Wild-Type p53 Promotes Cancer Metabolic Switch by Inducing PUMA-Dependent Suppression of Oxidative Phosphorylation

The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human cancers, such as hepatocarcinoma (HCC). We discovered a physiological and oncogenic role of WTp53 in suppressing pyruvate-driven oxidative phospho...

Full description

Saved in:
Bibliographic Details
Published inCancer cell Vol. 35; no. 2; pp. 191 - 203.e8
Main Authors Kim, Jinchul, Yu, Lili, Chen, Wancheng, Xu, Yanxia, Wu, Meng, Todorova, Dilyana, Tang, Qingshuang, Feng, Bingbing, Jiang, Lei, He, Jingjin, Chen, Guihua, Fu, Xuemei, Xu, Yang
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 11.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human cancers, such as hepatocarcinoma (HCC). We discovered a physiological and oncogenic role of WTp53 in suppressing pyruvate-driven oxidative phosphorylation by inducing PUMA. PUMA inhibits mitochondrial pyruvate uptake by disrupting the oligomerization and function of mitochondrial pyruvate carrier (MPC) through PUMA-MPC interaction, which depends on IκB kinase-mediated phosphorylation of PUMA at Ser96/106. High expression levels of PUMA are correlated with decreased mitochondrial pyruvate uptake and increased glycolysis in HCCs and poor prognosis of HCC patients. These findings are instrumental for cancer drug discovery aiming at activating WTp53 or restoring WTp53 activity to p53 mutants. [Display omitted] •WTp53-PUMA pathway drives cancer metabolic switch•PUMA suppresses mitochondrial pyruvate uptake by inactivating MPC•IKKβ-mediated phosphorylation of PUMA is important for PUMA-MPC interaction•High levels of PUMA in HCC are correlated with poor prognosis of HCC patients Hepatocellular carcinomas (HCCs) often retain the wild-type p53. Kim et al. find that p53 is important for the growth of HCC cells and that p53-regulated PUMA reduces mitochondrial pyruvate uptake and increases glycolysis in HCC, suggesting caution when designing cancer treatment strategies that activate p53.
AbstractList The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human cancers, such as hepatocarcinoma (HCC). We discovered a physiological and oncogenic role of WTp53 in suppressing pyruvate-driven oxidative phosphorylation by inducing PUMA. PUMA inhibits mitochondrial pyruvate uptake by disrupting the oligomerization and function of mitochondrial pyruvate carrier (MPC) through PUMA-MPC interaction, which depends on IκB kinase-mediated phosphorylation of PUMA at Ser96/106. High expression levels of PUMA are correlated with decreased mitochondrial pyruvate uptake and increased glycolysis in HCCs and poor prognosis of HCC patients. These findings are instrumental for cancer drug discovery aiming at activating WTp53 or restoring WTp53 activity to p53 mutants. [Display omitted] •WTp53-PUMA pathway drives cancer metabolic switch•PUMA suppresses mitochondrial pyruvate uptake by inactivating MPC•IKKβ-mediated phosphorylation of PUMA is important for PUMA-MPC interaction•High levels of PUMA in HCC are correlated with poor prognosis of HCC patients Hepatocellular carcinomas (HCCs) often retain the wild-type p53. Kim et al. find that p53 is important for the growth of HCC cells and that p53-regulated PUMA reduces mitochondrial pyruvate uptake and increases glycolysis in HCC, suggesting caution when designing cancer treatment strategies that activate p53.
The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human cancers, such as hepatocarcinoma (HCC). We discovered a physiological and oncogenic role of WTp53 in suppressing pyruvate-driven oxidative phosphorylation by inducing PUMA. PUMA inhibits mitochondrial pyruvate uptake by disrupting the oligomerization and function of mitochondrial pyruvate carrier (MPC) through PUMA-MPC interaction, which depends on IκB kinase-mediated phosphorylation of PUMA at Ser96/106. High expression levels of PUMA are correlated with decreased mitochondrial pyruvate uptake and increased glycolysis in HCCs and poor prognosis of HCC patients. These findings are instrumental for cancer drug discovery aiming at activating WTp53 or restoring WTp53 activity to p53 mutants.The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human cancers, such as hepatocarcinoma (HCC). We discovered a physiological and oncogenic role of WTp53 in suppressing pyruvate-driven oxidative phosphorylation by inducing PUMA. PUMA inhibits mitochondrial pyruvate uptake by disrupting the oligomerization and function of mitochondrial pyruvate carrier (MPC) through PUMA-MPC interaction, which depends on IκB kinase-mediated phosphorylation of PUMA at Ser96/106. High expression levels of PUMA are correlated with decreased mitochondrial pyruvate uptake and increased glycolysis in HCCs and poor prognosis of HCC patients. These findings are instrumental for cancer drug discovery aiming at activating WTp53 or restoring WTp53 activity to p53 mutants.
The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human cancers, such as hepatocarcinoma (HCC). We discovered a physiological and oncogenic role of WTp53 in suppressing pyruvate-driven oxidative phosphorylation by inducing PUMA. PUMA inhibits mitochondrial pyruvate uptake by disrupting the oligomerization and function of mitochondrial pyruvate carrier (MPC) through PUMA-MPC interaction, which depends on IκB kinase-mediated phosphorylation of PUMA at Ser96/106. High expression levels of PUMA are correlated with decreased mitochondrial pyruvate uptake and increased glycolysis in HCCs and poor prognosis of HCC patients. These findings are instrumental for cancer drug discovery aiming at activating WTp53 or restoring WTp53 activity to p53 mutants.
Author Todorova, Dilyana
Tang, Qingshuang
Feng, Bingbing
Jiang, Lei
He, Jingjin
Fu, Xuemei
Xu, Yang
Xu, Yanxia
Kim, Jinchul
Chen, Guihua
Yu, Lili
Chen, Wancheng
Wu, Meng
Author_xml – sequence: 1
  givenname: Jinchul
  surname: Kim
  fullname: Kim, Jinchul
  organization: The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
– sequence: 2
  givenname: Lili
  surname: Yu
  fullname: Yu, Lili
  organization: Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
– sequence: 3
  givenname: Wancheng
  surname: Chen
  fullname: Chen, Wancheng
  organization: Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
– sequence: 4
  givenname: Yanxia
  surname: Xu
  fullname: Xu, Yanxia
  organization: Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
– sequence: 5
  givenname: Meng
  surname: Wu
  fullname: Wu, Meng
  organization: Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
– sequence: 6
  givenname: Dilyana
  surname: Todorova
  fullname: Todorova, Dilyana
  organization: The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
– sequence: 7
  givenname: Qingshuang
  surname: Tang
  fullname: Tang, Qingshuang
  organization: Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
– sequence: 8
  givenname: Bingbing
  surname: Feng
  fullname: Feng, Bingbing
  organization: Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
– sequence: 9
  givenname: Lei
  surname: Jiang
  fullname: Jiang, Lei
  organization: Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
– sequence: 10
  givenname: Jingjin
  surname: He
  fullname: He, Jingjin
  organization: The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
– sequence: 11
  givenname: Guihua
  surname: Chen
  fullname: Chen, Guihua
  organization: The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
– sequence: 12
  givenname: Xuemei
  surname: Fu
  fullname: Fu, Xuemei
  email: fxmzj2004@163.com
  organization: The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
– sequence: 13
  givenname: Yang
  surname: Xu
  fullname: Xu, Yang
  email: yangxu@ucsd.edu
  organization: The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30712844$$D View this record in MEDLINE/PubMed
BookMark eNqFkctuFDEQRS0URF58ARLykk03fvTDvWARDQQiJcpIScTS6rbLjEc9dmO7A_P38WRCFlmQVVVJ59Ti3mN04LwDhD5QUlJCm8_rUikYx5IRKkrKSkLZG3RERSsK3ojmIO81r4uGEnGIjmNck2zRtnuHDjlpKRNVdYTCTzvq4nY7AZ5qjpfBb3yCiBe9UxDwFaR-8KNV-OaPTWqFhy2-cHpW1v3Cy7urs-IrTOA0uIRv5mkKEKP1DnuDr_9a3Sd7D3i58nFa-bAd8-3dKXpr-jHC-6d5gu7Ov90ufhSX198vFmeXhapakgoNwBouhGi0amojuoGaPq9DM2jTimqohVE1GwwobnQzdJWpjOpYq1ilmQF-gj7t_07B_54hJrmxcZdY78DPUbKcRc1YxWlGPz6h87ABLadgN33Yyn85ZYDvARV8jAHMM0KJ3LUh1_KxDblrQ1ImcxvZ6l5YyqbHDFLo7fiK-2XvQo7o3kKQUVnIpWgbQCWpvf2v_wC-i6hg
CitedBy_id crossref_primary_10_1080_1061186X_2021_1909051
crossref_primary_10_3389_fonc_2021_634732
crossref_primary_10_21926_obm_genet_2303185
crossref_primary_10_1016_j_molmet_2019_10_002
crossref_primary_10_1007_s12032_022_01676_1
crossref_primary_10_1016_j_celrep_2020_108203
crossref_primary_10_3390_antiox12091734
crossref_primary_10_1016_j_canlet_2019_12_017
crossref_primary_10_1007_s13238_019_0634_z
crossref_primary_10_1016_j_ccell_2024_04_009
crossref_primary_10_1007_s13238_019_0637_9
crossref_primary_10_3390_biom13020261
crossref_primary_10_1038_s41388_022_02477_6
crossref_primary_10_1016_j_bbrep_2024_101909
crossref_primary_10_3389_fonc_2022_895112
crossref_primary_10_1182_bloodadvances_2020003566
crossref_primary_10_1016_j_jcmgh_2020_04_018
crossref_primary_10_1002_jcp_30011
crossref_primary_10_1080_14737159_2022_2125802
crossref_primary_10_1158_2159_8290_CD_19_0125
crossref_primary_10_1038_s41418_023_01125_0
crossref_primary_10_2147_DDDT_S249557
crossref_primary_10_3389_fgene_2022_1051395
crossref_primary_10_3389_fonc_2022_966089
crossref_primary_10_1038_s41392_023_01347_1
crossref_primary_10_3389_fonc_2022_781903
crossref_primary_10_1186_s13046_020_01767_9
crossref_primary_10_1186_s12864_024_10055_1
crossref_primary_10_1038_s41419_024_06707_5
crossref_primary_10_1038_s41401_021_00708_2
crossref_primary_10_1016_j_biopha_2024_116266
crossref_primary_10_1016_j_ijbiomac_2024_130687
crossref_primary_10_1097_COC_0000000000000911
crossref_primary_10_3390_ijms24065257
crossref_primary_10_3389_fonc_2020_595187
crossref_primary_10_1002_ila2_21
crossref_primary_10_3389_fphar_2025_1529483
crossref_primary_10_3389_fmolb_2023_1239952
crossref_primary_10_1038_s41598_023_37000_8
crossref_primary_10_3390_biom10081162
crossref_primary_10_3389_fcell_2021_779169
crossref_primary_10_1097_MD_0000000000035631
crossref_primary_10_1186_s13046_023_02936_2
crossref_primary_10_1002_mco2_288
crossref_primary_10_1016_j_omtn_2022_12_020
crossref_primary_10_1371_journal_pgen_1011193
crossref_primary_10_3390_cancers16051000
crossref_primary_10_1038_s43018_021_00177_w
crossref_primary_10_21926_obm_genet_2302185
crossref_primary_10_3389_fonc_2021_633210
crossref_primary_10_1186_s13045_022_01314_3
crossref_primary_10_1186_s40164_020_00179_x
crossref_primary_10_1111_bjh_19314
crossref_primary_10_1016_j_ccell_2019_01_016
crossref_primary_10_3390_cancers12020332
crossref_primary_10_3390_ijms26010031
crossref_primary_10_1007_s00432_022_04212_w
crossref_primary_10_1016_j_bbadis_2022_166553
crossref_primary_10_3389_fcell_2021_762742
crossref_primary_10_7717_peerj_9774
crossref_primary_10_1111_cas_14499
crossref_primary_10_26508_lsa_202101157
crossref_primary_10_3390_curroncol30020124
crossref_primary_10_3390_pharmaceutics14061257
crossref_primary_10_3389_fcell_2020_607670
crossref_primary_10_1093_jmcb_mjz064
crossref_primary_10_1038_s41467_020_14437_3
crossref_primary_10_1016_j_canlet_2019_11_029
crossref_primary_10_1016_j_lfs_2019_116941
crossref_primary_10_3892_ol_2021_12980
crossref_primary_10_3390_cells13131109
crossref_primary_10_1016_j_jep_2024_118264
crossref_primary_10_1038_s41419_024_06427_w
crossref_primary_10_1136_jitc_2023_007479
crossref_primary_10_1016_j_tiv_2022_105357
crossref_primary_10_1038_s41420_022_00930_9
crossref_primary_10_1016_j_isci_2022_104844
crossref_primary_10_1007_s10495_021_01667_z
crossref_primary_10_1016_j_celrep_2024_115171
crossref_primary_10_3390_cancers13030399
crossref_primary_10_3390_cells9102308
crossref_primary_10_1002_jcb_30620
crossref_primary_10_1016_j_drup_2021_100790
crossref_primary_10_1016_j_biocel_2020_105796
crossref_primary_10_1186_s40246_023_00517_0
crossref_primary_10_1016_j_cbi_2022_110142
crossref_primary_10_3390_cimb45060317
crossref_primary_10_1016_j_bbcan_2021_188534
crossref_primary_10_3390_cimb45110576
crossref_primary_10_1152_ajpendo_00074_2022
crossref_primary_10_1158_1541_7786_MCR_21_0098
crossref_primary_10_3390_cancers14246044
crossref_primary_10_1038_s41401_024_01354_0
crossref_primary_10_1097_ot9_0000000000000026
crossref_primary_10_1038_s41598_020_78867_1
crossref_primary_10_3390_ijms24087076
crossref_primary_10_3390_molecules25204831
crossref_primary_10_1073_pnas_2107673118
crossref_primary_10_1182_blood_2021014304
crossref_primary_10_1186_s12885_024_12017_y
crossref_primary_10_1016_j_biopha_2023_114846
crossref_primary_10_3390_genes14030747
crossref_primary_10_1186_s13046_022_02581_1
crossref_primary_10_3390_nu16121816
crossref_primary_10_3390_ijms21144902
crossref_primary_10_3389_fcell_2021_801959
crossref_primary_10_1016_j_semcancer_2021_03_010
crossref_primary_10_1016_j_mocell_2025_100198
crossref_primary_10_3390_metabo14050249
crossref_primary_10_1016_j_bioactmat_2023_10_003
crossref_primary_10_1016_j_bbadis_2023_166823
crossref_primary_10_1002_cam4_5597
crossref_primary_10_1016_j_semcancer_2019_07_015
crossref_primary_10_1007_s13238_020_00699_6
crossref_primary_10_1186_s12967_023_04653_y
crossref_primary_10_3389_fcell_2020_596679
crossref_primary_10_1016_j_bbadis_2023_166824
crossref_primary_10_3390_ijms22105297
crossref_primary_10_1186_s40170_022_00286_9
crossref_primary_10_3390_cancers13071488
crossref_primary_10_1038_s41418_021_00871_3
crossref_primary_10_1097_MD_0000000000036520
crossref_primary_10_1042_CS20240560
crossref_primary_10_1155_2021_5164100
crossref_primary_10_1155_2021_5540149
crossref_primary_10_7717_peerj_14797
crossref_primary_10_1007_s13238_019_00665_x
crossref_primary_10_3390_biom10071068
crossref_primary_10_3390_ijms21228674
crossref_primary_10_1002_advs_202402457
crossref_primary_10_1016_j_gendis_2020_01_016
crossref_primary_10_1523_JNEUROSCI_0419_19_2019
crossref_primary_10_15252_embr_202152537
crossref_primary_10_1038_s41420_020_0287_y
crossref_primary_10_1093_lifemeta_load038
crossref_primary_10_3389_fimmu_2021_715460
crossref_primary_10_1038_s41420_023_01638_0
crossref_primary_10_3390_ijms222011047
crossref_primary_10_1080_15384101_2021_1912889
Cites_doi 10.1186/1471-2105-9-346
10.1093/nar/gki393
10.1016/j.cell.2009.04.037
10.1007/s13238-014-0032-5
10.1158/1078-0432.CCR-07-5202
10.1371/journal.pgen.1006056
10.1007/s00018-016-2358-z
10.1016/j.cell.2011.02.013
10.1038/nrc.2017.109
10.1074/jbc.M305135200
10.1038/nrm4007
10.1016/j.ccr.2007.10.001
10.1101/cshperspect.a026146
10.1101/gad.1940110
10.1038/sj.onc.1211023
10.1093/emboj/cdf595
10.1038/nrm3420
10.1007/s12094-013-1010-8
10.1038/cdd.2012.9
10.1016/j.cell.2017.08.028
10.1038/nrc3430
10.1038/ncb1211
10.1007/s10620-007-9799-z
10.1038/cddis.2010.38
10.1038/cddis.2014.87
10.1158/1078-0432.CCR-11-3040
10.1042/BJ20150517
10.1096/fj.201600845R
10.1016/j.ceb.2017.11.005
10.1038/sj.cdd.4401182
10.1016/S1535-6108(03)00244-7
10.4161/cc.6.13.4456
10.1016/j.molcel.2014.09.026
10.1038/nature05949
10.1101/gad.10.23.2971
10.1002/hep.24516
10.1002/stem.1054
10.1016/0092-8674(95)90039-X
10.1016/j.tcb.2012.08.001
10.1016/j.celrep.2014.05.017
10.1038/ng1282
10.1101/gad.14.3.289
10.1042/bj3420133
10.1073/pnas.1111245108
10.1038/377552a0
10.1073/pnas.220252297
10.1038/ncb2100
10.1038/nm1146
10.1101/gad.1378506
10.1016/j.cell.2012.04.026
10.1126/science.1090072
10.1126/science.1218530
10.2478/s11658-012-0032-5
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ccell.2018.12.012
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1878-3686
EndPage 203.e8
ExternalDocumentID 30712844
10_1016_j_ccell_2018_12_012
S1535610818305841
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
0R~
1~5
29B
2WC
4.4
457
4G.
53G
5GY
62-
6I.
6J9
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IH2
IHE
IXB
J1W
JIG
M3Z
M41
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SES
SSZ
TR2
UDS
WQ6
ZA5
5VS
AAFWJ
AAIKJ
AAMRU
AAQFI
AAYWO
AAYXX
ABDGV
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
OZT
UHS
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c470t-dee2638886dc65f89b1fadc6b6bdf784b58fc52bfec3fd6b94f4fc927c24d2fe3
IEDL.DBID IXB
ISSN 1535-6108
1878-3686
IngestDate Thu Jul 10 19:11:27 EDT 2025
Wed Feb 19 02:32:04 EST 2025
Tue Jul 01 01:26:23 EDT 2025
Thu Apr 24 23:10:04 EDT 2025
Fri Feb 23 02:24:37 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords mitochondrial pyruvate carrier
PUMA
mitochondria
oxidative phosphorylation
glycolysis
p53
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-dee2638886dc65f89b1fadc6b6bdf784b58fc52bfec3fd6b94f4fc927c24d2fe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.cell.com/article/S1535610818305841/pdf
PMID 30712844
PQID 2179522431
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2179522431
pubmed_primary_30712844
crossref_primary_10_1016_j_ccell_2018_12_012
crossref_citationtrail_10_1016_j_ccell_2018_12_012
elsevier_sciencedirect_doi_10_1016_j_ccell_2018_12_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-11
PublicationDateYYYYMMDD 2019-02-11
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer cell
PublicationTitleAlternate Cancer Cell
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Song, Xu (bib44) 2007; 6
Schell, Olson, Jiang, Hawkins, Van Vranken, Xie, Egnatchik, Earl, DeBerardinis, Rutter (bib40) 2014; 56
Herzig, Raemy, Montessuit, Veuthey, Zamboni, Westermann, Kunji, Martinou (bib13) 2012; 337
Roszik, Szollosi, Vereb (bib38) 2008; 9
Humpton, Vousden (bib15) 2016; 6
Liu, Ou, Clemenson, Chao, Lutske, Zambetti, Gage, Xu (bib27) 2010; 12
Soussi, Wiman (bib45) 2007; 12
Le-yang, Huo-hui, Xin-cheng, Zhan-jun, Xiang-hong, Yu, Ding-hua (bib24) 2017; 39
Murphy, Hinman, Levine (bib34) 1996; 10
Hikisz, Kiliańska (bib14) 2012; 17
Du, Zhang, Jiao, Zhao, Zhang, Yan, Xu (bib8) 2012; 40
Qiu, Wang, Leibowitz, Yang, Zhang, Yu (bib36) 2011; 54
Prokesch, Graef, Madl, Kahlhofer, Heidenreich, Schumann, Moyschewitz, Pristoynik, Blaschitz, Knauer (bib35) 2016; 31
Michalak, Vandenberg, Delbridge, Wu, Scott, Adams, Strasser (bib33) 2010; 24
Villunger, Michalak, Coultas, Mullauer, Bock, Ausserlechner, Adams, Strasser (bib50) 2003; 302
Xu (bib55) 2008; 27
Rong, Zhu, Xu, Fu (bib37) 2014; 5
Xu (bib54) 2003; 10
Liu, Parant, Lang, Chau, Chavez-Reyes, El-Naggar, Multani, Chang, Lozano (bib28) 2004; 36
Sinicrope, Rego, Okumura, Foster, O'Connell, Sargent, Windschitl (bib43) 2008; 14
Chao, Herr, Chun, Xu (bib4) 2006; 25
Bykov, Eriksson, Bianchi, Wiman (bib2) 2017; 18
Chao, Saito, Anderson, Appella, Xu (bib5) 2000; 97
Kastenhuber, Lowe (bib19) 2017; 170
Meek (bib30) 2015; 469
Vanderperre, Herzig, Krznar, Horl, Ammar, Montessuit, Pierredon, Zamboni, Martinou (bib48) 2016; 12
Jiang, Brady, Johnson, Lee, Park, Scott, Attardi (bib18) 2011; 108
Mello, Attardi (bib31) 2018; 51
Fricker, O'Prey, Tolkovsky, Ryan (bib9) 2010; 1
Li, Kon, Jiang, Tan, Ludwig, Zhao, Baer, Gu (bib25) 2012; 149
Vigueira, McCommis, Schweitzer, Remedi, Chambers, Fu, McDonald, Cole, Colca, Kletzien (bib49) 2014; 7
Kruiswijk, Labuschagne, Vousden (bib22) 2015; 16
Garcia-Cao, Garcia-Cao, Martin-Caballero, Criado, Klatt, Flores, Weill, Blasco, Serrano (bib11) 2002; 21
Issaeva, Bozko, Enge, Protopopova, Verhoef, Masucci, Pramanik, Selivanova (bib16) 2004; 10
Vousden, Prives (bib51) 2009; 137
Wilfling, Weber, Potthoff, Vogtle, Meisinger, Paschen, Hacker (bib53) 2012; 19
Brugarolas, Chandrasekaran, Gordon, Beach, Jacks, Hannon (bib1) 1995; 377
Lake, Fink, Klemetsaune, Fu, Jeffers, Zambetti, Xu (bib23) 2012; 30
Shen, Sun, Fu, Yang, Li, Yao (bib41) 2012; 18
Matheu, Maraver, Klatt, Flores, Garcia-Cao, Borras, Flores, Vina, Blasco, Serrano (bib29) 2007; 448
Shieh, Ahn, Tamai, Taya, Prives (bib42) 2000; 14
Xue, Zhou, Zhu, Ahmed, Chen, Yao (bib56) 2005; 33
Craig, Burch, Vojtesek, Mikutowska, Thompson, Hupp (bib6) 1999; 342
Kim, Nakasaki, Todorova, Lake, Yuan, Jamora, Xu (bib20) 2014; 5
Hanahan, Weinberg (bib12) 2011; 144
Tornatore, Thotakura, Bennett, Moretti, Franzoso (bib47) 2012; 22
Cai, Li, Yang, Miao, Wen, Huang, Ouyang (bib3) 2013; 15
Fu, Cui, Yi, Yu, Xu (bib10) 2017; 74
Saito, Yamaguchi, Higashimoto, Chao, Xu, Fornace, Appella, Anderson (bib39) 2003; 278
Sperka, Wang, Rudolph (bib46) 2012; 13
Deng, Zhang, Harper, Elledge, Leder (bib7) 1995; 82
Mendrysa, O'Leary, McElwee, Michalowski, Eisenman, Powell, Perry (bib32) 2006; 20
Jeffers, Parganas, Lee, Yang, Wang, Brennan, MacLean, Han, Chittenden, Ihle (bib17) 2003; 4
Kim, Jeong, Chae, Lee, Soung, Nam, Lee, Yoo, Lee (bib21) 2007; 52
Wade, Li, Wahl (bib52) 2013; 13
Lin, Chao, Saito, Mazur, Murphy, Appella, Xu (bib26) 2005; 7
Jeffers (10.1016/j.ccell.2018.12.012_bib17) 2003; 4
Lin (10.1016/j.ccell.2018.12.012_bib26) 2005; 7
Soussi (10.1016/j.ccell.2018.12.012_bib45) 2007; 12
Garcia-Cao (10.1016/j.ccell.2018.12.012_bib11) 2002; 21
Kim (10.1016/j.ccell.2018.12.012_bib21) 2007; 52
Sperka (10.1016/j.ccell.2018.12.012_bib46) 2012; 13
Brugarolas (10.1016/j.ccell.2018.12.012_bib1) 1995; 377
Bykov (10.1016/j.ccell.2018.12.012_bib2) 2017; 18
Shen (10.1016/j.ccell.2018.12.012_bib41) 2012; 18
Tornatore (10.1016/j.ccell.2018.12.012_bib47) 2012; 22
Fricker (10.1016/j.ccell.2018.12.012_bib9) 2010; 1
Deng (10.1016/j.ccell.2018.12.012_bib7) 1995; 82
Shieh (10.1016/j.ccell.2018.12.012_bib42) 2000; 14
Schell (10.1016/j.ccell.2018.12.012_bib40) 2014; 56
Craig (10.1016/j.ccell.2018.12.012_bib6) 1999; 342
Lake (10.1016/j.ccell.2018.12.012_bib23) 2012; 30
Wilfling (10.1016/j.ccell.2018.12.012_bib53) 2012; 19
Mendrysa (10.1016/j.ccell.2018.12.012_bib32) 2006; 20
Xu (10.1016/j.ccell.2018.12.012_bib55) 2008; 27
Cai (10.1016/j.ccell.2018.12.012_bib3) 2013; 15
Mello (10.1016/j.ccell.2018.12.012_bib31) 2018; 51
Chao (10.1016/j.ccell.2018.12.012_bib5) 2000; 97
Liu (10.1016/j.ccell.2018.12.012_bib27) 2010; 12
Rong (10.1016/j.ccell.2018.12.012_bib37) 2014; 5
Sinicrope (10.1016/j.ccell.2018.12.012_bib43) 2008; 14
Saito (10.1016/j.ccell.2018.12.012_bib39) 2003; 278
Du (10.1016/j.ccell.2018.12.012_bib8) 2012; 40
Vanderperre (10.1016/j.ccell.2018.12.012_bib48) 2016; 12
Li (10.1016/j.ccell.2018.12.012_bib25) 2012; 149
Herzig (10.1016/j.ccell.2018.12.012_bib13) 2012; 337
Murphy (10.1016/j.ccell.2018.12.012_bib34) 1996; 10
Song (10.1016/j.ccell.2018.12.012_bib44) 2007; 6
Villunger (10.1016/j.ccell.2018.12.012_bib50) 2003; 302
Liu (10.1016/j.ccell.2018.12.012_bib28) 2004; 36
Kastenhuber (10.1016/j.ccell.2018.12.012_bib19) 2017; 170
Kruiswijk (10.1016/j.ccell.2018.12.012_bib22) 2015; 16
Le-yang (10.1016/j.ccell.2018.12.012_bib24) 2017; 39
Xue (10.1016/j.ccell.2018.12.012_bib56) 2005; 33
Hanahan (10.1016/j.ccell.2018.12.012_bib12) 2011; 144
Wade (10.1016/j.ccell.2018.12.012_bib52) 2013; 13
Matheu (10.1016/j.ccell.2018.12.012_bib29) 2007; 448
Fu (10.1016/j.ccell.2018.12.012_bib10) 2017; 74
Qiu (10.1016/j.ccell.2018.12.012_bib36) 2011; 54
Chao (10.1016/j.ccell.2018.12.012_bib4) 2006; 25
Prokesch (10.1016/j.ccell.2018.12.012_bib35) 2016; 31
Michalak (10.1016/j.ccell.2018.12.012_bib33) 2010; 24
Xu (10.1016/j.ccell.2018.12.012_bib54) 2003; 10
Humpton (10.1016/j.ccell.2018.12.012_bib15) 2016; 6
Kim (10.1016/j.ccell.2018.12.012_bib20) 2014; 5
Vousden (10.1016/j.ccell.2018.12.012_bib51) 2009; 137
Vigueira (10.1016/j.ccell.2018.12.012_bib49) 2014; 7
Meek (10.1016/j.ccell.2018.12.012_bib30) 2015; 469
Issaeva (10.1016/j.ccell.2018.12.012_bib16) 2004; 10
Roszik (10.1016/j.ccell.2018.12.012_bib38) 2008; 9
Jiang (10.1016/j.ccell.2018.12.012_bib18) 2011; 108
Hikisz (10.1016/j.ccell.2018.12.012_bib14) 2012; 17
30753820 - Cancer Cell. 2019 Feb 11;35(2):163-165
References_xml – volume: 377
  start-page: 552
  year: 1995
  end-page: 557
  ident: bib1
  article-title: Radiation-induced cell cycle arrest compromised by p21 deficiency
  publication-title: Nature
– volume: 36
  start-page: 63
  year: 2004
  end-page: 68
  ident: bib28
  article-title: Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice
  publication-title: Nat. Genet.
– volume: 9
  start-page: 346
  year: 2008
  ident: bib38
  article-title: AccPbFRET: an ImageJ plugin for semi-automatic, fully corrected analysis of acceptor photobleaching FRET images
  publication-title: BMC Bioinformatics
– volume: 12
  start-page: e1006056
  year: 2016
  ident: bib48
  article-title: Embryonic lethality of mitochondrial pyruvate carrier 1 deficient mouse can be rescued by a ketogenic diet
  publication-title: PLoS Genet.
– volume: 56
  start-page: 400
  year: 2014
  end-page: 413
  ident: bib40
  article-title: A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth
  publication-title: Mol. Cell
– volume: 10
  start-page: 1321
  year: 2004
  end-page: 1328
  ident: bib16
  article-title: Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors
  publication-title: Nat. Med.
– volume: 18
  start-page: 1561
  year: 2012
  end-page: 1567
  ident: bib41
  article-title: The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy
  publication-title: Clin. Cancer Res.
– volume: 10
  start-page: 400
  year: 2003
  end-page: 403
  ident: bib54
  article-title: Regulation of p53 responses by post-translational modifications
  publication-title: Cell Death Differ.
– volume: 448
  start-page: 375
  year: 2007
  end-page: 379
  ident: bib29
  article-title: Delayed ageing through damage protection by the Arf/p53 pathway
  publication-title: Nature
– volume: 4
  start-page: 321
  year: 2003
  end-page: 328
  ident: bib17
  article-title: PUMA is an essential mediator of p53-dependent and -independent apoptotic pathways
  publication-title: Cancer Cell
– volume: 21
  start-page: 6225
  year: 2002
  end-page: 6235
  ident: bib11
  article-title: "Super p53" mice exhibit enhanced DNA damage response, are tumor resistant and age normally
  publication-title: EMBO J.
– volume: 22
  start-page: 557
  year: 2012
  end-page: 566
  ident: bib47
  article-title: The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation
  publication-title: Trends Cell Biol.
– volume: 5
  start-page: e1141
  year: 2014
  ident: bib20
  article-title: p53 induces skin aging by depleting Blimp1+ sebaceous gland cells
  publication-title: Cell Death Dis.
– volume: 51
  start-page: 65
  year: 2018
  end-page: 72
  ident: bib31
  article-title: Deciphering p53 signaling in tumor suppression
  publication-title: Curr. Opin. Cell Biol.
– volume: 18
  start-page: 89
  year: 2017
  end-page: 102
  ident: bib2
  article-title: Targeting mutant p53 for efficient cancer therapy
  publication-title: Nat. Rev. Cancer
– volume: 137
  start-page: 413
  year: 2009
  end-page: 431
  ident: bib51
  article-title: Blinded by the light: the growing complexity of p53
  publication-title: Cell
– volume: 13
  start-page: 579
  year: 2012
  end-page: 590
  ident: bib46
  article-title: DNA damage checkpoints in stem cells, ageing and cancer
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 19
  start-page: 1328
  year: 2012
  end-page: 1336
  ident: bib53
  article-title: BH3-only proteins are tail-anchored in the outer mitochondrial membrane and can initiate the activation of Bax
  publication-title: Cell Death Differ.
– volume: 7
  start-page: 165
  year: 2005
  end-page: 171
  ident: bib26
  article-title: p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression
  publication-title: Nat. Cell Biol.
– volume: 24
  start-page: 1608
  year: 2010
  end-page: 1613
  ident: bib33
  article-title: Apoptosis-promoted tumorigenesis: gamma-irradiation-induced thymic lymphomagenesis requires PUMA-driven leukocyte death
  publication-title: Genes Dev.
– volume: 149
  start-page: 1269
  year: 2012
  end-page: 1283
  ident: bib25
  article-title: Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence
  publication-title: Cell
– volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  ident: bib12
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
– volume: 31
  start-page: 732
  year: 2016
  end-page: 742
  ident: bib35
  article-title: Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis
  publication-title: FASEB J.
– volume: 1
  start-page: e59
  year: 2010
  ident: bib9
  article-title: Phosphorylation of PUMA modulates its apoptotic function by regulating protein stability
  publication-title: Cell Death Dis.
– volume: 97
  start-page: 11936
  year: 2000
  end-page: 11941
  ident: bib5
  article-title: Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 33
  start-page: W184
  year: 2005
  end-page: W187
  ident: bib56
  article-title: GPS: a comprehensive www server for phosphorylation sites prediction
  publication-title: Nucleic Acids Res.
– volume: 39
  year: 2017
  ident: bib24
  article-title: Loss of tumor suppressor miR-126 contributes to the development of hepatitis B virus-related hepatocellular carcinoma metastasis through the upregulation of ADAM9
  publication-title: Tumor Biol.
– volume: 40
  start-page: 2066
  year: 2012
  end-page: 2072
  ident: bib8
  article-title: Prognostic significance of PUMA in pancreatic ductal adenocarcinoma
  publication-title: J. Int. Med. Res.
– volume: 469
  start-page: 325
  year: 2015
  end-page: 346
  ident: bib30
  article-title: Regulation of the p53 response and its relationship to cancer
  publication-title: Biochem. J.
– volume: 13
  start-page: 83
  year: 2013
  end-page: 96
  ident: bib52
  article-title: MDM2, MDMX and p53 in oncogenesis and cancer therapy
  publication-title: Nat. Rev. Cancer
– volume: 7
  start-page: 2042
  year: 2014
  end-page: 2053
  ident: bib49
  article-title: Mitochondrial pyruvate carrier 2 hypomorphism in mice leads to defects in glucose-stimulated insulin secretion
  publication-title: Cell Rep.
– volume: 30
  start-page: 888
  year: 2012
  end-page: 897
  ident: bib23
  article-title: Context-dependent enhancement of induced pluripotent stem cell reprogramming by silencing PUMA
  publication-title: Stem Cells
– volume: 5
  start-page: 258
  year: 2014
  end-page: 260
  ident: bib37
  article-title: Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template
  publication-title: Protein Cell
– volume: 54
  start-page: 1249
  year: 2011
  end-page: 1258
  ident: bib36
  article-title: PUMA-mediated apoptosis drives chemical hepatocarcinogenesis in mice
  publication-title: Hepatology
– volume: 25
  start-page: 2615
  year: 2006
  end-page: 2622
  ident: bib4
  article-title: Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression
  publication-title: EMBO J.
– volume: 278
  start-page: 37536
  year: 2003
  end-page: 37544
  ident: bib39
  article-title: Phosphorylation site interdependence of human p53 post-translational modifications in response to stress
  publication-title: J. Biol. Chem.
– volume: 74
  start-page: 487
  year: 2017
  end-page: 493
  ident: bib10
  article-title: DNA repair mechanisms in embryonic stem cells
  publication-title: Cell. Mol. Life Sci.
– volume: 17
  start-page: 646
  year: 2012
  end-page: 669
  ident: bib14
  article-title: PUMA, a critical mediator of cell death—one decade on from its discovery
  publication-title: Cell. Mol. Biol. Lett.
– volume: 27
  start-page: 3501
  year: 2008
  end-page: 3507
  ident: bib55
  article-title: Induction of genetic instability by gain-of-function p53 cancer mutants
  publication-title: Oncogene
– volume: 10
  start-page: 2971
  year: 1996
  end-page: 2980
  ident: bib34
  article-title: Wild-type p53 negatively regulates the expression of a microtubule- associated protein
  publication-title: Genes Dev.
– volume: 52
  start-page: 2751
  year: 2007
  end-page: 2756
  ident: bib21
  article-title: Pro-apoptotic PUMA and anti-apoptotic phospho-BAD are highly expressed in colorectal carcinomas
  publication-title: Dig. Dis. Sci.
– volume: 15
  start-page: 818
  year: 2013
  end-page: 824
  ident: bib3
  article-title: Expression of p53 upregulated modulator of apoptosis (PUMA) and C-myb in gallbladder adenocarcinoma and their pathological significance
  publication-title: Clin. Transl. Oncol.
– volume: 342
  start-page: 133
  year: 1999
  end-page: 141
  ident: bib6
  article-title: Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of MDM2 (mouse double minute 2) protein are modified in human cancers
  publication-title: Biochem. J.
– volume: 14
  start-page: 5810
  year: 2008
  end-page: 5818
  ident: bib43
  article-title: Prognostic impact of bim, PUMA, and noxa expression in human colon carcinomas
  publication-title: Clin. Cancer Res.
– volume: 6
  start-page: 1570
  year: 2007
  end-page: 1573
  ident: bib44
  article-title: Gain of function of p53 cancer mutants in disrupting critical DNA damage response pathways
  publication-title: Cell Cycle
– volume: 12
  start-page: 993
  year: 2010
  end-page: 998
  ident: bib27
  article-title: PUMA is required for p53-induced depletion of adult stem cells
  publication-title: Nat. Cell Biol.
– volume: 14
  start-page: 289
  year: 2000
  end-page: 300
  ident: bib42
  article-title: The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites
  publication-title: Genes Dev.
– volume: 20
  start-page: 16
  year: 2006
  end-page: 21
  ident: bib32
  article-title: Tumor suppression and normal aging in mice with constitutively high p53 activity
  publication-title: Genes Dev.
– volume: 12
  start-page: 303
  year: 2007
  end-page: 312
  ident: bib45
  article-title: Shaping genetic alterations in human cancer: the p53 mutation paradigm
  publication-title: Cancer Cell
– volume: 82
  start-page: 675
  year: 1995
  end-page: 684
  ident: bib7
  article-title: Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control
  publication-title: Cell
– volume: 16
  start-page: 393
  year: 2015
  end-page: 405
  ident: bib22
  article-title: p53 in survival, death and metabolic health: a lifeguard with a licence to kill
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 170
  start-page: 1062
  year: 2017
  end-page: 1078
  ident: bib19
  article-title: Putting p53 in context
  publication-title: Cell
– volume: 302
  start-page: 1036
  year: 2003
  end-page: 1038
  ident: bib50
  article-title: p53- and drug-induced apoptotic responses mediated by BH3-only proteins PUMA and noxa
  publication-title: Science
– volume: 337
  start-page: 93
  year: 2012
  end-page: 96
  ident: bib13
  article-title: Identification and functional expression of the mitochondrial pyruvate carrier
  publication-title: Science
– volume: 6
  year: 2016
  ident: bib15
  article-title: Regulation of cellular metabolism and hypoxia by p53
  publication-title: Cold Spring Harb. Perspect. Med.
– volume: 108
  start-page: 17123
  year: 2011
  end-page: 17128
  ident: bib18
  article-title: Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 9
  start-page: 346
  year: 2008
  ident: 10.1016/j.ccell.2018.12.012_bib38
  article-title: AccPbFRET: an ImageJ plugin for semi-automatic, fully corrected analysis of acceptor photobleaching FRET images
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-346
– volume: 33
  start-page: W184
  year: 2005
  ident: 10.1016/j.ccell.2018.12.012_bib56
  article-title: GPS: a comprehensive www server for phosphorylation sites prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki393
– volume: 137
  start-page: 413
  year: 2009
  ident: 10.1016/j.ccell.2018.12.012_bib51
  article-title: Blinded by the light: the growing complexity of p53
  publication-title: Cell
  doi: 10.1016/j.cell.2009.04.037
– volume: 25
  start-page: 2615
  year: 2006
  ident: 10.1016/j.ccell.2018.12.012_bib4
  article-title: Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression
  publication-title: EMBO J.
– volume: 5
  start-page: 258
  year: 2014
  ident: 10.1016/j.ccell.2018.12.012_bib37
  article-title: Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template
  publication-title: Protein Cell
  doi: 10.1007/s13238-014-0032-5
– volume: 14
  start-page: 5810
  year: 2008
  ident: 10.1016/j.ccell.2018.12.012_bib43
  article-title: Prognostic impact of bim, PUMA, and noxa expression in human colon carcinomas
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-07-5202
– volume: 12
  start-page: e1006056
  year: 2016
  ident: 10.1016/j.ccell.2018.12.012_bib48
  article-title: Embryonic lethality of mitochondrial pyruvate carrier 1 deficient mouse can be rescued by a ketogenic diet
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1006056
– volume: 74
  start-page: 487
  year: 2017
  ident: 10.1016/j.ccell.2018.12.012_bib10
  article-title: DNA repair mechanisms in embryonic stem cells
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-016-2358-z
– volume: 144
  start-page: 646
  year: 2011
  ident: 10.1016/j.ccell.2018.12.012_bib12
  article-title: Hallmarks of cancer: the next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 18
  start-page: 89
  year: 2017
  ident: 10.1016/j.ccell.2018.12.012_bib2
  article-title: Targeting mutant p53 for efficient cancer therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2017.109
– volume: 278
  start-page: 37536
  year: 2003
  ident: 10.1016/j.ccell.2018.12.012_bib39
  article-title: Phosphorylation site interdependence of human p53 post-translational modifications in response to stress
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M305135200
– volume: 16
  start-page: 393
  year: 2015
  ident: 10.1016/j.ccell.2018.12.012_bib22
  article-title: p53 in survival, death and metabolic health: a lifeguard with a licence to kill
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm4007
– volume: 12
  start-page: 303
  year: 2007
  ident: 10.1016/j.ccell.2018.12.012_bib45
  article-title: Shaping genetic alterations in human cancer: the p53 mutation paradigm
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2007.10.001
– volume: 6
  year: 2016
  ident: 10.1016/j.ccell.2018.12.012_bib15
  article-title: Regulation of cellular metabolism and hypoxia by p53
  publication-title: Cold Spring Harb. Perspect. Med.
  doi: 10.1101/cshperspect.a026146
– volume: 24
  start-page: 1608
  year: 2010
  ident: 10.1016/j.ccell.2018.12.012_bib33
  article-title: Apoptosis-promoted tumorigenesis: gamma-irradiation-induced thymic lymphomagenesis requires PUMA-driven leukocyte death
  publication-title: Genes Dev.
  doi: 10.1101/gad.1940110
– volume: 27
  start-page: 3501
  year: 2008
  ident: 10.1016/j.ccell.2018.12.012_bib55
  article-title: Induction of genetic instability by gain-of-function p53 cancer mutants
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1211023
– volume: 40
  start-page: 2066
  year: 2012
  ident: 10.1016/j.ccell.2018.12.012_bib8
  article-title: Prognostic significance of PUMA in pancreatic ductal adenocarcinoma
  publication-title: J. Int. Med. Res.
– volume: 21
  start-page: 6225
  year: 2002
  ident: 10.1016/j.ccell.2018.12.012_bib11
  article-title: "Super p53" mice exhibit enhanced DNA damage response, are tumor resistant and age normally
  publication-title: EMBO J.
  doi: 10.1093/emboj/cdf595
– volume: 39
  year: 2017
  ident: 10.1016/j.ccell.2018.12.012_bib24
  article-title: Loss of tumor suppressor miR-126 contributes to the development of hepatitis B virus-related hepatocellular carcinoma metastasis through the upregulation of ADAM9
  publication-title: Tumor Biol.
– volume: 13
  start-page: 579
  year: 2012
  ident: 10.1016/j.ccell.2018.12.012_bib46
  article-title: DNA damage checkpoints in stem cells, ageing and cancer
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3420
– volume: 15
  start-page: 818
  year: 2013
  ident: 10.1016/j.ccell.2018.12.012_bib3
  article-title: Expression of p53 upregulated modulator of apoptosis (PUMA) and C-myb in gallbladder adenocarcinoma and their pathological significance
  publication-title: Clin. Transl. Oncol.
  doi: 10.1007/s12094-013-1010-8
– volume: 19
  start-page: 1328
  year: 2012
  ident: 10.1016/j.ccell.2018.12.012_bib53
  article-title: BH3-only proteins are tail-anchored in the outer mitochondrial membrane and can initiate the activation of Bax
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2012.9
– volume: 170
  start-page: 1062
  year: 2017
  ident: 10.1016/j.ccell.2018.12.012_bib19
  article-title: Putting p53 in context
  publication-title: Cell
  doi: 10.1016/j.cell.2017.08.028
– volume: 13
  start-page: 83
  year: 2013
  ident: 10.1016/j.ccell.2018.12.012_bib52
  article-title: MDM2, MDMX and p53 in oncogenesis and cancer therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3430
– volume: 7
  start-page: 165
  year: 2005
  ident: 10.1016/j.ccell.2018.12.012_bib26
  article-title: p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1211
– volume: 52
  start-page: 2751
  year: 2007
  ident: 10.1016/j.ccell.2018.12.012_bib21
  article-title: Pro-apoptotic PUMA and anti-apoptotic phospho-BAD are highly expressed in colorectal carcinomas
  publication-title: Dig. Dis. Sci.
  doi: 10.1007/s10620-007-9799-z
– volume: 1
  start-page: e59
  year: 2010
  ident: 10.1016/j.ccell.2018.12.012_bib9
  article-title: Phosphorylation of PUMA modulates its apoptotic function by regulating protein stability
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2010.38
– volume: 5
  start-page: e1141
  year: 2014
  ident: 10.1016/j.ccell.2018.12.012_bib20
  article-title: p53 induces skin aging by depleting Blimp1+ sebaceous gland cells
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2014.87
– volume: 18
  start-page: 1561
  year: 2012
  ident: 10.1016/j.ccell.2018.12.012_bib41
  article-title: The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-11-3040
– volume: 469
  start-page: 325
  year: 2015
  ident: 10.1016/j.ccell.2018.12.012_bib30
  article-title: Regulation of the p53 response and its relationship to cancer
  publication-title: Biochem. J.
  doi: 10.1042/BJ20150517
– volume: 31
  start-page: 732
  year: 2016
  ident: 10.1016/j.ccell.2018.12.012_bib35
  article-title: Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis
  publication-title: FASEB J.
  doi: 10.1096/fj.201600845R
– volume: 51
  start-page: 65
  year: 2018
  ident: 10.1016/j.ccell.2018.12.012_bib31
  article-title: Deciphering p53 signaling in tumor suppression
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2017.11.005
– volume: 10
  start-page: 400
  year: 2003
  ident: 10.1016/j.ccell.2018.12.012_bib54
  article-title: Regulation of p53 responses by post-translational modifications
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401182
– volume: 4
  start-page: 321
  year: 2003
  ident: 10.1016/j.ccell.2018.12.012_bib17
  article-title: PUMA is an essential mediator of p53-dependent and -independent apoptotic pathways
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(03)00244-7
– volume: 6
  start-page: 1570
  year: 2007
  ident: 10.1016/j.ccell.2018.12.012_bib44
  article-title: Gain of function of p53 cancer mutants in disrupting critical DNA damage response pathways
  publication-title: Cell Cycle
  doi: 10.4161/cc.6.13.4456
– volume: 56
  start-page: 400
  year: 2014
  ident: 10.1016/j.ccell.2018.12.012_bib40
  article-title: A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.09.026
– volume: 448
  start-page: 375
  year: 2007
  ident: 10.1016/j.ccell.2018.12.012_bib29
  article-title: Delayed ageing through damage protection by the Arf/p53 pathway
  publication-title: Nature
  doi: 10.1038/nature05949
– volume: 10
  start-page: 2971
  year: 1996
  ident: 10.1016/j.ccell.2018.12.012_bib34
  article-title: Wild-type p53 negatively regulates the expression of a microtubule- associated protein
  publication-title: Genes Dev.
  doi: 10.1101/gad.10.23.2971
– volume: 54
  start-page: 1249
  year: 2011
  ident: 10.1016/j.ccell.2018.12.012_bib36
  article-title: PUMA-mediated apoptosis drives chemical hepatocarcinogenesis in mice
  publication-title: Hepatology
  doi: 10.1002/hep.24516
– volume: 30
  start-page: 888
  year: 2012
  ident: 10.1016/j.ccell.2018.12.012_bib23
  article-title: Context-dependent enhancement of induced pluripotent stem cell reprogramming by silencing PUMA
  publication-title: Stem Cells
  doi: 10.1002/stem.1054
– volume: 82
  start-page: 675
  year: 1995
  ident: 10.1016/j.ccell.2018.12.012_bib7
  article-title: Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control
  publication-title: Cell
  doi: 10.1016/0092-8674(95)90039-X
– volume: 22
  start-page: 557
  year: 2012
  ident: 10.1016/j.ccell.2018.12.012_bib47
  article-title: The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2012.08.001
– volume: 7
  start-page: 2042
  year: 2014
  ident: 10.1016/j.ccell.2018.12.012_bib49
  article-title: Mitochondrial pyruvate carrier 2 hypomorphism in mice leads to defects in glucose-stimulated insulin secretion
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.05.017
– volume: 36
  start-page: 63
  year: 2004
  ident: 10.1016/j.ccell.2018.12.012_bib28
  article-title: Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice
  publication-title: Nat. Genet.
  doi: 10.1038/ng1282
– volume: 14
  start-page: 289
  year: 2000
  ident: 10.1016/j.ccell.2018.12.012_bib42
  article-title: The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites
  publication-title: Genes Dev.
  doi: 10.1101/gad.14.3.289
– volume: 342
  start-page: 133
  year: 1999
  ident: 10.1016/j.ccell.2018.12.012_bib6
  article-title: Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of MDM2 (mouse double minute 2) protein are modified in human cancers
  publication-title: Biochem. J.
  doi: 10.1042/bj3420133
– volume: 108
  start-page: 17123
  year: 2011
  ident: 10.1016/j.ccell.2018.12.012_bib18
  article-title: Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1111245108
– volume: 377
  start-page: 552
  year: 1995
  ident: 10.1016/j.ccell.2018.12.012_bib1
  article-title: Radiation-induced cell cycle arrest compromised by p21 deficiency
  publication-title: Nature
  doi: 10.1038/377552a0
– volume: 97
  start-page: 11936
  year: 2000
  ident: 10.1016/j.ccell.2018.12.012_bib5
  article-title: Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.220252297
– volume: 12
  start-page: 993
  year: 2010
  ident: 10.1016/j.ccell.2018.12.012_bib27
  article-title: PUMA is required for p53-induced depletion of adult stem cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2100
– volume: 10
  start-page: 1321
  year: 2004
  ident: 10.1016/j.ccell.2018.12.012_bib16
  article-title: Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors
  publication-title: Nat. Med.
  doi: 10.1038/nm1146
– volume: 20
  start-page: 16
  year: 2006
  ident: 10.1016/j.ccell.2018.12.012_bib32
  article-title: Tumor suppression and normal aging in mice with constitutively high p53 activity
  publication-title: Genes Dev.
  doi: 10.1101/gad.1378506
– volume: 149
  start-page: 1269
  year: 2012
  ident: 10.1016/j.ccell.2018.12.012_bib25
  article-title: Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.026
– volume: 302
  start-page: 1036
  year: 2003
  ident: 10.1016/j.ccell.2018.12.012_bib50
  article-title: p53- and drug-induced apoptotic responses mediated by BH3-only proteins PUMA and noxa
  publication-title: Science
  doi: 10.1126/science.1090072
– volume: 337
  start-page: 93
  year: 2012
  ident: 10.1016/j.ccell.2018.12.012_bib13
  article-title: Identification and functional expression of the mitochondrial pyruvate carrier
  publication-title: Science
  doi: 10.1126/science.1218530
– volume: 17
  start-page: 646
  year: 2012
  ident: 10.1016/j.ccell.2018.12.012_bib14
  article-title: PUMA, a critical mediator of cell death—one decade on from its discovery
  publication-title: Cell. Mol. Biol. Lett.
  doi: 10.2478/s11658-012-0032-5
– reference: 30753820 - Cancer Cell. 2019 Feb 11;35(2):163-165
SSID ssj0016179
Score 2.6177137
Snippet The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 191
SubjectTerms A549 Cells
Animals
Apoptosis Regulatory Proteins - genetics
Apoptosis Regulatory Proteins - metabolism
Carcinoma, Hepatocellular - genetics
Carcinoma, Hepatocellular - metabolism
Carcinoma, Hepatocellular - pathology
Cell Proliferation
Glycolysis
HCT116 Cells
HeLa Cells
Hep G2 Cells
Humans
I-kappa B Kinase - metabolism
Liver Neoplasms - genetics
Liver Neoplasms - metabolism
Liver Neoplasms - pathology
Male
Mice, Inbred NOD
Mice, Knockout
Mice, SCID
mitochondria
Mitochondria, Liver - metabolism
Mitochondria, Liver - pathology
Mitochondrial Membrane Transport Proteins - metabolism
mitochondrial pyruvate carrier
Monocarboxylic Acid Transporters - metabolism
Oxidative Phosphorylation
p53
Prognosis
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
PUMA
Pyruvic Acid - metabolism
Signal Transduction
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
Title Wild-Type p53 Promotes Cancer Metabolic Switch by Inducing PUMA-Dependent Suppression of Oxidative Phosphorylation
URI https://dx.doi.org/10.1016/j.ccell.2018.12.012
https://www.ncbi.nlm.nih.gov/pubmed/30712844
https://www.proquest.com/docview/2179522431
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQB8QFLY9ly0tG2uNabVzHtY9QQAipbCW2Um-Wn0tWKKnaIODfM3aSSnuAA7e8rFj-ZuYb2-MZhH5Sb0XQckB8kIawYDjRwksCnqvUwIjAWXGiOLnntzN2N8_nG2jcnYWJYZWt7W9serLW7ZN-O5r9RVH0H0BXI_kD44DMinR4fchEOsQ3v1zvJABDyyZnak7i113moRTjZePqeIzvEmlNMKMfsdNH3mdioZtvaKd1H_FF08NdtOHLPbQ1aTfI99EStNyROLnEi3yIpynYzq_wOIK7xBNfA-hPhcUPLwXghc0bjsU7oPFfPJ1NLshVWxS3xrHeZxMkW-Iq4N-vhUtJwvH0sVotHqvlWxNGd4BmN9d_xrekLatALBsNauK8p6B1QnBneR6ENFnQcGm4cWEkmMlFsDk1wdthcNxIFliwko4sZY4GP_yONsuq9D8Q9uDgaLAKbuQkk47rQP1AG2GNZ9pw2kO0G05l25zjsfTFk-qCy_6phIGKGKiMKsCgh36tGy2alBuff847nNR_kqOAFD5veN6hqkCn4mtd-up5pWCaJsEvBTntocMG7nVPwCZGSmdHX_3tMdqGOxkjv7PsBG3Wy2d_Co5Nbc6S5L4DBxf3nQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQlWgvVaEPti9cqcdau_E6jn2kW9BCCV0JVtqb5ScEoWS1GwT8-47zWKkHOPQWxbYS-ZuZb2yPZxD6Tr0VQcsR8UEawoLhRAsvCXiuUgMjAmfFhWJ-zqdzdrpIF1to0t-FiWGVne1vbXpjrbs3w242h8uiGF6ArkbyB8YBmRXx8voL8AayWL_hZPFzc5QAFC3bpKkpid371ENNkJeN2-MxwEs0m4IJfYqennI_Gxo6foNed_4jPmx_cRdt-XIP7eTdCflbtAI1dySuLvEyHeNZE23n13gS0V3h3NeA-m1h8cV9AYBh84hj9Q4YfIVn8_yQ_Oqq4tY4Fvxso2RLXAX856FwTZZwPLuu1svravXYxtG9Q_Pjo8vJlHR1FYhl2agmznsKaicEd5anQUiTBA2PhhsXMsFMKoJNqQnejoPjRrLAgpU0s5Q5Gvz4Pdouq9LvI-zBw9FgFlzmJJOO60D9SBthjWfacDpAtJ9OZbuk47H2xa3qo8tuVIOBihiohCrAYIB-bAYt25wbz3fnPU7qH9FRwArPD_zWo6pAqWKzLn11t1awTpPgmIKgDtCHFu7Nn4BRjJzOPv7vZw_Qy-llfqbOTs5_f0KvoEXGMPAk-Yy269Wd_wJeTm2-NlL8F3w3-rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wild-Type+p53+Promotes+Cancer+Metabolic+Switch+by+Inducing+PUMA-Dependent+Suppression+of+Oxidative+Phosphorylation&rft.jtitle=Cancer+cell&rft.au=Kim%2C+Jinchul&rft.au=Yu%2C+Lili&rft.au=Chen%2C+Wancheng&rft.au=Xu%2C+Yanxia&rft.date=2019-02-11&rft.pub=Elsevier+Inc&rft.issn=1535-6108&rft.eissn=1878-3686&rft.volume=35&rft.issue=2&rft.spage=191&rft.epage=203.e8&rft_id=info:doi/10.1016%2Fj.ccell.2018.12.012&rft.externalDocID=S1535610818305841
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-6108&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-6108&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-6108&client=summon