Production of engineered-biochar under different pyrolysis conditions for phosphorus removal from aqueous solution
Phosphorus (P) recovery from wastewater through biochar is an alternative to build a sustainable circular economy and save non-renewable P reservoirs. The efficiency of cations in removing P from wastewater under different pyrolysis conditions is still lacking. We aimed at studying P adsorption and...
Saved in:
Published in | The Science of the total environment Vol. 816; p. 151559 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.04.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phosphorus (P) recovery from wastewater through biochar is an alternative to build a sustainable circular economy and save non-renewable P reservoirs. The efficiency of cations in removing P from wastewater under different pyrolysis conditions is still lacking. We aimed at studying P adsorption and release from biochar enriched with Al3+ and Mg2+, prepared under air-limited and N2-flow pyrolysis conditions. Biochar samples were produced from pig manure (PMB) and impregnated, separately, with 20% of AlCl3 and MgCl2 solutions on both pyrolysis conditions. The materials were characterized for pH, electrical conductivity (EC), total nutrient content, ash, specific surface area (SSA), pore-volume, FTIR, XRD, and SEM-EDX. Phosphorus adsorption was studied by kinetics and adsorption isotherms, as well as desorption. The biochar impregnated with Mg2+ and produced in the muffle furnace achieved the maximum P adsorption (231 mg g−1), and 100% of the adsorbed P was released in solutions of Mehlich-1 and citric acid 2%. The pyrolysis conditions had a small or no influence on the biochar properties governing P adsorption, such as chemical functional groups, surface area, quantity and size of pores, and formation of synthetic minerals. Therefore, it is possible to produce biochar without using N2 as a carrier gas when it comes to P adsorption studies. Mechanisms of P removal comprise precipitation with cations, surface complexation, ligand exchange reactions, and electrostatic attraction on the biochar surface. Overall, Mg-impregnated biochar is a suitable matrix to remove P from aqueous media and to add value to organic residues while producing an environmentally friendly material for reuse in soils.
[Display omitted]
•Biochar loaded with Al and Mg increases their P adsorption capacity.•Biochar loaded with Mg showed the best efficiency for P removal.•Biochar production in muffle furnace is preferred for increasing P removal capacity•Precipitation and electrostatic attraction are the main mechanisms of P removal |
---|---|
AbstractList | Phosphorus (P) recovery from wastewater through biochar is an alternative to build a sustainable circular economy and save non-renewable P reservoirs. The efficiency of cations in removing P from wastewater under different pyrolysis conditions is still lacking. We aimed at studying P adsorption and release from biochar enriched with Al3+ and Mg2+, prepared under air-limited and N2-flow pyrolysis conditions. Biochar samples were produced from pig manure (PMB) and impregnated, separately, with 20% of AlCl3 and MgCl2 solutions on both pyrolysis conditions. The materials were characterized for pH, electrical conductivity (EC), total nutrient content, ash, specific surface area (SSA), pore-volume, FTIR, XRD, and SEM-EDX. Phosphorus adsorption was studied by kinetics and adsorption isotherms, as well as desorption. The biochar impregnated with Mg2+ and produced in the muffle furnace achieved the maximum P adsorption (231 mg g−1), and 100% of the adsorbed P was released in solutions of Mehlich-1 and citric acid 2%. The pyrolysis conditions had a small or no influence on the biochar properties governing P adsorption, such as chemical functional groups, surface area, quantity and size of pores, and formation of synthetic minerals. Therefore, it is possible to produce biochar without using N2 as a carrier gas when it comes to P adsorption studies. Mechanisms of P removal comprise precipitation with cations, surface complexation, ligand exchange reactions, and electrostatic attraction on the biochar surface. Overall, Mg-impregnated biochar is a suitable matrix to remove P from aqueous media and to add value to organic residues while producing an environmentally friendly material for reuse in soils.
[Display omitted]
•Biochar loaded with Al and Mg increases their P adsorption capacity.•Biochar loaded with Mg showed the best efficiency for P removal.•Biochar production in muffle furnace is preferred for increasing P removal capacity•Precipitation and electrostatic attraction are the main mechanisms of P removal Phosphorus (P) recovery from wastewater through biochar is an alternative to build a sustainable circular economy and save non-renewable P reservoirs. The efficiency of cations in removing P from wastewater under different pyrolysis conditions is still lacking. We aimed at studying P adsorption and release from biochar enriched with Al3+ and Mg2+, prepared under air-limited and N2-flow pyrolysis conditions. Biochar samples were produced from pig manure (PMB) and impregnated, separately, with 20% of AlCl3 and MgCl2 solutions on both pyrolysis conditions. The materials were characterized for pH, electrical conductivity (EC), total nutrient content, ash, specific surface area (SSA), pore-volume, FTIR, XRD, and SEM-EDX. Phosphorus adsorption was studied by kinetics and adsorption isotherms, as well as desorption. The biochar impregnated with Mg2+ and produced in the muffle furnace achieved the maximum P adsorption (231 mg g-1), and 100% of the adsorbed P was released in solutions of Mehlich-1 and citric acid 2%. The pyrolysis conditions had a small or no influence on the biochar properties governing P adsorption, such as chemical functional groups, surface area, quantity and size of pores, and formation of synthetic minerals. Therefore, it is possible to produce biochar without using N2 as a carrier gas when it comes to P adsorption studies. Mechanisms of P removal comprise precipitation with cations, surface complexation, ligand exchange reactions, and electrostatic attraction on the biochar surface. Overall, Mg-impregnated biochar is a suitable matrix to remove P from aqueous media and to add value to organic residues while producing an environmentally friendly material for reuse in soils.Phosphorus (P) recovery from wastewater through biochar is an alternative to build a sustainable circular economy and save non-renewable P reservoirs. The efficiency of cations in removing P from wastewater under different pyrolysis conditions is still lacking. We aimed at studying P adsorption and release from biochar enriched with Al3+ and Mg2+, prepared under air-limited and N2-flow pyrolysis conditions. Biochar samples were produced from pig manure (PMB) and impregnated, separately, with 20% of AlCl3 and MgCl2 solutions on both pyrolysis conditions. The materials were characterized for pH, electrical conductivity (EC), total nutrient content, ash, specific surface area (SSA), pore-volume, FTIR, XRD, and SEM-EDX. Phosphorus adsorption was studied by kinetics and adsorption isotherms, as well as desorption. The biochar impregnated with Mg2+ and produced in the muffle furnace achieved the maximum P adsorption (231 mg g-1), and 100% of the adsorbed P was released in solutions of Mehlich-1 and citric acid 2%. The pyrolysis conditions had a small or no influence on the biochar properties governing P adsorption, such as chemical functional groups, surface area, quantity and size of pores, and formation of synthetic minerals. Therefore, it is possible to produce biochar without using N2 as a carrier gas when it comes to P adsorption studies. Mechanisms of P removal comprise precipitation with cations, surface complexation, ligand exchange reactions, and electrostatic attraction on the biochar surface. Overall, Mg-impregnated biochar is a suitable matrix to remove P from aqueous media and to add value to organic residues while producing an environmentally friendly material for reuse in soils. Phosphorus (P) recovery from wastewater through biochar is an alternative to build a sustainable circular economy and save non-renewable P reservoirs. The efficiency of cations in removing P from wastewater under different pyrolysis conditions is still lacking. We aimed at studying P adsorption and release from biochar enriched with Al and Mg , prepared under air-limited and N -flow pyrolysis conditions. Biochar samples were produced from pig manure (PMB) and impregnated, separately, with 20% of AlCl and MgCl solutions on both pyrolysis conditions. The materials were characterized for pH, electrical conductivity (EC), total nutrient content, ash, specific surface area (SSA), pore-volume, FTIR, XRD, and SEM-EDX. Phosphorus adsorption was studied by kinetics and adsorption isotherms, as well as desorption. The biochar impregnated with Mg and produced in the muffle furnace achieved the maximum P adsorption (231 mg g ), and 100% of the adsorbed P was released in solutions of Mehlich-1 and citric acid 2%. The pyrolysis conditions had a small or no influence on the biochar properties governing P adsorption, such as chemical functional groups, surface area, quantity and size of pores, and formation of synthetic minerals. Therefore, it is possible to produce biochar without using N as a carrier gas when it comes to P adsorption studies. Mechanisms of P removal comprise precipitation with cations, surface complexation, ligand exchange reactions, and electrostatic attraction on the biochar surface. Overall, Mg-impregnated biochar is a suitable matrix to remove P from aqueous media and to add value to organic residues while producing an environmentally friendly material for reuse in soils. Phosphorus (P) recovery from wastewater through biochar is an alternative to build a sustainable circular economy and save non-renewable P reservoirs. The efficiency of cations in removing P from wastewater under different pyrolysis conditions is still lacking. We aimed at studying P adsorption and release from biochar enriched with Al³⁺ and Mg²⁺, prepared under air-limited and N₂-flow pyrolysis conditions. Biochar samples were produced from pig manure (PMB) and impregnated, separately, with 20% of AlCl₃ and MgCl₂ solutions on both pyrolysis conditions. The materials were characterized for pH, electrical conductivity (EC), total nutrient content, ash, specific surface area (SSA), pore-volume, FTIR, XRD, and SEM-EDX. Phosphorus adsorption was studied by kinetics and adsorption isotherms, as well as desorption. The biochar impregnated with Mg²⁺ and produced in the muffle furnace achieved the maximum P adsorption (231 mg g⁻¹), and 100% of the adsorbed P was released in solutions of Mehlich-1 and citric acid 2%. The pyrolysis conditions had a small or no influence on the biochar properties governing P adsorption, such as chemical functional groups, surface area, quantity and size of pores, and formation of synthetic minerals. Therefore, it is possible to produce biochar without using N₂ as a carrier gas when it comes to P adsorption studies. Mechanisms of P removal comprise precipitation with cations, surface complexation, ligand exchange reactions, and electrostatic attraction on the biochar surface. Overall, Mg-impregnated biochar is a suitable matrix to remove P from aqueous media and to add value to organic residues while producing an environmentally friendly material for reuse in soils. |
ArticleNumber | 151559 |
Author | Carneiro, Jefferson Santana da Silva Soares, Jenaina Ribeiro Melo, Leônidas Carrijo Azevedo Franca, José Romão Guilherme, Luiz Roberto Guimarães Silva, Carlos Alberto Nardis, Bárbara Olinda |
Author_xml | – sequence: 1 givenname: Bárbara Olinda surname: Nardis fullname: Nardis, Bárbara Olinda organization: Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil – sequence: 2 givenname: José Romão surname: Franca fullname: Franca, José Romão organization: Department of Physics, Institute of Natural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil – sequence: 3 givenname: Jefferson Santana da Silva surname: Carneiro fullname: Carneiro, Jefferson Santana da Silva organization: Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil – sequence: 4 givenname: Jenaina Ribeiro surname: Soares fullname: Soares, Jenaina Ribeiro organization: Department of Physics, Institute of Natural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil – sequence: 5 givenname: Luiz Roberto Guimarães surname: Guilherme fullname: Guilherme, Luiz Roberto Guimarães organization: Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil – sequence: 6 givenname: Carlos Alberto surname: Silva fullname: Silva, Carlos Alberto organization: Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil – sequence: 7 givenname: Leônidas Carrijo Azevedo surname: Melo fullname: Melo, Leônidas Carrijo Azevedo email: leonidas.melo@ufla.br organization: Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, 37200-900 Lavras, Minas Gerais, Brazil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34785233$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v3CAQxVGVqtmk_Qotx168BQPGHHqIov6TIrWH9oxYGDesbNgO9kr77Yu1SQ-97EgI6en3hmHeDblKOQEh7zjbcsa7D_tt8XHOM6TjtmUt33LFlTIvyIb32jSctd0V2TAm-8Z0Rl-Tm1L2rJbu-StyLaTuVSvEhuAPzGHxc8yJ5oFC-h0TAEJodjH7R4d0SQGQhjgMVU4zPZwwj6cSC_U5hbg6Cx0y0sNjLvXgUijClI9upAPmibo_C-QqljwuK_2avBzcWODN031Lfn3-9PP-a_Pw_cu3-7uHxkvN5iZAq6QKqlZwvmNO-SCr4LRvpeOglAxy6P2OGw7CaK1AMA1C9uCCcVzckvfnvgfMdYQy2ykWD-Po0jqPbTvRdVy0SlxGlemVMKaXFX37hC67CYI9YJwcnuzzSivw8Qx4zKUgDLYm5daPz-jiaDmza4R2b_9FaNcI7TnC6tf_-Z-fuOy8OzuhbvUYAVcOkocQEfxsQ44Xe_wFR4a-eQ |
CitedBy_id | crossref_primary_10_1016_j_cscee_2023_100528 crossref_primary_10_1016_j_desal_2025_118640 crossref_primary_10_1016_j_jclepro_2023_136186 crossref_primary_10_1016_j_jenvman_2024_120502 crossref_primary_10_5802_crchim_329 crossref_primary_10_1016_j_molliq_2023_122163 crossref_primary_10_1016_j_jtice_2023_105273 crossref_primary_10_1186_s40643_023_00670_3 crossref_primary_10_1002_slct_202304674 crossref_primary_10_1007_s13399_023_04787_5 crossref_primary_10_3370_lca_18_36 crossref_primary_10_3390_w16060873 crossref_primary_10_1007_s10311_023_01631_0 crossref_primary_10_1016_j_heliyon_2023_e19996 crossref_primary_10_1016_j_chemosphere_2024_141178 crossref_primary_10_1186_s13765_024_00933_3 crossref_primary_10_3390_ma16031225 crossref_primary_10_1007_s13399_023_04795_5 crossref_primary_10_1016_j_desal_2024_118092 crossref_primary_10_1016_j_still_2023_105840 crossref_primary_10_1016_j_chemosphere_2024_141350 crossref_primary_10_1016_j_clet_2024_100839 crossref_primary_10_1177_0734242X241287738 crossref_primary_10_1016_j_jhazmat_2023_131488 crossref_primary_10_3389_fsufs_2025_1506609 crossref_primary_10_1016_j_eti_2025_104041 crossref_primary_10_1039_D3TA03147K crossref_primary_10_1016_j_jenvman_2023_119837 crossref_primary_10_1016_j_biteb_2025_102046 crossref_primary_10_1016_j_jenvman_2023_118307 crossref_primary_10_3389_fpls_2024_1459751 crossref_primary_10_1016_j_molstruc_2023_137110 |
Cites_doi | 10.1038/nplants.2016.43 10.1038/s41598-018-20887-z 10.1631/jzus.B1300102 10.1016/j.biortech.2016.07.072 10.1016/j.jclepro.2020.123042 10.1016/j.biortech.2017.09.136 10.1016/bs.agron.2015.12.004 10.1016/j.biortech.2015.10.008 10.1016/j.scitotenv.2018.03.091 10.1016/j.jenvman.2016.11.047 10.1016/j.scitotenv.2020.141277 10.1016/j.biortech.2016.02.125 10.1021/acssuschemeng.7b01935 10.1021/acsomega.8b00523 10.1016/j.chemosphere.2015.03.072 10.1016/j.chemosphere.2014.07.084 10.1155/2017/3039817 10.1016/j.eti.2020.100807 10.1080/09593330.2012.692714 10.1016/j.jece.2016.01.011 10.1016/j.cej.2009.04.042 10.1016/j.jiec.2016.11.039 10.1080/00401706.1974.10489158 10.1016/j.cej.2020.125100 10.1016/j.biortech.2018.05.041 10.1016/j.chemosphere.2020.125847 10.1016/j.chemosphere.2011.01.065 10.1016/j.chemosphere.2012.12.057 10.1016/j.chemosphere.2019.04.029 10.1080/10643389.2012.741311 10.1016/j.chemosphere.2017.02.123 10.1016/j.biortech.2015.05.054 10.1016/j.jclepro.2019.118853 10.1093/biomet/52.3-4.591 10.1007/s00374-010-0464-x 10.1021/ja02268a002 10.1016/j.cej.2012.08.052 10.2166/wst.2019.001 10.1021/la00054a038 10.1063/1.1746922 10.1061/JSEDAI.0000430 10.1111/gcbb.12037 10.1016/j.saa.2016.05.049 10.1016/j.jaap.2016.04.001 10.1016/S0032-9592(98)00112-5 10.3390/su13115919 10.1016/j.watres.2017.04.014 10.1590/1413-70542016404023016 10.1016/j.scitotenv.2020.140714 10.1016/j.still.2016.07.009 10.1016/j.cherd.2014.02.007 10.1016/j.jhazmat.2011.03.083 10.1016/j.proci.2014.05.026 10.2166/wrd.2018.018 10.1016/j.jenvman.2018.02.088 10.1016/j.coal.2008.06.004 10.1016/j.cej.2009.09.013 10.1080/00103624.2012.656167 10.1007/s10705-016-9774-1 10.1016/j.scitotenv.2019.03.437 10.1007/s11270-012-1144-2 10.1016/bs.agron.2019.07.002 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2021.151559 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 34785233 10_1016_j_scitotenv_2021_151559 S0048969721066377 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c470t-de2545d5555dac60a5cd445da7c24a1e554d4f8cb191e39775e307e348ead9a13 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Mon Jul 21 10:21:10 EDT 2025 Fri Jul 11 11:26:28 EDT 2025 Wed Feb 19 02:26:58 EST 2025 Thu Apr 24 23:06:08 EDT 2025 Tue Jul 01 02:53:31 EDT 2025 Fri Feb 23 02:41:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Engineered-biochar Wastewater cleaning Biochar activation Biochar-cation composites Secondary P sources |
Language | English |
License | Copyright © 2021 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-de2545d5555dac60a5cd445da7c24a1e554d4f8cb191e39775e307e348ead9a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 34785233 |
PQID | 2598539984 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636613253 proquest_miscellaneous_2598539984 pubmed_primary_34785233 crossref_citationtrail_10_1016_j_scitotenv_2021_151559 crossref_primary_10_1016_j_scitotenv_2021_151559 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2021_151559 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-10 |
PublicationDateYYYYMMDD | 2022-04-10 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Novais, Zenero, Tronto, Conz, Cerri (bb0185) 2018; 214 Hassan, Liu, Naidu, Parikh, Du, Qi, Willett (bb0100) 2020; 744 Ahmad, Ahmad, Usman, Al-faraj, Ok, Hussain, Abduljabbar, Al-wabel (bb0005) 2017; 3330 Batista, Shultz, Matos, Fornari, Ferreira, Szpoganicz, de Freitas, Mangrich (bb0020) 2018 Rawal, Joseph, Hook, Chia, Munroe, Donne, Lin, Phelan, Mitchell, Pace, Horvat, Webber (bb0200) 2016 Kończak, Gao, Oleszczuk (bb7020) 2019; 228 Zhu, Li, Li, Xie, Lü, Li (bb0320) 2018; 263 Thines, Abdullah, Mubarak, Ruthiraan (bb0245) 2017; 98 Liu, Yu, Long, Wu (bb0135) 2015; 35 R Core Team (bb7070) 2017 Bekiaris, Peltre, Jensen, Bruun (bb0030) 2016; 168 Malavolta, Vitti, Oliveira (bb0160) 1997 Takaya, Fletcher, Singh, Okwuosa, Ross (bb0235) 2016; 4 Cai, Wang, Ji, Peng, Tan, Huang (bb0045) 2017; 187 Hollas, Bolsan, Venturin, Bonassa, Tápparo, Cândido, Antes, Vanotti, Szögi, Kunz (bb7090) 2021 Singh, Camps-Arbestain, Lehmann (bb0230) 2017 Zhu, Chen, Yang, Wang, Wang, Zhang, Chen (bb0325) 2020; 247 Oh, Choi, Shinogi, Chikushi (bb0190) 2012; 223 Tran, You, Hosseini-bandegharaei, Chao (bb0250) 2017 Coates (bb0060) 2004 Lustosa Filho, Penido, Castro, Silva, Melo (bb0155) 2017; 5 Yi, Chen (bb0295) 2018; 78 Bayazit, Kerkez (bb0025) 2014; 92 Fink, Inda, Tiecher, Barrón (bb0085) 2016; 40 Vu (bb7065) 2011 Cui, Dai, Khan, Li, Yang, He (bb0070) 2016; 218 Colthup, Grasselli (bb0065) 1992 Jung, Ahn (bb8005) 2016; 200 Weber, Morris (bb7050) 1963; 89 Sips (bb7035) 1948; 16 Wang, Guo, Shen, Yang, Zhang, Zeng, Wang, Xiao, Deng (bb0260) 2015; 119 Schröder, Smit, Cordell, Rosemarin (bb0215) 2011; 84 Wei, Chen, Xu (bb0265) 2010; 46 Lopes, Guilherme (bb0145) 2016; 137 Nesme, Withers (bb0175) 2016; 104 Lagergren (bb7040) 1898; 24 (bb0110) 2014; 1670 Biederman, Stanley Harpole (bb0035) 2013; 5 Shepherd, Joseph, Sohi, Heal (bb0220) 2017; 179 Li, Liang, Niyungeko, Sun, Liu, Arai (bb0130) 2019 Ho, McKay (bb7045) 1999; 34 Novais, Alvarez, De Barros, Fontes, Neves, Cantarutti (bb0180) 2007 Luo, Xu, Chen, Zhang (bb0150) 2015; 192 Mcbeath, Lombi, Mclaughlin (bb0165) 2007 Maity, Payne (bb7085) 1991; 7 Freundlich (bb7030) 1906; 57 Mosa, El-Ghamry, Tolba (bb7080) 2020; 19 Zhao, Zhao, Kearney (bb0315) 2013; 34 Shapiro, Wilk (bb7055) 1965; 52 Loganathan, Vigneswaran, Kandasamy, Bolan (bb0140) 2014; 44 Fang, Donatello, Cheeseman, Li, Poon, Tsang (bb0080) 2020; 244 Yin, Ren, Wang, Zhao (bb0300) 2018; 631–632 Buss, Graham, MacKinnon, Mašek (bb0040) 2016; 119 Silverstein, Webster, Kiemle, Bryce (bb0225) 2014 Borrego, Garavaglia, Kalkreuth (bb7015) 2009; 77 Zeng, Zhang, Li, Zhao, He, Zhao, Yang, Wang, Zhao, Tariq Rafiq (bb0305) 2013; 14 Li, Wang, Zhou, Awasthi, Ali, Zhang, Lahori, Mahar (bb0125) 2016; 215 Roy, Richards, Martinelli, Coletta, Lins, Vazquez, Willig, Spera, VanWey, Porder (bb0210) 2016; 2 Gonzaga, Mackowiak, Comerford, Moline, Shirley, Guimaraes (bb0095) 2017; 165 Inyang, Dickenson (bb0105) 2015; 134 Langmuir (bb7025) 1916; 38 Ribeiro, Teodoro, Guilherme, Melo (bb0205) 2020; 274 Kosmulski (bb0120) 2011; 353 Foo, Hameed (bb0090) 2010; 156 Brown, Forsythe (bb7060) 1974; 16 Tan, Liu, Xiao (bb0240) 2018; 00 Clemente, Beauchemin, Thibault, Mackinnon, Smith (bb0055) 2018; 3 Zheng, Zimmerman, Gao (bb7010) 2020; 747 Withers, Rodrigues, Soltangheisi, Carvalho, Guilherme, Benites, Gatiboni, Sousa, Nunes, Rosolem, Andreote, Oliveira, Coutinho, Pavinato (bb0270) 2018; 8 Nardis, Da Silva, Carneiro, Souza, Barros, Azevedo Melo (bb0170) 2020 Wan, Wang, Li, Gao (bb0255) 2017; 47 Wu, Tseng, Juang (bb0275) 2009; 153 Xiang, Zhang, Chen, Zou, He, Hu, Tsang, Sik, Gao (bb0280) 2020; 252 Hale, Alling, Martinsen, Mulder, Breedveld, Cornelissen (bb7075) 2013; 91 Penido, Melo, Guilherme, Bianchi (bb0195) 2019; 671 Yao, Gao, Inyang, Zimmerman, Cao, Pullammanappallil, Yang (bb0290) 2011; 190 Akgül, Maden, Diaz, Jiménez (bb0010) 2019; 9 Yang, Wang, Luo, Sun, Xu, Chen, Zhao, Wang, Yao, Wang, Li, Zeng (bb0285) 2018; 247 Ayawei, Ebelegi, Wankasi (bb0015) 2017; 2017 Zhang, Gao, Yao, Xue, Inyang (bb0310) 2012; 210 Enders, Lehmann (bb0075) 2012; 43 Chacón, Sánchez-monedero, Lezama, Cayuela (bb0050) 2020; 395 Wei (10.1016/j.scitotenv.2021.151559_bb0265) 2010; 46 Coates (10.1016/j.scitotenv.2021.151559_bb0060) 2004 Yin (10.1016/j.scitotenv.2021.151559_bb0300) 2018; 631–632 Gonzaga (10.1016/j.scitotenv.2021.151559_bb0095) 2017; 165 Hale (10.1016/j.scitotenv.2021.151559_bb7075) 2013; 91 Xiang (10.1016/j.scitotenv.2021.151559_bb0280) 2020; 252 Penido (10.1016/j.scitotenv.2021.151559_bb0195) 2019; 671 Rawal (10.1016/j.scitotenv.2021.151559_bb0200) 2016 Biederman (10.1016/j.scitotenv.2021.151559_bb0035) 2013; 5 Vu (10.1016/j.scitotenv.2021.151559_bb7065) 2011 Singh (10.1016/j.scitotenv.2021.151559_bb0230) 2017 Malavolta (10.1016/j.scitotenv.2021.151559_bb0160) 1997 Nardis (10.1016/j.scitotenv.2021.151559_bb0170) 2020 Akgül (10.1016/j.scitotenv.2021.151559_bb0010) 2019; 9 Nesme (10.1016/j.scitotenv.2021.151559_bb0175) 2016; 104 Lagergren (10.1016/j.scitotenv.2021.151559_bb7040) 1898; 24 Bayazit (10.1016/j.scitotenv.2021.151559_bb0025) 2014; 92 Lopes (10.1016/j.scitotenv.2021.151559_bb0145) 2016; 137 Cai (10.1016/j.scitotenv.2021.151559_bb0045) 2017; 187 Ho (10.1016/j.scitotenv.2021.151559_bb7045) 1999; 34 Yang (10.1016/j.scitotenv.2021.151559_bb0285) 2018; 247 Batista (10.1016/j.scitotenv.2021.151559_bb0020) 2018 Schröder (10.1016/j.scitotenv.2021.151559_bb0215) 2011; 84 Kończak (10.1016/j.scitotenv.2021.151559_bb7020) 2019; 228 Tran (10.1016/j.scitotenv.2021.151559_bb0250) 2017 Enders (10.1016/j.scitotenv.2021.151559_bb0075) 2012; 43 Bekiaris (10.1016/j.scitotenv.2021.151559_bb0030) 2016; 168 Wang (10.1016/j.scitotenv.2021.151559_bb0260) 2015; 119 Chacón (10.1016/j.scitotenv.2021.151559_bb0050) 2020; 395 Mcbeath (10.1016/j.scitotenv.2021.151559_bb0165) 2007 Maity (10.1016/j.scitotenv.2021.151559_bb7085) 1991; 7 Ribeiro (10.1016/j.scitotenv.2021.151559_bb0205) 2020; 274 Cui (10.1016/j.scitotenv.2021.151559_bb0070) 2016; 218 Buss (10.1016/j.scitotenv.2021.151559_bb0040) 2016; 119 Novais (10.1016/j.scitotenv.2021.151559_bb0180) 2007 Sips (10.1016/j.scitotenv.2021.151559_bb7035) 1948; 16 Zheng (10.1016/j.scitotenv.2021.151559_bb7010) 2020; 747 Li (10.1016/j.scitotenv.2021.151559_bb0125) 2016; 215 Zhang (10.1016/j.scitotenv.2021.151559_bb0310) 2012; 210 Lustosa Filho (10.1016/j.scitotenv.2021.151559_bb0155) 2017; 5 Withers (10.1016/j.scitotenv.2021.151559_bb0270) 2018; 8 Foo (10.1016/j.scitotenv.2021.151559_bb0090) 2010; 156 Zhu (10.1016/j.scitotenv.2021.151559_bb0320) 2018; 263 Li (10.1016/j.scitotenv.2021.151559_bb0130) 2019 Tan (10.1016/j.scitotenv.2021.151559_bb0240) 2018; 00 Shapiro (10.1016/j.scitotenv.2021.151559_bb7055) 1965; 52 R Core Team (10.1016/j.scitotenv.2021.151559_bb7070) Oh (10.1016/j.scitotenv.2021.151559_bb0190) 2012; 223 Shepherd (10.1016/j.scitotenv.2021.151559_bb0220) 2017; 179 Wan (10.1016/j.scitotenv.2021.151559_bb0255) 2017; 47 Thines (10.1016/j.scitotenv.2021.151559_bb0245) 2017; 98 Borrego (10.1016/j.scitotenv.2021.151559_bb7015) 2009; 77 Inyang (10.1016/j.scitotenv.2021.151559_bb0105) 2015; 134 Brown (10.1016/j.scitotenv.2021.151559_bb7060) 1974; 16 Yao (10.1016/j.scitotenv.2021.151559_bb0290) 2011; 190 Colthup (10.1016/j.scitotenv.2021.151559_bb0065) 1992 Jung (10.1016/j.scitotenv.2021.151559_bb8005) 2016; 200 Ayawei (10.1016/j.scitotenv.2021.151559_bb0015) 2017; 2017 Hollas (10.1016/j.scitotenv.2021.151559_bb7090) 2021 Yi (10.1016/j.scitotenv.2021.151559_bb0295) 2018; 78 Liu (10.1016/j.scitotenv.2021.151559_bb0135) 2015; 35 Zeng (10.1016/j.scitotenv.2021.151559_bb0305) 2013; 14 Takaya (10.1016/j.scitotenv.2021.151559_bb0235) 2016; 4 Weber (10.1016/j.scitotenv.2021.151559_bb7050) 1963; 89 Loganathan (10.1016/j.scitotenv.2021.151559_bb0140) 2014; 44 Mosa (10.1016/j.scitotenv.2021.151559_bb7080) 2020; 19 Hassan (10.1016/j.scitotenv.2021.151559_bb0100) 2020; 744 Zhu (10.1016/j.scitotenv.2021.151559_bb0325) 2020; 247 Zhao (10.1016/j.scitotenv.2021.151559_bb0315) 2013; 34 Roy (10.1016/j.scitotenv.2021.151559_bb0210) 2016; 2 Novais (10.1016/j.scitotenv.2021.151559_bb0185) 2018; 214 Kosmulski (10.1016/j.scitotenv.2021.151559_bb0120) 2011; 353 Fink (10.1016/j.scitotenv.2021.151559_bb0085) 2016; 40 Freundlich (10.1016/j.scitotenv.2021.151559_bb7030) 1906; 57 Wu (10.1016/j.scitotenv.2021.151559_bb0275) 2009; 153 Ahmad (10.1016/j.scitotenv.2021.151559_bb0005) 2017; 3330 Langmuir (10.1016/j.scitotenv.2021.151559_bb7025) 1916; 38 Luo (10.1016/j.scitotenv.2021.151559_bb0150) 2015; 192 Fang (10.1016/j.scitotenv.2021.151559_bb0080) 2020; 244 (10.1016/j.scitotenv.2021.151559_bb0110) 2014; 1670 Clemente (10.1016/j.scitotenv.2021.151559_bb0055) 2018; 3 Silverstein (10.1016/j.scitotenv.2021.151559_bb0225) 2014 |
References_xml | – start-page: 237 year: 2007 end-page: 245 ident: bb0165 publication-title: Pyrophosphate and Orthophosphate Addition to Soils: Sorption, Cation Concentrations, and dissolved organic carbon – year: 2017 ident: bb0230 article-title: Biochar: A Guide to Analytical Methods – volume: 84 start-page: 822 year: 2011 end-page: 831 ident: bb0215 article-title: Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use publication-title: Chemosphere – year: 2021 ident: bb7090 article-title: Second-generation phosphorus: recovery from wastes towards the sustainability of production chains publication-title: Sustainability (Switzerland) – volume: 5 start-page: 9043 year: 2017 end-page: 9052 ident: bb0155 article-title: Co-pyrolysis of poultry litter and phosphate and magnesium generates alternative slow-release fertilizer suitable for tropical soils publication-title: ACS Sustain. Chem. Eng. – volume: 8 start-page: 1 year: 2018 end-page: 13 ident: bb0270 article-title: Transitions to sustainable management of phosphorus in Brazilian agriculture publication-title: Sci. Rep. – volume: 104 start-page: 259 year: 2016 end-page: 264 ident: bb0175 article-title: Sustainable strategies towards a phosphorus circular economy publication-title: Nutr. Cycl. Agroecosyst. – start-page: 55 year: 2011 ident: bb7065 article-title: ggbiplot: a ggplot2 based biplot publication-title: R Package Version 0 – volume: 165 start-page: 59 year: 2017 end-page: 65 ident: bb0095 article-title: Pyrolysis methods impact biosolids-derived biochar composition, maize growth and nutrition publication-title: Soil Tillage Res. – volume: 24 start-page: 1 year: 1898 end-page: 39 ident: bb7040 article-title: About the theory of so-called adsorption of soluble substances publication-title: Sven. Vetenskapsakad. Handingarl – volume: 631–632 start-page: 895 year: 2018 end-page: 903 ident: bb0300 article-title: Evaluation of nitrate and phosphate adsorption on Al-modified biochar: influence of Al content publication-title: Sci. Total Environ. – volume: 247 year: 2020 ident: bb0325 article-title: Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution publication-title: Chemosphere – year: 1992 ident: bb0065 article-title: The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Choice Reviews Online – volume: 38 start-page: 2221 year: 1916 end-page: 2295 ident: bb7025 article-title: The constitution and fundamental properties of solids and liquids. Part I. Solids publication-title: J. Am. Chem. Soc. – volume: 244 year: 2020 ident: bb0080 article-title: Use of Mg/Ca modified biochars to take up phosphorus from acid-extract of incinerated sewage sludge ash (ISSA) for fertilizer application publication-title: J. Clean. Prod. – volume: 57 start-page: 385 year: 1906 ident: bb7030 article-title: Over the adsorption in solution publication-title: J. Physicochem. – volume: 4 start-page: 1156 year: 2016 end-page: 1165 ident: bb0235 article-title: Recovery of phosphate with chemically modified biochars publication-title: J. Environ. Chem. Eng. – volume: 395 year: 2020 ident: bb0050 article-title: Enhancing biochar redox properties through feedstock selection, metal preloading and post-pyrolysis treatments publication-title: Chem. Eng. J. – volume: 119 start-page: 24 year: 2016 end-page: 30 ident: bb0040 article-title: Strategies for producing biochars with minimum PAH contamination publication-title: J. Anal. Appl. Pyrolysis – volume: 671 start-page: 1134 year: 2019 end-page: 1143 ident: bb0195 article-title: Cadmium binding mechanisms and adsorption capacity by novel phosphorus/magnesium-engineered biochars publication-title: Sci. Total Environ. – volume: 52 start-page: 591 year: 1965 end-page: 611 ident: bb7055 article-title: An analysis of variance test for normality (complete samples) publication-title: Biometrika – volume: 3 start-page: 6931 year: 2018 end-page: 6944 ident: bb0055 article-title: Differentiating inorganics in biochars produced at commercial scale using principal component analysis publication-title: ACS Omega – volume: 153 start-page: 1 year: 2009 end-page: 8 ident: bb0275 article-title: Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics publication-title: Chem. Eng. J. – volume: 46 start-page: 765 year: 2010 end-page: 769 ident: bb0265 article-title: Citric acid enhances the mobilization of organic phosphorus in subtropical and tropical forest soils publication-title: Biol. Fertil. Soils – volume: 747 year: 2020 ident: bb7010 article-title: Comparative investigation of characteristics and phosphate removal by engineered biochars with different loadings of magnesium, aluminum, or iron publication-title: Sci. Total Environ. – volume: 228 start-page: 26 year: 2019 end-page: 34 ident: bb7020 article-title: Carbon dioxide as a carrier gas and biomass addition decrease the total and bioavailable polycyclic aromatic hydrocarbons in biochar produced from sewage sludge publication-title: Chemosphere – volume: 192 start-page: 83 year: 2015 end-page: 89 ident: bb0150 article-title: Properties of biomass-derived biochars: combined effects of operating conditions and biomass types publication-title: Bioresour. Technol. – year: 2017 ident: bb7070 article-title: A Language and Environment for Statistical Computing – volume: 92 start-page: 2725 year: 2014 end-page: 2733 ident: bb0025 article-title: Hexavalent chromium adsorption on superparamagnetic multi-wall carbon nanotubes and activated carbon composites publication-title: Chem. Eng. Res. Des. – volume: 214 start-page: 36 year: 2018 end-page: 44 ident: bb0185 article-title: Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption publication-title: J. Environ. Manag. – volume: 00 start-page: 1 year: 2018 end-page: 10 ident: bb0240 article-title: Influence of different pyrolysis methods on the sorption property of rice straw biochar publication-title: Sep. Sci. Technol. – volume: 34 start-page: 263 year: 2013 end-page: 268 ident: bb0315 article-title: Phosphorus recovery as AlPO 4 from beneficially reused aluminium sludge arising from water treatment publication-title: Environ. Technol. – volume: 223 start-page: 3729 year: 2012 end-page: 3738 ident: bb0190 article-title: Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase publication-title: Water Air Soil Pollut. – year: 2014 ident: bb0225 article-title: Spectrometric Identification of Organic Compounds – volume: 44 start-page: 847 year: 2014 end-page: 907 ident: bb0140 article-title: Removal and recovery of phosphate from water using sorption publication-title: Crit. Rev. Environ. Sci. Technol. – year: 2007 ident: bb0180 article-title: Fertilidade do solo – volume: 2017 year: 2017 ident: bb0015 article-title: Modelling and interpretation of adsorption isotherms publication-title: J. Chem. – volume: 78 start-page: 2427 year: 2018 end-page: 2436 ident: bb0295 article-title: Enhanced phosphate adsorption on Ca-Mg-loaded biochar derived from tobacco stems publication-title: Water Sci. Technol. – year: 1997 ident: bb0160 article-title: Avaliação do estado nutricional das plantas: princípios e aplicações – volume: 16 start-page: 490 year: 1948 end-page: 495 ident: bb7035 article-title: On the structure of a catalyst surface publication-title: J. Chem. Phys. – volume: 91 start-page: 1612 year: 2013 end-page: 1619 ident: bb7075 article-title: The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars publication-title: Chemosphere – volume: 40 start-page: 369 year: 2016 end-page: 379 ident: bb0085 article-title: Iron oxides and organic matter on soil phosphorus availability - review publication-title: Cienc. Agrotecnol. – volume: 218 start-page: 1123 year: 2016 end-page: 1132 ident: bb0070 article-title: Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata publication-title: Bioresour. Technol. – volume: 168 start-page: 29 year: 2016 end-page: 36 ident: bb0030 article-title: Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars publication-title: Spectrochim. Acta - part a MolBiomol. Spectrosc. – volume: 263 start-page: 475 year: 2018 end-page: 482 ident: bb0320 article-title: Thermal treatment of biochar in the air/nitrogen atmosphere for developed mesoporosity and enhanced adsorption to tetracycline publication-title: Bioresour. Technol. – volume: 19 year: 2020 ident: bb7080 article-title: Biochar-supported natural zeolite composite for recovery and reuse of aqueous phosphate and humate: batch sorption–desorption and bioassay investigations publication-title: Environ. Technol. Innov. – year: 2016 ident: bb0200 article-title: Mineral − Biochar Composites: Molecular Structure and Porosity – volume: 47 start-page: 246 year: 2017 end-page: 253 ident: bb0255 article-title: Functionalizing biochar with Mg – Al and Mg – Fe layered double hydroxides for removal of phosphate from aqueous solutions publication-title: J. Ind. Eng. Chem. – volume: 134 start-page: 232 year: 2015 end-page: 240 ident: bb0105 article-title: The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review publication-title: Chemosphere – volume: 187 start-page: 212 year: 2017 end-page: 219 ident: bb0045 article-title: Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth publication-title: J. Environ. Manag. – volume: 137 start-page: 1 year: 2016 end-page: 72 ident: bb0145 article-title: A career perspective on soil management in the Cerrado region of Brazil publication-title: Adv. Agron. – volume: 210 start-page: 26 year: 2012 end-page: 32 ident: bb0310 article-title: Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions publication-title: Chem. Eng. J. – volume: 89 start-page: 31 year: 1963 end-page: 60 ident: bb7050 article-title: Kinetics of adsorption on carbon from solution publication-title: J. Sanit. Eng. Div. – volume: 1670 year: 2014 ident: bb0110 article-title: Compendium of Chemical Terminology – volume: 35 start-page: 2381 year: 2015 end-page: 2388 ident: bb0135 article-title: ScienceDirect effect of MgCl 2 loading on the evolution of reaction intermediates during cellulose fast pyrolysis at 325 ° C publication-title: Proc. Combust. Inst. – volume: 353 start-page: 1 year: 2011 end-page: 15 ident: bb0120 article-title: The pH-dependent surface charging and points of zero charge VUpdate – year: 2020 ident: bb0170 article-title: Phosphorus recovery using magnesium-enriched biochar and its potential use as fertilizer publication-title: Arch. Agron. Soil Sci. – volume: 3330 year: 2017 ident: bb0005 article-title: An Efficient Phosphorus Scavenging From Aqueous Solution Using Magnesiothermally Modified Bio- Calcite – volume: 9 start-page: 57 year: 2019 end-page: 66 ident: bb0010 article-title: Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO3-4 and Cd2+ from aqueous solutions publication-title: J. Water Reuse Desalin. – volume: 744 start-page: 1 year: 2020 end-page: 15 ident: bb0100 article-title: Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: a meta-analysis publication-title: Sci. Total Environ. – volume: 5 start-page: 202 year: 2013 end-page: 214 ident: bb0035 article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis publication-title: GCB Bioenergy – volume: 16 start-page: 129 year: 1974 end-page: 132 ident: bb7060 article-title: The small sample behavior of some statistics which test the equality of several means publication-title: Technometrics – year: 2019 ident: bb0130 article-title: Effects of biochar amendments on soil phosphorus transformation in agricultural soils publication-title: Adv. Agron. – volume: 7 start-page: 1247 year: 1991 end-page: 1254 ident: bb7085 article-title: Adsorption from aqueous solutions based on a combination of hydrogen bonding and hydrophobic interactions publication-title: Langmuir – volume: 43 start-page: 1042 year: 2012 end-page: 1052 ident: bb0075 article-title: Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar publication-title: Commun. Soil Sci. Plant Anal. – volume: 77 start-page: 409 year: 2009 end-page: 415 ident: bb7015 article-title: Characteristics of high heating rate biomass chars prepared under N publication-title: Int. J. Coal Geol. – start-page: 1 year: 2004 end-page: 23 ident: bb0060 publication-title: Encyclopedia of Analytical Chemistry -Interpretation of Infrared Spectra, A Practical Approach. Encycl. Anal. Chem – start-page: 1 year: 2018 end-page: 9 ident: bb0020 publication-title: Effect of Surface and Porosity of Biochar on Water Holding Capacity Aiming Indirectly at Preservation of the Amazon Biome – volume: 190 start-page: 501 year: 2011 end-page: 507 ident: bb0290 article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings publication-title: J. Hazard. Mater. – volume: 34 start-page: 451 year: 1999 end-page: 465 ident: bb7045 article-title: Pseudo-second order model for sorption processes publication-title: Process. Biochem. – volume: 179 start-page: 57 year: 2017 end-page: 74 ident: bb0220 article-title: Biochar and enhanced phosphate capture: mapping mechanisms to functional properties publication-title: Chemosphere – volume: 14 start-page: 1152 year: 2013 end-page: 1161 ident: bb0305 article-title: Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants publication-title: J. Zhejiang Univ.-Sci. B (Biomed. Biotechnol.) – volume: 215 start-page: 209 year: 2016 end-page: 214 ident: bb0125 article-title: Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute publication-title: Bioresour. Technol. – volume: 2 start-page: 16043 year: 2016 ident: bb0210 article-title: The phosphorus cost of agricultural intensification in the tropics publication-title: Nat. Plants – volume: 119 start-page: 646 year: 2015 end-page: 653 ident: bb0260 article-title: Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3-), and phosphate (PO43-) publication-title: Chemosphere – volume: 156 start-page: 2 year: 2010 end-page: 10 ident: bb0090 article-title: Insights into the modeling of adsorption isotherm systems publication-title: Chem. Eng. J. – volume: 252 year: 2020 ident: bb0280 – year: 2017 ident: bb0250 article-title: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review publication-title: Water Res. – volume: 274 year: 2020 ident: bb0205 article-title: Hydroxyl-eggshell: a novel eggshell byproduct highly effective to recover phosphorus from aqueous solutions publication-title: J. Clean. Prod. – volume: 98 start-page: 95 year: 2017 end-page: 111 ident: bb0245 – volume: 200 start-page: 1029 year: 2016 end-page: 1032 ident: bb8005 article-title: Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: application of a novel combined electrochemical modification method publication-title: Bioresour. Technol. – volume: 247 start-page: 537 year: 2018 end-page: 544 ident: bb0285 article-title: Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge publication-title: Bioresour. Technol. – volume: 2 start-page: 16043 year: 2016 ident: 10.1016/j.scitotenv.2021.151559_bb0210 article-title: The phosphorus cost of agricultural intensification in the tropics publication-title: Nat. Plants doi: 10.1038/nplants.2016.43 – volume: 8 start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2021.151559_bb0270 article-title: Transitions to sustainable management of phosphorus in Brazilian agriculture publication-title: Sci. Rep. doi: 10.1038/s41598-018-20887-z – start-page: 1 year: 2004 ident: 10.1016/j.scitotenv.2021.151559_bb0060 – volume: 14 start-page: 1152 year: 2013 ident: 10.1016/j.scitotenv.2021.151559_bb0305 article-title: Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants publication-title: J. Zhejiang Univ.-Sci. B (Biomed. Biotechnol.) doi: 10.1631/jzus.B1300102 – volume: 218 start-page: 1123 year: 2016 ident: 10.1016/j.scitotenv.2021.151559_bb0070 article-title: Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.07.072 – volume: 274 year: 2020 ident: 10.1016/j.scitotenv.2021.151559_bb0205 article-title: Hydroxyl-eggshell: a novel eggshell byproduct highly effective to recover phosphorus from aqueous solutions publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.123042 – volume: 247 start-page: 537 year: 2018 ident: 10.1016/j.scitotenv.2021.151559_bb0285 article-title: Effectiveness and mechanisms of phosphate adsorption on iron-modified biochars derived from waste activated sludge publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.136 – ident: 10.1016/j.scitotenv.2021.151559_bb7070 – volume: 137 start-page: 1 year: 2016 ident: 10.1016/j.scitotenv.2021.151559_bb0145 article-title: A career perspective on soil management in the Cerrado region of Brazil publication-title: Adv. Agron. doi: 10.1016/bs.agron.2015.12.004 – volume: 200 start-page: 1029 year: 2016 ident: 10.1016/j.scitotenv.2021.151559_bb8005 article-title: Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: application of a novel combined electrochemical modification method publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.10.008 – volume: 631–632 start-page: 895 year: 2018 ident: 10.1016/j.scitotenv.2021.151559_bb0300 article-title: Evaluation of nitrate and phosphate adsorption on Al-modified biochar: influence of Al content publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.091 – volume: 187 start-page: 212 year: 2017 ident: 10.1016/j.scitotenv.2021.151559_bb0045 article-title: Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2016.11.047 – volume: 747 year: 2020 ident: 10.1016/j.scitotenv.2021.151559_bb7010 article-title: Comparative investigation of characteristics and phosphate removal by engineered biochars with different loadings of magnesium, aluminum, or iron publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.141277 – volume: 215 start-page: 209 year: 2016 ident: 10.1016/j.scitotenv.2021.151559_bb0125 article-title: Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.02.125 – volume: 5 start-page: 9043 year: 2017 ident: 10.1016/j.scitotenv.2021.151559_bb0155 article-title: Co-pyrolysis of poultry litter and phosphate and magnesium generates alternative slow-release fertilizer suitable for tropical soils publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b01935 – volume: 3 start-page: 6931 year: 2018 ident: 10.1016/j.scitotenv.2021.151559_bb0055 article-title: Differentiating inorganics in biochars produced at commercial scale using principal component analysis publication-title: ACS Omega doi: 10.1021/acsomega.8b00523 – volume: 134 start-page: 232 year: 2015 ident: 10.1016/j.scitotenv.2021.151559_bb0105 article-title: The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.03.072 – volume: 119 start-page: 646 year: 2015 ident: 10.1016/j.scitotenv.2021.151559_bb0260 article-title: Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3-), and phosphate (PO43-) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.07.084 – volume: 2017 year: 2017 ident: 10.1016/j.scitotenv.2021.151559_bb0015 article-title: Modelling and interpretation of adsorption isotherms publication-title: J. Chem. doi: 10.1155/2017/3039817 – volume: 19 year: 2020 ident: 10.1016/j.scitotenv.2021.151559_bb7080 article-title: Biochar-supported natural zeolite composite for recovery and reuse of aqueous phosphate and humate: batch sorption–desorption and bioassay investigations publication-title: Environ. Technol. Innov. doi: 10.1016/j.eti.2020.100807 – volume: 34 start-page: 263 year: 2013 ident: 10.1016/j.scitotenv.2021.151559_bb0315 article-title: Phosphorus recovery as AlPO 4 from beneficially reused aluminium sludge arising from water treatment publication-title: Environ. Technol. doi: 10.1080/09593330.2012.692714 – volume: 4 start-page: 1156 year: 2016 ident: 10.1016/j.scitotenv.2021.151559_bb0235 article-title: Recovery of phosphate with chemically modified biochars publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.01.011 – volume: 153 start-page: 1 year: 2009 ident: 10.1016/j.scitotenv.2021.151559_bb0275 article-title: Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.04.042 – year: 2014 ident: 10.1016/j.scitotenv.2021.151559_bb0225 – start-page: 55 year: 2011 ident: 10.1016/j.scitotenv.2021.151559_bb7065 article-title: ggbiplot: a ggplot2 based biplot – year: 2016 ident: 10.1016/j.scitotenv.2021.151559_bb0200 – volume: 47 start-page: 246 year: 2017 ident: 10.1016/j.scitotenv.2021.151559_bb0255 article-title: Functionalizing biochar with Mg – Al and Mg – Fe layered double hydroxides for removal of phosphate from aqueous solutions publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2016.11.039 – volume: 16 start-page: 129 year: 1974 ident: 10.1016/j.scitotenv.2021.151559_bb7060 article-title: The small sample behavior of some statistics which test the equality of several means publication-title: Technometrics doi: 10.1080/00401706.1974.10489158 – volume: 00 start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2021.151559_bb0240 article-title: Influence of different pyrolysis methods on the sorption property of rice straw biochar publication-title: Sep. Sci. Technol. – volume: 395 year: 2020 ident: 10.1016/j.scitotenv.2021.151559_bb0050 article-title: Enhancing biochar redox properties through feedstock selection, metal preloading and post-pyrolysis treatments publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125100 – volume: 263 start-page: 475 year: 2018 ident: 10.1016/j.scitotenv.2021.151559_bb0320 article-title: Thermal treatment of biochar in the air/nitrogen atmosphere for developed mesoporosity and enhanced adsorption to tetracycline publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.05.041 – volume: 24 start-page: 1 year: 1898 ident: 10.1016/j.scitotenv.2021.151559_bb7040 article-title: About the theory of so-called adsorption of soluble substances publication-title: Sven. Vetenskapsakad. Handingarl – volume: 247 year: 2020 ident: 10.1016/j.scitotenv.2021.151559_bb0325 article-title: Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.125847 – volume: 84 start-page: 822 year: 2011 ident: 10.1016/j.scitotenv.2021.151559_bb0215 article-title: Improved phosphorus use efficiency in agriculture: a key requirement for its sustainable use publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.01.065 – volume: 91 start-page: 1612 year: 2013 ident: 10.1016/j.scitotenv.2021.151559_bb7075 article-title: The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.12.057 – volume: 228 start-page: 26 year: 2019 ident: 10.1016/j.scitotenv.2021.151559_bb7020 article-title: Carbon dioxide as a carrier gas and biomass addition decrease the total and bioavailable polycyclic aromatic hydrocarbons in biochar produced from sewage sludge publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.04.029 – year: 2020 ident: 10.1016/j.scitotenv.2021.151559_bb0170 article-title: Phosphorus recovery using magnesium-enriched biochar and its potential use as fertilizer publication-title: Arch. Agron. Soil Sci. – volume: 44 start-page: 847 year: 2014 ident: 10.1016/j.scitotenv.2021.151559_bb0140 article-title: Removal and recovery of phosphate from water using sorption publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2012.741311 – volume: 179 start-page: 57 year: 2017 ident: 10.1016/j.scitotenv.2021.151559_bb0220 article-title: Biochar and enhanced phosphate capture: mapping mechanisms to functional properties publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.02.123 – volume: 192 start-page: 83 year: 2015 ident: 10.1016/j.scitotenv.2021.151559_bb0150 article-title: Properties of biomass-derived biochars: combined effects of operating conditions and biomass types publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.05.054 – volume: 244 year: 2020 ident: 10.1016/j.scitotenv.2021.151559_bb0080 article-title: Use of Mg/Ca modified biochars to take up phosphorus from acid-extract of incinerated sewage sludge ash (ISSA) for fertilizer application publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118853 – volume: 52 start-page: 591 year: 1965 ident: 10.1016/j.scitotenv.2021.151559_bb7055 article-title: An analysis of variance test for normality (complete samples) publication-title: Biometrika doi: 10.1093/biomet/52.3-4.591 – volume: 46 start-page: 765 year: 2010 ident: 10.1016/j.scitotenv.2021.151559_bb0265 article-title: Citric acid enhances the mobilization of organic phosphorus in subtropical and tropical forest soils publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-010-0464-x – volume: 38 start-page: 2221 year: 1916 ident: 10.1016/j.scitotenv.2021.151559_bb7025 article-title: The constitution and fundamental properties of solids and liquids. Part I. Solids publication-title: J. Am. Chem. Soc. doi: 10.1021/ja02268a002 – year: 2017 ident: 10.1016/j.scitotenv.2021.151559_bb0230 – volume: 210 start-page: 26 year: 2012 ident: 10.1016/j.scitotenv.2021.151559_bb0310 article-title: Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.08.052 – volume: 78 start-page: 2427 year: 2018 ident: 10.1016/j.scitotenv.2021.151559_bb0295 article-title: Enhanced phosphate adsorption on Ca-Mg-loaded biochar derived from tobacco stems publication-title: Water Sci. Technol. doi: 10.2166/wst.2019.001 – volume: 3330 year: 2017 ident: 10.1016/j.scitotenv.2021.151559_bb0005 – volume: 7 start-page: 1247 issue: 6 year: 1991 ident: 10.1016/j.scitotenv.2021.151559_bb7085 article-title: Adsorption from aqueous solutions based on a combination of hydrogen bonding and hydrophobic interactions publication-title: Langmuir doi: 10.1021/la00054a038 – volume: 16 start-page: 490 year: 1948 ident: 10.1016/j.scitotenv.2021.151559_bb7035 article-title: On the structure of a catalyst surface publication-title: J. Chem. Phys. doi: 10.1063/1.1746922 – year: 2007 ident: 10.1016/j.scitotenv.2021.151559_bb0180 – volume: 89 start-page: 31 year: 1963 ident: 10.1016/j.scitotenv.2021.151559_bb7050 article-title: Kinetics of adsorption on carbon from solution publication-title: J. Sanit. Eng. Div. doi: 10.1061/JSEDAI.0000430 – volume: 5 start-page: 202 year: 2013 ident: 10.1016/j.scitotenv.2021.151559_bb0035 article-title: Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis publication-title: GCB Bioenergy doi: 10.1111/gcbb.12037 – volume: 98 start-page: 95 year: 2017 ident: 10.1016/j.scitotenv.2021.151559_bb0245 – volume: 168 start-page: 29 year: 2016 ident: 10.1016/j.scitotenv.2021.151559_bb0030 article-title: Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars publication-title: Spectrochim. Acta - part a MolBiomol. Spectrosc. doi: 10.1016/j.saa.2016.05.049 – volume: 119 start-page: 24 year: 2016 ident: 10.1016/j.scitotenv.2021.151559_bb0040 article-title: Strategies for producing biochars with minimum PAH contamination publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2016.04.001 – year: 1992 ident: 10.1016/j.scitotenv.2021.151559_bb0065 – start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2021.151559_bb0020 – volume: 34 start-page: 451 year: 1999 ident: 10.1016/j.scitotenv.2021.151559_bb7045 article-title: Pseudo-second order model for sorption processes publication-title: Process. Biochem. doi: 10.1016/S0032-9592(98)00112-5 – year: 2021 ident: 10.1016/j.scitotenv.2021.151559_bb7090 article-title: Second-generation phosphorus: recovery from wastes towards the sustainability of production chains publication-title: Sustainability (Switzerland) doi: 10.3390/su13115919 – year: 2017 ident: 10.1016/j.scitotenv.2021.151559_bb0250 article-title: Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review publication-title: Water Res. doi: 10.1016/j.watres.2017.04.014 – volume: 40 start-page: 369 year: 2016 ident: 10.1016/j.scitotenv.2021.151559_bb0085 article-title: Iron oxides and organic matter on soil phosphorus availability - review publication-title: Cienc. Agrotecnol. doi: 10.1590/1413-70542016404023016 – volume: 744 start-page: 1 year: 2020 ident: 10.1016/j.scitotenv.2021.151559_bb0100 article-title: Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: a meta-analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.140714 – volume: 165 start-page: 59 year: 2017 ident: 10.1016/j.scitotenv.2021.151559_bb0095 article-title: Pyrolysis methods impact biosolids-derived biochar composition, maize growth and nutrition publication-title: Soil Tillage Res. doi: 10.1016/j.still.2016.07.009 – volume: 1670 year: 2014 ident: 10.1016/j.scitotenv.2021.151559_bb0110 – volume: 92 start-page: 2725 year: 2014 ident: 10.1016/j.scitotenv.2021.151559_bb0025 article-title: Hexavalent chromium adsorption on superparamagnetic multi-wall carbon nanotubes and activated carbon composites publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2014.02.007 – volume: 57 start-page: 385 year: 1906 ident: 10.1016/j.scitotenv.2021.151559_bb7030 article-title: Over the adsorption in solution publication-title: J. Physicochem. – volume: 353 start-page: 1 year: 2011 ident: 10.1016/j.scitotenv.2021.151559_bb0120 article-title: The pH-dependent surface charging and points of zero charge VUpdate – start-page: 237 year: 2007 ident: 10.1016/j.scitotenv.2021.151559_bb0165 – volume: 190 start-page: 501 year: 2011 ident: 10.1016/j.scitotenv.2021.151559_bb0290 article-title: Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.03.083 – volume: 35 start-page: 2381 year: 2015 ident: 10.1016/j.scitotenv.2021.151559_bb0135 article-title: ScienceDirect effect of MgCl 2 loading on the evolution of reaction intermediates during cellulose fast pyrolysis at 325 ° C publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2014.05.026 – volume: 9 start-page: 57 year: 2019 ident: 10.1016/j.scitotenv.2021.151559_bb0010 article-title: Modification of tea biochar with Mg, Fe, Mn and Al salts for efficient sorption of PO3-4 and Cd2+ from aqueous solutions publication-title: J. Water Reuse Desalin. doi: 10.2166/wrd.2018.018 – volume: 214 start-page: 36 year: 2018 ident: 10.1016/j.scitotenv.2021.151559_bb0185 article-title: Poultry manure and sugarcane straw biochars modified with MgCl2 for phosphorus adsorption publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2018.02.088 – volume: 77 start-page: 409 year: 2009 ident: 10.1016/j.scitotenv.2021.151559_bb7015 article-title: Characteristics of high heating rate biomass chars prepared under N2 and CO2 atmospheres publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2008.06.004 – volume: 156 start-page: 2 year: 2010 ident: 10.1016/j.scitotenv.2021.151559_bb0090 article-title: Insights into the modeling of adsorption isotherm systems publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.09.013 – volume: 43 start-page: 1042 year: 2012 ident: 10.1016/j.scitotenv.2021.151559_bb0075 article-title: Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103624.2012.656167 – volume: 104 start-page: 259 year: 2016 ident: 10.1016/j.scitotenv.2021.151559_bb0175 article-title: Sustainable strategies towards a phosphorus circular economy publication-title: Nutr. Cycl. Agroecosyst. doi: 10.1007/s10705-016-9774-1 – volume: 671 start-page: 1134 year: 2019 ident: 10.1016/j.scitotenv.2021.151559_bb0195 article-title: Cadmium binding mechanisms and adsorption capacity by novel phosphorus/magnesium-engineered biochars publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.437 – volume: 223 start-page: 3729 year: 2012 ident: 10.1016/j.scitotenv.2021.151559_bb0190 article-title: Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-012-1144-2 – volume: 252 year: 2020 ident: 10.1016/j.scitotenv.2021.151559_bb0280 – year: 2019 ident: 10.1016/j.scitotenv.2021.151559_bb0130 article-title: Effects of biochar amendments on soil phosphorus transformation in agricultural soils doi: 10.1016/bs.agron.2019.07.002 – year: 1997 ident: 10.1016/j.scitotenv.2021.151559_bb0160 |
SSID | ssj0000781 |
Score | 2.5126915 |
Snippet | Phosphorus (P) recovery from wastewater through biochar is an alternative to build a sustainable circular economy and save non-renewable P reservoirs. The... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 151559 |
SubjectTerms | Adsorption Animals aqueous solutions biochar Biochar activation Biochar-cation composites Charcoal circular economy citric acid desorption electrical conductivity electrostatic interactions Engineered-biochar environment furnaces ligands nutrient content Phosphorus pig manure Pyrolysis Secondary P sources surface area Swine wastewater Wastewater cleaning Water Pollutants, Chemical - analysis |
Title | Production of engineered-biochar under different pyrolysis conditions for phosphorus removal from aqueous solution |
URI | https://dx.doi.org/10.1016/j.scitotenv.2021.151559 https://www.ncbi.nlm.nih.gov/pubmed/34785233 https://www.proquest.com/docview/2598539984 https://www.proquest.com/docview/2636613253 |
Volume | 816 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEB5KiyBI0dPa01oi-Lrt3maym_OtlJbTwyJisW8hvw4r9vbY2xb64t_uzGX3SkHtgwvLQkiWbGaSmdnM9wXgnUJHwow-Q-1dhs7GbEymIXOhHBfeo_SOwcmfzsrJOX68UBcbcNxjYTitslv705q-Wq27ksNuNA8Xl5eM8UU9Lpl9hs1mxYhyxIq1_ODXXZoHk9mkXWaa2FT7Xo4XvbetyTe9oUCxGB2wcWfS0j9bqL95oCtLdPoUtjsXUhylXj6DjTgfwKN0qOTtAHZO7rBrVK2bvMsBPEm_6ERCHj2H5nNieyXJiHomYsdMGANFyzWjsQQDzBrRn6HSisVtU68oTARF0SElewnyesXie72ku7leiiZe1aS9gnErwtKX1FTYK_gLOD89-Xo8ybojGDKPVd5mIVIAqYKiK1hf5lb5gFRgK1-gHUVyRgLOSMwU9kX2JVWkRSNK1KShYzuSO7A5r-dxF4RDV6DSwQaVY5hJp5WrZCiorubNxSGU_bAb3_GT8zEZP02fiPbDrOVlWF4myWsI-brhIlF0PNzkfS9Xc0_bDBmShxu_7TXB0FzkDRY758E0FEpqZvrV-I86pSSXSBZKDuFlUqN1ryVWWhVSvvqf7r2GxwVDNJiPMt-Dzba5jm_IcWrd_mpm7MPW0Yfp5Iyf0y_fpr8BaNUeNA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED-xommTJsS6MQpj86S9ZqSxnbi8IQQqA6o9gMSb5a9qTFtTpQGJ_353tVOEtI2HRcqLZUeO73wfiX-_A_gshUVhBpcJ5WwmrAnZCF1DZn05KpwT3FkCJ19MyvGV-Hotr9fgqMPC0LHKZPujTV9a69Syn1Zzf35zQxhfoUYlsc-Q26yqZ7BO7FSyB-uHp2fjyYNBrlQsnCdwb-OAR8e88NFtjeHpHeaKxfAL-XfiLf2zk_pbELp0RiebsJGiSHYYJ_oa1sKsD89jXcn7PmwdP8DXsFvav4s-vIpf6VgEH72B5lskfEXhsHrKQiInDB4T5poAWYwwZg3ryqi0bH7f1EsWE4aJtI_nvRgGvmz-vV7g3dwuWBN-1ajAjKArzOCb1NjY6fhbuDo5vjwaZ6kKQ-ZElbeZD5hDSi_x8saVuZHOC2wwlSuEGQaMR7yYoqQx8wsUTsqAdiNwoVBJR2bIt6A3q2dhG5gVthBSeeNlLvyUWyVtxX2BfRX9XxxA2S27dominCpl_NTdWbQfeiUvTfLSUV4DyFcD55Gl4-khB51c9SOF0-hLnh78qdMEjduR_rGYGS2mxmxSEdmvEv_oU3KMingh-QDeRTVazZqLSsmC853_md5HeDG-vDjX56eTs114WRBig-gp8_fQa5vbsIdxVGs_pH3yGyPoH0I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Production+of+engineered-biochar+under+different+pyrolysis+conditions+for+phosphorus+removal+from+aqueous+solution&rft.jtitle=The+Science+of+the+total+environment&rft.au=Nardis%2C+B%C3%A1rbara+Olinda&rft.au=Franca%2C+Jos%C3%A9+Rom%C3%A3o&rft.au=Carneiro%2C+Jefferson+Santana+da+Silva&rft.au=Soares%2C+Jenaina+Ribeiro&rft.date=2022-04-10&rft.eissn=1879-1026&rft.volume=816&rft.spage=151559&rft_id=info:doi/10.1016%2Fj.scitotenv.2021.151559&rft_id=info%3Apmid%2F34785233&rft.externalDocID=34785233 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |