Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models
Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and...
Saved in:
Published in | The Science of the total environment Vol. 599-600; pp. 20 - 31 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh–Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985–Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R2), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models.
[Display omitted]
•The study is the first to couple wavelet transforms and GMDH model for the purposes of groundwater science.•Boosting ensemble multi-wavelet GMDH and ELM models were developed for multi-step ahead forecasting of groundwater level.•The boosting multi–wavelet models increased the performance of single wavelet based models. |
---|---|
AbstractList | Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh-Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985-Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R2), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models.Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh-Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985-Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R2), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models. Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh–Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985–Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R2), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models. Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh-Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985-Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R ), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models. Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh–Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985–Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R2), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models. [Display omitted] •The study is the first to couple wavelet transforms and GMDH model for the purposes of groundwater science.•Boosting ensemble multi-wavelet GMDH and ELM models were developed for multi-step ahead forecasting of groundwater level.•The boosting multi–wavelet models increased the performance of single wavelet based models. |
Author | Fijani, Elham Tziritis, Evangelos Barzegar, Rahim Asghari Moghaddam, Asghar |
Author_xml | – sequence: 1 givenname: Rahim surname: Barzegar fullname: Barzegar, Rahim email: rm.barzegar@yahoo.com, rm.barzegar@tabrizu.ac.ir organization: Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran – sequence: 2 givenname: Elham surname: Fijani fullname: Fijani, Elham organization: School of Geology, College of Science, University of Tehran, Tehran, Iran – sequence: 3 givenname: Asghar surname: Asghari Moghaddam fullname: Asghari Moghaddam, Asghar organization: Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran – sequence: 4 givenname: Evangelos orcidid: 0000-0002-1694-6744 surname: Tziritis fullname: Tziritis, Evangelos organization: Hellenic Agricultural Organization, Soil and Water Resources Institute, 57400 Sindos, Greece |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28463698$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv3CAURlGVqpk8_kLrZTd2wcY2LLqIouYhReqmXSMM1ylTDCmPGeXfF2eSLroZJHQ357tX-s4ZOnHeAUKfCG4IJsOXbROVST6B2zUtJmODaUMYf4c2hI28JrgdTtAGY8pqPvDxFJ3FuMXljYx8QKcto0M3cLZBy40PoGRMxj1Wfq4eg89O72WCUFnYga1mm1XKMhnvYpXjyoGLsEwWql_PUzC6WrJNpt7LgkOqHOQgbRlp78PvepIRCuI12HiB3s_SRrh8nefo5823H9d39cP32_vrq4da0RGnGgjpZMumXvWz6tQ8dpRKMhGQup206vk8845jqcqnrR5HSZQa-pmwQmEN3Tn6fNj7FPyfDDGJxUQF1koHPkfRlia6nlDGjqKlVcoJo21X0I-vaJ4W0OIpmEWGZ_HWZgG-HgAVfIwBZlEkvTSXgjRWECxWe2Ir_tkTqz2B6Xqn5Mf_8m8njievDslSMuwMhJUDp0CbojcJ7c3RHX8Bipq9gw |
CitedBy_id | crossref_primary_10_1016_j_powtec_2020_08_054 crossref_primary_10_1016_j_scitotenv_2018_08_221 crossref_primary_10_1007_s12145_024_01640_9 crossref_primary_10_1016_j_jhydrol_2025_132909 crossref_primary_10_1007_s00500_023_07985_5 crossref_primary_10_1016_j_ejrh_2024_102026 crossref_primary_10_1007_s11831_022_09715_w crossref_primary_10_3390_w15234129 crossref_primary_10_3390_app14167358 crossref_primary_10_1080_15715124_2019_1606817 crossref_primary_10_1007_s10040_018_1866_3 crossref_primary_10_1007_s11053_020_09642_2 crossref_primary_10_1007_s11269_019_02442_1 crossref_primary_10_1080_19942060_2021_1974093 crossref_primary_10_1007_s11356_019_04252_9 crossref_primary_10_1109_ACCESS_2020_3019574 crossref_primary_10_3390_w16152150 crossref_primary_10_1007_s40996_023_01068_z crossref_primary_10_1061_JHYEFF_HEENG_5840 crossref_primary_10_3389_fams_2024_1454595 crossref_primary_10_1002_ett_4336 crossref_primary_10_1016_j_envres_2022_113747 crossref_primary_10_1007_s11269_020_02568_7 crossref_primary_10_3390_app10103553 crossref_primary_10_1007_s12145_022_00853_0 crossref_primary_10_1016_j_jhydrol_2021_127384 crossref_primary_10_1016_j_neucom_2022_03_014 crossref_primary_10_1016_j_watres_2024_121249 crossref_primary_10_1016_j_jhydrol_2022_128810 crossref_primary_10_1080_02626667_2024_2393421 crossref_primary_10_1007_s43832_024_00073_1 crossref_primary_10_1016_j_jhydrol_2023_129962 crossref_primary_10_1016_j_scitotenv_2021_145288 crossref_primary_10_1016_j_ejrh_2022_101185 crossref_primary_10_1016_j_advwatres_2020_103595 crossref_primary_10_1155_2022_2487656 crossref_primary_10_1016_j_gsd_2019_100279 crossref_primary_10_1016_j_hydroa_2023_100161 crossref_primary_10_1016_j_engappai_2019_103409 crossref_primary_10_1016_j_jhydrol_2024_131668 crossref_primary_10_3389_fenvs_2023_1253949 crossref_primary_10_1002_eng2_12495 crossref_primary_10_1016_j_jhydrol_2018_05_003 crossref_primary_10_1007_s00704_022_04025_4 crossref_primary_10_1016_j_heliyon_2024_e37965 crossref_primary_10_1007_s00500_018_3528_8 crossref_primary_10_3390_agriculture14020278 crossref_primary_10_1016_j_knosys_2018_06_015 crossref_primary_10_1016_j_jhydrol_2018_12_037 crossref_primary_10_3389_fenvs_2024_1291327 crossref_primary_10_3390_s22124398 crossref_primary_10_1016_j_scitotenv_2017_11_185 crossref_primary_10_1016_j_jhydrol_2018_01_045 crossref_primary_10_1080_10106049_2022_2086631 crossref_primary_10_3390_en13092307 crossref_primary_10_3390_w13020139 crossref_primary_10_1021_acsestengg_0c00238 crossref_primary_10_1016_j_jhydrol_2021_126929 crossref_primary_10_1007_s12665_024_11923_5 crossref_primary_10_1016_j_jhydrol_2019_06_075 crossref_primary_10_1021_acsestwater_2c00220 crossref_primary_10_1007_s10661_023_11566_2 crossref_primary_10_1007_s40899_024_01146_8 crossref_primary_10_1080_10298436_2020_1776281 crossref_primary_10_1016_j_optcom_2022_129245 crossref_primary_10_1016_j_envsoft_2020_104718 crossref_primary_10_1016_j_jhydrol_2021_126196 crossref_primary_10_1007_s10040_021_02403_2 crossref_primary_10_1016_j_scitotenv_2023_168760 crossref_primary_10_1016_j_jhydrol_2019_124115 crossref_primary_10_1016_j_scs_2020_102686 crossref_primary_10_1016_j_cageo_2023_105386 crossref_primary_10_1016_j_jhydrol_2022_127984 crossref_primary_10_1016_j_earscirev_2024_104773 crossref_primary_10_1007_s11270_024_07247_6 crossref_primary_10_1016_j_gsd_2023_101042 crossref_primary_10_3390_rs15010188 crossref_primary_10_3390_w15061085 crossref_primary_10_1007_s12665_019_8340_y crossref_primary_10_1007_s11270_018_3715_3 crossref_primary_10_1016_j_scitotenv_2017_08_192 crossref_primary_10_1029_2022WR033588 crossref_primary_10_1016_j_gsd_2020_100361 crossref_primary_10_1080_02626667_2020_1749762 crossref_primary_10_1007_s12517_020_5230_2 crossref_primary_10_1111_gwat_12963 crossref_primary_10_3390_su13094896 crossref_primary_10_1016_j_jhydrol_2022_128836 crossref_primary_10_1080_10106049_2022_2158951 crossref_primary_10_1007_s11356_017_0405_4 crossref_primary_10_1016_j_jhydrol_2020_125127 crossref_primary_10_1016_j_jhydrol_2020_124957 crossref_primary_10_1016_j_jhydrol_2021_126914 crossref_primary_10_1007_s12210_024_01270_9 crossref_primary_10_1155_2018_1824317 crossref_primary_10_1007_s11269_021_02787_6 crossref_primary_10_1016_j_jhydrol_2021_126266 crossref_primary_10_1021_acs_est_3c00026 crossref_primary_10_2166_nh_2022_035 crossref_primary_10_1016_j_asej_2020_11_011 crossref_primary_10_3390_w16142036 crossref_primary_10_1007_s12665_024_11453_0 crossref_primary_10_1016_j_scitotenv_2019_135539 crossref_primary_10_1007_s12665_021_09746_9 crossref_primary_10_1016_j_gsd_2024_101347 crossref_primary_10_1007_s40808_021_01319_w crossref_primary_10_1016_j_eti_2018_06_006 crossref_primary_10_3390_su132011537 crossref_primary_10_1080_02626667_2022_2082876 crossref_primary_10_1007_s11600_022_00964_8 crossref_primary_10_5194_hess_27_2579_2023 crossref_primary_10_1016_j_scitotenv_2024_172465 crossref_primary_10_1016_j_gsd_2019_100237 crossref_primary_10_1016_j_engappai_2024_109545 crossref_primary_10_1016_j_pce_2024_103603 crossref_primary_10_1016_j_gsd_2023_101062 crossref_primary_10_2478_amns_2023_2_01313 crossref_primary_10_1016_j_scs_2025_106171 crossref_primary_10_1007_s11356_023_25369_y crossref_primary_10_1016_j_jhydrol_2017_11_018 crossref_primary_10_1002_hyp_15169 crossref_primary_10_1007_s12517_022_09906_6 crossref_primary_10_1016_j_scitotenv_2023_161398 crossref_primary_10_1007_s12665_018_7782_y crossref_primary_10_1016_j_jhydrol_2020_125468 crossref_primary_10_1007_s10333_022_00913_7 crossref_primary_10_1016_j_jhydrol_2020_124934 crossref_primary_10_1029_2018WR023205 crossref_primary_10_1007_s11600_023_01189_z crossref_primary_10_1007_s10614_021_10219_1 crossref_primary_10_1016_j_envsoft_2021_105119 crossref_primary_10_1007_s11356_022_23686_2 crossref_primary_10_1371_journal_pone_0251510 crossref_primary_10_1029_2021WR030209 crossref_primary_10_1007_s00521_024_09681_3 crossref_primary_10_3390_atmos12010009 crossref_primary_10_1016_j_pedsph_2022_06_009 crossref_primary_10_1016_j_scitotenv_2021_147319 crossref_primary_10_1016_j_rsase_2023_101016 crossref_primary_10_3390_w13213130 crossref_primary_10_1080_02626667_2020_1787416 crossref_primary_10_1007_s12665_020_09320_9 crossref_primary_10_1007_s13762_021_03793_2 crossref_primary_10_1016_j_asoc_2022_108602 crossref_primary_10_1007_s00202_020_01153_w crossref_primary_10_1007_s10666_018_9639_x crossref_primary_10_1016_j_jhydrol_2022_129044 crossref_primary_10_1007_s12145_023_01157_7 crossref_primary_10_1007_s11269_020_02672_8 crossref_primary_10_1016_j_jhydrol_2018_11_069 crossref_primary_10_1016_j_jenvman_2021_113085 crossref_primary_10_1016_j_clwat_2024_100003 crossref_primary_10_1016_j_gsd_2022_100882 crossref_primary_10_1038_s41598_018_25567_6 crossref_primary_10_1007_s11269_023_03613_x crossref_primary_10_1016_j_jhydrol_2020_124992 crossref_primary_10_1007_s12517_022_09848_z crossref_primary_10_3390_w15091750 crossref_primary_10_1080_02626667_2019_1676429 crossref_primary_10_1080_02626667_2024_2374868 crossref_primary_10_1155_2021_6614195 |
Cites_doi | 10.1002/hyp.554 10.1016/j.envres.2017.01.035 10.1007/s00382-015-2682-2 10.1016/j.enconman.2008.05.025 10.2166/wst.2013.670 10.1016/j.jhydrol.2008.02.024 10.1016/j.jhydrol.2013.02.020 10.1007/s00477-016-1213-y 10.1007/s00521-015-1918-8 10.1007/s11269-009-9527-x 10.1016/j.cageo.2011.12.015 10.1007/s00477-014-0875-6 10.1007/s12145-014-0144-8 10.1007/s12205-012-1452-5 10.1016/j.jclinepi.2004.04.003 10.1016/j.advwatres.2005.04.015 10.1016/j.jhydrol.2013.09.025 10.1016/j.renene.2014.08.075 10.1016/j.procs.2013.06.043 10.1016/j.neunet.2009.04.005 10.18814/epiiugs/2003/v26i4/002 10.1016/j.jhydrol.2004.12.001 10.5194/hess-20-1405-2016 10.1016/j.jhydrol.2011.06.013 10.1016/j.atmosres.2015.12.017 10.1016/j.energy.2015.11.008 10.1007/s11269-016-1390-y 10.1016/j.neucom.2014.05.026 10.1007/s12665-017-6612-y 10.1109/TSMC.1971.4308320 10.1016/j.neucom.2013.01.063 10.1016/j.jhydrol.2012.09.049 10.1016/j.neucom.2012.12.062 10.1016/j.neucom.2014.05.068 10.1016/j.apm.2013.10.002 10.1002/wrcr.20517 10.1007/s40899-015-0040-5 10.1007/s40808-015-0072-8 10.1016/j.neucom.2005.12.126 10.1016/j.enbuild.2016.04.021 10.1016/j.energy.2016.04.020 10.1016/j.jhydrol.2010.10.001 10.1007/s11269-015-1167-8 10.1007/s11269-016-1507-3 10.1016/j.matcom.2016.04.005 10.1016/j.dss.2007.11.004 10.1016/0022-1694(92)90046-X 10.1007/s11269-010-9715-8 10.1016/j.jhydrol.2005.04.003 10.1016/j.petrol.2011.01.006 10.1002/hyp.7260 10.1016/j.jss.2016.11.029 10.1016/j.eswa.2012.04.046 10.1016/j.jhydrol.2010.11.002 10.1016/j.cageo.2013.01.007 10.1016/j.envsoft.2015.08.002 10.1016/j.neucom.2013.03.054 10.5194/bgd-4-707-2007 10.1016/j.jhydrol.2010.06.033 10.5194/npg-12-201-2005 10.1016/j.jhydrol.2013.08.038 10.1109/TNNLS.2014.2335212 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2017.04.189 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 31 |
ExternalDocumentID | 28463698 10_1016_j_scitotenv_2017_04_189 S0048969717310343 |
Genre | Journal Article |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-e113a28b5c5fc3cf7344a1b1ead2bdc59ff9390ac90a42d77a1cc65f18a1b0de3 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Thu Jul 10 18:59:07 EDT 2025 Thu Jul 10 22:16:44 EDT 2025 Wed Feb 19 02:40:07 EST 2025 Thu Apr 24 23:12:36 EDT 2025 Tue Jul 01 01:21:11 EDT 2025 Fri Feb 23 02:22:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | GMDH Iran MODWT Groundwater level Forecast ELM |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-e113a28b5c5fc3cf7344a1b1ead2bdc59ff9390ac90a42d77a1cc65f18a1b0de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1694-6744 |
PMID | 28463698 |
PQID | 1894918423 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2000351488 proquest_miscellaneous_1894918423 pubmed_primary_28463698 crossref_citationtrail_10_1016_j_scitotenv_2017_04_189 crossref_primary_10_1016_j_scitotenv_2017_04_189 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2017_04_189 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-01 2017-12-00 2017-Dec-01 20171201 |
PublicationDateYYYYMMDD | 2017-12-01 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Han (bb0415) 2014; 145 Sudheer, Gosain, Ramasastri (bb0370) 2002; 16 Mohanty, Jha, Kumar, Sudheer (bb0255) 2010; 24 Yoon, Jun, Hyun, Bae, Lee (bb0430) 2011; 396 Najafzadeh, Azamathulla (bb0265) 2013 Lima, Cannon, Hseih (bb0235) 2015; 73 Silhavy, Silhavy, Prokopova (bb0360) 2017; 125 Adamowski, Chan (bb0005) 2011; 407 Chang, Chang (bb0075) 2006; 29 Ivakhnenko (bb0170) 1971; 1 Volterra (bb0410) 1959 Gong, Zhang, Lan, Wang (bb0145) 2016; 30 Ding, Zhang, Xu, Zhang (bb0110) 2015; 27 Tiwari, Adamowski (bb0390) 2013; 49 Nalley, Adamowski, Khalil (bb0285) 2012; 475 Fijani, Asghari Moghaddam, Tsai, Tayfur (bb0130) 2017 Rathinasamy, Khosa (bb0325) 2012; 46 Sajjadi, Shamshirband, Alizamir, Yee, Mansor, Manaf, Altameen, Mostafaeipour (bb0340) 2016; 122 Austin, Tu (bb0035) 2004; 57 Rathinasamy, Khosa (bb0320) 2011; 450–451 Shiri, Kisi, Yoon, Lee, Nazemi (bb0355) 2013; 56 Sudheer, Mathur (bb0365) 2012; 16 Nievergelt (bb0295) 2001 Fijani, Nadiri, Asghari Moghaddam, Tsai, Dixon (bb0125) 2013; 503 Najafzadeh, Barani, Hessami Kermani (bb0280) 2013; 67 Mehra (bb0245) 1977; 16 Sun, Wendi, Kim, Liong (bb0375) 2016; 20 Percival, Walden (bb0310) 2000 Lian, Zeng, Yao, Tang (bb0230) 2014; 28 Liu, Lin, Fang, Xu (bb0240) 2015 French, Krajewski, Cuykendall (bb0135) 1992; 137 Adamowski, Prokoph, Adamowski (bb0015) 2009; 23 Kinzelbach, Bauer, Siegfried, Brunner (bb0205) 2003; 26 Sang, Wang, Wu, Zhu (bb0345) 2010; 11 Adamowski, Sun (bb0010) 2010; 390 Barzegar, Asghari Moghaddam (bb0040) 2016; 2 Ghouti, Sheltami, Alutaibi (bb0140) 2013; 19 Borsi, Rossetto, Schifani, Hill (bb0070) 2013; 488 Moosavi, Talebi, Hadian (bb0260) 2017; 31 Shamshirband, Mohammadi, Tong, Petkovic, Porcu, Mostafaeipour, Ch, Sedaghat (bb0350) 2016; 46 Huang, Zhu, Siew (bb0155) 2004; 2 Jafari, Mashohor, Varnamakhasti (bb0180) 2011; 76 Nian, He, Zheng, Heeswijk, Yu, Miche, Lendasse (bb0290) 2014; 128 Wong, Wong, Vong, Cheung (bb0425) 2015; 74 Farlow (bb0120) 1984 Daliakopoulose, Colibaly, Tsanis (bb0085) 2005; 309 Belayneh, Adamowski, Khalil, Quilty (bb0065) 2016; 172–173 Tsai, Yen (bb0405) 2016 Yu, Miche, Séverin, Lendasse (bb0435) 2014; 128 Ivakhnenko, Ivakhnenko (bb0175) 2000; 110 Najafzadeh, Lim (bb0270) 2015; 8 vanHeijst, Potharst, vanWezel (bb0150) 2008; 44 Lambert, Lemke, Kucherenko, Song, Shah (bb0225) 2016; 128 Deo, Tiwari, Adamowski, Quilty (bb0095) 2016 Dghasi, Ismail (bb0105) 2013; 7 Wang, Wang, Yan (bb0420) 2014; 128 Suryanarayana, Sudheer, Mahammood, Panigrahi (bb0380) 2014; 145 Tiwari, Chatterjee (bb0395) 2010; 394 Kallache, Rust, Kropp (bb0190) 2005; 12 Raghavendra, Deka (bb0315) 2016 Thiessen (bb0385) 1911; 39 Barzegar, Asghari Moghaddam, Tziritis, Fakhri, Soltani (bb0055) 2017; 76 Barzegar, Asghari Moghaddam, Adamowski, Ozga-Zielinski (bb0050) 2017 Kim, Chung, Won, Arnold (bb0200) 2008; 356 Aghbashlo, Shamshirband, Tabatabaei, Yee, Larimi (bb0020) 2016; 94 Huang, Zhu, Siew (bb0160) 2006; 70 DeGiorgi, Malvoni, Congedo (bb0090) 2016; 107 Belayneh, Adamowski, Khalil (bb0060) 2016; 2 Dorna, Braga, Llanos, Coelho (bb0115) 2012; 39 Zhu, Wang, Fan (bb0440) 2014; 38 Huot, Babin, Bruyant, Grob, Twardowski, Claustre (bb0165) 2007; 4 Najafzadeh, Barani, Azamathulla (bb0275) 2012; 24 Deo, Downs, Parisi, Adamowski, Quilty (bb0100) 2017; 155 Jung, Schindler (bb0185) 2015; 2 Labat (bb0220) 2005; 314 Rathinasamy, Adamowski, Khosa (bb0335) 2015; 507 Amanifard, Nariman-Zadeh, Farahani, Khalkhali (bb0025) 2008; 49 Kisi (bb0215) 2011; 25 Cherkassky, Ma (bb0080) 2009; 22 Barzegar, Adamowski, Asghari Moghaddam (bb0045) 2016; 30 Liu (10.1016/j.scitotenv.2017.04.189_bb0240) 2015 Kallache (10.1016/j.scitotenv.2017.04.189_bb0190) 2005; 12 Sun (10.1016/j.scitotenv.2017.04.189_bb0375) 2016; 20 Rathinasamy (10.1016/j.scitotenv.2017.04.189_bb0325) 2012; 46 Barzegar (10.1016/j.scitotenv.2017.04.189_bb0055) 2017; 76 Barzegar (10.1016/j.scitotenv.2017.04.189_bb0050) 2017 Moosavi (10.1016/j.scitotenv.2017.04.189_bb0260) 2017; 31 Sang (10.1016/j.scitotenv.2017.04.189_bb0345) 2010; 11 Shamshirband (10.1016/j.scitotenv.2017.04.189_bb0350) 2016; 46 Silhavy (10.1016/j.scitotenv.2017.04.189_bb0360) 2017; 125 Lambert (10.1016/j.scitotenv.2017.04.189_bb0225) 2016; 128 Borsi (10.1016/j.scitotenv.2017.04.189_bb0070) 2013; 488 Ghouti (10.1016/j.scitotenv.2017.04.189_bb0140) 2013; 19 Wong (10.1016/j.scitotenv.2017.04.189_bb0425) 2015; 74 Deo (10.1016/j.scitotenv.2017.04.189_bb0100) 2017; 155 Sudheer (10.1016/j.scitotenv.2017.04.189_bb0370) 2002; 16 Suryanarayana (10.1016/j.scitotenv.2017.04.189_bb0380) 2014; 145 Aghbashlo (10.1016/j.scitotenv.2017.04.189_bb0020) 2016; 94 Barzegar (10.1016/j.scitotenv.2017.04.189_bb0040) 2016; 2 Huang (10.1016/j.scitotenv.2017.04.189_bb0160) 2006; 70 Deo (10.1016/j.scitotenv.2017.04.189_bb0095) 2016 Rathinasamy (10.1016/j.scitotenv.2017.04.189_bb0320) 2011; 450–451 Najafzadeh (10.1016/j.scitotenv.2017.04.189_bb0275) 2012; 24 Adamowski (10.1016/j.scitotenv.2017.04.189_bb0015) 2009; 23 Sajjadi (10.1016/j.scitotenv.2017.04.189_bb0340) 2016; 122 Yu (10.1016/j.scitotenv.2017.04.189_bb0435) 2014; 128 Ding (10.1016/j.scitotenv.2017.04.189_bb0110) 2015; 27 Adamowski (10.1016/j.scitotenv.2017.04.189_bb0005) 2011; 407 Najafzadeh (10.1016/j.scitotenv.2017.04.189_bb0265) 2013 Najafzadeh (10.1016/j.scitotenv.2017.04.189_bb0280) 2013; 67 Barzegar (10.1016/j.scitotenv.2017.04.189_bb0045) 2016; 30 Amanifard (10.1016/j.scitotenv.2017.04.189_bb0025) 2008; 49 Tiwari (10.1016/j.scitotenv.2017.04.189_bb0395) 2010; 394 Fijani (10.1016/j.scitotenv.2017.04.189_bb0130) 2017 Belayneh (10.1016/j.scitotenv.2017.04.189_bb0060) 2016; 2 Belayneh (10.1016/j.scitotenv.2017.04.189_bb0065) 2016; 172–173 Huot (10.1016/j.scitotenv.2017.04.189_bb0165) 2007; 4 Kinzelbach (10.1016/j.scitotenv.2017.04.189_bb0205) 2003; 26 Lima (10.1016/j.scitotenv.2017.04.189_bb0235) 2015; 73 Sudheer (10.1016/j.scitotenv.2017.04.189_bb0365) 2012; 16 Jafari (10.1016/j.scitotenv.2017.04.189_bb0180) 2011; 76 Mohanty (10.1016/j.scitotenv.2017.04.189_bb0255) 2010; 24 Cherkassky (10.1016/j.scitotenv.2017.04.189_bb0080) 2009; 22 Nalley (10.1016/j.scitotenv.2017.04.189_bb0285) 2012; 475 Jung (10.1016/j.scitotenv.2017.04.189_bb0185) 2015; 2 Mehra (10.1016/j.scitotenv.2017.04.189_bb0245) 1977; 16 DeGiorgi (10.1016/j.scitotenv.2017.04.189_bb0090) 2016; 107 Dghasi (10.1016/j.scitotenv.2017.04.189_bb0105) 2013; 7 Daliakopoulose (10.1016/j.scitotenv.2017.04.189_bb0085) 2005; 309 Nian (10.1016/j.scitotenv.2017.04.189_bb0290) 2014; 128 Shiri (10.1016/j.scitotenv.2017.04.189_bb0355) 2013; 56 Fijani (10.1016/j.scitotenv.2017.04.189_bb0125) 2013; 503 Percival (10.1016/j.scitotenv.2017.04.189_bb0310) 2000 vanHeijst (10.1016/j.scitotenv.2017.04.189_bb0150) 2008; 44 Austin (10.1016/j.scitotenv.2017.04.189_bb0035) 2004; 57 Chang (10.1016/j.scitotenv.2017.04.189_bb0075) 2006; 29 Ivakhnenko (10.1016/j.scitotenv.2017.04.189_bb0175) 2000; 110 Lian (10.1016/j.scitotenv.2017.04.189_bb0230) 2014; 28 Yoon (10.1016/j.scitotenv.2017.04.189_bb0430) 2011; 396 Labat (10.1016/j.scitotenv.2017.04.189_bb0220) 2005; 314 Tiwari (10.1016/j.scitotenv.2017.04.189_bb0390) 2013; 49 Wang (10.1016/j.scitotenv.2017.04.189_bb0415) 2014; 145 Kisi (10.1016/j.scitotenv.2017.04.189_bb0215) 2011; 25 French (10.1016/j.scitotenv.2017.04.189_bb0135) 1992; 137 Dorna (10.1016/j.scitotenv.2017.04.189_bb0115) 2012; 39 Nievergelt (10.1016/j.scitotenv.2017.04.189_bb0295) 2001 Adamowski (10.1016/j.scitotenv.2017.04.189_bb0010) 2010; 390 Gong (10.1016/j.scitotenv.2017.04.189_bb0145) 2016; 30 Najafzadeh (10.1016/j.scitotenv.2017.04.189_bb0270) 2015; 8 Kim (10.1016/j.scitotenv.2017.04.189_bb0200) 2008; 356 Huang (10.1016/j.scitotenv.2017.04.189_bb0155) 2004; 2 Raghavendra (10.1016/j.scitotenv.2017.04.189_bb0315) 2016 Farlow (10.1016/j.scitotenv.2017.04.189_bb0120) 1984 Volterra (10.1016/j.scitotenv.2017.04.189_bb0410) 1959 Wang (10.1016/j.scitotenv.2017.04.189_bb0420) 2014; 128 Ivakhnenko (10.1016/j.scitotenv.2017.04.189_bb0170) 1971; 1 Tsai (10.1016/j.scitotenv.2017.04.189_bb0405) 2016 Zhu (10.1016/j.scitotenv.2017.04.189_bb0440) 2014; 38 Rathinasamy (10.1016/j.scitotenv.2017.04.189_bb0335) 2015; 507 Thiessen (10.1016/j.scitotenv.2017.04.189_bb0385) 1911; 39 |
References_xml | – volume: 2 start-page: 985 year: 2004 end-page: 990 ident: bb0155 article-title: Extreme learning machine: a new learning scheme of feedforward neural networks publication-title: International Joint Conference on Neural Networks – volume: 56 start-page: 32 year: 2013 end-page: 44 ident: bb0355 article-title: Predicting groundwater level fluctuations with meteorological effect implications- a comparative study among soft computing techniques publication-title: Comput. Geosci. – volume: 4 start-page: 707 year: 2007 end-page: 745 ident: bb0165 article-title: Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies? publication-title: Biogeosci. Discuss. – volume: 19 start-page: 305 year: 2013 end-page: 312 ident: bb0140 article-title: Mobility prediction in mobile ad hoc networks using extreme learning machines publication-title: Procedia Comput. Sci. – volume: 31 start-page: 43 year: 2017 end-page: 59 ident: bb0260 article-title: Development of a hybrid wavelet packet–group method of data handling (WPGMDH) model for runoff forecasting publication-title: Water Resour. Manag. – volume: 128 start-page: 273 year: 2014 end-page: 284 ident: bb0290 article-title: Extreme learning machine towards dynamic model hypothesis in fish ethology research publication-title: Neurocomputing – volume: 314 start-page: 275 year: 2005 end-page: 288 ident: bb0220 article-title: Recent advances in wavelet analyses: part 1. A review of concepts publication-title: J. Hydrol. – volume: 16 start-page: 29 year: 1977 end-page: 34 ident: bb0245 article-title: Group method of data handling (GMDH): review and experience publication-title: IEEE Conf. Decis. Control – year: 2013 ident: bb0265 article-title: Neuro–fuzzy GMDH systems to predict the scour pile groups due to waves publication-title: J. Comput. Civ. Eng. – volume: 128 start-page: 42 year: 2016 end-page: 54 ident: bb0225 article-title: Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling publication-title: Math. Comput. Simul. – volume: 76 start-page: 217 year: 2011 end-page: 223 ident: bb0180 article-title: Committee neural networks with fuzzy genetic algorithm publication-title: J. Pet. Sci. Eng. – volume: 73 start-page: 175 year: 2015 end-page: 188 ident: bb0235 article-title: Nonlinear regression in environmental sciences using extreme learning machines: a comparative evaluation publication-title: Environ. Model. Softw. – year: 2017 ident: bb0130 article-title: Analysis and assessment of hydrochemical characteristics of Maragheh-Bonab plain aquifer, northwest of Iran publication-title: Water Resour. Manag. – volume: 2 start-page: 1006 year: 2015 ident: bb0185 article-title: Statistical modeling of near-surface wind speed: a case study from Baden-Wuerttemberg (Southwest Germany) publication-title: Austin. J. Earth. Sci. – volume: 475 start-page: 204 year: 2012 end-page: 228 ident: bb0285 article-title: Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008) publication-title: J. Hydrol. – volume: 46 start-page: 284 year: 2012 end-page: 295 ident: bb0325 article-title: Comparative study of different wavelets for hydrologic forecasting publication-title: Comput. Geosci. – volume: 23 start-page: 2686 year: 2009 end-page: 2696 ident: bb0015 article-title: Development of a new method of wavelet aided trend detection and estimation publication-title: Hydrol. Process. – year: 2016 ident: bb0405 article-title: GMDH algorithms applied to turbidity forecasting publication-title: Appl. Water Sci. – volume: 74 start-page: 640 year: 2015 end-page: 647 ident: bb0425 article-title: Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search publication-title: Renew. Energy – volume: 145 start-page: 90 year: 2014 end-page: 97 ident: bb0415 article-title: Online sequential extreme learning machine with kernels for nonstationary time series prediction publication-title: Neurocomputing – volume: 390 start-page: 85 year: 2010 end-page: 91 ident: bb0010 article-title: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds publication-title: J. Hydrol. – volume: 356 start-page: 1 year: 2008 end-page: 16 ident: bb0200 article-title: Development and application of the integrated SWAT–MODFLOW model publication-title: J. Hydrol. – volume: 309 start-page: 229 year: 2005 end-page: 240 ident: bb0085 article-title: Groundwater level forecasting using artificial neural networks publication-title: J. Hydrol. – volume: 7 start-page: 1677 year: 2013 end-page: 1681 ident: bb0105 article-title: A comparative study between discrete wavelet transform and maximal overlap discrete wavelet transform for testing stationarity publication-title: Int. J. Math. Comput. Phys. Electr. Comput. Eng. – start-page: 7 year: 2015 end-page: 20 ident: bb0240 article-title: Is extreme learning machine feasible? A theoretical assessment (Part I) publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 128 start-page: 296 year: 2014 end-page: 302 ident: bb0435 article-title: Bankruptcy prediction using extreme learning machine and financial expertise publication-title: Neurocomputing – volume: 450–451 start-page: 320 year: 2011 end-page: 335 ident: bb0320 article-title: Wavelet–Volterra coupled model for monthly stream flow forecasting publication-title: J. Hydrol. – volume: 407 start-page: 28 year: 2011 end-page: 40 ident: bb0005 article-title: A wavelet neural network conjunction model for groundwater level forecasting publication-title: J. Hydrol. – volume: 30 start-page: 1797 year: 2016 end-page: 1819 ident: bb0045 article-title: Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran publication-title: Stoch. Env. Res. Risk A. – year: 2017 ident: bb0050 article-title: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model publication-title: Stoch. Env. Res. Risk A. – volume: 29 start-page: 1 year: 2006 end-page: 10 ident: bb0075 article-title: Adaptive neuro-fuzzy inference system for prediction of water level in reservoir publication-title: Adv. Water Resour. – volume: 38 start-page: 1859 year: 2014 end-page: 1865 ident: bb0440 article-title: MODWT–ARMA model for time series prediction publication-title: Appl. Math. Model. – volume: 125 start-page: 1 year: 2017 end-page: 14 ident: bb0360 article-title: Analysis and selection of a regression model for the use case points method using a stepwise approach publication-title: J. Syst. Softw. – volume: 16 start-page: 298 year: 2012 end-page: 307 ident: bb0365 article-title: Particle swarm optimization trained neural network for aquifer parameter estimation publication-title: KSCE J. Civ. Eng. – volume: 76 start-page: 297 year: 2017 ident: bb0055 article-title: Identification of hydrogeochemical processes and pollution sources of groundwater resources in the Marand plain, northwest of Iran publication-title: Environ. Earth Sci. – year: 2016 ident: bb0095 article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model publication-title: Stoch. Env. Res. Risk A. – volume: 8 start-page: 187 year: 2015 end-page: 196 ident: bb0270 article-title: Application of improved neuro-fuzzy GMDH to predict scour downstream of sluice gates publication-title: Earth Sci. Inf. – volume: 2 start-page: 87 year: 2016 end-page: 101 ident: bb0060 article-title: Short-term SPI drought forecasting in the Awash River basin in Ethiopia using wavelet transforms and machine learning methods publication-title: Sustain. Water Resour. Manag. – volume: 172–173 start-page: 37 year: 2016 end-page: 47 ident: bb0065 article-title: Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction publication-title: Atmos. Res. – volume: 2 start-page: 26 year: 2016 ident: bb0040 article-title: Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction publication-title: Model. Earth Syst. Environ. – volume: 488 start-page: 33 year: 2013 end-page: 47 ident: bb0070 article-title: Modeling unsaturated zone flow and runoff processes by integrating MODFLOW-LGR and VSF, and creating the new CFL package publication-title: J. Hydrol. – start-page: 594 year: 2000 ident: bb0310 article-title: Wavelet Methods for Time Series Analysis – volume: 12 start-page: 201 year: 2005 end-page: 210 ident: bb0190 article-title: Trend assessment: applications for hydrology and climate research publication-title: Nonlinear Process. Geophys. – volume: 396 start-page: 128 year: 2011 end-page: 138 ident: bb0430 article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer publication-title: J. Hydrol. – volume: 20 start-page: 1405 year: 2016 end-page: 1412 ident: bb0375 article-title: Application of artificial neural networks in groundwater table forecasting – a case study in a Singapore swamp forest publication-title: Hydrol. Earth Syst. Sci. – volume: 507 start-page: 186 year: 2015 end-page: 200 ident: bb0335 article-title: Multiscale stream flow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method publication-title: J. Hydrol. – volume: 26 start-page: 279 year: 2003 end-page: 284 ident: bb0205 article-title: Sustainable groundwater management - problems and scientific tools publication-title: Episodes J. Int. Geosci. – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: bb0160 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing – volume: 24 start-page: 629 year: 2012 end-page: 635 ident: bb0275 article-title: Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling publication-title: Neural Comput. & Applic. – volume: 11 start-page: 1172 year: 2010 end-page: 1179 ident: bb0345 article-title: Wavelet cross-correlation method for hydrologic time series analysis publication-title: J. Hydrol. Eng. – year: 1959 ident: bb0410 article-title: Theory of Functionals and of Integrals and Integro-differential Equations – volume: 27 start-page: 1033 year: 2015 end-page: 1040 ident: bb0110 article-title: A wavelet extreme learning machine publication-title: Neural Comput. & Applic. – volume: 394 start-page: 458 year: 2010 end-page: 470 ident: bb0395 article-title: Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach publication-title: J. Hydrol. – volume: 67 start-page: 1121 year: 2013 end-page: 1128 ident: bb0280 article-title: Abutment scour in live-bed and clear-water using GMDH network publication-title: Water Sci. Technol. – volume: 16 start-page: 1325 year: 2002 end-page: 1330 ident: bb0370 article-title: A data-driven algorithm for constructing artificial neural network rainfall-runoff models publication-title: Hydrol. Process. – volume: 503 start-page: 89 year: 2013 end-page: 100 ident: bb0125 article-title: Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran publication-title: J. Hydrol. – volume: 155 start-page: 141 year: 2017 end-page: 166 ident: bb0100 article-title: Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle publication-title: Environ. Res. – volume: 46 start-page: 1893 year: 2016 end-page: 1907 ident: bb0350 article-title: Application of extreme learning machine for estimation of wind speed distribution publication-title: Clim. Dyn. – volume: 57 start-page: 1138 year: 2004 end-page: 1146 ident: bb0035 article-title: Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality publication-title: J. Clin. Epidemiol. – volume: 24 start-page: 1845 year: 2010 end-page: 1865 ident: bb0255 article-title: Artificial neural network modeling for groundwater level forecasting in a River Island of eastern India publication-title: Water Resour. Manag. – start-page: 289 year: 2016 end-page: 302 ident: bb0315 article-title: Multistep ahead groundwater level time-series forecasting using Gaussian process regression and ANFIS publication-title: Advanced Computing and Systems for Security, Volume 396 of the Series Advances in Intelligent Systems and Computing – volume: 128 start-page: 258 year: 2014 end-page: 266 ident: bb0420 article-title: Fast prediction of protein–protein interaction sites based on extreme learning machines publication-title: Neurocomputing – volume: 107 start-page: 360 year: 2016 end-page: 373 ident: bb0090 article-title: Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine publication-title: Energy – volume: 49 start-page: 2588 year: 2008 end-page: 2594 ident: bb0025 article-title: Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks publication-title: Energy Convers. Manag. – volume: 94 start-page: 443 year: 2016 end-page: 456 ident: bb0020 article-title: The use of ELM–WT (extreme learning machine with wavelet transform algorithm) to predict exergetic performance of a DI diesel engine running on diesel/biodiesel blends containing polymer waste publication-title: Energy – volume: 145 start-page: 324 year: 2014 end-page: 335 ident: bb0380 article-title: An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India publication-title: Neurocomputing – year: 1984 ident: bb0120 article-title: Self–organizing method in modeling publication-title: GMDH Type Algorithm – volume: 30 start-page: 375 year: 2016 end-page: 391 ident: bb0145 article-title: A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida publication-title: Water Resour. Manag. – volume: 1 start-page: 364 year: 1971 end-page: 378 ident: bb0170 article-title: Polynomial theory of complex systems publication-title: IEEE Trans. Syst. Man. Cybern. – volume: 122 start-page: 222 year: 2016 end-page: 227 ident: bb0340 article-title: Extreme learning machine for prediction of heat load in district heating systems publication-title: Energ. Buildings – volume: 110 start-page: 187 year: 2000 end-page: 194 ident: bb0175 article-title: Problems of further development of the group method of data handling algorithms. Part 1 publication-title: Pattern Recognit. Image Anal. – volume: 44 start-page: 970 year: 2008 end-page: 982 ident: bb0150 article-title: A support system for predicting eBay end prices publication-title: Decis. Support. Syst. – volume: 28 start-page: 1957 year: 2014 end-page: 1972 ident: bb0230 article-title: Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level publication-title: Stoch. Env. Res. Risk A. – volume: 39 start-page: 1082 year: 1911 end-page: 1089 ident: bb0385 article-title: Precipitation averages for large areas publication-title: Mon. Weather Rev. – volume: 137 start-page: 1 year: 1992 end-page: 31 ident: bb0135 article-title: Rainfall forecasting in space and time using neural network publication-title: J. Hydrol. – start-page: 297 year: 2001 ident: bb0295 article-title: Wavelets Made Easy – volume: 22 start-page: 958 year: 2009 end-page: 969 ident: bb0080 article-title: Another look at statistical learning theory and regularization publication-title: Neural Netw. – volume: 25 start-page: 579 year: 2011 end-page: 600 ident: bb0215 article-title: Wavelet regression model as an alternative to neural networks for river stage forecasting publication-title: Water Resour. Manag. – volume: 39 start-page: 12268 year: 2012 end-page: 12279 ident: bb0115 article-title: A GMDH polynomial neural network-based method to predict approximate three-dimensional structures of polypeptides publication-title: Expert Syst. Appl. – volume: 49 start-page: 6486 year: 2013 end-page: 6507 ident: bb0390 article-title: Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap neural network models publication-title: Water Resour. – year: 2016 ident: 10.1016/j.scitotenv.2017.04.189_bb0405 article-title: GMDH algorithms applied to turbidity forecasting publication-title: Appl. Water Sci. – volume: 7 start-page: 1677 issue: 12 year: 2013 ident: 10.1016/j.scitotenv.2017.04.189_bb0105 article-title: A comparative study between discrete wavelet transform and maximal overlap discrete wavelet transform for testing stationarity publication-title: Int. J. Math. Comput. Phys. Electr. Comput. Eng. – year: 1959 ident: 10.1016/j.scitotenv.2017.04.189_bb0410 – volume: 16 start-page: 1325 year: 2002 ident: 10.1016/j.scitotenv.2017.04.189_bb0370 article-title: A data-driven algorithm for constructing artificial neural network rainfall-runoff models publication-title: Hydrol. Process. doi: 10.1002/hyp.554 – volume: 155 start-page: 141 year: 2017 ident: 10.1016/j.scitotenv.2017.04.189_bb0100 article-title: Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle publication-title: Environ. Res. doi: 10.1016/j.envres.2017.01.035 – volume: 46 start-page: 1893 year: 2016 ident: 10.1016/j.scitotenv.2017.04.189_bb0350 article-title: Application of extreme learning machine for estimation of wind speed distribution publication-title: Clim. Dyn. doi: 10.1007/s00382-015-2682-2 – volume: 49 start-page: 2588 issue: 10 year: 2008 ident: 10.1016/j.scitotenv.2017.04.189_bb0025 article-title: Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2008.05.025 – year: 2016 ident: 10.1016/j.scitotenv.2017.04.189_bb0095 article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model publication-title: Stoch. Env. Res. Risk A. – volume: 67 start-page: 1121 issue: 5 year: 2013 ident: 10.1016/j.scitotenv.2017.04.189_bb0280 article-title: Abutment scour in live-bed and clear-water using GMDH network publication-title: Water Sci. Technol. doi: 10.2166/wst.2013.670 – volume: 356 start-page: 1 issue: 1–2 year: 2008 ident: 10.1016/j.scitotenv.2017.04.189_bb0200 article-title: Development and application of the integrated SWAT–MODFLOW model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.02.024 – volume: 488 start-page: 33 year: 2013 ident: 10.1016/j.scitotenv.2017.04.189_bb0070 article-title: Modeling unsaturated zone flow and runoff processes by integrating MODFLOW-LGR and VSF, and creating the new CFL package publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.02.020 – volume: 30 start-page: 1797 issue: 7 year: 2016 ident: 10.1016/j.scitotenv.2017.04.189_bb0045 article-title: Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-016-1213-y – volume: 27 start-page: 1033 issue: 4 year: 2015 ident: 10.1016/j.scitotenv.2017.04.189_bb0110 article-title: A wavelet extreme learning machine publication-title: Neural Comput. & Applic. doi: 10.1007/s00521-015-1918-8 – volume: 110 start-page: 187 year: 2000 ident: 10.1016/j.scitotenv.2017.04.189_bb0175 article-title: Problems of further development of the group method of data handling algorithms. Part 1 publication-title: Pattern Recognit. Image Anal. – volume: 24 start-page: 1845 year: 2010 ident: 10.1016/j.scitotenv.2017.04.189_bb0255 article-title: Artificial neural network modeling for groundwater level forecasting in a River Island of eastern India publication-title: Water Resour. Manag. doi: 10.1007/s11269-009-9527-x – volume: 46 start-page: 284 year: 2012 ident: 10.1016/j.scitotenv.2017.04.189_bb0325 article-title: Comparative study of different wavelets for hydrologic forecasting publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2011.12.015 – volume: 2 start-page: 1006 issue: 1 year: 2015 ident: 10.1016/j.scitotenv.2017.04.189_bb0185 article-title: Statistical modeling of near-surface wind speed: a case study from Baden-Wuerttemberg (Southwest Germany) publication-title: Austin. J. Earth. Sci. – volume: 28 start-page: 1957 year: 2014 ident: 10.1016/j.scitotenv.2017.04.189_bb0230 article-title: Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level publication-title: Stoch. Env. Res. Risk A. doi: 10.1007/s00477-014-0875-6 – volume: 8 start-page: 187 issue: 1 year: 2015 ident: 10.1016/j.scitotenv.2017.04.189_bb0270 article-title: Application of improved neuro-fuzzy GMDH to predict scour downstream of sluice gates publication-title: Earth Sci. Inf. doi: 10.1007/s12145-014-0144-8 – volume: 16 start-page: 298 year: 2012 ident: 10.1016/j.scitotenv.2017.04.189_bb0365 article-title: Particle swarm optimization trained neural network for aquifer parameter estimation publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-012-1452-5 – volume: 57 start-page: 1138 year: 2004 ident: 10.1016/j.scitotenv.2017.04.189_bb0035 article-title: Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality publication-title: J. Clin. Epidemiol. doi: 10.1016/j.jclinepi.2004.04.003 – year: 1984 ident: 10.1016/j.scitotenv.2017.04.189_bb0120 article-title: Self–organizing method in modeling – start-page: 594 year: 2000 ident: 10.1016/j.scitotenv.2017.04.189_bb0310 – volume: 29 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.scitotenv.2017.04.189_bb0075 article-title: Adaptive neuro-fuzzy inference system for prediction of water level in reservoir publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2005.04.015 – volume: 507 start-page: 186 year: 2015 ident: 10.1016/j.scitotenv.2017.04.189_bb0335 article-title: Multiscale stream flow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.09.025 – volume: 16 start-page: 29 year: 1977 ident: 10.1016/j.scitotenv.2017.04.189_bb0245 article-title: Group method of data handling (GMDH): review and experience publication-title: IEEE Conf. Decis. Control – volume: 74 start-page: 640 year: 2015 ident: 10.1016/j.scitotenv.2017.04.189_bb0425 article-title: Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search publication-title: Renew. Energy doi: 10.1016/j.renene.2014.08.075 – volume: 19 start-page: 305 year: 2013 ident: 10.1016/j.scitotenv.2017.04.189_bb0140 article-title: Mobility prediction in mobile ad hoc networks using extreme learning machines publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2013.06.043 – volume: 22 start-page: 958 year: 2009 ident: 10.1016/j.scitotenv.2017.04.189_bb0080 article-title: Another look at statistical learning theory and regularization publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.04.005 – volume: 26 start-page: 279 issue: 4 year: 2003 ident: 10.1016/j.scitotenv.2017.04.189_bb0205 article-title: Sustainable groundwater management - problems and scientific tools publication-title: Episodes J. Int. Geosci. doi: 10.18814/epiiugs/2003/v26i4/002 – volume: 309 start-page: 229 year: 2005 ident: 10.1016/j.scitotenv.2017.04.189_bb0085 article-title: Groundwater level forecasting using artificial neural networks publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.12.001 – volume: 20 start-page: 1405 year: 2016 ident: 10.1016/j.scitotenv.2017.04.189_bb0375 article-title: Application of artificial neural networks in groundwater table forecasting – a case study in a Singapore swamp forest publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-20-1405-2016 – volume: 39 start-page: 1082 issue: 7 year: 1911 ident: 10.1016/j.scitotenv.2017.04.189_bb0385 article-title: Precipitation averages for large areas publication-title: Mon. Weather Rev. – volume: 407 start-page: 28 year: 2011 ident: 10.1016/j.scitotenv.2017.04.189_bb0005 article-title: A wavelet neural network conjunction model for groundwater level forecasting publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.06.013 – volume: 172–173 start-page: 37 year: 2016 ident: 10.1016/j.scitotenv.2017.04.189_bb0065 article-title: Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2015.12.017 – volume: 94 start-page: 443 year: 2016 ident: 10.1016/j.scitotenv.2017.04.189_bb0020 article-title: The use of ELM–WT (extreme learning machine with wavelet transform algorithm) to predict exergetic performance of a DI diesel engine running on diesel/biodiesel blends containing polymer waste publication-title: Energy doi: 10.1016/j.energy.2015.11.008 – year: 2017 ident: 10.1016/j.scitotenv.2017.04.189_bb0130 article-title: Analysis and assessment of hydrochemical characteristics of Maragheh-Bonab plain aquifer, northwest of Iran publication-title: Water Resour. Manag. doi: 10.1007/s11269-016-1390-y – volume: 145 start-page: 324 year: 2014 ident: 10.1016/j.scitotenv.2017.04.189_bb0380 article-title: An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.05.026 – volume: 76 start-page: 297 year: 2017 ident: 10.1016/j.scitotenv.2017.04.189_bb0055 article-title: Identification of hydrogeochemical processes and pollution sources of groundwater resources in the Marand plain, northwest of Iran publication-title: Environ. Earth Sci. doi: 10.1007/s12665-017-6612-y – volume: 1 start-page: 364 issue: 4 year: 1971 ident: 10.1016/j.scitotenv.2017.04.189_bb0170 article-title: Polynomial theory of complex systems publication-title: IEEE Trans. Syst. Man. Cybern. doi: 10.1109/TSMC.1971.4308320 – volume: 128 start-page: 296 year: 2014 ident: 10.1016/j.scitotenv.2017.04.189_bb0435 article-title: Bankruptcy prediction using extreme learning machine and financial expertise publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.063 – volume: 475 start-page: 204 year: 2012 ident: 10.1016/j.scitotenv.2017.04.189_bb0285 article-title: Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.09.049 – volume: 128 start-page: 258 year: 2014 ident: 10.1016/j.scitotenv.2017.04.189_bb0420 article-title: Fast prediction of protein–protein interaction sites based on extreme learning machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.062 – volume: 145 start-page: 90 year: 2014 ident: 10.1016/j.scitotenv.2017.04.189_bb0415 article-title: Online sequential extreme learning machine with kernels for nonstationary time series prediction publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.05.068 – volume: 38 start-page: 1859 year: 2014 ident: 10.1016/j.scitotenv.2017.04.189_bb0440 article-title: MODWT–ARMA model for time series prediction publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.10.002 – volume: 49 start-page: 6486 year: 2013 ident: 10.1016/j.scitotenv.2017.04.189_bb0390 article-title: Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap neural network models publication-title: Water Resour. doi: 10.1002/wrcr.20517 – volume: 2 start-page: 87 issue: 1 year: 2016 ident: 10.1016/j.scitotenv.2017.04.189_bb0060 article-title: Short-term SPI drought forecasting in the Awash River basin in Ethiopia using wavelet transforms and machine learning methods publication-title: Sustain. Water Resour. Manag. doi: 10.1007/s40899-015-0040-5 – volume: 2 start-page: 26 year: 2016 ident: 10.1016/j.scitotenv.2017.04.189_bb0040 article-title: Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-015-0072-8 – volume: 70 start-page: 489 issue: 1 year: 2006 ident: 10.1016/j.scitotenv.2017.04.189_bb0160 article-title: Extreme learning machine: theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 24 start-page: 629 issue: 3 year: 2012 ident: 10.1016/j.scitotenv.2017.04.189_bb0275 article-title: Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling publication-title: Neural Comput. & Applic. – volume: 122 start-page: 222 year: 2016 ident: 10.1016/j.scitotenv.2017.04.189_bb0340 article-title: Extreme learning machine for prediction of heat load in district heating systems publication-title: Energ. Buildings doi: 10.1016/j.enbuild.2016.04.021 – volume: 107 start-page: 360 year: 2016 ident: 10.1016/j.scitotenv.2017.04.189_bb0090 article-title: Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine publication-title: Energy doi: 10.1016/j.energy.2016.04.020 – volume: 450–451 start-page: 320 year: 2011 ident: 10.1016/j.scitotenv.2017.04.189_bb0320 article-title: Wavelet–Volterra coupled model for monthly stream flow forecasting publication-title: J. Hydrol. – volume: 394 start-page: 458 issue: 3–4 year: 2010 ident: 10.1016/j.scitotenv.2017.04.189_bb0395 article-title: Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.10.001 – volume: 30 start-page: 375 issue: 1 year: 2016 ident: 10.1016/j.scitotenv.2017.04.189_bb0145 article-title: A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-1167-8 – volume: 31 start-page: 43 issue: 1 year: 2017 ident: 10.1016/j.scitotenv.2017.04.189_bb0260 article-title: Development of a hybrid wavelet packet–group method of data handling (WPGMDH) model for runoff forecasting publication-title: Water Resour. Manag. doi: 10.1007/s11269-016-1507-3 – volume: 128 start-page: 42 year: 2016 ident: 10.1016/j.scitotenv.2017.04.189_bb0225 article-title: Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2016.04.005 – volume: 11 start-page: 1172 year: 2010 ident: 10.1016/j.scitotenv.2017.04.189_bb0345 article-title: Wavelet cross-correlation method for hydrologic time series analysis publication-title: J. Hydrol. Eng. – volume: 44 start-page: 970 year: 2008 ident: 10.1016/j.scitotenv.2017.04.189_bb0150 article-title: A support system for predicting eBay end prices publication-title: Decis. Support. Syst. doi: 10.1016/j.dss.2007.11.004 – volume: 137 start-page: 1 year: 1992 ident: 10.1016/j.scitotenv.2017.04.189_bb0135 article-title: Rainfall forecasting in space and time using neural network publication-title: J. Hydrol. doi: 10.1016/0022-1694(92)90046-X – volume: 25 start-page: 579 year: 2011 ident: 10.1016/j.scitotenv.2017.04.189_bb0215 article-title: Wavelet regression model as an alternative to neural networks for river stage forecasting publication-title: Water Resour. Manag. doi: 10.1007/s11269-010-9715-8 – volume: 314 start-page: 275 issue: 1–4 year: 2005 ident: 10.1016/j.scitotenv.2017.04.189_bb0220 article-title: Recent advances in wavelet analyses: part 1. A review of concepts publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2005.04.003 – volume: 2 start-page: 985 year: 2004 ident: 10.1016/j.scitotenv.2017.04.189_bb0155 article-title: Extreme learning machine: a new learning scheme of feedforward neural networks – volume: 76 start-page: 217 year: 2011 ident: 10.1016/j.scitotenv.2017.04.189_bb0180 article-title: Committee neural networks with fuzzy genetic algorithm publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2011.01.006 – volume: 23 start-page: 2686 year: 2009 ident: 10.1016/j.scitotenv.2017.04.189_bb0015 article-title: Development of a new method of wavelet aided trend detection and estimation publication-title: Hydrol. Process. doi: 10.1002/hyp.7260 – volume: 125 start-page: 1 year: 2017 ident: 10.1016/j.scitotenv.2017.04.189_bb0360 article-title: Analysis and selection of a regression model for the use case points method using a stepwise approach publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2016.11.029 – start-page: 297 year: 2001 ident: 10.1016/j.scitotenv.2017.04.189_bb0295 – volume: 39 start-page: 12268 year: 2012 ident: 10.1016/j.scitotenv.2017.04.189_bb0115 article-title: A GMDH polynomial neural network-based method to predict approximate three-dimensional structures of polypeptides publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.04.046 – volume: 396 start-page: 128 year: 2011 ident: 10.1016/j.scitotenv.2017.04.189_bb0430 article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.11.002 – volume: 56 start-page: 32 year: 2013 ident: 10.1016/j.scitotenv.2017.04.189_bb0355 article-title: Predicting groundwater level fluctuations with meteorological effect implications- a comparative study among soft computing techniques publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2013.01.007 – volume: 73 start-page: 175 year: 2015 ident: 10.1016/j.scitotenv.2017.04.189_bb0235 article-title: Nonlinear regression in environmental sciences using extreme learning machines: a comparative evaluation publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2015.08.002 – volume: 128 start-page: 273 year: 2014 ident: 10.1016/j.scitotenv.2017.04.189_bb0290 article-title: Extreme learning machine towards dynamic model hypothesis in fish ethology research publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.054 – volume: 4 start-page: 707 year: 2007 ident: 10.1016/j.scitotenv.2017.04.189_bb0165 article-title: Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies? publication-title: Biogeosci. Discuss. doi: 10.5194/bgd-4-707-2007 – volume: 390 start-page: 85 year: 2010 ident: 10.1016/j.scitotenv.2017.04.189_bb0010 article-title: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2010.06.033 – year: 2017 ident: 10.1016/j.scitotenv.2017.04.189_bb0050 article-title: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model publication-title: Stoch. Env. Res. Risk A. – year: 2013 ident: 10.1016/j.scitotenv.2017.04.189_bb0265 article-title: Neuro–fuzzy GMDH systems to predict the scour pile groups due to waves publication-title: J. Comput. Civ. Eng. – volume: 12 start-page: 201 year: 2005 ident: 10.1016/j.scitotenv.2017.04.189_bb0190 article-title: Trend assessment: applications for hydrology and climate research publication-title: Nonlinear Process. Geophys. doi: 10.5194/npg-12-201-2005 – volume: 503 start-page: 89 year: 2013 ident: 10.1016/j.scitotenv.2017.04.189_bb0125 article-title: Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2013.08.038 – start-page: 7 year: 2015 ident: 10.1016/j.scitotenv.2017.04.189_bb0240 article-title: Is extreme learning machine feasible? A theoretical assessment (Part I) publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2335212 – start-page: 289 year: 2016 ident: 10.1016/j.scitotenv.2017.04.189_bb0315 article-title: Multistep ahead groundwater level time-series forecasting using Gaussian process regression and ANFIS |
SSID | ssj0000781 |
Score | 2.5927017 |
Snippet | Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20 |
SubjectTerms | algorithms artificial intelligence case studies data collection ELM Forecast GMDH Groundwater level Iran least squares MODWT prediction water management water table wavelet |
Title | Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models |
URI | https://dx.doi.org/10.1016/j.scitotenv.2017.04.189 https://www.ncbi.nlm.nih.gov/pubmed/28463698 https://www.proquest.com/docview/1894918423 https://www.proquest.com/docview/2000351488 |
Volume | 599-600 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEF9EKRRKsdfaXquyhb6mJvuVbN9ElGuP-lAq9W3Z3ey2ypkTL1fxxb_dmWxyIlR86EMISWaTJfOxs7u_mSHkUx4lhleqjFdYwsxLllnPwBhKLb3zqhYOlwa-H6vJifh2Kk_XyMEQC4Owyt72J5veWev-zl7_N_cuz84wxldUWmncRi5yLjDjpxAlSvnn23uYByazSbvMoNhA_QDjBe9t5-Cb_kWMV4k5Twus9_7vEeoxD7QbiY42ycvehaT7qZevyFpoRuRZKip5MyJbh_exa0DWK-9iRF6kJTqaIo9ekwssy-ntAoHPdB4pBng09TU4n1d0hlgiGmdLjC_pRJMiQv43hVlvuHCzQP_cYKwX7QCJ2bXF-hUtxeyY8M0mYcszHCKBBIvtLN6Qk6PDnweTrK--kHlR5m0WioJbVjnpZfTcx5ILYQtXgOgxV3upY9Rc59bDIVhdlrbwXslYVECV14FvkfVm3oR3hDJoXudliNJJUcvaMiEtuGo-CGW1s2Oihj9ufJ-aHCtkzMyAQTs3K1YZZJXJhQFWjUm-aniZsnM83eTLwFLzQNAMjCFPN_44CIEBNcS9FduE-XKBD4WG2TLjj9OwtG8LJnNM3iYJWvUavATFla7e_0_3PpDneJXQNttkvb1ahh3wmVq32ynFLtnY_zqdHON5-uPX9A4XSx0I |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RRVUrVajdlnZb2rpSrxGJP5K4N4RAS4E9gcTNchy7UC1ZxGaL-PedWSeLkEAcOOQSexLLHo_H9pt5AD_ToCi8Mk9ESRRmTvHEOo7GUGnlKpfXsqKjgeNJPj6Vv8_U2Rrs9rEwBKvsbH-06Utr3b3Z7npz--rigmJ8ZalzTdfIWSqkeAHrlJ1KDWB95-BwPLkzyEUZifMkzm0UuAfzwk-3M3RP_xHMq6C0pxlRvj-8SD3mhC4Xo_23sNF5kWwnNvQdrPlmCC8jr-TtEDb37sLXsFo3f-dDeBNP6VgMPnoPl8TM6eycsM9sFhjFeDT1Dfqf12xKcCIWpgsKMVlqJyOQ_B-GG19_WU09O7-lcC-2xCQmN5YoLFpGCTLxn02Elye0SmIV4tuZf4DT_b2T3XHSETAkThZpm_gsE5aXlXIqOOFCIaS0WZWh9vGqdkqHoIVOrcNH8roobOZcrkJWYq209mITBs2s8Z-AcRSv08IHVSlZq9pyqSx6a87L3OrKjiDve9y4Ljs5kWRMTQ9D-2tWQ2VoqEwqDQ7VCNKV4FVM0PG0yK9-SM09XTO4jDwt_KNXAoMzka5XbONnizkVSo0bZi4er8Pj1S1azRF8jBq0ajU6CrnIdfn5Oc37Dq_GJ8dH5uhgcvgFXlNJBN9swaC9Xviv6EK11bduivwHzQIeFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+of+groundwater+level+fluctuations+using+ensemble+hybrid+multi-wavelet+neural+network-based+models&rft.jtitle=The+Science+of+the+total+environment&rft.au=Barzegar%2C+Rahim&rft.au=Fijani%2C+Elham&rft.au=Asghari+Moghaddam%2C+Asghar&rft.au=Tziritis%2C+Evangelos&rft.date=2017-12-01&rft.eissn=1879-1026&rft.volume=599-600&rft.spage=20&rft_id=info:doi/10.1016%2Fj.scitotenv.2017.04.189&rft_id=info%3Apmid%2F28463698&rft.externalDocID=28463698 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |