Wild-Type p53 Promotes Cancer Metabolic Switch by Inducing PUMA-Dependent Suppression of Oxidative Phosphorylation
The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human cancers, such as hepatocarcinoma (HCC). We discovered a physiological and oncogenic role of WTp53 in suppressing pyruvate-driven oxidative phospho...
Saved in:
Published in | Cancer cell Vol. 35; no. 2; pp. 191 - 203.e8 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
11.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human cancers, such as hepatocarcinoma (HCC). We discovered a physiological and oncogenic role of WTp53 in suppressing pyruvate-driven oxidative phosphorylation by inducing PUMA. PUMA inhibits mitochondrial pyruvate uptake by disrupting the oligomerization and function of mitochondrial pyruvate carrier (MPC) through PUMA-MPC interaction, which depends on IκB kinase-mediated phosphorylation of PUMA at Ser96/106. High expression levels of PUMA are correlated with decreased mitochondrial pyruvate uptake and increased glycolysis in HCCs and poor prognosis of HCC patients. These findings are instrumental for cancer drug discovery aiming at activating WTp53 or restoring WTp53 activity to p53 mutants.
[Display omitted]
•WTp53-PUMA pathway drives cancer metabolic switch•PUMA suppresses mitochondrial pyruvate uptake by inactivating MPC•IKKβ-mediated phosphorylation of PUMA is important for PUMA-MPC interaction•High levels of PUMA in HCC are correlated with poor prognosis of HCC patients
Hepatocellular carcinomas (HCCs) often retain the wild-type p53. Kim et al. find that p53 is important for the growth of HCC cells and that p53-regulated PUMA reduces mitochondrial pyruvate uptake and increases glycolysis in HCC, suggesting caution when designing cancer treatment strategies that activate p53. |
---|---|
AbstractList | The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human cancers, such as hepatocarcinoma (HCC). We discovered a physiological and oncogenic role of WTp53 in suppressing pyruvate-driven oxidative phosphorylation by inducing PUMA. PUMA inhibits mitochondrial pyruvate uptake by disrupting the oligomerization and function of mitochondrial pyruvate carrier (MPC) through PUMA-MPC interaction, which depends on IκB kinase-mediated phosphorylation of PUMA at Ser96/106. High expression levels of PUMA are correlated with decreased mitochondrial pyruvate uptake and increased glycolysis in HCCs and poor prognosis of HCC patients. These findings are instrumental for cancer drug discovery aiming at activating WTp53 or restoring WTp53 activity to p53 mutants.
[Display omitted]
•WTp53-PUMA pathway drives cancer metabolic switch•PUMA suppresses mitochondrial pyruvate uptake by inactivating MPC•IKKβ-mediated phosphorylation of PUMA is important for PUMA-MPC interaction•High levels of PUMA in HCC are correlated with poor prognosis of HCC patients
Hepatocellular carcinomas (HCCs) often retain the wild-type p53. Kim et al. find that p53 is important for the growth of HCC cells and that p53-regulated PUMA reduces mitochondrial pyruvate uptake and increases glycolysis in HCC, suggesting caution when designing cancer treatment strategies that activate p53. The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human cancers, such as hepatocarcinoma (HCC). We discovered a physiological and oncogenic role of WTp53 in suppressing pyruvate-driven oxidative phosphorylation by inducing PUMA. PUMA inhibits mitochondrial pyruvate uptake by disrupting the oligomerization and function of mitochondrial pyruvate carrier (MPC) through PUMA-MPC interaction, which depends on IκB kinase-mediated phosphorylation of PUMA at Ser96/106. High expression levels of PUMA are correlated with decreased mitochondrial pyruvate uptake and increased glycolysis in HCCs and poor prognosis of HCC patients. These findings are instrumental for cancer drug discovery aiming at activating WTp53 or restoring WTp53 activity to p53 mutants.The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human cancers, such as hepatocarcinoma (HCC). We discovered a physiological and oncogenic role of WTp53 in suppressing pyruvate-driven oxidative phosphorylation by inducing PUMA. PUMA inhibits mitochondrial pyruvate uptake by disrupting the oligomerization and function of mitochondrial pyruvate carrier (MPC) through PUMA-MPC interaction, which depends on IκB kinase-mediated phosphorylation of PUMA at Ser96/106. High expression levels of PUMA are correlated with decreased mitochondrial pyruvate uptake and increased glycolysis in HCCs and poor prognosis of HCC patients. These findings are instrumental for cancer drug discovery aiming at activating WTp53 or restoring WTp53 activity to p53 mutants. The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human cancers, such as hepatocarcinoma (HCC). We discovered a physiological and oncogenic role of WTp53 in suppressing pyruvate-driven oxidative phosphorylation by inducing PUMA. PUMA inhibits mitochondrial pyruvate uptake by disrupting the oligomerization and function of mitochondrial pyruvate carrier (MPC) through PUMA-MPC interaction, which depends on IκB kinase-mediated phosphorylation of PUMA at Ser96/106. High expression levels of PUMA are correlated with decreased mitochondrial pyruvate uptake and increased glycolysis in HCCs and poor prognosis of HCC patients. These findings are instrumental for cancer drug discovery aiming at activating WTp53 or restoring WTp53 activity to p53 mutants. |
Author | Todorova, Dilyana Tang, Qingshuang Feng, Bingbing Jiang, Lei He, Jingjin Fu, Xuemei Xu, Yang Xu, Yanxia Kim, Jinchul Chen, Guihua Yu, Lili Chen, Wancheng Wu, Meng |
Author_xml | – sequence: 1 givenname: Jinchul surname: Kim fullname: Kim, Jinchul organization: The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China – sequence: 2 givenname: Lili surname: Yu fullname: Yu, Lili organization: Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China – sequence: 3 givenname: Wancheng surname: Chen fullname: Chen, Wancheng organization: Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China – sequence: 4 givenname: Yanxia surname: Xu fullname: Xu, Yanxia organization: Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China – sequence: 5 givenname: Meng surname: Wu fullname: Wu, Meng organization: Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China – sequence: 6 givenname: Dilyana surname: Todorova fullname: Todorova, Dilyana organization: The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China – sequence: 7 givenname: Qingshuang surname: Tang fullname: Tang, Qingshuang organization: Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China – sequence: 8 givenname: Bingbing surname: Feng fullname: Feng, Bingbing organization: Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China – sequence: 9 givenname: Lei surname: Jiang fullname: Jiang, Lei organization: Cancer Research Institute, Guangdong Provincial Key Laboratory of Cancer Immunotherapy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China – sequence: 10 givenname: Jingjin surname: He fullname: He, Jingjin organization: The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China – sequence: 11 givenname: Guihua surname: Chen fullname: Chen, Guihua organization: The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China – sequence: 12 givenname: Xuemei surname: Fu fullname: Fu, Xuemei email: fxmzj2004@163.com organization: The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China – sequence: 13 givenname: Yang surname: Xu fullname: Xu, Yang email: yangxu@ucsd.edu organization: The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30712844$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctuFDEQRS0URF58ARLykk03fvTDvWARDQQiJcpIScTS6rbLjEc9dmO7A_P38WRCFlmQVVVJ59Ti3mN04LwDhD5QUlJCm8_rUikYx5IRKkrKSkLZG3RERSsK3ojmIO81r4uGEnGIjmNck2zRtnuHDjlpKRNVdYTCTzvq4nY7AZ5qjpfBb3yCiBe9UxDwFaR-8KNV-OaPTWqFhy2-cHpW1v3Cy7urs-IrTOA0uIRv5mkKEKP1DnuDr_9a3Sd7D3i58nFa-bAd8-3dKXpr-jHC-6d5gu7Ov90ufhSX198vFmeXhapakgoNwBouhGi0amojuoGaPq9DM2jTimqohVE1GwwobnQzdJWpjOpYq1ilmQF-gj7t_07B_54hJrmxcZdY78DPUbKcRc1YxWlGPz6h87ABLadgN33Yyn85ZYDvARV8jAHMM0KJ3LUh1_KxDblrQ1ImcxvZ6l5YyqbHDFLo7fiK-2XvQo7o3kKQUVnIpWgbQCWpvf2v_wC-i6hg |
CitedBy_id | crossref_primary_10_1080_1061186X_2021_1909051 crossref_primary_10_3389_fonc_2021_634732 crossref_primary_10_21926_obm_genet_2303185 crossref_primary_10_1016_j_molmet_2019_10_002 crossref_primary_10_1007_s12032_022_01676_1 crossref_primary_10_1016_j_celrep_2020_108203 crossref_primary_10_3390_antiox12091734 crossref_primary_10_1016_j_canlet_2019_12_017 crossref_primary_10_1007_s13238_019_0634_z crossref_primary_10_1016_j_ccell_2024_04_009 crossref_primary_10_1007_s13238_019_0637_9 crossref_primary_10_3390_biom13020261 crossref_primary_10_1038_s41388_022_02477_6 crossref_primary_10_1016_j_bbrep_2024_101909 crossref_primary_10_3389_fonc_2022_895112 crossref_primary_10_1182_bloodadvances_2020003566 crossref_primary_10_1016_j_jcmgh_2020_04_018 crossref_primary_10_1002_jcp_30011 crossref_primary_10_1080_14737159_2022_2125802 crossref_primary_10_1158_2159_8290_CD_19_0125 crossref_primary_10_1038_s41418_023_01125_0 crossref_primary_10_2147_DDDT_S249557 crossref_primary_10_3389_fgene_2022_1051395 crossref_primary_10_3389_fonc_2022_966089 crossref_primary_10_1038_s41392_023_01347_1 crossref_primary_10_3389_fonc_2022_781903 crossref_primary_10_1186_s13046_020_01767_9 crossref_primary_10_1186_s12864_024_10055_1 crossref_primary_10_1038_s41419_024_06707_5 crossref_primary_10_1038_s41401_021_00708_2 crossref_primary_10_1016_j_biopha_2024_116266 crossref_primary_10_1016_j_ijbiomac_2024_130687 crossref_primary_10_1097_COC_0000000000000911 crossref_primary_10_3390_ijms24065257 crossref_primary_10_3389_fonc_2020_595187 crossref_primary_10_1002_ila2_21 crossref_primary_10_3389_fphar_2025_1529483 crossref_primary_10_3389_fmolb_2023_1239952 crossref_primary_10_1038_s41598_023_37000_8 crossref_primary_10_3390_biom10081162 crossref_primary_10_3389_fcell_2021_779169 crossref_primary_10_1097_MD_0000000000035631 crossref_primary_10_1186_s13046_023_02936_2 crossref_primary_10_1002_mco2_288 crossref_primary_10_1016_j_omtn_2022_12_020 crossref_primary_10_1371_journal_pgen_1011193 crossref_primary_10_3390_cancers16051000 crossref_primary_10_1038_s43018_021_00177_w crossref_primary_10_21926_obm_genet_2302185 crossref_primary_10_3389_fonc_2021_633210 crossref_primary_10_1186_s13045_022_01314_3 crossref_primary_10_1186_s40164_020_00179_x crossref_primary_10_1111_bjh_19314 crossref_primary_10_1016_j_ccell_2019_01_016 crossref_primary_10_3390_cancers12020332 crossref_primary_10_3390_ijms26010031 crossref_primary_10_1007_s00432_022_04212_w crossref_primary_10_1016_j_bbadis_2022_166553 crossref_primary_10_3389_fcell_2021_762742 crossref_primary_10_7717_peerj_9774 crossref_primary_10_1111_cas_14499 crossref_primary_10_26508_lsa_202101157 crossref_primary_10_3390_curroncol30020124 crossref_primary_10_3390_pharmaceutics14061257 crossref_primary_10_3389_fcell_2020_607670 crossref_primary_10_1093_jmcb_mjz064 crossref_primary_10_1038_s41467_020_14437_3 crossref_primary_10_1016_j_canlet_2019_11_029 crossref_primary_10_1016_j_lfs_2019_116941 crossref_primary_10_3892_ol_2021_12980 crossref_primary_10_3390_cells13131109 crossref_primary_10_1016_j_jep_2024_118264 crossref_primary_10_1038_s41419_024_06427_w crossref_primary_10_1136_jitc_2023_007479 crossref_primary_10_1016_j_tiv_2022_105357 crossref_primary_10_1038_s41420_022_00930_9 crossref_primary_10_1016_j_isci_2022_104844 crossref_primary_10_1007_s10495_021_01667_z crossref_primary_10_1016_j_celrep_2024_115171 crossref_primary_10_3390_cancers13030399 crossref_primary_10_3390_cells9102308 crossref_primary_10_1002_jcb_30620 crossref_primary_10_1016_j_drup_2021_100790 crossref_primary_10_1016_j_biocel_2020_105796 crossref_primary_10_1186_s40246_023_00517_0 crossref_primary_10_1016_j_cbi_2022_110142 crossref_primary_10_3390_cimb45060317 crossref_primary_10_1016_j_bbcan_2021_188534 crossref_primary_10_3390_cimb45110576 crossref_primary_10_1152_ajpendo_00074_2022 crossref_primary_10_1158_1541_7786_MCR_21_0098 crossref_primary_10_3390_cancers14246044 crossref_primary_10_1038_s41401_024_01354_0 crossref_primary_10_1097_ot9_0000000000000026 crossref_primary_10_1038_s41598_020_78867_1 crossref_primary_10_3390_ijms24087076 crossref_primary_10_3390_molecules25204831 crossref_primary_10_1073_pnas_2107673118 crossref_primary_10_1182_blood_2021014304 crossref_primary_10_1186_s12885_024_12017_y crossref_primary_10_1016_j_biopha_2023_114846 crossref_primary_10_3390_genes14030747 crossref_primary_10_1186_s13046_022_02581_1 crossref_primary_10_3390_nu16121816 crossref_primary_10_3390_ijms21144902 crossref_primary_10_3389_fcell_2021_801959 crossref_primary_10_1016_j_semcancer_2021_03_010 crossref_primary_10_1016_j_mocell_2025_100198 crossref_primary_10_3390_metabo14050249 crossref_primary_10_1016_j_bioactmat_2023_10_003 crossref_primary_10_1016_j_bbadis_2023_166823 crossref_primary_10_1002_cam4_5597 crossref_primary_10_1016_j_semcancer_2019_07_015 crossref_primary_10_1007_s13238_020_00699_6 crossref_primary_10_1186_s12967_023_04653_y crossref_primary_10_3389_fcell_2020_596679 crossref_primary_10_1016_j_bbadis_2023_166824 crossref_primary_10_3390_ijms22105297 crossref_primary_10_1186_s40170_022_00286_9 crossref_primary_10_3390_cancers13071488 crossref_primary_10_1038_s41418_021_00871_3 crossref_primary_10_1097_MD_0000000000036520 crossref_primary_10_1042_CS20240560 crossref_primary_10_1155_2021_5164100 crossref_primary_10_1155_2021_5540149 crossref_primary_10_7717_peerj_14797 crossref_primary_10_1007_s13238_019_00665_x crossref_primary_10_3390_biom10071068 crossref_primary_10_3390_ijms21228674 crossref_primary_10_1002_advs_202402457 crossref_primary_10_1016_j_gendis_2020_01_016 crossref_primary_10_1523_JNEUROSCI_0419_19_2019 crossref_primary_10_15252_embr_202152537 crossref_primary_10_1038_s41420_020_0287_y crossref_primary_10_1093_lifemeta_load038 crossref_primary_10_3389_fimmu_2021_715460 crossref_primary_10_1038_s41420_023_01638_0 crossref_primary_10_3390_ijms222011047 crossref_primary_10_1080_15384101_2021_1912889 |
Cites_doi | 10.1186/1471-2105-9-346 10.1093/nar/gki393 10.1016/j.cell.2009.04.037 10.1007/s13238-014-0032-5 10.1158/1078-0432.CCR-07-5202 10.1371/journal.pgen.1006056 10.1007/s00018-016-2358-z 10.1016/j.cell.2011.02.013 10.1038/nrc.2017.109 10.1074/jbc.M305135200 10.1038/nrm4007 10.1016/j.ccr.2007.10.001 10.1101/cshperspect.a026146 10.1101/gad.1940110 10.1038/sj.onc.1211023 10.1093/emboj/cdf595 10.1038/nrm3420 10.1007/s12094-013-1010-8 10.1038/cdd.2012.9 10.1016/j.cell.2017.08.028 10.1038/nrc3430 10.1038/ncb1211 10.1007/s10620-007-9799-z 10.1038/cddis.2010.38 10.1038/cddis.2014.87 10.1158/1078-0432.CCR-11-3040 10.1042/BJ20150517 10.1096/fj.201600845R 10.1016/j.ceb.2017.11.005 10.1038/sj.cdd.4401182 10.1016/S1535-6108(03)00244-7 10.4161/cc.6.13.4456 10.1016/j.molcel.2014.09.026 10.1038/nature05949 10.1101/gad.10.23.2971 10.1002/hep.24516 10.1002/stem.1054 10.1016/0092-8674(95)90039-X 10.1016/j.tcb.2012.08.001 10.1016/j.celrep.2014.05.017 10.1038/ng1282 10.1101/gad.14.3.289 10.1042/bj3420133 10.1073/pnas.1111245108 10.1038/377552a0 10.1073/pnas.220252297 10.1038/ncb2100 10.1038/nm1146 10.1101/gad.1378506 10.1016/j.cell.2012.04.026 10.1126/science.1090072 10.1126/science.1218530 10.2478/s11658-012-0032-5 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.ccell.2018.12.012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1878-3686 |
EndPage | 203.e8 |
ExternalDocumentID | 30712844 10_1016_j_ccell_2018_12_012 S1535610818305841 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K 0R~ 1~5 29B 2WC 4.4 457 4G. 53G 5GY 62- 6I. 6J9 7-5 AACTN AAEDT AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HVGLF IH2 IHE IXB J1W JIG M3Z M41 NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SES SSZ TR2 UDS WQ6 ZA5 5VS AAFWJ AAIKJ AAMRU AAQFI AAYWO AAYXX ABDGV ACVFH ADCNI ADVLN AEUPX AFPUW AGCQF AGHFR AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION HZ~ OZT UHS 0SF CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c470t-dee2638886dc65f89b1fadc6b6bdf784b58fc52bfec3fd6b94f4fc927c24d2fe3 |
IEDL.DBID | IXB |
ISSN | 1535-6108 1878-3686 |
IngestDate | Thu Jul 10 19:11:27 EDT 2025 Wed Feb 19 02:32:04 EST 2025 Tue Jul 01 01:26:23 EDT 2025 Thu Apr 24 23:10:04 EDT 2025 Fri Feb 23 02:24:37 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | mitochondrial pyruvate carrier PUMA mitochondria oxidative phosphorylation glycolysis p53 |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-dee2638886dc65f89b1fadc6b6bdf784b58fc52bfec3fd6b94f4fc927c24d2fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.cell.com/article/S1535610818305841/pdf |
PMID | 30712844 |
PQID | 2179522431 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2179522431 pubmed_primary_30712844 crossref_primary_10_1016_j_ccell_2018_12_012 crossref_citationtrail_10_1016_j_ccell_2018_12_012 elsevier_sciencedirect_doi_10_1016_j_ccell_2018_12_012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-11 |
PublicationDateYYYYMMDD | 2019-02-11 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cancer cell |
PublicationTitleAlternate | Cancer Cell |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Song, Xu (bib44) 2007; 6 Schell, Olson, Jiang, Hawkins, Van Vranken, Xie, Egnatchik, Earl, DeBerardinis, Rutter (bib40) 2014; 56 Herzig, Raemy, Montessuit, Veuthey, Zamboni, Westermann, Kunji, Martinou (bib13) 2012; 337 Roszik, Szollosi, Vereb (bib38) 2008; 9 Humpton, Vousden (bib15) 2016; 6 Liu, Ou, Clemenson, Chao, Lutske, Zambetti, Gage, Xu (bib27) 2010; 12 Soussi, Wiman (bib45) 2007; 12 Le-yang, Huo-hui, Xin-cheng, Zhan-jun, Xiang-hong, Yu, Ding-hua (bib24) 2017; 39 Murphy, Hinman, Levine (bib34) 1996; 10 Hikisz, Kiliańska (bib14) 2012; 17 Du, Zhang, Jiao, Zhao, Zhang, Yan, Xu (bib8) 2012; 40 Qiu, Wang, Leibowitz, Yang, Zhang, Yu (bib36) 2011; 54 Prokesch, Graef, Madl, Kahlhofer, Heidenreich, Schumann, Moyschewitz, Pristoynik, Blaschitz, Knauer (bib35) 2016; 31 Michalak, Vandenberg, Delbridge, Wu, Scott, Adams, Strasser (bib33) 2010; 24 Villunger, Michalak, Coultas, Mullauer, Bock, Ausserlechner, Adams, Strasser (bib50) 2003; 302 Xu (bib55) 2008; 27 Rong, Zhu, Xu, Fu (bib37) 2014; 5 Xu (bib54) 2003; 10 Liu, Parant, Lang, Chau, Chavez-Reyes, El-Naggar, Multani, Chang, Lozano (bib28) 2004; 36 Sinicrope, Rego, Okumura, Foster, O'Connell, Sargent, Windschitl (bib43) 2008; 14 Chao, Herr, Chun, Xu (bib4) 2006; 25 Bykov, Eriksson, Bianchi, Wiman (bib2) 2017; 18 Chao, Saito, Anderson, Appella, Xu (bib5) 2000; 97 Kastenhuber, Lowe (bib19) 2017; 170 Meek (bib30) 2015; 469 Vanderperre, Herzig, Krznar, Horl, Ammar, Montessuit, Pierredon, Zamboni, Martinou (bib48) 2016; 12 Jiang, Brady, Johnson, Lee, Park, Scott, Attardi (bib18) 2011; 108 Mello, Attardi (bib31) 2018; 51 Fricker, O'Prey, Tolkovsky, Ryan (bib9) 2010; 1 Li, Kon, Jiang, Tan, Ludwig, Zhao, Baer, Gu (bib25) 2012; 149 Vigueira, McCommis, Schweitzer, Remedi, Chambers, Fu, McDonald, Cole, Colca, Kletzien (bib49) 2014; 7 Kruiswijk, Labuschagne, Vousden (bib22) 2015; 16 Garcia-Cao, Garcia-Cao, Martin-Caballero, Criado, Klatt, Flores, Weill, Blasco, Serrano (bib11) 2002; 21 Issaeva, Bozko, Enge, Protopopova, Verhoef, Masucci, Pramanik, Selivanova (bib16) 2004; 10 Vousden, Prives (bib51) 2009; 137 Wilfling, Weber, Potthoff, Vogtle, Meisinger, Paschen, Hacker (bib53) 2012; 19 Brugarolas, Chandrasekaran, Gordon, Beach, Jacks, Hannon (bib1) 1995; 377 Lake, Fink, Klemetsaune, Fu, Jeffers, Zambetti, Xu (bib23) 2012; 30 Shen, Sun, Fu, Yang, Li, Yao (bib41) 2012; 18 Matheu, Maraver, Klatt, Flores, Garcia-Cao, Borras, Flores, Vina, Blasco, Serrano (bib29) 2007; 448 Shieh, Ahn, Tamai, Taya, Prives (bib42) 2000; 14 Xue, Zhou, Zhu, Ahmed, Chen, Yao (bib56) 2005; 33 Craig, Burch, Vojtesek, Mikutowska, Thompson, Hupp (bib6) 1999; 342 Kim, Nakasaki, Todorova, Lake, Yuan, Jamora, Xu (bib20) 2014; 5 Hanahan, Weinberg (bib12) 2011; 144 Tornatore, Thotakura, Bennett, Moretti, Franzoso (bib47) 2012; 22 Cai, Li, Yang, Miao, Wen, Huang, Ouyang (bib3) 2013; 15 Fu, Cui, Yi, Yu, Xu (bib10) 2017; 74 Saito, Yamaguchi, Higashimoto, Chao, Xu, Fornace, Appella, Anderson (bib39) 2003; 278 Sperka, Wang, Rudolph (bib46) 2012; 13 Deng, Zhang, Harper, Elledge, Leder (bib7) 1995; 82 Mendrysa, O'Leary, McElwee, Michalowski, Eisenman, Powell, Perry (bib32) 2006; 20 Jeffers, Parganas, Lee, Yang, Wang, Brennan, MacLean, Han, Chittenden, Ihle (bib17) 2003; 4 Kim, Jeong, Chae, Lee, Soung, Nam, Lee, Yoo, Lee (bib21) 2007; 52 Wade, Li, Wahl (bib52) 2013; 13 Lin, Chao, Saito, Mazur, Murphy, Appella, Xu (bib26) 2005; 7 Jeffers (10.1016/j.ccell.2018.12.012_bib17) 2003; 4 Lin (10.1016/j.ccell.2018.12.012_bib26) 2005; 7 Soussi (10.1016/j.ccell.2018.12.012_bib45) 2007; 12 Garcia-Cao (10.1016/j.ccell.2018.12.012_bib11) 2002; 21 Kim (10.1016/j.ccell.2018.12.012_bib21) 2007; 52 Sperka (10.1016/j.ccell.2018.12.012_bib46) 2012; 13 Brugarolas (10.1016/j.ccell.2018.12.012_bib1) 1995; 377 Bykov (10.1016/j.ccell.2018.12.012_bib2) 2017; 18 Shen (10.1016/j.ccell.2018.12.012_bib41) 2012; 18 Tornatore (10.1016/j.ccell.2018.12.012_bib47) 2012; 22 Fricker (10.1016/j.ccell.2018.12.012_bib9) 2010; 1 Deng (10.1016/j.ccell.2018.12.012_bib7) 1995; 82 Shieh (10.1016/j.ccell.2018.12.012_bib42) 2000; 14 Schell (10.1016/j.ccell.2018.12.012_bib40) 2014; 56 Craig (10.1016/j.ccell.2018.12.012_bib6) 1999; 342 Lake (10.1016/j.ccell.2018.12.012_bib23) 2012; 30 Wilfling (10.1016/j.ccell.2018.12.012_bib53) 2012; 19 Mendrysa (10.1016/j.ccell.2018.12.012_bib32) 2006; 20 Xu (10.1016/j.ccell.2018.12.012_bib55) 2008; 27 Cai (10.1016/j.ccell.2018.12.012_bib3) 2013; 15 Mello (10.1016/j.ccell.2018.12.012_bib31) 2018; 51 Chao (10.1016/j.ccell.2018.12.012_bib5) 2000; 97 Liu (10.1016/j.ccell.2018.12.012_bib27) 2010; 12 Rong (10.1016/j.ccell.2018.12.012_bib37) 2014; 5 Sinicrope (10.1016/j.ccell.2018.12.012_bib43) 2008; 14 Saito (10.1016/j.ccell.2018.12.012_bib39) 2003; 278 Du (10.1016/j.ccell.2018.12.012_bib8) 2012; 40 Vanderperre (10.1016/j.ccell.2018.12.012_bib48) 2016; 12 Li (10.1016/j.ccell.2018.12.012_bib25) 2012; 149 Herzig (10.1016/j.ccell.2018.12.012_bib13) 2012; 337 Murphy (10.1016/j.ccell.2018.12.012_bib34) 1996; 10 Song (10.1016/j.ccell.2018.12.012_bib44) 2007; 6 Villunger (10.1016/j.ccell.2018.12.012_bib50) 2003; 302 Liu (10.1016/j.ccell.2018.12.012_bib28) 2004; 36 Kastenhuber (10.1016/j.ccell.2018.12.012_bib19) 2017; 170 Kruiswijk (10.1016/j.ccell.2018.12.012_bib22) 2015; 16 Le-yang (10.1016/j.ccell.2018.12.012_bib24) 2017; 39 Xue (10.1016/j.ccell.2018.12.012_bib56) 2005; 33 Hanahan (10.1016/j.ccell.2018.12.012_bib12) 2011; 144 Wade (10.1016/j.ccell.2018.12.012_bib52) 2013; 13 Matheu (10.1016/j.ccell.2018.12.012_bib29) 2007; 448 Fu (10.1016/j.ccell.2018.12.012_bib10) 2017; 74 Qiu (10.1016/j.ccell.2018.12.012_bib36) 2011; 54 Chao (10.1016/j.ccell.2018.12.012_bib4) 2006; 25 Prokesch (10.1016/j.ccell.2018.12.012_bib35) 2016; 31 Michalak (10.1016/j.ccell.2018.12.012_bib33) 2010; 24 Xu (10.1016/j.ccell.2018.12.012_bib54) 2003; 10 Humpton (10.1016/j.ccell.2018.12.012_bib15) 2016; 6 Kim (10.1016/j.ccell.2018.12.012_bib20) 2014; 5 Vousden (10.1016/j.ccell.2018.12.012_bib51) 2009; 137 Vigueira (10.1016/j.ccell.2018.12.012_bib49) 2014; 7 Meek (10.1016/j.ccell.2018.12.012_bib30) 2015; 469 Issaeva (10.1016/j.ccell.2018.12.012_bib16) 2004; 10 Roszik (10.1016/j.ccell.2018.12.012_bib38) 2008; 9 Jiang (10.1016/j.ccell.2018.12.012_bib18) 2011; 108 Hikisz (10.1016/j.ccell.2018.12.012_bib14) 2012; 17 30753820 - Cancer Cell. 2019 Feb 11;35(2):163-165 |
References_xml | – volume: 377 start-page: 552 year: 1995 end-page: 557 ident: bib1 article-title: Radiation-induced cell cycle arrest compromised by p21 deficiency publication-title: Nature – volume: 36 start-page: 63 year: 2004 end-page: 68 ident: bib28 article-title: Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice publication-title: Nat. Genet. – volume: 9 start-page: 346 year: 2008 ident: bib38 article-title: AccPbFRET: an ImageJ plugin for semi-automatic, fully corrected analysis of acceptor photobleaching FRET images publication-title: BMC Bioinformatics – volume: 12 start-page: e1006056 year: 2016 ident: bib48 article-title: Embryonic lethality of mitochondrial pyruvate carrier 1 deficient mouse can be rescued by a ketogenic diet publication-title: PLoS Genet. – volume: 56 start-page: 400 year: 2014 end-page: 413 ident: bib40 article-title: A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth publication-title: Mol. Cell – volume: 10 start-page: 1321 year: 2004 end-page: 1328 ident: bib16 article-title: Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors publication-title: Nat. Med. – volume: 18 start-page: 1561 year: 2012 end-page: 1567 ident: bib41 article-title: The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy publication-title: Clin. Cancer Res. – volume: 10 start-page: 400 year: 2003 end-page: 403 ident: bib54 article-title: Regulation of p53 responses by post-translational modifications publication-title: Cell Death Differ. – volume: 448 start-page: 375 year: 2007 end-page: 379 ident: bib29 article-title: Delayed ageing through damage protection by the Arf/p53 pathway publication-title: Nature – volume: 4 start-page: 321 year: 2003 end-page: 328 ident: bib17 article-title: PUMA is an essential mediator of p53-dependent and -independent apoptotic pathways publication-title: Cancer Cell – volume: 21 start-page: 6225 year: 2002 end-page: 6235 ident: bib11 article-title: "Super p53" mice exhibit enhanced DNA damage response, are tumor resistant and age normally publication-title: EMBO J. – volume: 22 start-page: 557 year: 2012 end-page: 566 ident: bib47 article-title: The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation publication-title: Trends Cell Biol. – volume: 5 start-page: e1141 year: 2014 ident: bib20 article-title: p53 induces skin aging by depleting Blimp1+ sebaceous gland cells publication-title: Cell Death Dis. – volume: 51 start-page: 65 year: 2018 end-page: 72 ident: bib31 article-title: Deciphering p53 signaling in tumor suppression publication-title: Curr. Opin. Cell Biol. – volume: 18 start-page: 89 year: 2017 end-page: 102 ident: bib2 article-title: Targeting mutant p53 for efficient cancer therapy publication-title: Nat. Rev. Cancer – volume: 137 start-page: 413 year: 2009 end-page: 431 ident: bib51 article-title: Blinded by the light: the growing complexity of p53 publication-title: Cell – volume: 13 start-page: 579 year: 2012 end-page: 590 ident: bib46 article-title: DNA damage checkpoints in stem cells, ageing and cancer publication-title: Nat. Rev. Mol. Cell Biol. – volume: 19 start-page: 1328 year: 2012 end-page: 1336 ident: bib53 article-title: BH3-only proteins are tail-anchored in the outer mitochondrial membrane and can initiate the activation of Bax publication-title: Cell Death Differ. – volume: 7 start-page: 165 year: 2005 end-page: 171 ident: bib26 article-title: p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression publication-title: Nat. Cell Biol. – volume: 24 start-page: 1608 year: 2010 end-page: 1613 ident: bib33 article-title: Apoptosis-promoted tumorigenesis: gamma-irradiation-induced thymic lymphomagenesis requires PUMA-driven leukocyte death publication-title: Genes Dev. – volume: 149 start-page: 1269 year: 2012 end-page: 1283 ident: bib25 article-title: Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence publication-title: Cell – volume: 144 start-page: 646 year: 2011 end-page: 674 ident: bib12 article-title: Hallmarks of cancer: the next generation publication-title: Cell – volume: 31 start-page: 732 year: 2016 end-page: 742 ident: bib35 article-title: Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis publication-title: FASEB J. – volume: 1 start-page: e59 year: 2010 ident: bib9 article-title: Phosphorylation of PUMA modulates its apoptotic function by regulating protein stability publication-title: Cell Death Dis. – volume: 97 start-page: 11936 year: 2000 end-page: 11941 ident: bib5 article-title: Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage publication-title: Proc. Natl. Acad. Sci. U S A – volume: 33 start-page: W184 year: 2005 end-page: W187 ident: bib56 article-title: GPS: a comprehensive www server for phosphorylation sites prediction publication-title: Nucleic Acids Res. – volume: 39 year: 2017 ident: bib24 article-title: Loss of tumor suppressor miR-126 contributes to the development of hepatitis B virus-related hepatocellular carcinoma metastasis through the upregulation of ADAM9 publication-title: Tumor Biol. – volume: 40 start-page: 2066 year: 2012 end-page: 2072 ident: bib8 article-title: Prognostic significance of PUMA in pancreatic ductal adenocarcinoma publication-title: J. Int. Med. Res. – volume: 469 start-page: 325 year: 2015 end-page: 346 ident: bib30 article-title: Regulation of the p53 response and its relationship to cancer publication-title: Biochem. J. – volume: 13 start-page: 83 year: 2013 end-page: 96 ident: bib52 article-title: MDM2, MDMX and p53 in oncogenesis and cancer therapy publication-title: Nat. Rev. Cancer – volume: 7 start-page: 2042 year: 2014 end-page: 2053 ident: bib49 article-title: Mitochondrial pyruvate carrier 2 hypomorphism in mice leads to defects in glucose-stimulated insulin secretion publication-title: Cell Rep. – volume: 30 start-page: 888 year: 2012 end-page: 897 ident: bib23 article-title: Context-dependent enhancement of induced pluripotent stem cell reprogramming by silencing PUMA publication-title: Stem Cells – volume: 5 start-page: 258 year: 2014 end-page: 260 ident: bib37 article-title: Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template publication-title: Protein Cell – volume: 54 start-page: 1249 year: 2011 end-page: 1258 ident: bib36 article-title: PUMA-mediated apoptosis drives chemical hepatocarcinogenesis in mice publication-title: Hepatology – volume: 25 start-page: 2615 year: 2006 end-page: 2622 ident: bib4 article-title: Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression publication-title: EMBO J. – volume: 278 start-page: 37536 year: 2003 end-page: 37544 ident: bib39 article-title: Phosphorylation site interdependence of human p53 post-translational modifications in response to stress publication-title: J. Biol. Chem. – volume: 74 start-page: 487 year: 2017 end-page: 493 ident: bib10 article-title: DNA repair mechanisms in embryonic stem cells publication-title: Cell. Mol. Life Sci. – volume: 17 start-page: 646 year: 2012 end-page: 669 ident: bib14 article-title: PUMA, a critical mediator of cell death—one decade on from its discovery publication-title: Cell. Mol. Biol. Lett. – volume: 27 start-page: 3501 year: 2008 end-page: 3507 ident: bib55 article-title: Induction of genetic instability by gain-of-function p53 cancer mutants publication-title: Oncogene – volume: 10 start-page: 2971 year: 1996 end-page: 2980 ident: bib34 article-title: Wild-type p53 negatively regulates the expression of a microtubule- associated protein publication-title: Genes Dev. – volume: 52 start-page: 2751 year: 2007 end-page: 2756 ident: bib21 article-title: Pro-apoptotic PUMA and anti-apoptotic phospho-BAD are highly expressed in colorectal carcinomas publication-title: Dig. Dis. Sci. – volume: 15 start-page: 818 year: 2013 end-page: 824 ident: bib3 article-title: Expression of p53 upregulated modulator of apoptosis (PUMA) and C-myb in gallbladder adenocarcinoma and their pathological significance publication-title: Clin. Transl. Oncol. – volume: 342 start-page: 133 year: 1999 end-page: 141 ident: bib6 article-title: Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of MDM2 (mouse double minute 2) protein are modified in human cancers publication-title: Biochem. J. – volume: 14 start-page: 5810 year: 2008 end-page: 5818 ident: bib43 article-title: Prognostic impact of bim, PUMA, and noxa expression in human colon carcinomas publication-title: Clin. Cancer Res. – volume: 6 start-page: 1570 year: 2007 end-page: 1573 ident: bib44 article-title: Gain of function of p53 cancer mutants in disrupting critical DNA damage response pathways publication-title: Cell Cycle – volume: 12 start-page: 993 year: 2010 end-page: 998 ident: bib27 article-title: PUMA is required for p53-induced depletion of adult stem cells publication-title: Nat. Cell Biol. – volume: 14 start-page: 289 year: 2000 end-page: 300 ident: bib42 article-title: The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites publication-title: Genes Dev. – volume: 20 start-page: 16 year: 2006 end-page: 21 ident: bib32 article-title: Tumor suppression and normal aging in mice with constitutively high p53 activity publication-title: Genes Dev. – volume: 12 start-page: 303 year: 2007 end-page: 312 ident: bib45 article-title: Shaping genetic alterations in human cancer: the p53 mutation paradigm publication-title: Cancer Cell – volume: 82 start-page: 675 year: 1995 end-page: 684 ident: bib7 article-title: Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control publication-title: Cell – volume: 16 start-page: 393 year: 2015 end-page: 405 ident: bib22 article-title: p53 in survival, death and metabolic health: a lifeguard with a licence to kill publication-title: Nat. Rev. Mol. Cell Biol. – volume: 170 start-page: 1062 year: 2017 end-page: 1078 ident: bib19 article-title: Putting p53 in context publication-title: Cell – volume: 302 start-page: 1036 year: 2003 end-page: 1038 ident: bib50 article-title: p53- and drug-induced apoptotic responses mediated by BH3-only proteins PUMA and noxa publication-title: Science – volume: 337 start-page: 93 year: 2012 end-page: 96 ident: bib13 article-title: Identification and functional expression of the mitochondrial pyruvate carrier publication-title: Science – volume: 6 year: 2016 ident: bib15 article-title: Regulation of cellular metabolism and hypoxia by p53 publication-title: Cold Spring Harb. Perspect. Med. – volume: 108 start-page: 17123 year: 2011 end-page: 17128 ident: bib18 article-title: Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages publication-title: Proc. Natl. Acad. Sci. U S A – volume: 9 start-page: 346 year: 2008 ident: 10.1016/j.ccell.2018.12.012_bib38 article-title: AccPbFRET: an ImageJ plugin for semi-automatic, fully corrected analysis of acceptor photobleaching FRET images publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-346 – volume: 33 start-page: W184 year: 2005 ident: 10.1016/j.ccell.2018.12.012_bib56 article-title: GPS: a comprehensive www server for phosphorylation sites prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki393 – volume: 137 start-page: 413 year: 2009 ident: 10.1016/j.ccell.2018.12.012_bib51 article-title: Blinded by the light: the growing complexity of p53 publication-title: Cell doi: 10.1016/j.cell.2009.04.037 – volume: 25 start-page: 2615 year: 2006 ident: 10.1016/j.ccell.2018.12.012_bib4 article-title: Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression publication-title: EMBO J. – volume: 5 start-page: 258 year: 2014 ident: 10.1016/j.ccell.2018.12.012_bib37 article-title: Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template publication-title: Protein Cell doi: 10.1007/s13238-014-0032-5 – volume: 14 start-page: 5810 year: 2008 ident: 10.1016/j.ccell.2018.12.012_bib43 article-title: Prognostic impact of bim, PUMA, and noxa expression in human colon carcinomas publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-07-5202 – volume: 12 start-page: e1006056 year: 2016 ident: 10.1016/j.ccell.2018.12.012_bib48 article-title: Embryonic lethality of mitochondrial pyruvate carrier 1 deficient mouse can be rescued by a ketogenic diet publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006056 – volume: 74 start-page: 487 year: 2017 ident: 10.1016/j.ccell.2018.12.012_bib10 article-title: DNA repair mechanisms in embryonic stem cells publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-016-2358-z – volume: 144 start-page: 646 year: 2011 ident: 10.1016/j.ccell.2018.12.012_bib12 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 18 start-page: 89 year: 2017 ident: 10.1016/j.ccell.2018.12.012_bib2 article-title: Targeting mutant p53 for efficient cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2017.109 – volume: 278 start-page: 37536 year: 2003 ident: 10.1016/j.ccell.2018.12.012_bib39 article-title: Phosphorylation site interdependence of human p53 post-translational modifications in response to stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M305135200 – volume: 16 start-page: 393 year: 2015 ident: 10.1016/j.ccell.2018.12.012_bib22 article-title: p53 in survival, death and metabolic health: a lifeguard with a licence to kill publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4007 – volume: 12 start-page: 303 year: 2007 ident: 10.1016/j.ccell.2018.12.012_bib45 article-title: Shaping genetic alterations in human cancer: the p53 mutation paradigm publication-title: Cancer Cell doi: 10.1016/j.ccr.2007.10.001 – volume: 6 year: 2016 ident: 10.1016/j.ccell.2018.12.012_bib15 article-title: Regulation of cellular metabolism and hypoxia by p53 publication-title: Cold Spring Harb. Perspect. Med. doi: 10.1101/cshperspect.a026146 – volume: 24 start-page: 1608 year: 2010 ident: 10.1016/j.ccell.2018.12.012_bib33 article-title: Apoptosis-promoted tumorigenesis: gamma-irradiation-induced thymic lymphomagenesis requires PUMA-driven leukocyte death publication-title: Genes Dev. doi: 10.1101/gad.1940110 – volume: 27 start-page: 3501 year: 2008 ident: 10.1016/j.ccell.2018.12.012_bib55 article-title: Induction of genetic instability by gain-of-function p53 cancer mutants publication-title: Oncogene doi: 10.1038/sj.onc.1211023 – volume: 40 start-page: 2066 year: 2012 ident: 10.1016/j.ccell.2018.12.012_bib8 article-title: Prognostic significance of PUMA in pancreatic ductal adenocarcinoma publication-title: J. Int. Med. Res. – volume: 21 start-page: 6225 year: 2002 ident: 10.1016/j.ccell.2018.12.012_bib11 article-title: "Super p53" mice exhibit enhanced DNA damage response, are tumor resistant and age normally publication-title: EMBO J. doi: 10.1093/emboj/cdf595 – volume: 39 year: 2017 ident: 10.1016/j.ccell.2018.12.012_bib24 article-title: Loss of tumor suppressor miR-126 contributes to the development of hepatitis B virus-related hepatocellular carcinoma metastasis through the upregulation of ADAM9 publication-title: Tumor Biol. – volume: 13 start-page: 579 year: 2012 ident: 10.1016/j.ccell.2018.12.012_bib46 article-title: DNA damage checkpoints in stem cells, ageing and cancer publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3420 – volume: 15 start-page: 818 year: 2013 ident: 10.1016/j.ccell.2018.12.012_bib3 article-title: Expression of p53 upregulated modulator of apoptosis (PUMA) and C-myb in gallbladder adenocarcinoma and their pathological significance publication-title: Clin. Transl. Oncol. doi: 10.1007/s12094-013-1010-8 – volume: 19 start-page: 1328 year: 2012 ident: 10.1016/j.ccell.2018.12.012_bib53 article-title: BH3-only proteins are tail-anchored in the outer mitochondrial membrane and can initiate the activation of Bax publication-title: Cell Death Differ. doi: 10.1038/cdd.2012.9 – volume: 170 start-page: 1062 year: 2017 ident: 10.1016/j.ccell.2018.12.012_bib19 article-title: Putting p53 in context publication-title: Cell doi: 10.1016/j.cell.2017.08.028 – volume: 13 start-page: 83 year: 2013 ident: 10.1016/j.ccell.2018.12.012_bib52 article-title: MDM2, MDMX and p53 in oncogenesis and cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3430 – volume: 7 start-page: 165 year: 2005 ident: 10.1016/j.ccell.2018.12.012_bib26 article-title: p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression publication-title: Nat. Cell Biol. doi: 10.1038/ncb1211 – volume: 52 start-page: 2751 year: 2007 ident: 10.1016/j.ccell.2018.12.012_bib21 article-title: Pro-apoptotic PUMA and anti-apoptotic phospho-BAD are highly expressed in colorectal carcinomas publication-title: Dig. Dis. Sci. doi: 10.1007/s10620-007-9799-z – volume: 1 start-page: e59 year: 2010 ident: 10.1016/j.ccell.2018.12.012_bib9 article-title: Phosphorylation of PUMA modulates its apoptotic function by regulating protein stability publication-title: Cell Death Dis. doi: 10.1038/cddis.2010.38 – volume: 5 start-page: e1141 year: 2014 ident: 10.1016/j.ccell.2018.12.012_bib20 article-title: p53 induces skin aging by depleting Blimp1+ sebaceous gland cells publication-title: Cell Death Dis. doi: 10.1038/cddis.2014.87 – volume: 18 start-page: 1561 year: 2012 ident: 10.1016/j.ccell.2018.12.012_bib41 article-title: The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-11-3040 – volume: 469 start-page: 325 year: 2015 ident: 10.1016/j.ccell.2018.12.012_bib30 article-title: Regulation of the p53 response and its relationship to cancer publication-title: Biochem. J. doi: 10.1042/BJ20150517 – volume: 31 start-page: 732 year: 2016 ident: 10.1016/j.ccell.2018.12.012_bib35 article-title: Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis publication-title: FASEB J. doi: 10.1096/fj.201600845R – volume: 51 start-page: 65 year: 2018 ident: 10.1016/j.ccell.2018.12.012_bib31 article-title: Deciphering p53 signaling in tumor suppression publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2017.11.005 – volume: 10 start-page: 400 year: 2003 ident: 10.1016/j.ccell.2018.12.012_bib54 article-title: Regulation of p53 responses by post-translational modifications publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401182 – volume: 4 start-page: 321 year: 2003 ident: 10.1016/j.ccell.2018.12.012_bib17 article-title: PUMA is an essential mediator of p53-dependent and -independent apoptotic pathways publication-title: Cancer Cell doi: 10.1016/S1535-6108(03)00244-7 – volume: 6 start-page: 1570 year: 2007 ident: 10.1016/j.ccell.2018.12.012_bib44 article-title: Gain of function of p53 cancer mutants in disrupting critical DNA damage response pathways publication-title: Cell Cycle doi: 10.4161/cc.6.13.4456 – volume: 56 start-page: 400 year: 2014 ident: 10.1016/j.ccell.2018.12.012_bib40 article-title: A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.09.026 – volume: 448 start-page: 375 year: 2007 ident: 10.1016/j.ccell.2018.12.012_bib29 article-title: Delayed ageing through damage protection by the Arf/p53 pathway publication-title: Nature doi: 10.1038/nature05949 – volume: 10 start-page: 2971 year: 1996 ident: 10.1016/j.ccell.2018.12.012_bib34 article-title: Wild-type p53 negatively regulates the expression of a microtubule- associated protein publication-title: Genes Dev. doi: 10.1101/gad.10.23.2971 – volume: 54 start-page: 1249 year: 2011 ident: 10.1016/j.ccell.2018.12.012_bib36 article-title: PUMA-mediated apoptosis drives chemical hepatocarcinogenesis in mice publication-title: Hepatology doi: 10.1002/hep.24516 – volume: 30 start-page: 888 year: 2012 ident: 10.1016/j.ccell.2018.12.012_bib23 article-title: Context-dependent enhancement of induced pluripotent stem cell reprogramming by silencing PUMA publication-title: Stem Cells doi: 10.1002/stem.1054 – volume: 82 start-page: 675 year: 1995 ident: 10.1016/j.ccell.2018.12.012_bib7 article-title: Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control publication-title: Cell doi: 10.1016/0092-8674(95)90039-X – volume: 22 start-page: 557 year: 2012 ident: 10.1016/j.ccell.2018.12.012_bib47 article-title: The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2012.08.001 – volume: 7 start-page: 2042 year: 2014 ident: 10.1016/j.ccell.2018.12.012_bib49 article-title: Mitochondrial pyruvate carrier 2 hypomorphism in mice leads to defects in glucose-stimulated insulin secretion publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.05.017 – volume: 36 start-page: 63 year: 2004 ident: 10.1016/j.ccell.2018.12.012_bib28 article-title: Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice publication-title: Nat. Genet. doi: 10.1038/ng1282 – volume: 14 start-page: 289 year: 2000 ident: 10.1016/j.ccell.2018.12.012_bib42 article-title: The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites publication-title: Genes Dev. doi: 10.1101/gad.14.3.289 – volume: 342 start-page: 133 year: 1999 ident: 10.1016/j.ccell.2018.12.012_bib6 article-title: Novel phosphorylation sites of human tumour suppressor protein p53 at Ser20 and Thr18 that disrupt the binding of MDM2 (mouse double minute 2) protein are modified in human cancers publication-title: Biochem. J. doi: 10.1042/bj3420133 – volume: 108 start-page: 17123 year: 2011 ident: 10.1016/j.ccell.2018.12.012_bib18 article-title: Full p53 transcriptional activation potential is dispensable for tumor suppression in diverse lineages publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1111245108 – volume: 377 start-page: 552 year: 1995 ident: 10.1016/j.ccell.2018.12.012_bib1 article-title: Radiation-induced cell cycle arrest compromised by p21 deficiency publication-title: Nature doi: 10.1038/377552a0 – volume: 97 start-page: 11936 year: 2000 ident: 10.1016/j.ccell.2018.12.012_bib5 article-title: Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.220252297 – volume: 12 start-page: 993 year: 2010 ident: 10.1016/j.ccell.2018.12.012_bib27 article-title: PUMA is required for p53-induced depletion of adult stem cells publication-title: Nat. Cell Biol. doi: 10.1038/ncb2100 – volume: 10 start-page: 1321 year: 2004 ident: 10.1016/j.ccell.2018.12.012_bib16 article-title: Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors publication-title: Nat. Med. doi: 10.1038/nm1146 – volume: 20 start-page: 16 year: 2006 ident: 10.1016/j.ccell.2018.12.012_bib32 article-title: Tumor suppression and normal aging in mice with constitutively high p53 activity publication-title: Genes Dev. doi: 10.1101/gad.1378506 – volume: 149 start-page: 1269 year: 2012 ident: 10.1016/j.ccell.2018.12.012_bib25 article-title: Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence publication-title: Cell doi: 10.1016/j.cell.2012.04.026 – volume: 302 start-page: 1036 year: 2003 ident: 10.1016/j.ccell.2018.12.012_bib50 article-title: p53- and drug-induced apoptotic responses mediated by BH3-only proteins PUMA and noxa publication-title: Science doi: 10.1126/science.1090072 – volume: 337 start-page: 93 year: 2012 ident: 10.1016/j.ccell.2018.12.012_bib13 article-title: Identification and functional expression of the mitochondrial pyruvate carrier publication-title: Science doi: 10.1126/science.1218530 – volume: 17 start-page: 646 year: 2012 ident: 10.1016/j.ccell.2018.12.012_bib14 article-title: PUMA, a critical mediator of cell death—one decade on from its discovery publication-title: Cell. Mol. Biol. Lett. doi: 10.2478/s11658-012-0032-5 – reference: 30753820 - Cancer Cell. 2019 Feb 11;35(2):163-165 |
SSID | ssj0016179 |
Score | 2.6177137 |
Snippet | The tumor suppressor p53 is somatically mutated in half of all human cancers. Paradoxically, the wild-type p53 (WTp53) is often retained in certain human... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 191 |
SubjectTerms | A549 Cells Animals Apoptosis Regulatory Proteins - genetics Apoptosis Regulatory Proteins - metabolism Carcinoma, Hepatocellular - genetics Carcinoma, Hepatocellular - metabolism Carcinoma, Hepatocellular - pathology Cell Proliferation Glycolysis HCT116 Cells HeLa Cells Hep G2 Cells Humans I-kappa B Kinase - metabolism Liver Neoplasms - genetics Liver Neoplasms - metabolism Liver Neoplasms - pathology Male Mice, Inbred NOD Mice, Knockout Mice, SCID mitochondria Mitochondria, Liver - metabolism Mitochondria, Liver - pathology Mitochondrial Membrane Transport Proteins - metabolism mitochondrial pyruvate carrier Monocarboxylic Acid Transporters - metabolism Oxidative Phosphorylation p53 Prognosis Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism PUMA Pyruvic Acid - metabolism Signal Transduction Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism |
Title | Wild-Type p53 Promotes Cancer Metabolic Switch by Inducing PUMA-Dependent Suppression of Oxidative Phosphorylation |
URI | https://dx.doi.org/10.1016/j.ccell.2018.12.012 https://www.ncbi.nlm.nih.gov/pubmed/30712844 https://www.proquest.com/docview/2179522431 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELYQB8QFLY9ly0tG2uNabVzHtY9QQAipbCW2Um-Wn0tWKKnaIODfM3aSSnuAA7e8rFj-ZuYb2-MZhH5Sb0XQckB8kIawYDjRwksCnqvUwIjAWXGiOLnntzN2N8_nG2jcnYWJYZWt7W9serLW7ZN-O5r9RVH0H0BXI_kD44DMinR4fchEOsQ3v1zvJABDyyZnak7i113moRTjZePqeIzvEmlNMKMfsdNH3mdioZtvaKd1H_FF08NdtOHLPbQ1aTfI99EStNyROLnEi3yIpynYzq_wOIK7xBNfA-hPhcUPLwXghc0bjsU7oPFfPJ1NLshVWxS3xrHeZxMkW-Iq4N-vhUtJwvH0sVotHqvlWxNGd4BmN9d_xrekLatALBsNauK8p6B1QnBneR6ENFnQcGm4cWEkmMlFsDk1wdthcNxIFliwko4sZY4GP_yONsuq9D8Q9uDgaLAKbuQkk47rQP1AG2GNZ9pw2kO0G05l25zjsfTFk-qCy_6phIGKGKiMKsCgh36tGy2alBuff847nNR_kqOAFD5veN6hqkCn4mtd-up5pWCaJsEvBTntocMG7nVPwCZGSmdHX_3tMdqGOxkjv7PsBG3Wy2d_Co5Nbc6S5L4DBxf3nQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQlWgvVaEPti9cqcdau_E6jn2kW9BCCV0JVtqb5ScEoWS1GwT8-47zWKkHOPQWxbYS-ZuZb2yPZxD6Tr0VQcsR8UEawoLhRAsvCXiuUgMjAmfFhWJ-zqdzdrpIF1to0t-FiWGVne1vbXpjrbs3w242h8uiGF6ArkbyB8YBmRXx8voL8AayWL_hZPFzc5QAFC3bpKkpid371ENNkJeN2-MxwEs0m4IJfYqennI_Gxo6foNed_4jPmx_cRdt-XIP7eTdCflbtAI1dySuLvEyHeNZE23n13gS0V3h3NeA-m1h8cV9AYBh84hj9Q4YfIVn8_yQ_Oqq4tY4Fvxso2RLXAX856FwTZZwPLuu1svravXYxtG9Q_Pjo8vJlHR1FYhl2agmznsKaicEd5anQUiTBA2PhhsXMsFMKoJNqQnejoPjRrLAgpU0s5Q5Gvz4Pdouq9LvI-zBw9FgFlzmJJOO60D9SBthjWfacDpAtJ9OZbuk47H2xa3qo8tuVIOBihiohCrAYIB-bAYt25wbz3fnPU7qH9FRwArPD_zWo6pAqWKzLn11t1awTpPgmIKgDtCHFu7Nn4BRjJzOPv7vZw_Qy-llfqbOTs5_f0KvoEXGMPAk-Yy269Wd_wJeTm2-NlL8F3w3-rw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wild-Type+p53+Promotes+Cancer+Metabolic+Switch+by+Inducing+PUMA-Dependent+Suppression+of+Oxidative+Phosphorylation&rft.jtitle=Cancer+cell&rft.au=Kim%2C+Jinchul&rft.au=Yu%2C+Lili&rft.au=Chen%2C+Wancheng&rft.au=Xu%2C+Yanxia&rft.date=2019-02-11&rft.pub=Elsevier+Inc&rft.issn=1535-6108&rft.eissn=1878-3686&rft.volume=35&rft.issue=2&rft.spage=191&rft.epage=203.e8&rft_id=info:doi/10.1016%2Fj.ccell.2018.12.012&rft.externalDocID=S1535610818305841 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-6108&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-6108&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-6108&client=summon |