for human motion modeling: a framework for analysis
  publication-title: IEEE Trans Hum Mach Syst
  doi: 10.1109/THMS.2015.2493536
– ident: CR28
– volume: 43
  start-page: 1561
  year: 2011
  end-page: 1567
  ident: CR21
  article-title: Validation of wearable monitors for assessing sedentary behavior
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e31820ce174
– volume: 173
  start-page: 2365
  year: 2016
  end-page: 2386
  ident: CR7
  article-title: Probabilistic reasoning over seismic time series: volcano monitoring by hidden markov models at mt. etna
  publication-title: Pure appl Geophys
  doi: 10.1007/s00024-016-1284-1
– ident: CR20
– volume: 46
  start-page: 386
  year: 2014
  ident: CR25
  article-title: A method to estimate free-living active and sedentary behavior from an accelerometer
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e3182a42a2d
– ident: 589_CR8
– ident: 589_CR39
  doi: 10.1145/2528282.2528315
– volume: 46
  start-page: 386
  year: 2014
  ident: 589_CR25
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e3182a42a2d
– ident: 589_CR32
– ident: 589_CR29
  doi: 10.1109/ICDM.2014.62
– volume: 7
  start-page: 12355
  year: 2017
  ident: 589_CR26
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-12401-8
– ident: 589_CR36
– volume: 173
  start-page: 2365
  year: 2016
  ident: 589_CR7
  publication-title: Pure appl Geophys
  doi: 10.1007/s00024-016-1284-1
– ident: 589_CR38
– ident: 589_CR13
– volume: 5
  start-page: 89
  year: 2003
  ident: 589_CR37
  publication-title: J Mater Cycles Waste Manag
  doi: 10.1007/s10163-003-0086-6
– ident: 589_CR20
  doi: 10.1142/9789812565402_0001
– ident: 589_CR2
– ident: 589_CR45
– volume: 46
  start-page: 325
  year: 2016
  ident: 589_CR24
  publication-title: IEEE Trans Hum Mach Syst
  doi: 10.1109/THMS.2015.2493536
– volume: 51
  start-page: 339
  year: 2017
  ident: 589_CR1
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-016-0987-z
– ident: 589_CR40
  doi: 10.1109/ISWC.2012.13
– year: 2013
  ident: 589_CR22
  publication-title: Front Neurol
  doi: 10.3389/fneur.2013.00200
– ident: 589_CR11
  doi: 10.1145/2983323.2983855
– ident: 589_CR15
  doi: 10.1109/ICIP.2009.5413671
– volume: 10
  start-page: 437
  year: 2013
  ident: 589_CR6
  publication-title: J Phys Act Health
  doi: 10.1123/jpah.10.3.437
– ident: 589_CR31
– ident: 589_CR16
  doi: 10.1109/CIC.2003.1291141
– volume: 127
  start-page: 913
  year: 1994
  ident: 589_CR9
  publication-title: Am Heart J
  doi: 10.1016/0002-8703(94)90561-4
– ident: 589_CR35
– ident: 589_CR34
  doi: 10.1145/2556288.2557116
– volume: 43
  start-page: 1561
  year: 2011
  ident: 589_CR21
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0b013e31820ce174
– volume: 31
  start-page: 35
  year: 2015
  ident: 589_CR23
  publication-title: Vis Comput
  doi: 10.1007/s00371-013-0902-5
– ident: 589_CR33
  doi: 10.1007/978-3-642-04394-9_91
– ident: 589_CR12
– ident: 589_CR4
  doi: 10.1007/978-3-540-74997-4_4
– volume: 47
  start-page: 944
  year: 2015
  ident: 589_CR10
  publication-title: Med Sci Sports Exerc
  doi: 10.1249/MSS.0000000000000502
– ident: 589_CR28
  doi: 10.1145/2588555.2588556
– ident: 589_CR44
– volume: 30
  start-page: 403
  year: 2016
  ident: 589_CR17
  publication-title: Data Min Knowl Disc
  doi: 10.1007/s10618-015-0415-0
– ident: 589_CR5
  doi: 10.1109/CVPR.1997.609382
– ident: 589_CR14
  doi: 10.1145/2487575.2487634
– ident: 589_CR18
– volume: 8
  start-page: 1179
  year: 1997
  ident: 589_CR43
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.V871179
– ident: 589_CR46
– volume: 16
  start-page: 1229
  year: 2014
  ident: 589_CR41
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2014.2310701
– ident: 589_CR42
  doi: 10.1145/1989323.1989364
– ident: 589_CR3
  doi: 10.1109/EMBC.2016.7591400
– ident: 589_CR27
– volume: 7
  start-page: 349
  year: 2003
  ident: 589_CR19
  publication-title: Data Min Knowl Disc
  doi: 10.1023/A:1024988512476
– volume: 109
  start-page: 334
  year: 2014
  ident: 589_CR30
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2013.849605
– ident: 589_CR47
  doi: 10.1109/WACV.2016.7477722
SSID ssj0005230
Score 2.476463
Snippet Unsupervised semantic segmentation in the time series domain is a much studied problem due to its potential to detect unexpected regularities and regimes in...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 96
SubjectTerms Algorithms
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Data transmission
Information Storage and Retrieval
Multidimensional data
Parameters
Physics
Semantic segmentation
Semantics
Statistics for Engineering
Time series
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VKiQuQLdQQrfISJyKLDl24jhH1LJaVYJTV9pbZDt2QWKziCz_v-O8YLuA1IMPke085mHPxDPfAJwLlfjcc0lN7DhF_yujqEWGMu15bpVFoy5kI1_fyOks-TVP510ed91Hu_dHks1K_SLZTcYh8ApbqnIqtuBjGlx3FOIZv3wR1yHa1GCV0FTFw1Hma7dY34w2LMzNQMl_TkubTWhyAHud9UguW3Z_gg-uGsF-X5mBdIo6gp0msNPWn-Hm53KBzj9pAupwFmmhMUjtFkhTvK7dn0WXf1QRtGBJE2JIy4D63yJ2kFB_ngRRdfUhzCZXv39MaVdDgdokYyvqEuaUKpmXWlvhdSyV1bFHxmUskzpNYlysUS-lN2Uqc-kM45qXuUXPUIvUiCPYrpaVOwZiy9hbE3uWcZuUjhvvmM28FCI3peEiAtYTs7AdwHioc3FfPEMjB_oXLDSkf4FTvg9THlp0jfcGj3sOFZ2i1QX6r7iGcLQbIzgbulFFwrmHrtzyKYwJFdXRMUwj-NIydHhaQOtBJ1lFkK2xehgQ4LfXe6q72waGW4pMoDkawUUvFM-v9eZHnPzX6K-wiwZa3v7yGcP26vHJfUMjaGVOG6H_C67MAFM
  priority: 102
  providerName: Springer Nature
Title Domain agnostic online semantic segmentation for multi-dimensional time series
URI https://link.springer.com/article/10.1007/s10618-018-0589-3
https://www.ncbi.nlm.nih.gov/pubmed/30828258
https://www.proquest.com/docview/2111962851
https://www.proquest.com/docview/2187957165
https://pubmed.ncbi.nlm.nih.gov/PMC6373324
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6x2wsX3o_AUhmJE8jCsRPHOaFS2l2BqBCi0nKKbMcGJJoupPv_GSdOSlmxh0RKbCuxZ8ae8Yy_AXghVOZLzyU1qeMU7a-CohQZyrTnpVUWlbpwGvnjSp6ts_fn-XnccGtjWOUwJ3YTdb21YY_8NRoqyCwcFYQ3F79oyBoVvKsxhcYRTHAKVmh8Td4uVp8-_xXkIfpzwiqjuUpHv2Z_eE6mIZALr1yVVByuTFfUzatRk_-4TrsVaXkHbkVVksx62t-FG665B7eHNA0kSu19WL3bbtD-J11MHdYlPToGad0GhxWfW_dtE48gNQSVWNJFGdI6AP_3oB0kpKAngVtd-wDWy8WX-RmNaRSozQq2oy5jTqmaeam1FV6nUlmdeqRdwQqp8yzF-RpFU3pT57KUzjCueV1aNA61yI14CMfNtnGPgdg69daknhXcZrXjxjtmCy-FKE1tuEiADUNY2YgxHlJd_Kz26Mhh1CsWLhz1Cpu8HJtc9AAb11U-GehSRVlrqz1nJPB8LEYpCa4P3bjtZagTkqqjbZgn8Kgn4_i1ANiDdrJKoDgg8FghIHAfljQ_vndI3FIUAjXSBF4NrLD_rf924sn1nXgKN1EpK_ttnhM43v2-dM9Q8dmZKRyp5ekUJrPTrx8W08jr-HYu53hf89kfHRIGXQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKAS68H4ECRoILyKpjJ45zQAhRli1t99RKvQXbsaESmy1kK8RP8Y2M4yTLUtFbDz5EHifxPOwZex4AL4TKfOm5pCZ1nKL9VVCUIkOZ9ry0yqJSF6KRD2ZyepR9Os6PN-D3EAsT3CqHNbFbqOuFDWfk22ioILNwVBDenn6noWpUuF0dSmhEtthzv36iyda-2d1B-r7kfPLh8P2U9lUFqM0KtqQuY06pmnmptRVep1JZnXqcSoE2vc6zFJcv5FTpTZ3LUjrDuOZ1adFW0iI3At97Ba5mQpRBotTk418uJSJGJauM5iodb1FjqJ5Mg9sYtlyVVKzvg-eU2_M-mv9c1Hb73-QW3OgVV_Iuctpt2HDNHbg5FIUg_RpxF2Y7i7k-aUjnwYewJObiIK2bIxHxuXVf5n3AU0NQZSadTyOtQ5mBmCKEhIL3JMiGa-_B0aWg9z5sNovGPQRi69Rbk3pWcJvVjhvvmC28RMyb2nCRABtQWNk-o3korPGtWuViDlivWGiI9QqHvBqHnMZ0HhcBbw10qXrJbqsVHybwfOxGmQwXLbpxi7MAE0q4oyWaJ_AgknH8WkgPhFa5SqBYI_AIEPJ9r_c0J1-7vN9SFAL13wReD6yw-q3_TuLRxZN4Btemhwf71f7ubO8xXEd1sIwHTFuwufxx5p6gyrU0Tzs-J_D5sgXrD1L5Pq8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFS2EuJCeZNSwEhwAVl17MRxDggB21VLYVUhKvUWbMeGSmy2kK0Qv9av6zivZanorYdIiTxOYs-MPeN5ATwXKvG555Ka2HGK-ldGkYsMZdrz3CqLQl2IRv40lbuHyYej9GgNzvpYmOBW2a-JzUJdzm04I99GRQWJhaOAsO07t4iD8eTNyU8aKkgFS2tfTqMlkX335zeqb_XrvTHi-gXnk50v73dpV2GA2iRjC-oS5pQqmZdaW-F1LJXVscdhZajf6zSJcSlDqpXelKnMpTOMa17mFvUmLVIj8L3XYD1DrYiNYP3dzvTg818OJqKNUVYJTVU82FTbwD0ZBycyvFKVU7G6K14QdS96bP5jtm12w8ktuNmJseRtS3e3Yc1Vd2CjLxFBuhXjLkzH85k-rkjjz4ewpM3MQWo3Q5Tic-2-zbrwp4qgAE0aD0dahqIDbcIQssB7EjjF1ffg8Eom-D6MqnnlHgKxZeytiT3LuE1Kx413zGZeCpGb0nARAeunsLBdfvNQZuNHsczMHGa9YOHCWS-wy8uhy0mb3OMy4K0eL0XH53WxpMoIng3NyKHB7KIrNz8NMKGgO-qlaQQPWjQOXwvJglBHVxFkKwgeAEL279WW6vh7kwVcikygNBzBq54Ulr_130FsXj6Ip3Admar4uDfdfwQ3UDbM29OmLRgtfp26xyh_LcyTjtAJfL1q3joHaoBEQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+agnostic+online+semantic+segmentation+for+multi-dimensional+time+series&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Shaghayegh+Gharghabi&rft.au=Chin-Chia%2C+Michael+Yeh&rft.au=Ding%2C+Yifei&rft.au=Ding%2C+Wei&rft.date=2019-01-01&rft.pub=Springer+Nature+B.V&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=33&rft.issue=1&rft.spage=96&rft.epage=130&rft_id=info:doi/10.1007%2Fs10618-018-0589-3&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon