Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models

Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 599-600; pp. 20 - 31
Main Authors Barzegar, Rahim, Fijani, Elham, Asghari Moghaddam, Asghar, Tziritis, Evangelos
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh–Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985–Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R2), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models. [Display omitted] •The study is the first to couple wavelet transforms and GMDH model for the purposes of groundwater science.•Boosting ensemble multi-wavelet GMDH and ELM models were developed for multi-step ahead forecasting of groundwater level.•The boosting multi–wavelet models increased the performance of single wavelet based models.
AbstractList Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh-Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985-Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R2), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models.Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh-Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985-Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R2), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models.
Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh–Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985–Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R2), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models.
Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh-Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985-Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R ), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models.
Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate the performance of different hybrid wavelet-group method of data handling (WA-GMDH) and wavelet-extreme learning machine (WA-ELM) models and to combine different wavelet based models for forecasting the GWL for one, two and three months step-ahead in the Maragheh–Bonab plain, NW Iran, as a case study. The research used totally 367 monthly GWLs (m) datasets (Sep 1985–Mar 2016) which were split into two subsets; the first 312 datasets (85% of total) were used for model development (training) and the remaining 55 ones (15% of total) for model evaluation (testing). The stepwise selection was used to select appropriate lag times as the inputs of the proposed models. The performance criteria such as coefficient of determination (R2), root mean square error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSC) were used for assessing the efficiency of the models. The results indicated that the ELM models outperformed GMDH models. To construct the hybrid wavelet based models, the inputs and outputs were decomposed into sub-time series employing different maximal overlap discrete wavelet transform (MODWT) functions, namely Daubechies, Symlet, Haar and Dmeyer of different orders at level two. Subsequently, these sub-time series were served in the GMDH and ELM models as an input dataset to forecast the multi-step-ahead GWL. The wavelet based models improved the performances of GMDH and ELM models for multi-step-ahead GWL forecasting. To combine the advantages of different wavelets, a least squares boosting (LSBoost) algorithm was applied. The use of the boosting multi-WA-neural network models provided the best performances for GWL forecasts in comparison with single WA-neural network-based models. [Display omitted] •The study is the first to couple wavelet transforms and GMDH model for the purposes of groundwater science.•Boosting ensemble multi-wavelet GMDH and ELM models were developed for multi-step ahead forecasting of groundwater level.•The boosting multi–wavelet models increased the performance of single wavelet based models.
Author Fijani, Elham
Tziritis, Evangelos
Barzegar, Rahim
Asghari Moghaddam, Asghar
Author_xml – sequence: 1
  givenname: Rahim
  surname: Barzegar
  fullname: Barzegar, Rahim
  email: rm.barzegar@yahoo.com, rm.barzegar@tabrizu.ac.ir
  organization: Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
– sequence: 2
  givenname: Elham
  surname: Fijani
  fullname: Fijani, Elham
  organization: School of Geology, College of Science, University of Tehran, Tehran, Iran
– sequence: 3
  givenname: Asghar
  surname: Asghari Moghaddam
  fullname: Asghari Moghaddam, Asghar
  organization: Department of Earth Sciences, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
– sequence: 4
  givenname: Evangelos
  orcidid: 0000-0002-1694-6744
  surname: Tziritis
  fullname: Tziritis, Evangelos
  organization: Hellenic Agricultural Organization, Soil and Water Resources Institute, 57400 Sindos, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28463698$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv3CAURlGVqpk8_kLrZTd2wcY2LLqIouYhReqmXSMM1ylTDCmPGeXfF2eSLroZJHQ357tX-s4ZOnHeAUKfCG4IJsOXbROVST6B2zUtJmODaUMYf4c2hI28JrgdTtAGY8pqPvDxFJ3FuMXljYx8QKcto0M3cLZBy40PoGRMxj1Wfq4eg89O72WCUFnYga1mm1XKMhnvYpXjyoGLsEwWql_PUzC6WrJNpt7LgkOqHOQgbRlp78PvepIRCuI12HiB3s_SRrh8nefo5823H9d39cP32_vrq4da0RGnGgjpZMumXvWz6tQ8dpRKMhGQup206vk8845jqcqnrR5HSZQa-pmwQmEN3Tn6fNj7FPyfDDGJxUQF1koHPkfRlia6nlDGjqKlVcoJo21X0I-vaJ4W0OIpmEWGZ_HWZgG-HgAVfIwBZlEkvTSXgjRWECxWe2Ir_tkTqz2B6Xqn5Mf_8m8njievDslSMuwMhJUDp0CbojcJ7c3RHX8Bipq9gw
CitedBy_id crossref_primary_10_1016_j_powtec_2020_08_054
crossref_primary_10_1016_j_scitotenv_2018_08_221
crossref_primary_10_1007_s12145_024_01640_9
crossref_primary_10_1016_j_jhydrol_2025_132909
crossref_primary_10_1007_s00500_023_07985_5
crossref_primary_10_1016_j_ejrh_2024_102026
crossref_primary_10_1007_s11831_022_09715_w
crossref_primary_10_3390_w15234129
crossref_primary_10_3390_app14167358
crossref_primary_10_1080_15715124_2019_1606817
crossref_primary_10_1007_s10040_018_1866_3
crossref_primary_10_1007_s11053_020_09642_2
crossref_primary_10_1007_s11269_019_02442_1
crossref_primary_10_1080_19942060_2021_1974093
crossref_primary_10_1007_s11356_019_04252_9
crossref_primary_10_1109_ACCESS_2020_3019574
crossref_primary_10_3390_w16152150
crossref_primary_10_1007_s40996_023_01068_z
crossref_primary_10_1061_JHYEFF_HEENG_5840
crossref_primary_10_3389_fams_2024_1454595
crossref_primary_10_1002_ett_4336
crossref_primary_10_1016_j_envres_2022_113747
crossref_primary_10_1007_s11269_020_02568_7
crossref_primary_10_3390_app10103553
crossref_primary_10_1007_s12145_022_00853_0
crossref_primary_10_1016_j_jhydrol_2021_127384
crossref_primary_10_1016_j_neucom_2022_03_014
crossref_primary_10_1016_j_watres_2024_121249
crossref_primary_10_1016_j_jhydrol_2022_128810
crossref_primary_10_1080_02626667_2024_2393421
crossref_primary_10_1007_s43832_024_00073_1
crossref_primary_10_1016_j_jhydrol_2023_129962
crossref_primary_10_1016_j_scitotenv_2021_145288
crossref_primary_10_1016_j_ejrh_2022_101185
crossref_primary_10_1016_j_advwatres_2020_103595
crossref_primary_10_1155_2022_2487656
crossref_primary_10_1016_j_gsd_2019_100279
crossref_primary_10_1016_j_hydroa_2023_100161
crossref_primary_10_1016_j_engappai_2019_103409
crossref_primary_10_1016_j_jhydrol_2024_131668
crossref_primary_10_3389_fenvs_2023_1253949
crossref_primary_10_1002_eng2_12495
crossref_primary_10_1016_j_jhydrol_2018_05_003
crossref_primary_10_1007_s00704_022_04025_4
crossref_primary_10_1016_j_heliyon_2024_e37965
crossref_primary_10_1007_s00500_018_3528_8
crossref_primary_10_3390_agriculture14020278
crossref_primary_10_1016_j_knosys_2018_06_015
crossref_primary_10_1016_j_jhydrol_2018_12_037
crossref_primary_10_3389_fenvs_2024_1291327
crossref_primary_10_3390_s22124398
crossref_primary_10_1016_j_scitotenv_2017_11_185
crossref_primary_10_1016_j_jhydrol_2018_01_045
crossref_primary_10_1080_10106049_2022_2086631
crossref_primary_10_3390_en13092307
crossref_primary_10_3390_w13020139
crossref_primary_10_1021_acsestengg_0c00238
crossref_primary_10_1016_j_jhydrol_2021_126929
crossref_primary_10_1007_s12665_024_11923_5
crossref_primary_10_1016_j_jhydrol_2019_06_075
crossref_primary_10_1021_acsestwater_2c00220
crossref_primary_10_1007_s10661_023_11566_2
crossref_primary_10_1007_s40899_024_01146_8
crossref_primary_10_1080_10298436_2020_1776281
crossref_primary_10_1016_j_optcom_2022_129245
crossref_primary_10_1016_j_envsoft_2020_104718
crossref_primary_10_1016_j_jhydrol_2021_126196
crossref_primary_10_1007_s10040_021_02403_2
crossref_primary_10_1016_j_scitotenv_2023_168760
crossref_primary_10_1016_j_jhydrol_2019_124115
crossref_primary_10_1016_j_scs_2020_102686
crossref_primary_10_1016_j_cageo_2023_105386
crossref_primary_10_1016_j_jhydrol_2022_127984
crossref_primary_10_1016_j_earscirev_2024_104773
crossref_primary_10_1007_s11270_024_07247_6
crossref_primary_10_1016_j_gsd_2023_101042
crossref_primary_10_3390_rs15010188
crossref_primary_10_3390_w15061085
crossref_primary_10_1007_s12665_019_8340_y
crossref_primary_10_1007_s11270_018_3715_3
crossref_primary_10_1016_j_scitotenv_2017_08_192
crossref_primary_10_1029_2022WR033588
crossref_primary_10_1016_j_gsd_2020_100361
crossref_primary_10_1080_02626667_2020_1749762
crossref_primary_10_1007_s12517_020_5230_2
crossref_primary_10_1111_gwat_12963
crossref_primary_10_3390_su13094896
crossref_primary_10_1016_j_jhydrol_2022_128836
crossref_primary_10_1080_10106049_2022_2158951
crossref_primary_10_1007_s11356_017_0405_4
crossref_primary_10_1016_j_jhydrol_2020_125127
crossref_primary_10_1016_j_jhydrol_2020_124957
crossref_primary_10_1016_j_jhydrol_2021_126914
crossref_primary_10_1007_s12210_024_01270_9
crossref_primary_10_1155_2018_1824317
crossref_primary_10_1007_s11269_021_02787_6
crossref_primary_10_1016_j_jhydrol_2021_126266
crossref_primary_10_1021_acs_est_3c00026
crossref_primary_10_2166_nh_2022_035
crossref_primary_10_1016_j_asej_2020_11_011
crossref_primary_10_3390_w16142036
crossref_primary_10_1007_s12665_024_11453_0
crossref_primary_10_1016_j_scitotenv_2019_135539
crossref_primary_10_1007_s12665_021_09746_9
crossref_primary_10_1016_j_gsd_2024_101347
crossref_primary_10_1007_s40808_021_01319_w
crossref_primary_10_1016_j_eti_2018_06_006
crossref_primary_10_3390_su132011537
crossref_primary_10_1080_02626667_2022_2082876
crossref_primary_10_1007_s11600_022_00964_8
crossref_primary_10_5194_hess_27_2579_2023
crossref_primary_10_1016_j_scitotenv_2024_172465
crossref_primary_10_1016_j_gsd_2019_100237
crossref_primary_10_1016_j_engappai_2024_109545
crossref_primary_10_1016_j_pce_2024_103603
crossref_primary_10_1016_j_gsd_2023_101062
crossref_primary_10_2478_amns_2023_2_01313
crossref_primary_10_1016_j_scs_2025_106171
crossref_primary_10_1007_s11356_023_25369_y
crossref_primary_10_1016_j_jhydrol_2017_11_018
crossref_primary_10_1002_hyp_15169
crossref_primary_10_1007_s12517_022_09906_6
crossref_primary_10_1016_j_scitotenv_2023_161398
crossref_primary_10_1007_s12665_018_7782_y
crossref_primary_10_1016_j_jhydrol_2020_125468
crossref_primary_10_1007_s10333_022_00913_7
crossref_primary_10_1016_j_jhydrol_2020_124934
crossref_primary_10_1029_2018WR023205
crossref_primary_10_1007_s11600_023_01189_z
crossref_primary_10_1007_s10614_021_10219_1
crossref_primary_10_1016_j_envsoft_2021_105119
crossref_primary_10_1007_s11356_022_23686_2
crossref_primary_10_1371_journal_pone_0251510
crossref_primary_10_1029_2021WR030209
crossref_primary_10_1007_s00521_024_09681_3
crossref_primary_10_3390_atmos12010009
crossref_primary_10_1016_j_pedsph_2022_06_009
crossref_primary_10_1016_j_scitotenv_2021_147319
crossref_primary_10_1016_j_rsase_2023_101016
crossref_primary_10_3390_w13213130
crossref_primary_10_1080_02626667_2020_1787416
crossref_primary_10_1007_s12665_020_09320_9
crossref_primary_10_1007_s13762_021_03793_2
crossref_primary_10_1016_j_asoc_2022_108602
crossref_primary_10_1007_s00202_020_01153_w
crossref_primary_10_1007_s10666_018_9639_x
crossref_primary_10_1016_j_jhydrol_2022_129044
crossref_primary_10_1007_s12145_023_01157_7
crossref_primary_10_1007_s11269_020_02672_8
crossref_primary_10_1016_j_jhydrol_2018_11_069
crossref_primary_10_1016_j_jenvman_2021_113085
crossref_primary_10_1016_j_clwat_2024_100003
crossref_primary_10_1016_j_gsd_2022_100882
crossref_primary_10_1038_s41598_018_25567_6
crossref_primary_10_1007_s11269_023_03613_x
crossref_primary_10_1016_j_jhydrol_2020_124992
crossref_primary_10_1007_s12517_022_09848_z
crossref_primary_10_3390_w15091750
crossref_primary_10_1080_02626667_2019_1676429
crossref_primary_10_1080_02626667_2024_2374868
crossref_primary_10_1155_2021_6614195
Cites_doi 10.1002/hyp.554
10.1016/j.envres.2017.01.035
10.1007/s00382-015-2682-2
10.1016/j.enconman.2008.05.025
10.2166/wst.2013.670
10.1016/j.jhydrol.2008.02.024
10.1016/j.jhydrol.2013.02.020
10.1007/s00477-016-1213-y
10.1007/s00521-015-1918-8
10.1007/s11269-009-9527-x
10.1016/j.cageo.2011.12.015
10.1007/s00477-014-0875-6
10.1007/s12145-014-0144-8
10.1007/s12205-012-1452-5
10.1016/j.jclinepi.2004.04.003
10.1016/j.advwatres.2005.04.015
10.1016/j.jhydrol.2013.09.025
10.1016/j.renene.2014.08.075
10.1016/j.procs.2013.06.043
10.1016/j.neunet.2009.04.005
10.18814/epiiugs/2003/v26i4/002
10.1016/j.jhydrol.2004.12.001
10.5194/hess-20-1405-2016
10.1016/j.jhydrol.2011.06.013
10.1016/j.atmosres.2015.12.017
10.1016/j.energy.2015.11.008
10.1007/s11269-016-1390-y
10.1016/j.neucom.2014.05.026
10.1007/s12665-017-6612-y
10.1109/TSMC.1971.4308320
10.1016/j.neucom.2013.01.063
10.1016/j.jhydrol.2012.09.049
10.1016/j.neucom.2012.12.062
10.1016/j.neucom.2014.05.068
10.1016/j.apm.2013.10.002
10.1002/wrcr.20517
10.1007/s40899-015-0040-5
10.1007/s40808-015-0072-8
10.1016/j.neucom.2005.12.126
10.1016/j.enbuild.2016.04.021
10.1016/j.energy.2016.04.020
10.1016/j.jhydrol.2010.10.001
10.1007/s11269-015-1167-8
10.1007/s11269-016-1507-3
10.1016/j.matcom.2016.04.005
10.1016/j.dss.2007.11.004
10.1016/0022-1694(92)90046-X
10.1007/s11269-010-9715-8
10.1016/j.jhydrol.2005.04.003
10.1016/j.petrol.2011.01.006
10.1002/hyp.7260
10.1016/j.jss.2016.11.029
10.1016/j.eswa.2012.04.046
10.1016/j.jhydrol.2010.11.002
10.1016/j.cageo.2013.01.007
10.1016/j.envsoft.2015.08.002
10.1016/j.neucom.2013.03.054
10.5194/bgd-4-707-2007
10.1016/j.jhydrol.2010.06.033
10.5194/npg-12-201-2005
10.1016/j.jhydrol.2013.08.038
10.1109/TNNLS.2014.2335212
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2017.04.189
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 31
ExternalDocumentID 28463698
10_1016_j_scitotenv_2017_04_189
S0048969717310343
Genre Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c470t-e113a28b5c5fc3cf7344a1b1ead2bdc59ff9390ac90a42d77a1cc65f18a1b0de3
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Jul 10 18:59:07 EDT 2025
Thu Jul 10 22:16:44 EDT 2025
Wed Feb 19 02:40:07 EST 2025
Thu Apr 24 23:12:36 EDT 2025
Tue Jul 01 01:21:11 EDT 2025
Fri Feb 23 02:22:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords GMDH
Iran
MODWT
Groundwater level
Forecast
ELM
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-e113a28b5c5fc3cf7344a1b1ead2bdc59ff9390ac90a42d77a1cc65f18a1b0de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1694-6744
PMID 28463698
PQID 1894918423
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2000351488
proquest_miscellaneous_1894918423
pubmed_primary_28463698
crossref_citationtrail_10_1016_j_scitotenv_2017_04_189
crossref_primary_10_1016_j_scitotenv_2017_04_189
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2017_04_189
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
2017-12-00
2017-Dec-01
20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Han (bb0415) 2014; 145
Sudheer, Gosain, Ramasastri (bb0370) 2002; 16
Mohanty, Jha, Kumar, Sudheer (bb0255) 2010; 24
Yoon, Jun, Hyun, Bae, Lee (bb0430) 2011; 396
Najafzadeh, Azamathulla (bb0265) 2013
Lima, Cannon, Hseih (bb0235) 2015; 73
Silhavy, Silhavy, Prokopova (bb0360) 2017; 125
Adamowski, Chan (bb0005) 2011; 407
Chang, Chang (bb0075) 2006; 29
Ivakhnenko (bb0170) 1971; 1
Volterra (bb0410) 1959
Gong, Zhang, Lan, Wang (bb0145) 2016; 30
Ding, Zhang, Xu, Zhang (bb0110) 2015; 27
Tiwari, Adamowski (bb0390) 2013; 49
Nalley, Adamowski, Khalil (bb0285) 2012; 475
Fijani, Asghari Moghaddam, Tsai, Tayfur (bb0130) 2017
Rathinasamy, Khosa (bb0325) 2012; 46
Sajjadi, Shamshirband, Alizamir, Yee, Mansor, Manaf, Altameen, Mostafaeipour (bb0340) 2016; 122
Austin, Tu (bb0035) 2004; 57
Rathinasamy, Khosa (bb0320) 2011; 450–451
Shiri, Kisi, Yoon, Lee, Nazemi (bb0355) 2013; 56
Sudheer, Mathur (bb0365) 2012; 16
Nievergelt (bb0295) 2001
Fijani, Nadiri, Asghari Moghaddam, Tsai, Dixon (bb0125) 2013; 503
Najafzadeh, Barani, Hessami Kermani (bb0280) 2013; 67
Mehra (bb0245) 1977; 16
Sun, Wendi, Kim, Liong (bb0375) 2016; 20
Percival, Walden (bb0310) 2000
Lian, Zeng, Yao, Tang (bb0230) 2014; 28
Liu, Lin, Fang, Xu (bb0240) 2015
French, Krajewski, Cuykendall (bb0135) 1992; 137
Adamowski, Prokoph, Adamowski (bb0015) 2009; 23
Kinzelbach, Bauer, Siegfried, Brunner (bb0205) 2003; 26
Sang, Wang, Wu, Zhu (bb0345) 2010; 11
Adamowski, Sun (bb0010) 2010; 390
Barzegar, Asghari Moghaddam (bb0040) 2016; 2
Ghouti, Sheltami, Alutaibi (bb0140) 2013; 19
Borsi, Rossetto, Schifani, Hill (bb0070) 2013; 488
Moosavi, Talebi, Hadian (bb0260) 2017; 31
Shamshirband, Mohammadi, Tong, Petkovic, Porcu, Mostafaeipour, Ch, Sedaghat (bb0350) 2016; 46
Huang, Zhu, Siew (bb0155) 2004; 2
Jafari, Mashohor, Varnamakhasti (bb0180) 2011; 76
Nian, He, Zheng, Heeswijk, Yu, Miche, Lendasse (bb0290) 2014; 128
Wong, Wong, Vong, Cheung (bb0425) 2015; 74
Farlow (bb0120) 1984
Daliakopoulose, Colibaly, Tsanis (bb0085) 2005; 309
Belayneh, Adamowski, Khalil, Quilty (bb0065) 2016; 172–173
Tsai, Yen (bb0405) 2016
Yu, Miche, Séverin, Lendasse (bb0435) 2014; 128
Ivakhnenko, Ivakhnenko (bb0175) 2000; 110
Najafzadeh, Lim (bb0270) 2015; 8
vanHeijst, Potharst, vanWezel (bb0150) 2008; 44
Lambert, Lemke, Kucherenko, Song, Shah (bb0225) 2016; 128
Deo, Tiwari, Adamowski, Quilty (bb0095) 2016
Dghasi, Ismail (bb0105) 2013; 7
Wang, Wang, Yan (bb0420) 2014; 128
Suryanarayana, Sudheer, Mahammood, Panigrahi (bb0380) 2014; 145
Tiwari, Chatterjee (bb0395) 2010; 394
Kallache, Rust, Kropp (bb0190) 2005; 12
Raghavendra, Deka (bb0315) 2016
Thiessen (bb0385) 1911; 39
Barzegar, Asghari Moghaddam, Tziritis, Fakhri, Soltani (bb0055) 2017; 76
Barzegar, Asghari Moghaddam, Adamowski, Ozga-Zielinski (bb0050) 2017
Kim, Chung, Won, Arnold (bb0200) 2008; 356
Aghbashlo, Shamshirband, Tabatabaei, Yee, Larimi (bb0020) 2016; 94
Huang, Zhu, Siew (bb0160) 2006; 70
DeGiorgi, Malvoni, Congedo (bb0090) 2016; 107
Belayneh, Adamowski, Khalil (bb0060) 2016; 2
Dorna, Braga, Llanos, Coelho (bb0115) 2012; 39
Zhu, Wang, Fan (bb0440) 2014; 38
Huot, Babin, Bruyant, Grob, Twardowski, Claustre (bb0165) 2007; 4
Najafzadeh, Barani, Azamathulla (bb0275) 2012; 24
Deo, Downs, Parisi, Adamowski, Quilty (bb0100) 2017; 155
Jung, Schindler (bb0185) 2015; 2
Labat (bb0220) 2005; 314
Rathinasamy, Adamowski, Khosa (bb0335) 2015; 507
Amanifard, Nariman-Zadeh, Farahani, Khalkhali (bb0025) 2008; 49
Kisi (bb0215) 2011; 25
Cherkassky, Ma (bb0080) 2009; 22
Barzegar, Adamowski, Asghari Moghaddam (bb0045) 2016; 30
Liu (10.1016/j.scitotenv.2017.04.189_bb0240) 2015
Kallache (10.1016/j.scitotenv.2017.04.189_bb0190) 2005; 12
Sun (10.1016/j.scitotenv.2017.04.189_bb0375) 2016; 20
Rathinasamy (10.1016/j.scitotenv.2017.04.189_bb0325) 2012; 46
Barzegar (10.1016/j.scitotenv.2017.04.189_bb0055) 2017; 76
Barzegar (10.1016/j.scitotenv.2017.04.189_bb0050) 2017
Moosavi (10.1016/j.scitotenv.2017.04.189_bb0260) 2017; 31
Sang (10.1016/j.scitotenv.2017.04.189_bb0345) 2010; 11
Shamshirband (10.1016/j.scitotenv.2017.04.189_bb0350) 2016; 46
Silhavy (10.1016/j.scitotenv.2017.04.189_bb0360) 2017; 125
Lambert (10.1016/j.scitotenv.2017.04.189_bb0225) 2016; 128
Borsi (10.1016/j.scitotenv.2017.04.189_bb0070) 2013; 488
Ghouti (10.1016/j.scitotenv.2017.04.189_bb0140) 2013; 19
Wong (10.1016/j.scitotenv.2017.04.189_bb0425) 2015; 74
Deo (10.1016/j.scitotenv.2017.04.189_bb0100) 2017; 155
Sudheer (10.1016/j.scitotenv.2017.04.189_bb0370) 2002; 16
Suryanarayana (10.1016/j.scitotenv.2017.04.189_bb0380) 2014; 145
Aghbashlo (10.1016/j.scitotenv.2017.04.189_bb0020) 2016; 94
Barzegar (10.1016/j.scitotenv.2017.04.189_bb0040) 2016; 2
Huang (10.1016/j.scitotenv.2017.04.189_bb0160) 2006; 70
Deo (10.1016/j.scitotenv.2017.04.189_bb0095) 2016
Rathinasamy (10.1016/j.scitotenv.2017.04.189_bb0320) 2011; 450–451
Najafzadeh (10.1016/j.scitotenv.2017.04.189_bb0275) 2012; 24
Adamowski (10.1016/j.scitotenv.2017.04.189_bb0015) 2009; 23
Sajjadi (10.1016/j.scitotenv.2017.04.189_bb0340) 2016; 122
Yu (10.1016/j.scitotenv.2017.04.189_bb0435) 2014; 128
Ding (10.1016/j.scitotenv.2017.04.189_bb0110) 2015; 27
Adamowski (10.1016/j.scitotenv.2017.04.189_bb0005) 2011; 407
Najafzadeh (10.1016/j.scitotenv.2017.04.189_bb0265) 2013
Najafzadeh (10.1016/j.scitotenv.2017.04.189_bb0280) 2013; 67
Barzegar (10.1016/j.scitotenv.2017.04.189_bb0045) 2016; 30
Amanifard (10.1016/j.scitotenv.2017.04.189_bb0025) 2008; 49
Tiwari (10.1016/j.scitotenv.2017.04.189_bb0395) 2010; 394
Fijani (10.1016/j.scitotenv.2017.04.189_bb0130) 2017
Belayneh (10.1016/j.scitotenv.2017.04.189_bb0060) 2016; 2
Belayneh (10.1016/j.scitotenv.2017.04.189_bb0065) 2016; 172–173
Huot (10.1016/j.scitotenv.2017.04.189_bb0165) 2007; 4
Kinzelbach (10.1016/j.scitotenv.2017.04.189_bb0205) 2003; 26
Lima (10.1016/j.scitotenv.2017.04.189_bb0235) 2015; 73
Sudheer (10.1016/j.scitotenv.2017.04.189_bb0365) 2012; 16
Jafari (10.1016/j.scitotenv.2017.04.189_bb0180) 2011; 76
Mohanty (10.1016/j.scitotenv.2017.04.189_bb0255) 2010; 24
Cherkassky (10.1016/j.scitotenv.2017.04.189_bb0080) 2009; 22
Nalley (10.1016/j.scitotenv.2017.04.189_bb0285) 2012; 475
Jung (10.1016/j.scitotenv.2017.04.189_bb0185) 2015; 2
Mehra (10.1016/j.scitotenv.2017.04.189_bb0245) 1977; 16
DeGiorgi (10.1016/j.scitotenv.2017.04.189_bb0090) 2016; 107
Dghasi (10.1016/j.scitotenv.2017.04.189_bb0105) 2013; 7
Daliakopoulose (10.1016/j.scitotenv.2017.04.189_bb0085) 2005; 309
Nian (10.1016/j.scitotenv.2017.04.189_bb0290) 2014; 128
Shiri (10.1016/j.scitotenv.2017.04.189_bb0355) 2013; 56
Fijani (10.1016/j.scitotenv.2017.04.189_bb0125) 2013; 503
Percival (10.1016/j.scitotenv.2017.04.189_bb0310) 2000
vanHeijst (10.1016/j.scitotenv.2017.04.189_bb0150) 2008; 44
Austin (10.1016/j.scitotenv.2017.04.189_bb0035) 2004; 57
Chang (10.1016/j.scitotenv.2017.04.189_bb0075) 2006; 29
Ivakhnenko (10.1016/j.scitotenv.2017.04.189_bb0175) 2000; 110
Lian (10.1016/j.scitotenv.2017.04.189_bb0230) 2014; 28
Yoon (10.1016/j.scitotenv.2017.04.189_bb0430) 2011; 396
Labat (10.1016/j.scitotenv.2017.04.189_bb0220) 2005; 314
Tiwari (10.1016/j.scitotenv.2017.04.189_bb0390) 2013; 49
Wang (10.1016/j.scitotenv.2017.04.189_bb0415) 2014; 145
Kisi (10.1016/j.scitotenv.2017.04.189_bb0215) 2011; 25
French (10.1016/j.scitotenv.2017.04.189_bb0135) 1992; 137
Dorna (10.1016/j.scitotenv.2017.04.189_bb0115) 2012; 39
Nievergelt (10.1016/j.scitotenv.2017.04.189_bb0295) 2001
Adamowski (10.1016/j.scitotenv.2017.04.189_bb0010) 2010; 390
Gong (10.1016/j.scitotenv.2017.04.189_bb0145) 2016; 30
Najafzadeh (10.1016/j.scitotenv.2017.04.189_bb0270) 2015; 8
Kim (10.1016/j.scitotenv.2017.04.189_bb0200) 2008; 356
Huang (10.1016/j.scitotenv.2017.04.189_bb0155) 2004; 2
Raghavendra (10.1016/j.scitotenv.2017.04.189_bb0315) 2016
Farlow (10.1016/j.scitotenv.2017.04.189_bb0120) 1984
Volterra (10.1016/j.scitotenv.2017.04.189_bb0410) 1959
Wang (10.1016/j.scitotenv.2017.04.189_bb0420) 2014; 128
Ivakhnenko (10.1016/j.scitotenv.2017.04.189_bb0170) 1971; 1
Tsai (10.1016/j.scitotenv.2017.04.189_bb0405) 2016
Zhu (10.1016/j.scitotenv.2017.04.189_bb0440) 2014; 38
Rathinasamy (10.1016/j.scitotenv.2017.04.189_bb0335) 2015; 507
Thiessen (10.1016/j.scitotenv.2017.04.189_bb0385) 1911; 39
References_xml – volume: 2
  start-page: 985
  year: 2004
  end-page: 990
  ident: bb0155
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
  publication-title: International Joint Conference on Neural Networks
– volume: 56
  start-page: 32
  year: 2013
  end-page: 44
  ident: bb0355
  article-title: Predicting groundwater level fluctuations with meteorological effect implications- a comparative study among soft computing techniques
  publication-title: Comput. Geosci.
– volume: 4
  start-page: 707
  year: 2007
  end-page: 745
  ident: bb0165
  article-title: Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies?
  publication-title: Biogeosci. Discuss.
– volume: 19
  start-page: 305
  year: 2013
  end-page: 312
  ident: bb0140
  article-title: Mobility prediction in mobile ad hoc networks using extreme learning machines
  publication-title: Procedia Comput. Sci.
– volume: 31
  start-page: 43
  year: 2017
  end-page: 59
  ident: bb0260
  article-title: Development of a hybrid wavelet packet–group method of data handling (WPGMDH) model for runoff forecasting
  publication-title: Water Resour. Manag.
– volume: 128
  start-page: 273
  year: 2014
  end-page: 284
  ident: bb0290
  article-title: Extreme learning machine towards dynamic model hypothesis in fish ethology research
  publication-title: Neurocomputing
– volume: 314
  start-page: 275
  year: 2005
  end-page: 288
  ident: bb0220
  article-title: Recent advances in wavelet analyses: part 1. A review of concepts
  publication-title: J. Hydrol.
– volume: 16
  start-page: 29
  year: 1977
  end-page: 34
  ident: bb0245
  article-title: Group method of data handling (GMDH): review and experience
  publication-title: IEEE Conf. Decis. Control
– year: 2013
  ident: bb0265
  article-title: Neuro–fuzzy GMDH systems to predict the scour pile groups due to waves
  publication-title: J. Comput. Civ. Eng.
– volume: 128
  start-page: 42
  year: 2016
  end-page: 54
  ident: bb0225
  article-title: Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling
  publication-title: Math. Comput. Simul.
– volume: 76
  start-page: 217
  year: 2011
  end-page: 223
  ident: bb0180
  article-title: Committee neural networks with fuzzy genetic algorithm
  publication-title: J. Pet. Sci. Eng.
– volume: 73
  start-page: 175
  year: 2015
  end-page: 188
  ident: bb0235
  article-title: Nonlinear regression in environmental sciences using extreme learning machines: a comparative evaluation
  publication-title: Environ. Model. Softw.
– year: 2017
  ident: bb0130
  article-title: Analysis and assessment of hydrochemical characteristics of Maragheh-Bonab plain aquifer, northwest of Iran
  publication-title: Water Resour. Manag.
– volume: 2
  start-page: 1006
  year: 2015
  ident: bb0185
  article-title: Statistical modeling of near-surface wind speed: a case study from Baden-Wuerttemberg (Southwest Germany)
  publication-title: Austin. J. Earth. Sci.
– volume: 475
  start-page: 204
  year: 2012
  end-page: 228
  ident: bb0285
  article-title: Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008)
  publication-title: J. Hydrol.
– volume: 46
  start-page: 284
  year: 2012
  end-page: 295
  ident: bb0325
  article-title: Comparative study of different wavelets for hydrologic forecasting
  publication-title: Comput. Geosci.
– volume: 23
  start-page: 2686
  year: 2009
  end-page: 2696
  ident: bb0015
  article-title: Development of a new method of wavelet aided trend detection and estimation
  publication-title: Hydrol. Process.
– year: 2016
  ident: bb0405
  article-title: GMDH algorithms applied to turbidity forecasting
  publication-title: Appl. Water Sci.
– volume: 74
  start-page: 640
  year: 2015
  end-page: 647
  ident: bb0425
  article-title: Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search
  publication-title: Renew. Energy
– volume: 145
  start-page: 90
  year: 2014
  end-page: 97
  ident: bb0415
  article-title: Online sequential extreme learning machine with kernels for nonstationary time series prediction
  publication-title: Neurocomputing
– volume: 390
  start-page: 85
  year: 2010
  end-page: 91
  ident: bb0010
  article-title: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
  publication-title: J. Hydrol.
– volume: 356
  start-page: 1
  year: 2008
  end-page: 16
  ident: bb0200
  article-title: Development and application of the integrated SWAT–MODFLOW model
  publication-title: J. Hydrol.
– volume: 309
  start-page: 229
  year: 2005
  end-page: 240
  ident: bb0085
  article-title: Groundwater level forecasting using artificial neural networks
  publication-title: J. Hydrol.
– volume: 7
  start-page: 1677
  year: 2013
  end-page: 1681
  ident: bb0105
  article-title: A comparative study between discrete wavelet transform and maximal overlap discrete wavelet transform for testing stationarity
  publication-title: Int. J. Math. Comput. Phys. Electr. Comput. Eng.
– start-page: 7
  year: 2015
  end-page: 20
  ident: bb0240
  article-title: Is extreme learning machine feasible? A theoretical assessment (Part I)
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 128
  start-page: 296
  year: 2014
  end-page: 302
  ident: bb0435
  article-title: Bankruptcy prediction using extreme learning machine and financial expertise
  publication-title: Neurocomputing
– volume: 450–451
  start-page: 320
  year: 2011
  end-page: 335
  ident: bb0320
  article-title: Wavelet–Volterra coupled model for monthly stream flow forecasting
  publication-title: J. Hydrol.
– volume: 407
  start-page: 28
  year: 2011
  end-page: 40
  ident: bb0005
  article-title: A wavelet neural network conjunction model for groundwater level forecasting
  publication-title: J. Hydrol.
– volume: 30
  start-page: 1797
  year: 2016
  end-page: 1819
  ident: bb0045
  article-title: Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran
  publication-title: Stoch. Env. Res. Risk A.
– year: 2017
  ident: bb0050
  article-title: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model
  publication-title: Stoch. Env. Res. Risk A.
– volume: 29
  start-page: 1
  year: 2006
  end-page: 10
  ident: bb0075
  article-title: Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
  publication-title: Adv. Water Resour.
– volume: 38
  start-page: 1859
  year: 2014
  end-page: 1865
  ident: bb0440
  article-title: MODWT–ARMA model for time series prediction
  publication-title: Appl. Math. Model.
– volume: 125
  start-page: 1
  year: 2017
  end-page: 14
  ident: bb0360
  article-title: Analysis and selection of a regression model for the use case points method using a stepwise approach
  publication-title: J. Syst. Softw.
– volume: 16
  start-page: 298
  year: 2012
  end-page: 307
  ident: bb0365
  article-title: Particle swarm optimization trained neural network for aquifer parameter estimation
  publication-title: KSCE J. Civ. Eng.
– volume: 76
  start-page: 297
  year: 2017
  ident: bb0055
  article-title: Identification of hydrogeochemical processes and pollution sources of groundwater resources in the Marand plain, northwest of Iran
  publication-title: Environ. Earth Sci.
– year: 2016
  ident: bb0095
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch. Env. Res. Risk A.
– volume: 8
  start-page: 187
  year: 2015
  end-page: 196
  ident: bb0270
  article-title: Application of improved neuro-fuzzy GMDH to predict scour downstream of sluice gates
  publication-title: Earth Sci. Inf.
– volume: 2
  start-page: 87
  year: 2016
  end-page: 101
  ident: bb0060
  article-title: Short-term SPI drought forecasting in the Awash River basin in Ethiopia using wavelet transforms and machine learning methods
  publication-title: Sustain. Water Resour. Manag.
– volume: 172–173
  start-page: 37
  year: 2016
  end-page: 47
  ident: bb0065
  article-title: Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction
  publication-title: Atmos. Res.
– volume: 2
  start-page: 26
  year: 2016
  ident: bb0040
  article-title: Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction
  publication-title: Model. Earth Syst. Environ.
– volume: 488
  start-page: 33
  year: 2013
  end-page: 47
  ident: bb0070
  article-title: Modeling unsaturated zone flow and runoff processes by integrating MODFLOW-LGR and VSF, and creating the new CFL package
  publication-title: J. Hydrol.
– start-page: 594
  year: 2000
  ident: bb0310
  article-title: Wavelet Methods for Time Series Analysis
– volume: 12
  start-page: 201
  year: 2005
  end-page: 210
  ident: bb0190
  article-title: Trend assessment: applications for hydrology and climate research
  publication-title: Nonlinear Process. Geophys.
– volume: 396
  start-page: 128
  year: 2011
  end-page: 138
  ident: bb0430
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: J. Hydrol.
– volume: 20
  start-page: 1405
  year: 2016
  end-page: 1412
  ident: bb0375
  article-title: Application of artificial neural networks in groundwater table forecasting – a case study in a Singapore swamp forest
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 507
  start-page: 186
  year: 2015
  end-page: 200
  ident: bb0335
  article-title: Multiscale stream flow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method
  publication-title: J. Hydrol.
– volume: 26
  start-page: 279
  year: 2003
  end-page: 284
  ident: bb0205
  article-title: Sustainable groundwater management - problems and scientific tools
  publication-title: Episodes J. Int. Geosci.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bb0160
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 24
  start-page: 629
  year: 2012
  end-page: 635
  ident: bb0275
  article-title: Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling
  publication-title: Neural Comput. & Applic.
– volume: 11
  start-page: 1172
  year: 2010
  end-page: 1179
  ident: bb0345
  article-title: Wavelet cross-correlation method for hydrologic time series analysis
  publication-title: J. Hydrol. Eng.
– year: 1959
  ident: bb0410
  article-title: Theory of Functionals and of Integrals and Integro-differential Equations
– volume: 27
  start-page: 1033
  year: 2015
  end-page: 1040
  ident: bb0110
  article-title: A wavelet extreme learning machine
  publication-title: Neural Comput. & Applic.
– volume: 394
  start-page: 458
  year: 2010
  end-page: 470
  ident: bb0395
  article-title: Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach
  publication-title: J. Hydrol.
– volume: 67
  start-page: 1121
  year: 2013
  end-page: 1128
  ident: bb0280
  article-title: Abutment scour in live-bed and clear-water using GMDH network
  publication-title: Water Sci. Technol.
– volume: 16
  start-page: 1325
  year: 2002
  end-page: 1330
  ident: bb0370
  article-title: A data-driven algorithm for constructing artificial neural network rainfall-runoff models
  publication-title: Hydrol. Process.
– volume: 503
  start-page: 89
  year: 2013
  end-page: 100
  ident: bb0125
  article-title: Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran
  publication-title: J. Hydrol.
– volume: 155
  start-page: 141
  year: 2017
  end-page: 166
  ident: bb0100
  article-title: Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle
  publication-title: Environ. Res.
– volume: 46
  start-page: 1893
  year: 2016
  end-page: 1907
  ident: bb0350
  article-title: Application of extreme learning machine for estimation of wind speed distribution
  publication-title: Clim. Dyn.
– volume: 57
  start-page: 1138
  year: 2004
  end-page: 1146
  ident: bb0035
  article-title: Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality
  publication-title: J. Clin. Epidemiol.
– volume: 24
  start-page: 1845
  year: 2010
  end-page: 1865
  ident: bb0255
  article-title: Artificial neural network modeling for groundwater level forecasting in a River Island of eastern India
  publication-title: Water Resour. Manag.
– start-page: 289
  year: 2016
  end-page: 302
  ident: bb0315
  article-title: Multistep ahead groundwater level time-series forecasting using Gaussian process regression and ANFIS
  publication-title: Advanced Computing and Systems for Security, Volume 396 of the Series Advances in Intelligent Systems and Computing
– volume: 128
  start-page: 258
  year: 2014
  end-page: 266
  ident: bb0420
  article-title: Fast prediction of protein–protein interaction sites based on extreme learning machines
  publication-title: Neurocomputing
– volume: 107
  start-page: 360
  year: 2016
  end-page: 373
  ident: bb0090
  article-title: Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine
  publication-title: Energy
– volume: 49
  start-page: 2588
  year: 2008
  end-page: 2594
  ident: bb0025
  article-title: Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks
  publication-title: Energy Convers. Manag.
– volume: 94
  start-page: 443
  year: 2016
  end-page: 456
  ident: bb0020
  article-title: The use of ELM–WT (extreme learning machine with wavelet transform algorithm) to predict exergetic performance of a DI diesel engine running on diesel/biodiesel blends containing polymer waste
  publication-title: Energy
– volume: 145
  start-page: 324
  year: 2014
  end-page: 335
  ident: bb0380
  article-title: An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India
  publication-title: Neurocomputing
– year: 1984
  ident: bb0120
  article-title: Self–organizing method in modeling
  publication-title: GMDH Type Algorithm
– volume: 30
  start-page: 375
  year: 2016
  end-page: 391
  ident: bb0145
  article-title: A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida
  publication-title: Water Resour. Manag.
– volume: 1
  start-page: 364
  year: 1971
  end-page: 378
  ident: bb0170
  article-title: Polynomial theory of complex systems
  publication-title: IEEE Trans. Syst. Man. Cybern.
– volume: 122
  start-page: 222
  year: 2016
  end-page: 227
  ident: bb0340
  article-title: Extreme learning machine for prediction of heat load in district heating systems
  publication-title: Energ. Buildings
– volume: 110
  start-page: 187
  year: 2000
  end-page: 194
  ident: bb0175
  article-title: Problems of further development of the group method of data handling algorithms. Part 1
  publication-title: Pattern Recognit. Image Anal.
– volume: 44
  start-page: 970
  year: 2008
  end-page: 982
  ident: bb0150
  article-title: A support system for predicting eBay end prices
  publication-title: Decis. Support. Syst.
– volume: 28
  start-page: 1957
  year: 2014
  end-page: 1972
  ident: bb0230
  article-title: Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level
  publication-title: Stoch. Env. Res. Risk A.
– volume: 39
  start-page: 1082
  year: 1911
  end-page: 1089
  ident: bb0385
  article-title: Precipitation averages for large areas
  publication-title: Mon. Weather Rev.
– volume: 137
  start-page: 1
  year: 1992
  end-page: 31
  ident: bb0135
  article-title: Rainfall forecasting in space and time using neural network
  publication-title: J. Hydrol.
– start-page: 297
  year: 2001
  ident: bb0295
  article-title: Wavelets Made Easy
– volume: 22
  start-page: 958
  year: 2009
  end-page: 969
  ident: bb0080
  article-title: Another look at statistical learning theory and regularization
  publication-title: Neural Netw.
– volume: 25
  start-page: 579
  year: 2011
  end-page: 600
  ident: bb0215
  article-title: Wavelet regression model as an alternative to neural networks for river stage forecasting
  publication-title: Water Resour. Manag.
– volume: 39
  start-page: 12268
  year: 2012
  end-page: 12279
  ident: bb0115
  article-title: A GMDH polynomial neural network-based method to predict approximate three-dimensional structures of polypeptides
  publication-title: Expert Syst. Appl.
– volume: 49
  start-page: 6486
  year: 2013
  end-page: 6507
  ident: bb0390
  article-title: Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap neural network models
  publication-title: Water Resour.
– year: 2016
  ident: 10.1016/j.scitotenv.2017.04.189_bb0405
  article-title: GMDH algorithms applied to turbidity forecasting
  publication-title: Appl. Water Sci.
– volume: 7
  start-page: 1677
  issue: 12
  year: 2013
  ident: 10.1016/j.scitotenv.2017.04.189_bb0105
  article-title: A comparative study between discrete wavelet transform and maximal overlap discrete wavelet transform for testing stationarity
  publication-title: Int. J. Math. Comput. Phys. Electr. Comput. Eng.
– year: 1959
  ident: 10.1016/j.scitotenv.2017.04.189_bb0410
– volume: 16
  start-page: 1325
  year: 2002
  ident: 10.1016/j.scitotenv.2017.04.189_bb0370
  article-title: A data-driven algorithm for constructing artificial neural network rainfall-runoff models
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.554
– volume: 155
  start-page: 141
  year: 2017
  ident: 10.1016/j.scitotenv.2017.04.189_bb0100
  article-title: Very short-term reactive forecasting of the solar ultraviolet index using an extreme learning machine integrated with the solar zenith angle
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.01.035
– volume: 46
  start-page: 1893
  year: 2016
  ident: 10.1016/j.scitotenv.2017.04.189_bb0350
  article-title: Application of extreme learning machine for estimation of wind speed distribution
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-015-2682-2
– volume: 49
  start-page: 2588
  issue: 10
  year: 2008
  ident: 10.1016/j.scitotenv.2017.04.189_bb0025
  article-title: Modeling of multiple short-length-scale stall cells in an axial compressor using evolved GMDH neural networks
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2008.05.025
– year: 2016
  ident: 10.1016/j.scitotenv.2017.04.189_bb0095
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch. Env. Res. Risk A.
– volume: 67
  start-page: 1121
  issue: 5
  year: 2013
  ident: 10.1016/j.scitotenv.2017.04.189_bb0280
  article-title: Abutment scour in live-bed and clear-water using GMDH network
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2013.670
– volume: 356
  start-page: 1
  issue: 1–2
  year: 2008
  ident: 10.1016/j.scitotenv.2017.04.189_bb0200
  article-title: Development and application of the integrated SWAT–MODFLOW model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.02.024
– volume: 488
  start-page: 33
  year: 2013
  ident: 10.1016/j.scitotenv.2017.04.189_bb0070
  article-title: Modeling unsaturated zone flow and runoff processes by integrating MODFLOW-LGR and VSF, and creating the new CFL package
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.02.020
– volume: 30
  start-page: 1797
  issue: 7
  year: 2016
  ident: 10.1016/j.scitotenv.2017.04.189_bb0045
  article-title: Application of wavelet-artificial intelligence hybrid models for water quality prediction: a case study in Aji-Chay River, Iran
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-016-1213-y
– volume: 27
  start-page: 1033
  issue: 4
  year: 2015
  ident: 10.1016/j.scitotenv.2017.04.189_bb0110
  article-title: A wavelet extreme learning machine
  publication-title: Neural Comput. & Applic.
  doi: 10.1007/s00521-015-1918-8
– volume: 110
  start-page: 187
  year: 2000
  ident: 10.1016/j.scitotenv.2017.04.189_bb0175
  article-title: Problems of further development of the group method of data handling algorithms. Part 1
  publication-title: Pattern Recognit. Image Anal.
– volume: 24
  start-page: 1845
  year: 2010
  ident: 10.1016/j.scitotenv.2017.04.189_bb0255
  article-title: Artificial neural network modeling for groundwater level forecasting in a River Island of eastern India
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-009-9527-x
– volume: 46
  start-page: 284
  year: 2012
  ident: 10.1016/j.scitotenv.2017.04.189_bb0325
  article-title: Comparative study of different wavelets for hydrologic forecasting
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2011.12.015
– volume: 2
  start-page: 1006
  issue: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2017.04.189_bb0185
  article-title: Statistical modeling of near-surface wind speed: a case study from Baden-Wuerttemberg (Southwest Germany)
  publication-title: Austin. J. Earth. Sci.
– volume: 28
  start-page: 1957
  year: 2014
  ident: 10.1016/j.scitotenv.2017.04.189_bb0230
  article-title: Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level
  publication-title: Stoch. Env. Res. Risk A.
  doi: 10.1007/s00477-014-0875-6
– volume: 8
  start-page: 187
  issue: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2017.04.189_bb0270
  article-title: Application of improved neuro-fuzzy GMDH to predict scour downstream of sluice gates
  publication-title: Earth Sci. Inf.
  doi: 10.1007/s12145-014-0144-8
– volume: 16
  start-page: 298
  year: 2012
  ident: 10.1016/j.scitotenv.2017.04.189_bb0365
  article-title: Particle swarm optimization trained neural network for aquifer parameter estimation
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-012-1452-5
– volume: 57
  start-page: 1138
  year: 2004
  ident: 10.1016/j.scitotenv.2017.04.189_bb0035
  article-title: Automated variable selection methods for logistic regression produced unstable models for predicting acute myocardial infarction mortality
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/j.jclinepi.2004.04.003
– year: 1984
  ident: 10.1016/j.scitotenv.2017.04.189_bb0120
  article-title: Self–organizing method in modeling
– start-page: 594
  year: 2000
  ident: 10.1016/j.scitotenv.2017.04.189_bb0310
– volume: 29
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.scitotenv.2017.04.189_bb0075
  article-title: Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2005.04.015
– volume: 507
  start-page: 186
  year: 2015
  ident: 10.1016/j.scitotenv.2017.04.189_bb0335
  article-title: Multiscale stream flow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.09.025
– volume: 16
  start-page: 29
  year: 1977
  ident: 10.1016/j.scitotenv.2017.04.189_bb0245
  article-title: Group method of data handling (GMDH): review and experience
  publication-title: IEEE Conf. Decis. Control
– volume: 74
  start-page: 640
  year: 2015
  ident: 10.1016/j.scitotenv.2017.04.189_bb0425
  article-title: Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.08.075
– volume: 19
  start-page: 305
  year: 2013
  ident: 10.1016/j.scitotenv.2017.04.189_bb0140
  article-title: Mobility prediction in mobile ad hoc networks using extreme learning machines
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2013.06.043
– volume: 22
  start-page: 958
  year: 2009
  ident: 10.1016/j.scitotenv.2017.04.189_bb0080
  article-title: Another look at statistical learning theory and regularization
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2009.04.005
– volume: 26
  start-page: 279
  issue: 4
  year: 2003
  ident: 10.1016/j.scitotenv.2017.04.189_bb0205
  article-title: Sustainable groundwater management - problems and scientific tools
  publication-title: Episodes J. Int. Geosci.
  doi: 10.18814/epiiugs/2003/v26i4/002
– volume: 309
  start-page: 229
  year: 2005
  ident: 10.1016/j.scitotenv.2017.04.189_bb0085
  article-title: Groundwater level forecasting using artificial neural networks
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.12.001
– volume: 20
  start-page: 1405
  year: 2016
  ident: 10.1016/j.scitotenv.2017.04.189_bb0375
  article-title: Application of artificial neural networks in groundwater table forecasting – a case study in a Singapore swamp forest
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-20-1405-2016
– volume: 39
  start-page: 1082
  issue: 7
  year: 1911
  ident: 10.1016/j.scitotenv.2017.04.189_bb0385
  article-title: Precipitation averages for large areas
  publication-title: Mon. Weather Rev.
– volume: 407
  start-page: 28
  year: 2011
  ident: 10.1016/j.scitotenv.2017.04.189_bb0005
  article-title: A wavelet neural network conjunction model for groundwater level forecasting
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.06.013
– volume: 172–173
  start-page: 37
  year: 2016
  ident: 10.1016/j.scitotenv.2017.04.189_bb0065
  article-title: Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2015.12.017
– volume: 94
  start-page: 443
  year: 2016
  ident: 10.1016/j.scitotenv.2017.04.189_bb0020
  article-title: The use of ELM–WT (extreme learning machine with wavelet transform algorithm) to predict exergetic performance of a DI diesel engine running on diesel/biodiesel blends containing polymer waste
  publication-title: Energy
  doi: 10.1016/j.energy.2015.11.008
– year: 2017
  ident: 10.1016/j.scitotenv.2017.04.189_bb0130
  article-title: Analysis and assessment of hydrochemical characteristics of Maragheh-Bonab plain aquifer, northwest of Iran
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-016-1390-y
– volume: 145
  start-page: 324
  year: 2014
  ident: 10.1016/j.scitotenv.2017.04.189_bb0380
  article-title: An integrated wavelet-support vector machine for groundwater level prediction in Visakhapatnam, India
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.026
– volume: 76
  start-page: 297
  year: 2017
  ident: 10.1016/j.scitotenv.2017.04.189_bb0055
  article-title: Identification of hydrogeochemical processes and pollution sources of groundwater resources in the Marand plain, northwest of Iran
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-017-6612-y
– volume: 1
  start-page: 364
  issue: 4
  year: 1971
  ident: 10.1016/j.scitotenv.2017.04.189_bb0170
  article-title: Polynomial theory of complex systems
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/TSMC.1971.4308320
– volume: 128
  start-page: 296
  year: 2014
  ident: 10.1016/j.scitotenv.2017.04.189_bb0435
  article-title: Bankruptcy prediction using extreme learning machine and financial expertise
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.063
– volume: 475
  start-page: 204
  year: 2012
  ident: 10.1016/j.scitotenv.2017.04.189_bb0285
  article-title: Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954–2008)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.09.049
– volume: 128
  start-page: 258
  year: 2014
  ident: 10.1016/j.scitotenv.2017.04.189_bb0420
  article-title: Fast prediction of protein–protein interaction sites based on extreme learning machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.062
– volume: 145
  start-page: 90
  year: 2014
  ident: 10.1016/j.scitotenv.2017.04.189_bb0415
  article-title: Online sequential extreme learning machine with kernels for nonstationary time series prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.05.068
– volume: 38
  start-page: 1859
  year: 2014
  ident: 10.1016/j.scitotenv.2017.04.189_bb0440
  article-title: MODWT–ARMA model for time series prediction
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.10.002
– volume: 49
  start-page: 6486
  year: 2013
  ident: 10.1016/j.scitotenv.2017.04.189_bb0390
  article-title: Urban water demand forecasting and uncertainty assessment using ensemble wavelet-bootstrap neural network models
  publication-title: Water Resour.
  doi: 10.1002/wrcr.20517
– volume: 2
  start-page: 87
  issue: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2017.04.189_bb0060
  article-title: Short-term SPI drought forecasting in the Awash River basin in Ethiopia using wavelet transforms and machine learning methods
  publication-title: Sustain. Water Resour. Manag.
  doi: 10.1007/s40899-015-0040-5
– volume: 2
  start-page: 26
  year: 2016
  ident: 10.1016/j.scitotenv.2017.04.189_bb0040
  article-title: Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-015-0072-8
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 10.1016/j.scitotenv.2017.04.189_bb0160
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 24
  start-page: 629
  issue: 3
  year: 2012
  ident: 10.1016/j.scitotenv.2017.04.189_bb0275
  article-title: Prediction of pipeline scour depth in clear-water and live-bed conditions using group method of data handling
  publication-title: Neural Comput. & Applic.
– volume: 122
  start-page: 222
  year: 2016
  ident: 10.1016/j.scitotenv.2017.04.189_bb0340
  article-title: Extreme learning machine for prediction of heat load in district heating systems
  publication-title: Energ. Buildings
  doi: 10.1016/j.enbuild.2016.04.021
– volume: 107
  start-page: 360
  year: 2016
  ident: 10.1016/j.scitotenv.2017.04.189_bb0090
  article-title: Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine
  publication-title: Energy
  doi: 10.1016/j.energy.2016.04.020
– volume: 450–451
  start-page: 320
  year: 2011
  ident: 10.1016/j.scitotenv.2017.04.189_bb0320
  article-title: Wavelet–Volterra coupled model for monthly stream flow forecasting
  publication-title: J. Hydrol.
– volume: 394
  start-page: 458
  issue: 3–4
  year: 2010
  ident: 10.1016/j.scitotenv.2017.04.189_bb0395
  article-title: Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.10.001
– volume: 30
  start-page: 375
  issue: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2017.04.189_bb0145
  article-title: A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-1167-8
– volume: 31
  start-page: 43
  issue: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2017.04.189_bb0260
  article-title: Development of a hybrid wavelet packet–group method of data handling (WPGMDH) model for runoff forecasting
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-016-1507-3
– volume: 128
  start-page: 42
  year: 2016
  ident: 10.1016/j.scitotenv.2017.04.189_bb0225
  article-title: Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2016.04.005
– volume: 11
  start-page: 1172
  year: 2010
  ident: 10.1016/j.scitotenv.2017.04.189_bb0345
  article-title: Wavelet cross-correlation method for hydrologic time series analysis
  publication-title: J. Hydrol. Eng.
– volume: 44
  start-page: 970
  year: 2008
  ident: 10.1016/j.scitotenv.2017.04.189_bb0150
  article-title: A support system for predicting eBay end prices
  publication-title: Decis. Support. Syst.
  doi: 10.1016/j.dss.2007.11.004
– volume: 137
  start-page: 1
  year: 1992
  ident: 10.1016/j.scitotenv.2017.04.189_bb0135
  article-title: Rainfall forecasting in space and time using neural network
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(92)90046-X
– volume: 25
  start-page: 579
  year: 2011
  ident: 10.1016/j.scitotenv.2017.04.189_bb0215
  article-title: Wavelet regression model as an alternative to neural networks for river stage forecasting
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-010-9715-8
– volume: 314
  start-page: 275
  issue: 1–4
  year: 2005
  ident: 10.1016/j.scitotenv.2017.04.189_bb0220
  article-title: Recent advances in wavelet analyses: part 1. A review of concepts
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2005.04.003
– volume: 2
  start-page: 985
  year: 2004
  ident: 10.1016/j.scitotenv.2017.04.189_bb0155
  article-title: Extreme learning machine: a new learning scheme of feedforward neural networks
– volume: 76
  start-page: 217
  year: 2011
  ident: 10.1016/j.scitotenv.2017.04.189_bb0180
  article-title: Committee neural networks with fuzzy genetic algorithm
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2011.01.006
– volume: 23
  start-page: 2686
  year: 2009
  ident: 10.1016/j.scitotenv.2017.04.189_bb0015
  article-title: Development of a new method of wavelet aided trend detection and estimation
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7260
– volume: 125
  start-page: 1
  year: 2017
  ident: 10.1016/j.scitotenv.2017.04.189_bb0360
  article-title: Analysis and selection of a regression model for the use case points method using a stepwise approach
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2016.11.029
– start-page: 297
  year: 2001
  ident: 10.1016/j.scitotenv.2017.04.189_bb0295
– volume: 39
  start-page: 12268
  year: 2012
  ident: 10.1016/j.scitotenv.2017.04.189_bb0115
  article-title: A GMDH polynomial neural network-based method to predict approximate three-dimensional structures of polypeptides
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.04.046
– volume: 396
  start-page: 128
  year: 2011
  ident: 10.1016/j.scitotenv.2017.04.189_bb0430
  article-title: A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.11.002
– volume: 56
  start-page: 32
  year: 2013
  ident: 10.1016/j.scitotenv.2017.04.189_bb0355
  article-title: Predicting groundwater level fluctuations with meteorological effect implications- a comparative study among soft computing techniques
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2013.01.007
– volume: 73
  start-page: 175
  year: 2015
  ident: 10.1016/j.scitotenv.2017.04.189_bb0235
  article-title: Nonlinear regression in environmental sciences using extreme learning machines: a comparative evaluation
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2015.08.002
– volume: 128
  start-page: 273
  year: 2014
  ident: 10.1016/j.scitotenv.2017.04.189_bb0290
  article-title: Extreme learning machine towards dynamic model hypothesis in fish ethology research
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.054
– volume: 4
  start-page: 707
  year: 2007
  ident: 10.1016/j.scitotenv.2017.04.189_bb0165
  article-title: Does chlorophyll a provide the best index of phytoplankton biomass for primary productivity studies?
  publication-title: Biogeosci. Discuss.
  doi: 10.5194/bgd-4-707-2007
– volume: 390
  start-page: 85
  year: 2010
  ident: 10.1016/j.scitotenv.2017.04.189_bb0010
  article-title: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2010.06.033
– year: 2017
  ident: 10.1016/j.scitotenv.2017.04.189_bb0050
  article-title: Multi-step water quality forecasting using a boosting ensemble multi-wavelet extreme learning machine model
  publication-title: Stoch. Env. Res. Risk A.
– year: 2013
  ident: 10.1016/j.scitotenv.2017.04.189_bb0265
  article-title: Neuro–fuzzy GMDH systems to predict the scour pile groups due to waves
  publication-title: J. Comput. Civ. Eng.
– volume: 12
  start-page: 201
  year: 2005
  ident: 10.1016/j.scitotenv.2017.04.189_bb0190
  article-title: Trend assessment: applications for hydrology and climate research
  publication-title: Nonlinear Process. Geophys.
  doi: 10.5194/npg-12-201-2005
– volume: 503
  start-page: 89
  year: 2013
  ident: 10.1016/j.scitotenv.2017.04.189_bb0125
  article-title: Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2013.08.038
– start-page: 7
  year: 2015
  ident: 10.1016/j.scitotenv.2017.04.189_bb0240
  article-title: Is extreme learning machine feasible? A theoretical assessment (Part I)
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2335212
– start-page: 289
  year: 2016
  ident: 10.1016/j.scitotenv.2017.04.189_bb0315
  article-title: Multistep ahead groundwater level time-series forecasting using Gaussian process regression and ANFIS
SSID ssj0000781
Score 2.5927017
Snippet Accurate prediction of groundwater level (GWL) fluctuations can play an important role in water resources management. The aims of the research are to evaluate...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20
SubjectTerms algorithms
artificial intelligence
case studies
data collection
ELM
Forecast
GMDH
Groundwater level
Iran
least squares
MODWT
prediction
water management
water table
wavelet
Title Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models
URI https://dx.doi.org/10.1016/j.scitotenv.2017.04.189
https://www.ncbi.nlm.nih.gov/pubmed/28463698
https://www.proquest.com/docview/1894918423
https://www.proquest.com/docview/2000351488
Volume 599-600
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS9xAEF9EKRRKsdfaXquyhb6mJvuVbN9ElGuP-lAq9W3Z3ey2ypkTL1fxxb_dmWxyIlR86EMISWaTJfOxs7u_mSHkUx4lhleqjFdYwsxLllnPwBhKLb3zqhYOlwa-H6vJifh2Kk_XyMEQC4Owyt72J5veWev-zl7_N_cuz84wxldUWmncRi5yLjDjpxAlSvnn23uYByazSbvMoNhA_QDjBe9t5-Cb_kWMV4k5Twus9_7vEeoxD7QbiY42ycvehaT7qZevyFpoRuRZKip5MyJbh_exa0DWK-9iRF6kJTqaIo9ekwssy-ntAoHPdB4pBng09TU4n1d0hlgiGmdLjC_pRJMiQv43hVlvuHCzQP_cYKwX7QCJ2bXF-hUtxeyY8M0mYcszHCKBBIvtLN6Qk6PDnweTrK--kHlR5m0WioJbVjnpZfTcx5ILYQtXgOgxV3upY9Rc59bDIVhdlrbwXslYVECV14FvkfVm3oR3hDJoXudliNJJUcvaMiEtuGo-CGW1s2Oihj9ufJ-aHCtkzMyAQTs3K1YZZJXJhQFWjUm-aniZsnM83eTLwFLzQNAMjCFPN_44CIEBNcS9FduE-XKBD4WG2TLjj9OwtG8LJnNM3iYJWvUavATFla7e_0_3PpDneJXQNttkvb1ahh3wmVq32ynFLtnY_zqdHON5-uPX9A4XSx0I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RRVUrVajdlnZb2rpSrxGJP5K4N4RAS4E9gcTNchy7UC1ZxGaL-PedWSeLkEAcOOQSexLLHo_H9pt5AD_ToCi8Mk9ESRRmTvHEOo7GUGnlKpfXsqKjgeNJPj6Vv8_U2Rrs9rEwBKvsbH-06Utr3b3Z7npz--rigmJ8ZalzTdfIWSqkeAHrlJ1KDWB95-BwPLkzyEUZifMkzm0UuAfzwk-3M3RP_xHMq6C0pxlRvj-8SD3mhC4Xo_23sNF5kWwnNvQdrPlmCC8jr-TtEDb37sLXsFo3f-dDeBNP6VgMPnoPl8TM6eycsM9sFhjFeDT1Dfqf12xKcCIWpgsKMVlqJyOQ_B-GG19_WU09O7-lcC-2xCQmN5YoLFpGCTLxn02Elye0SmIV4tuZf4DT_b2T3XHSETAkThZpm_gsE5aXlXIqOOFCIaS0WZWh9vGqdkqHoIVOrcNH8roobOZcrkJWYq209mITBs2s8Z-AcRSv08IHVSlZq9pyqSx6a87L3OrKjiDve9y4Ljs5kWRMTQ9D-2tWQ2VoqEwqDQ7VCNKV4FVM0PG0yK9-SM09XTO4jDwt_KNXAoMzka5XbONnizkVSo0bZi4er8Pj1S1azRF8jBq0ajU6CrnIdfn5Oc37Dq_GJ8dH5uhgcvgFXlNJBN9swaC9Xviv6EK11bduivwHzQIeFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+of+groundwater+level+fluctuations+using+ensemble+hybrid+multi-wavelet+neural+network-based+models&rft.jtitle=The+Science+of+the+total+environment&rft.au=Barzegar%2C+Rahim&rft.au=Fijani%2C+Elham&rft.au=Asghari+Moghaddam%2C+Asghar&rft.au=Tziritis%2C+Evangelos&rft.date=2017-12-01&rft.eissn=1879-1026&rft.volume=599-600&rft.spage=20&rft_id=info:doi/10.1016%2Fj.scitotenv.2017.04.189&rft_id=info%3Apmid%2F28463698&rft.externalDocID=28463698
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon