3D printed drug loaded nanomaterials for wound healing applications
Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. R...
Saved in:
Published in | Regenerative therapy Vol. 24; pp. 361 - 376 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Japanese Society for Regenerative Medicine
01.12.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. Researchers discovered that two-dimensional (2D) media lacks appropriate real-life detection of cellular matter as these have highly complicated and diverse structures, compositions, and interactions. Hence, innovation towards three-dimensional (3D) media is called to conquer the high-level assessment and characterization in vivo using new technologies. The application of modern wound dressings prepared from a degenerated natural tissue, biodegradable biopolymer, synthetic polymer, or a composite of these materials in wound healing is currently an area of innovation in tissue regeneration medicine. Moreover, the integration of 3D printing and nanomaterial science is a promising approach with the potential for individualized, flexible, and precise technology for wound care approaches. This review encompasses the outcomes of various investigations on recent advances in 3D-printed drug-loaded natural, synthetic, and composite nanomaterials for wound healing. The challenges associated with their fabrication, clinical application progress, and future perspectives are also addressed.Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. Researchers discovered that two-dimensional (2D) media lacks appropriate real-life detection of cellular matter as these have highly complicated and diverse structures, compositions, and interactions. Hence, innovation towards three-dimensional (3D) media is called to conquer the high-level assessment and characterization in vivo using new technologies. The application of modern wound dressings prepared from a degenerated natural tissue, biodegradable biopolymer, synthetic polymer, or a composite of these materials in wound healing is currently an area of innovation in tissue regeneration medicine. Moreover, the integration of 3D printing and nanomaterial science is a promising approach with the potential for individualized, flexible, and precise technology for wound care approaches. This review encompasses the outcomes of various investigations on recent advances in 3D-printed drug-loaded natural, synthetic, and composite nanomaterials for wound healing. The challenges associated with their fabrication, clinical application progress, and future perspectives are also addressed. |
---|---|
AbstractList | Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. Researchers discovered that two-dimensional (2D) media lacks appropriate real-life detection of cellular matter as these have highly complicated and diverse structures, compositions, and interactions. Hence, innovation towards three-dimensional (3D) media is called to conquer the high-level assessment and characterization in vivo using new technologies. The application of modern wound dressings prepared from a degenerated natural tissue, biodegradable biopolymer, synthetic polymer, or a composite of these materials in wound healing is currently an area of innovation in tissue regeneration medicine. Moreover, the integration of 3D printing and nanomaterial science is a promising approach with the potential for individualized, flexible, and precise technology for wound care approaches. This review encompasses the outcomes of various investigations on recent advances in 3D-printed drug-loaded natural, synthetic, and composite nanomaterials for wound healing. The challenges associated with their fabrication, clinical application progress, and future perspectives are also addressed. Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. Researchers discovered that two-dimensional (2D) media lacks appropriate real-life detection of cellular matter as these have highly complicated and diverse structures, compositions, and interactions. Hence, innovation towards three-dimensional (3D) media is called to conquer the high-level assessment and characterization in vivo using new technologies. The application of modern wound dressings prepared from a degenerated natural tissue, biodegradable biopolymer, synthetic polymer, or a composite of these materials in wound healing is currently an area of innovation in tissue regeneration medicine. Moreover, the integration of 3D printing and nanomaterial science is a promising approach with the potential for individualized, flexible, and precise technology for wound care approaches. This review encompasses the outcomes of various investigations on recent advances in 3D-printed drug-loaded natural, synthetic, and composite nanomaterials for wound healing. The challenges associated with their fabrication, clinical application progress, and future perspectives are also addressed. • 3D multiple-layer printed preparations for wound healing can simulate the entire skin structure and layers. • Combining natural and synthetic materials improved 3D product compatibility and strength. • Metallic NPs, when applied as a 3D-printed wound healing scaffold, demonstrated promising broad-spectrum antimicrobial properties. • Smart 3D-printed drug-loaded hydrogels have opened a new horizon for wound dressing with controlled release of bioactive substances/drugs. • Further investigations should progress into the application of 4D printing systems which comprises “3D printing plus time”. Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. Researchers discovered that two-dimensional (2D) media lacks appropriate real-life detection of cellular matter as these have highly complicated and diverse structures, compositions, and interactions. Hence, innovation towards three-dimensional (3D) media is called to conquer the high-level assessment and characterization in vivo using new technologies. The application of modern wound dressings prepared from a degenerated natural tissue, biodegradable biopolymer, synthetic polymer, or a composite of these materials in wound healing is currently an area of innovation in tissue regeneration medicine. Moreover, the integration of 3D printing and nanomaterial science is a promising approach with the potential for individualized, flexible, and precise technology for wound care approaches. This review encompasses the outcomes of various investigations on recent advances in 3D-printed drug-loaded natural, synthetic, and composite nanomaterials for wound healing. The challenges associated with their fabrication, clinical application progress, and future perspectives are also addressed.Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. Researchers discovered that two-dimensional (2D) media lacks appropriate real-life detection of cellular matter as these have highly complicated and diverse structures, compositions, and interactions. Hence, innovation towards three-dimensional (3D) media is called to conquer the high-level assessment and characterization in vivo using new technologies. The application of modern wound dressings prepared from a degenerated natural tissue, biodegradable biopolymer, synthetic polymer, or a composite of these materials in wound healing is currently an area of innovation in tissue regeneration medicine. Moreover, the integration of 3D printing and nanomaterial science is a promising approach with the potential for individualized, flexible, and precise technology for wound care approaches. This review encompasses the outcomes of various investigations on recent advances in 3D-printed drug-loaded natural, synthetic, and composite nanomaterials for wound healing. The challenges associated with their fabrication, clinical application progress, and future perspectives are also addressed. |
Author | Matsabisa, Motlalepula Yayehrad, Ashagrachew Tewabe Siraj, Ebrahim Abdella Birhanu, Gebremariam |
Author_xml | – sequence: 1 givenname: Ashagrachew Tewabe orcidid: 0000-0001-5122-7684 surname: Yayehrad fullname: Yayehrad, Ashagrachew Tewabe – sequence: 2 givenname: Ebrahim Abdella orcidid: 0000-0003-4921-6526 surname: Siraj fullname: Siraj, Ebrahim Abdella – sequence: 3 givenname: Motlalepula surname: Matsabisa fullname: Matsabisa, Motlalepula – sequence: 4 givenname: Gebremariam orcidid: 0000-0003-2149-9624 surname: Birhanu fullname: Birhanu, Gebremariam |
BookMark | eNp9kUFr3DAQhU1IIGmaP5CTj72sO7JsWT6Vsm3aQKCX9ixG0mhXi1faSnZL_3202RSSHgoCDZr3Pkbz3lTnIQaqqlsGDQMm3u-aRPO2aaHlDcgGYDirrlretyveQnf-or6sbnLeAQCTPWtHeVWt-af6kHyYydY2LZt6imhLHTDEPc6UPE65djHVv-MSbL0lnHzY1Hg4TN7g7GPIb6sLV1R083xfVz_uPn9ff109fPtyv_74sDLdAPPKjtxa7YgMd2QFGE1A0hEgaMM44SDFqLuBwTAY5BY66I0GQ-SsK4dfV_cnro24U2XqPaY_KqJXTw8xbRSm2ZuJ1Fi-7BwKM468M53BodfaSq0ZCq0FFtaHE-uw6D1ZQ2FOOL2Cvu4Ev1Wb-Esx6EY2yL4Q3j0TUvy5UJ7V3mdD04SB4pJVKwUfhBDjUSpPUpNizomcMn5-2l1B-6kw1TFItVPHINUxSAVSlSCLtf3H-nfE_5geAYmiqNY |
CitedBy_id | crossref_primary_10_1021_acsomega_4c04961 crossref_primary_10_1016_j_ijbiomac_2024_131207 crossref_primary_10_1016_j_hybadv_2024_100364 crossref_primary_10_1007_s13346_024_01744_1 crossref_primary_10_1016_j_engreg_2025_02_002 crossref_primary_10_1002_adhm_202402711 crossref_primary_10_1016_j_ijbiomac_2024_136991 crossref_primary_10_7759_cureus_75331 crossref_primary_10_1002_adhm_202404274 crossref_primary_10_5312_wjo_v16_i3_105130 crossref_primary_10_1016_j_ccr_2024_216093 crossref_primary_10_1097_DSS_0000000000004611 crossref_primary_10_1080_17425247_2024_2388214 crossref_primary_10_1039_D4RA05456C crossref_primary_10_1177_15280837241291215 crossref_primary_10_3390_pharmaceutics17030352 crossref_primary_10_1007_s11706_024_0691_y crossref_primary_10_13005_bpj_2953 crossref_primary_10_3390_ma17246045 crossref_primary_10_3390_pharmaceutics16080990 crossref_primary_10_1080_00914037_2024_2402364 crossref_primary_10_1016_j_jddst_2024_105689 crossref_primary_10_1038_s41428_024_00902_z |
Cites_doi | 10.3390/gels9020103 10.3390/pharmaceutics12010056 10.1089/ten.tea.2014.0102 10.1016/j.ijbiomac.2021.07.067 10.3390/polym8010019 10.4236/jbnb.2019.104011 10.1016/j.ceramint.2020.08.099 10.1073/pnas.1521342113 10.1126/science.1064829 10.1016/j.ijbiomac.2020.06.086 10.18063/ijb.v6i1.246 10.1021/acs.biomac.7b01165 10.21037/atm-21-2854 10.18063/ijb.689 10.3390/biomedicines10071562 10.1586/17434440.4.2.147 10.1007/s40204-018-0083-4 10.1002/adma.201806133 10.1039/D2BM00903J 10.1016/j.jcis.2019.03.024 10.3390/pharmaceutics14020464 10.1080/10717544.2020.1858998 10.1016/j.foodhyd.2011.02.007 10.1021/acsomega.0c06242 10.1007/s42242-018-0004-3 10.3390/nano11020420 10.1039/D0BM00055H 10.1126/science.aau5119 10.1021/acsami.7b09223 10.1088/1748-605X/abf1a8 10.1021/acsabm.8b00637 10.1016/j.addr.2012.03.009 10.1016/j.carbpol.2010.12.023 10.3390/ijms22031408 10.1021/acs.biomac.8b00053 10.1016/j.apsb.2012.07.004 10.3390/polym13162584 10.1080/21691401.2017.1349778 10.1002/slct.201803740 10.1021/acsnano.1c04499 10.2147/IJN.S276001 10.1007/s10965-022-02899-6 10.1016/j.reth.2021.05.001 10.1016/j.ijbiomac.2021.07.115 10.3390/biomedicines9111537 10.3390/polym12081782 10.1016/j.actbio.2016.11.017 10.1002/jbm.a.36036 10.1016/j.actbio.2019.11.014 10.3390/pharmaceutics13040564 10.3390/nano10020390 10.18063/ijb.v8i4.618 10.1021/acsabm.9b01026 10.1002/adfm.202105932 10.1016/j.addr.2018.03.002 10.1021/acsbiomaterials.9b01048 10.1039/D1MH00508A 10.1016/j.bioactmat.2020.01.012 10.1016/j.jddst.2022.103564 10.3390/pharmaceutics11040165 10.1021/acsabm.0c01108 10.1021/acsbiomaterials.1c01193 10.1016/j.carbpol.2015.05.081 10.1002/anbr.202000097 10.1186/s41205-022-00134-y 10.1021/acs.biomac.0c00801 10.1016/j.cobme.2017.06.002 10.1371/journal.pone.0097835 10.1080/10717544.2020.1797239 10.1039/D0TB02099K 10.1080/17425247.2016.1182485 10.3390/polym13152510 10.1080/17425247.2017.1371698 10.3390/ma16041364 10.1039/C6RA10652H 10.3390/ijms24020947 10.3390/polym14051012 10.1039/C7TB00478H 10.1016/j.carbpol.2018.07.057 10.1016/j.ijpharm.2017.04.077 10.1016/j.ijpharm.2013.12.015 10.1002/adhm.202102068 10.3934/matersci.2017.2.452 10.1016/j.bbagen.2014.01.010 10.1016/j.ijpharm.2019.02.020 10.1002/mabi.201800068 10.1021/acs.chemrev.7b00074 10.12968/jowc.2018.27.5.262 10.1002/stem.309 10.5966/sctm.2012-0088 10.1002/adfm.202000187 10.1016/j.mattod.2014.06.001 10.1016/j.carbpol.2018.01.060 10.1016/j.smaim.2022.09.005 10.1016/j.jiec.2017.06.033 10.1089/ten.tec.2013.0458 10.1002/adma.201700339 10.3390/bioengineering8060079 10.3390/ani12080966 10.1016/j.biomaterials.2010.08.089 10.1002/adma.201606061 10.1208/s12249-016-0704-y 10.1016/j.biotechadv.2015.12.011 10.3390/gels9020129 10.1002/bit.24455 10.1016/j.addr.2018.04.008 10.1002/9781119433316.ch17 10.1002/adhm.201700718 10.1242/dmm.016782 10.1021/cr400714j 10.1021/acsami.9b14090 10.1002/anie.202114111 10.1021/acsbiomaterials.8b01018 10.1021/acsami.5b11879 10.1016/j.msec.2019.03.056 10.1007/s10971-018-4630-1 10.7150/ijbs.37552 10.1002/adfm.202009691 10.3390/polym4031590 10.1016/j.foodhyd.2016.07.003 10.1111/iwj.12566 10.3390/mi14010137 10.1038/s41570-018-0058-y 10.1007/978-1-0716-0520-2_6 10.1208/s12249-023-02503-0 10.3390/nano9071049 10.3390/bioengineering4040096 10.1016/j.msec.2019.03.058 10.1089/ten.teb.2020.0339 10.1016/j.apsusc.2019.03.003 10.1016/j.actbio.2019.12.025 10.1016/j.actbio.2020.12.026 10.1016/j.matbio.2018.02.010 |
ContentType | Journal Article |
Copyright | 2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2023 The Japanese Society for Regenerative Medicine |
Copyright_xml | – notice: 2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. – notice: 2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2023 The Japanese Society for Regenerative Medicine |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.reth.2023.08.007 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2352-3204 |
EndPage | 376 |
ExternalDocumentID | oai_doaj_org_article_9235ffa6c9934c4ca75bbd8bb1a6bb6a PMC10491785 10_1016_j_reth_2023_08_007 |
GroupedDBID | 0R~ 4.4 457 53G 5VS AAEDW AAIKJ AALRI AAXUO AAYWO AAYXX ABMAC ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BCNDV CITATION EBS EJD FDB GROUPED_DOAJ HYE HZ~ IPNFZ KQ8 M41 M~E O9- OK1 RIG ROL RPM SSZ 7X8 5PM |
ID | FETCH-LOGICAL-c470t-d93ddbfeec3fed60cbe0e8fe0a0bc13ea7869b471077ca3d0405cb0ceefdffdf3 |
IEDL.DBID | DOA |
ISSN | 2352-3204 |
IngestDate | Wed Aug 27 01:30:22 EDT 2025 Thu Aug 21 18:36:37 EDT 2025 Fri Jul 11 02:45:17 EDT 2025 Thu Apr 24 22:53:47 EDT 2025 Tue Jul 01 03:44:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-d93ddbfeec3fed60cbe0e8fe0a0bc13ea7869b471077ca3d0405cb0ceefdffdf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5122-7684 0000-0003-4921-6526 0000-0003-2149-9624 |
OpenAccessLink | https://doaj.org/article/9235ffa6c9934c4ca75bbd8bb1a6bb6a |
PQID | 2863766695 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_9235ffa6c9934c4ca75bbd8bb1a6bb6a pubmedcentral_primary_oai_pubmedcentral_nih_gov_10491785 proquest_miscellaneous_2863766695 crossref_citationtrail_10_1016_j_reth_2023_08_007 crossref_primary_10_1016_j_reth_2023_08_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Regenerative therapy |
PublicationYear | 2023 |
Publisher | Japanese Society for Regenerative Medicine Elsevier |
Publisher_xml | – name: Japanese Society for Regenerative Medicine – name: Elsevier |
References | Zhou (10.1016/j.reth.2023.08.007_bib59) 2020; 30 Soenen (10.1016/j.reth.2023.08.007_bib157) 2015; 115 Mondal (10.1016/j.reth.2023.08.007_bib187) 2020; 46 Ramiah (10.1016/j.reth.2023.08.007_bib70) 2020; 7 Bai (10.1016/j.reth.2023.08.007_bib10) 2020; 15 Aghamirsalim (10.1016/j.reth.2023.08.007_bib27) 2022; 10 Malekmohammadi (10.1016/j.reth.2023.08.007_bib53) 2021; 9 Rizwan (10.1016/j.reth.2023.08.007_bib92) 2020; 3 Chang (10.1016/j.reth.2023.08.007_bib87) 2011; 84 Radmanesh (10.1016/j.reth.2023.08.007_bib67) 2022; 29 Zhu (10.1016/j.reth.2023.08.007_bib17) 2021 Zheng (10.1016/j.reth.2023.08.007_bib61) 2021; 9 Asadniaye Fardjahromi (10.1016/j.reth.2023.08.007_bib189) 2022; 23 Zelen (10.1016/j.reth.2023.08.007_bib28) 2016; 13 Skardal (10.1016/j.reth.2023.08.007_bib166) 2012; 1 Andriotis (10.1016/j.reth.2023.08.007_bib109) 2020; 12 Zhang (10.1016/j.reth.2023.08.007_bib152) 2021; 121 Sultan (10.1016/j.reth.2023.08.007_bib186) 2017; 2 Cubo-Mateo (10.1016/j.reth.2023.08.007_bib15) 2021; 9 Suamte (10.1016/j.reth.2023.08.007_bib100) 2023; 4 Singh (10.1016/j.reth.2023.08.007_bib175) 2016; 8 Marew (10.1016/j.reth.2023.08.007_bib73) 2021; 18 Guarino (10.1016/j.reth.2023.08.007_bib97) 2012; 4 Shafiee (10.1016/j.reth.2023.08.007_bib37) 2021; 268 Gutierrez (10.1016/j.reth.2023.08.007_bib129) 2019; 5 Diniz (10.1016/j.reth.2023.08.007_bib145) 2020; 10 Hu (10.1016/j.reth.2023.08.007_bib170) 2021; 426 Glover (10.1016/j.reth.2023.08.007_bib74) 2022 Randviir (10.1016/j.reth.2023.08.007_bib151) 2014; 17 Dabbagh (10.1016/j.reth.2023.08.007_bib63) 2021; 24 Hung (10.1016/j.reth.2023.08.007_bib82) 2022; 12 O'Loughlin (10.1016/j.reth.2023.08.007_bib114) 2013; 4 Zou (10.1016/j.reth.2023.08.007_bib131) 2020; 18 Modulevsky (10.1016/j.reth.2023.08.007_bib103) 2014; 9 Shu (10.1016/j.reth.2023.08.007_bib117) 2017; 12 Antezana (10.1016/j.reth.2023.08.007_bib78) 2022; 14 Xu (10.1016/j.reth.2023.08.007_bib14) 2022; 10 Niu (10.1016/j.reth.2023.08.007_bib102) 2022; 11 Zhang (10.1016/j.reth.2023.08.007_bib181) 2023; 10 Si (10.1016/j.reth.2023.08.007_bib83) 2017; 29 Negut (10.1016/j.reth.2023.08.007_bib99) 2020 Kosik-Kozioł (10.1016/j.reth.2023.08.007_bib144) 2019; 5 Tabriz (10.1016/j.reth.2023.08.007_bib3) 2020 Mandrycky (10.1016/j.reth.2023.08.007_bib31) 2016; 34 Maturavongsadit (10.1016/j.reth.2023.08.007_bib154) 2021; 4 D’souza (10.1016/j.reth.2023.08.007_bib96) 2016; 13 Preis (10.1016/j.reth.2023.08.007_bib179) 2017; 18 Huyan (10.1016/j.reth.2023.08.007_bib57) 2020; 6 Alizadehgiashi (10.1016/j.reth.2023.08.007_bib33) 2021; 15 Islam (10.1016/j.reth.2023.08.007_bib36) 2020; 5 Ibañez (10.1016/j.reth.2023.08.007_bib130) 2021; 13 Jang (10.1016/j.reth.2023.08.007_bib1) 2021; 16 Guo (10.1016/j.reth.2023.08.007_bib44) 2022; 1 Saghazadeh (10.1016/j.reth.2023.08.007_bib18) 2018; 127 dos Santos (10.1016/j.reth.2023.08.007_bib60) 2021; 31 Tamay (10.1016/j.reth.2023.08.007_bib56) 2019; 7 Khoeini (10.1016/j.reth.2023.08.007_bib105) 2021; 1 Mohiti-Asli (10.1016/j.reth.2023.08.007_bib136) 2014; 20 Mancini (10.1016/j.reth.2023.08.007_bib139) 2020 Kayser (10.1016/j.reth.2023.08.007_bib155) 2019; 31 Xu (10.1016/j.reth.2023.08.007_bib94) 2020; 12 Cleetus (10.1016/j.reth.2023.08.007_bib120) 2020 Surmeneva (10.1016/j.reth.2023.08.007_bib128) 2019; 480 Preis (10.1016/j.reth.2023.08.007_bib184) 2018 Sun (10.1016/j.reth.2023.08.007_bib190) 2018; 27 P B (10.1016/j.reth.2023.08.007_bib16) 2021 Sirko (10.1016/j.reth.2023.08.007_bib89) 2010; 28 Wang (10.1016/j.reth.2023.08.007_bib135) 2020; 16 Palaganas (10.1016/j.reth.2023.08.007_bib25) 2017; 9 Peng (10.1016/j.reth.2023.08.007_bib113) 2015; 21 Wang (10.1016/j.reth.2023.08.007_bib183) 2021; 187 Zhao (10.1016/j.reth.2023.08.007_bib4) 2022; 9 Fu (10.1016/j.reth.2023.08.007_bib191) 2021; 9 Afghah (10.1016/j.reth.2023.08.007_bib32) 2022; 11 Gattazzo (10.1016/j.reth.2023.08.007_bib41) 2014; 1840 Li (10.1016/j.reth.2023.08.007_bib138) 2018; 18 Hassan (10.1016/j.reth.2023.08.007_bib149) 2019; 121 Wathoni (10.1016/j.reth.2023.08.007_bib64) 2019; 5 Rahmani Del Bakhshayesh (10.1016/j.reth.2023.08.007_bib104) 2018; 46 Kolesky (10.1016/j.reth.2023.08.007_bib174) 2016; 113 Wu (10.1016/j.reth.2023.08.007_bib188) 2019; 11 Wei (10.1016/j.reth.2023.08.007_bib148) 2020; 27 Bergonzi (10.1016/j.reth.2023.08.007_bib12) 2023; 14 Pérez (10.1016/j.reth.2023.08.007_bib160) 2013; 65 Koch (10.1016/j.reth.2023.08.007_bib46) 2012; 109 Tallapaneni (10.1016/j.reth.2023.08.007_bib108) 2022 Tabriz (10.1016/j.reth.2023.08.007_bib65) 2022 Long (10.1016/j.reth.2023.08.007_bib79) 2019; 104 Jain (10.1016/j.reth.2023.08.007_bib182) 2021; 11 Cukierman (10.1016/j.reth.2023.08.007_bib40) 2001; 294 Qiu (10.1016/j.reth.2023.08.007_bib121) 2016; 8 Gomez-Guillen (10.1016/j.reth.2023.08.007_bib91) 2011; 25 Dinoro (10.1016/j.reth.2023.08.007_bib107) 2016 Chen (10.1016/j.reth.2023.08.007_bib58) 2019; 9 Kumar (10.1016/j.reth.2023.08.007_bib150) 2021; 14 Smandri (10.1016/j.reth.2023.08.007_bib176) 2020; 12 Mirani (10.1016/j.reth.2023.08.007_bib6) 2017; 6 Chinga-Carrasco (10.1016/j.reth.2023.08.007_bib7) 2019; 28 Shi (10.1016/j.reth.2023.08.007_bib48) 2019; 100 Thapa (10.1016/j.reth.2023.08.007_bib133) 2020; 103 Pedde (10.1016/j.reth.2023.08.007_bib51) 2017; 29 Radmanesh (10.1016/j.reth.2023.08.007_bib118) 2022; 29 Ligon (10.1016/j.reth.2023.08.007_bib180) 2017; 117 10.1016/j.reth.2023.08.007_bib119 Loukelis (10.1016/j.reth.2023.08.007_bib75) 2023; 9 Van Tomme (10.1016/j.reth.2023.08.007_bib86) 2007; 4 Mogoşanu (10.1016/j.reth.2023.08.007_bib106) 2014; 463 Choi (10.1016/j.reth.2023.08.007_bib62) 2021; 13 Memic (10.1016/j.reth.2023.08.007_bib23) 2019; 2 Domínguez-Robles (10.1016/j.reth.2023.08.007_bib141) 2019; 11 Al-ahmer (10.1016/j.reth.2023.08.007_bib158) 2018; 17 Nizioł (10.1016/j.reth.2023.08.007_bib164) 2021; 8 Vanaei (10.1016/j.reth.2023.08.007_bib69) 2021; 2 Zhao (10.1016/j.reth.2023.08.007_bib39) 2017; 49 Ceccarini (10.1016/j.reth.2023.08.007_bib20) 2023; 24 Lu (10.1016/j.reth.2023.08.007_bib80) 2023; 9 Fayyazbakhsh (10.1016/j.reth.2023.08.007_bib81) 2022; 8 Oran (10.1016/j.reth.2023.08.007_bib95) 2018; 1285 Siebert (10.1016/j.reth.2023.08.007_bib185) 2021; 31 Fu (10.1016/j.reth.2023.08.007_bib42) 2016 Prasathkumar (10.1016/j.reth.2023.08.007_bib29) 2021; 186 Shim (10.1016/j.reth.2023.08.007_bib134) 2017; 55 Milojević (10.1016/j.reth.2023.08.007_bib142) 2021; 13 Clohessy (10.1016/j.reth.2023.08.007_bib11) 2017 Castillo-Henríquez (10.1016/j.reth.2023.08.007_bib162) 2021; 22 Beitler (10.1016/j.reth.2023.08.007_bib8) 2022; 8 Loi (10.1016/j.reth.2023.08.007_bib71) 2023; 9 Kumar (10.1016/j.reth.2023.08.007_bib76) 2020; 2140 Hu (10.1016/j.reth.2023.08.007_bib137) 2019; 545 Muwaffak (10.1016/j.reth.2023.08.007_bib68) 2017; 527 Vahdatinia (10.1016/j.reth.2023.08.007_bib5) 2023; 16 Wang (10.1016/j.reth.2023.08.007_bib47) 2016 Zhang (10.1016/j.reth.2023.08.007_bib163) 2022; 1 Xue (10.1016/j.reth.2023.08.007_bib9) 2018; 129 Tan (10.1016/j.reth.2023.08.007_bib30) 2022; 28 Ilhan (10.1016/j.reth.2023.08.007_bib66) 2020; 161 Singh (10.1016/j.reth.2023.08.007_bib22) 2021; 32 Nunan (10.1016/j.reth.2023.08.007_bib13) 2014; 7 Chouhan (10.1016/j.reth.2023.08.007_bib35) 2019; 216 Boularaoui (10.1016/j.reth.2023.08.007_bib159) 2021; 7 Cao (10.1016/j.reth.2023.08.007_bib111) 2021; 28 Serafin (10.1016/j.reth.2023.08.007_bib146) 2021; 122 Agarwal (10.1016/j.reth.2023.08.007_bib77) 2020; 6 Uchida (10.1016/j.reth.2023.08.007_bib43) 2023; 24 Bendtsen (10.1016/j.reth.2023.08.007_bib143) 2017; 105 Muwaffak (10.1016/j.reth.2023.08.007_bib21) 2017; 527 Hafezi (10.1016/j.reth.2023.08.007_bib45) 2019; 560 Mogosanu (10.1016/j.reth.2023.08.007_bib110) 2012; 53 Masood (10.1016/j.reth.2023.08.007_bib122) 2021; 6 Das (10.1016/j.reth.2023.08.007_bib49) 2016; 4 Yang (10.1016/j.reth.2023.08.007_bib112) 2017; 4 Giri (10.1016/j.reth.2023.08.007_bib88) 2012; 2 Contessi Negrini (10.1016/j.reth.2023.08.007_bib101) 2020; 8 Maver (10.1016/j.reth.2023.08.007_bib116) 2018; 88 Thakur (10.1016/j.reth.2023.08.007_bib172) 2021; 18 Teo (10.1016/j.reth.2023.08.007_bib123) 2011; 32 Ulag (10.1016/j.reth.2023.08.007_bib169) 2019; 4 Glover (10.1016/j.reth.2023.08.007_bib55) 2022 Mir (10.1016/j.reth.2023.08.007_bib115) 2018; 7 Hu (10.1016/j.reth.2023.08.007_bib165) 2020; 8 Zhang (10.1016/j.reth.2023.08.007_bib173) 2018; 1 Serban (10.1016/j.reth.2023.08.007_bib90) 2019; 78–79 Teoh (10.1016/j.reth.2023.08.007_bib26) 2021; 31 Yuk (10.1016/j.reth.2023.08.007_bib93) 2016; 7 10.1016/j.reth.2023.08.007_bib140 Gupta (10.1016/j.reth.2023.08.007_bib171) 2019 Capel (10.1016/j.reth.2023.08.007_bib52) 2018; 2 You (10.1016/j.reth.2023.08.007_bib177) 2023 Gioumouxouzis (10.1016/j.reth.2023.08.007_bib50) 2018 Tsegay (10.1016/j.reth.2023.08.007_bib98) 2022; 14 Xue (10.1016/j.reth.2023.08.007_bib126) 2017; 5 Xu (10.1016/j.reth.2023.08.007_bib54) 2019; 9 Liu (10.1016/j.reth.2023.08.007_bib85) 2016; 61 Ding (10.1016/j.reth.2023.08.007_bib127) 2016; 6 Chinga-Carrasco (10.1016/j.reth.2023.08.007_bib153) 2018; 19 Kanjou M (10.1016/j.reth.2023.08.007_bib2) 2019; 10 Mostafalu (10.1016/j.reth.2023.08.007_bib167) 2018; 14 Wang (10.1016/j.reth.2023.08.007_bib168) 2019; 7 Bracaglia (10.1016/j.reth.2023.08.007_bib34) 2017; 18 Weisman (10.1016/j.reth.2023.08.007_bib124) 2017; 4 Du (10.1016/j.reth.2023.08.007_bib147) 2019; 103 Gao (10.1016/j.reth.2023.08.007_bib156) 2022; 451 Kim (10.1016/j.reth.2023.08.007_bib161) 2023 Sener (10.1016/j.reth.2023.08.007_bib132) 2020; 101 Catanzano (10.1016/j.reth.2023.08.007_bib38) 2015; 131 Hsiao (10.1016/j.reth.2023.08.007_bib178) 2018; 15 Martin (10.1016/j.reth.2023.08.007_bib125) 2019; 101 Intini (10.1016/j.reth.2023.08.007_bib19) 2018; 199 Nun (10.1016/j.reth.2023.08.007_bib24) 2020; 21 Gopinathan (10.1016/j.reth.2023.08.007_bib72) 2018; 1–15 Zarrintaj (10.1016/j.reth.2023.08.007_bib84) 2018; 187 |
References_xml | – volume: 24 issue: 1 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib63 article-title: 3D-printed microneedles in biomedical applications publication-title: iScience [Internet] – volume: 9 start-page: 1 issue: 2 year: 2023 ident: 10.1016/j.reth.2023.08.007_bib75 article-title: Nanocomposite bioprinting for tissue engineering applications publication-title: Gels doi: 10.3390/gels9020103 – volume: 12 issue: 1 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib109 article-title: Development of bio-active patches based on Pectin for the treatment of Ulcers and wounds using 3D-bioprinting technology publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12010056 – volume: 21 start-page: 1036 issue: 5–6 year: 2015 ident: 10.1016/j.reth.2023.08.007_bib113 article-title: Freeze-dried rat bone marrow mesenchymal stem cell paracrine factors: a simplified novel material for skin wound therapy publication-title: Tissue Eng doi: 10.1089/ten.tea.2014.0102 – year: 2020 ident: 10.1016/j.reth.2023.08.007_bib120 – year: 2016 ident: 10.1016/j.reth.2023.08.007_bib47 article-title: AC SC publication-title: Food Hydrocoll [Internet] – volume: 186 start-page: 656 issue: April year: 2021 ident: 10.1016/j.reth.2023.08.007_bib29 article-title: Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—know-how publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2021.07.067 – volume: 8 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.reth.2023.08.007_bib175 article-title: 3D printing of scaffold for cells delivery: advances in skin tissue engineering publication-title: Polymers doi: 10.3390/polym8010019 – volume: 31 start-page: 1 issue: 22 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib185 article-title: Light-controlled growth factors release on tetrapodal ZnO-incorporated 3D-printed hydrogels for developing smart wound scaffold publication-title: Adv Funct Mater – volume: 10 start-page: 190 issue: 4 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib2 article-title: 3-D print celulose nanoskin: future diabetic wound healing publication-title: J Biomaterials Nanobiotechnol doi: 10.4236/jbnb.2019.104011 – volume: 46 start-page: 29249 issue: 18 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib187 article-title: Rare earth element doped hydroxyapatite luminescent bioceramics contrast agent for enhanced biomedical imaging and therapeutic applications publication-title: Ceram Int [Internet doi: 10.1016/j.ceramint.2020.08.099 – volume: 113 start-page: 3179 issue: 12 year: 2016 ident: 10.1016/j.reth.2023.08.007_bib174 article-title: Threedimensional Nat, bioprinting of thick vascularized tissues publication-title: Proc Nat Acad Sci USA doi: 10.1073/pnas.1521342113 – volume: 294 start-page: 1708 issue: 5547 year: 2001 ident: 10.1016/j.reth.2023.08.007_bib40 article-title: Taking cell-matrix adhesions to the third dimension publication-title: Science doi: 10.1126/science.1064829 – volume: 161 start-page: 1040 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib66 article-title: Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2020.06.086 – volume: 6 start-page: 53 issue: 1 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib57 article-title: Pilot study of the biological properties and vascularization of 3D printed bilayer skin grafts publication-title: Int J Bioprinting doi: 10.18063/ijb.v6i1.246 – start-page: 208 issue: March year: 2021 ident: 10.1016/j.reth.2023.08.007_bib17 article-title: 3D printed gellan gum/graphene oxide scaffold for tumor therapy and bone reconstruction publication-title: Compos Sci Technol – volume: 18 start-page: 3802 issue: 11 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib34 article-title: 3D printed pericardium hydrogels to promote wound healing in vascular applications publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01165 – volume: 426 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib170 article-title: Cryogenic 3D printed hydrogel scaffolds loading exosomes accelerate diabetic wound healing publication-title: Chem Eng J [Internet] – year: 2016 ident: 10.1016/j.reth.2023.08.007_bib42 article-title: Delivery systems in wound healing and nanomedicine publication-title: In: Intech Open. IntechOpen – volume: 9 issue: 19 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib191 article-title: Narrative review of gene modification: applications in three-dimensional (3D) bioprinting publication-title: Ann Transl Med doi: 10.21037/atm-21-2854 – volume: 9 issue: 2 year: 2023 ident: 10.1016/j.reth.2023.08.007_bib80 article-title: A biocompatible double-crosslinked gelatin/sodium alginate/dopamine/quaterniazed chitosan hydrogel for wound dressings based on 3D bioprinting technology publication-title: Int J Bioprinting doi: 10.18063/ijb.689 – volume: 10 issue: 7 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib27 article-title: 3D printed hydrogels for ocular wound healing publication-title: Biomedicines doi: 10.3390/biomedicines10071562 – volume: 4 start-page: 147 issue: 2 year: 2007 ident: 10.1016/j.reth.2023.08.007_bib86 article-title: Biodegradable dextran hydrogels for protein delivery applications publication-title: Expet Rev Med Dev doi: 10.1586/17434440.4.2.147 – volume: 7 issue: 1 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib115 article-title: Synthetic polymeric biomaterials for wound healing: a review publication-title: Prog Biomater doi: 10.1007/s40204-018-0083-4 – volume: 31 start-page: 1 issue: 10 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib155 article-title: Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS publication-title: Adv Mater doi: 10.1002/adma.201806133 – volume: 4 start-page: 1 issue: OCT year: 2016 ident: 10.1016/j.reth.2023.08.007_bib49 article-title: Biomaterials and nanotherapeutics for enhancing skin wound healing publication-title: Front Bioeng Biotechnol – volume: 10 start-page: 5648 issue: 19 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib14 article-title: 3D printed heterogeneous hybrid hydrogel scaffolds for sequential tumor photothermal-chemotherapy and wound healing publication-title: Biomater Sci doi: 10.1039/D2BM00903J – volume: 545 start-page: 104 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib137 article-title: Facile preparation of bioactive nanoparticle/poly(ε-caprolactone) hierarchical porous scaffolds via 3D printing of high internal phase Pickering emulsions publication-title: J Colloid Interface Sci [Internet] doi: 10.1016/j.jcis.2019.03.024 – volume: 14 start-page: 1 issue: 2 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib78 article-title: The 3D bioprinted scaffolds for wound healing publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14020464 – volume: 28 start-page: 390 issue: 1 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib111 article-title: Cerium oxide nanoparticle-loaded polyvinyl alcohol nanogels delivery for wound healing care systems on surgery publication-title: Drug Deliv [Internet] doi: 10.1080/10717544.2020.1858998 – volume: 268 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib37 article-title: Convergence of 3D printed biomimetic wound dressings and adult stem cell therapy publication-title: Biomaterials [Internet] – volume: 25 start-page: 1813 issue: 8 year: 2011 ident: 10.1016/j.reth.2023.08.007_bib91 article-title: Functional and bioactive properties of collagen and gelatin from alternative sources: a review publication-title: Food Hydrocoll [Internet] doi: 10.1016/j.foodhyd.2011.02.007 – year: 2020 ident: 10.1016/j.reth.2023.08.007_bib99 – volume: 6 start-page: 8210 issue: 12 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib122 article-title: Pharmaco-technical evaluation of statistically formulated and optimized dual drug-loaded silica nanoparticles for improved antifungal efficacy and wound healing publication-title: ACS Omega doi: 10.1021/acsomega.0c06242 – volume: 1 start-page: 2 issue: 1 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib173 article-title: 3D bioprinting: an emerging technology full of opportunities and challenges publication-title: Bio-Design Manuf. doi: 10.1007/s42242-018-0004-3 – volume: 1–15 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib72 article-title: Review 5 2018 Recent trends in bioinks for 3D printing.pdf publication-title: Biomater Res – volume: 11 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib102 article-title: Fabrication of SA/Gel/C scaffold with 3D bioprinting to generate micro-nano porosity structure for skin wound healing: a detailed animal in vivo study publication-title: Cell Regen [Internet – volume: 11 start-page: 1 issue: 2 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib182 article-title: 3D printing in development of nanomedicines publication-title: Nanomaterials doi: 10.3390/nano11020420 – volume: 8 start-page: 2084 issue: 8 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib165 article-title: Rational design and latest advances of polysaccharide-based hydrogels for wound healing publication-title: Biomater Sci doi: 10.1039/D0BM00055H – volume: 1285 start-page: 1281 issue: December year: 2018 ident: 10.1016/j.reth.2023.08.007_bib95 article-title: 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds publication-title: Science doi: 10.1126/science.aau5119 – volume: 18 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib131 article-title: Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair publication-title: J Nanobiotechnology [Internet – volume: 9 start-page: 34314 issue: 39 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib25 article-title: 3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.7b09223 – volume: 16 issue: 4 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib1 article-title: Enhanced wound healing using a 3D printed VEGF-mimicking peptide incorporated hydrogel patch in a pig model publication-title: Biomed Mater doi: 10.1088/1748-605X/abf1a8 – volume: 2 start-page: 952 issue: 3 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib23 article-title: Latest progress in electrospun nanofibers for wound healing applications publication-title: ACS Appl Bio Mater doi: 10.1021/acsabm.8b00637 – volume: 65 start-page: 471 issue: 4 year: 2013 ident: 10.1016/j.reth.2023.08.007_bib160 article-title: Naturally and synthetic smart composite biomaterials for tissue regeneration publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2012.03.009 – volume: 121 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib149 article-title: 3D printing of biopolymer nanocomposites for tissue engineering: nanomaterials, processing and structure-function relation publication-title: Eur Polym J [Internet] – volume: 84 start-page: 40 issue: 1 year: 2011 ident: 10.1016/j.reth.2023.08.007_bib87 article-title: Cellulose-based hydrogels: present status and application prospects publication-title: Carbohydr Polym [Internet] doi: 10.1016/j.carbpol.2010.12.023 – volume: 29 issue: 2 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib118 article-title: 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review publication-title: J Polym Res [Internet] – volume: 22 start-page: 1 issue: 3 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib162 article-title: Exploration of bioengineered scaffolds composed of thermo-responsive polymers for drug delivery in wound healing publication-title: Int J Mol Sci doi: 10.3390/ijms22031408 – volume: 19 start-page: 701 issue: 3 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib153 article-title: Potential and limitations of nanocelluloses as components in biocomposite inks for three-dimensional bioprinting and for biomedical devices publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b00053 – volume: 10 issue: December 2022 year: 2023 ident: 10.1016/j.reth.2023.08.007_bib181 article-title: Advances in 3D skin bioprinting for wound healing and disease modeling publication-title: Regen Biomater – volume: 2 start-page: 439 issue: 5 year: 2012 ident: 10.1016/j.reth.2023.08.007_bib88 article-title: Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications publication-title: Acta Pharm Sin B [Internet] doi: 10.1016/j.apsb.2012.07.004 – volume: 13 issue: 16 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib62 article-title: Development of a multi-layer skin substitute using human hair keratinic extract-based hybrid 3d printing publication-title: Polymers doi: 10.3390/polym13162584 – volume: 46 start-page: 691 issue: 4 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib104 article-title: Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering publication-title: Artif Cells, Nanomedicine Biotechnol [Internet] doi: 10.1080/21691401.2017.1349778 – volume: 4 start-page: 2387 issue: 8 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib169 article-title: 3D printing artificial blood vessel constructs using PCL/Chitosan/Hydrogel biocomposites publication-title: ChemistrySelect doi: 10.1002/slct.201803740 – year: 2022 ident: 10.1016/j.reth.2023.08.007_bib108 article-title: Dual-drug loaded biomimetic chitosan-collagen hybrid nanocomposite scaffolds for ameliorating potential tissue regeneration in diabetic wounds publication-title: bioRxiv [Internet] – volume: 15 start-page: 12375 issue: 7 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib33 article-title: Multifunctional 3D-printed wound dressings publication-title: ACS Nano doi: 10.1021/acsnano.1c04499 – volume: 15 start-page: 9717 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib10 article-title: Potential applications of nanomaterials and technology for diabetic wound healing publication-title: Int J Nanomed doi: 10.2147/IJN.S276001 – volume: 29 start-page: 50 issue: 2 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib67 article-title: 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review publication-title: J Polym Res doi: 10.1007/s10965-022-02899-6 – volume: 18 start-page: 102 issue: May year: 2021 ident: 10.1016/j.reth.2023.08.007_bib73 article-title: Three dimensional printed nanostructure biomaterials for bone tissue engineering publication-title: Regen Ther doi: 10.1016/j.reth.2021.05.001 – volume: 187 start-page: 91 issue: 30 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib183 article-title: 3D-printed antioxidant antibacterial carboxymethyl cellulose/ε-polylysine hydrogel promoted skin wound repair publication-title: Int J Biol Macromol [Internet] doi: 10.1016/j.ijbiomac.2021.07.115 – volume: 9 start-page: 1 issue: 11 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib53 article-title: Smart and biomimetic 3d and 4d printed composite hydrogels: opportunities for different biomedical applications publication-title: Biomedicines doi: 10.3390/biomedicines9111537 – volume: 12 issue: 8 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib176 article-title: Natural 3D-printed bioinks for skin regeneration and wound healing: a systematic review publication-title: Polymers doi: 10.3390/polym12081782 – volume: 49 start-page: 66 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib39 article-title: Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing publication-title: Acta Biomater [Internet] doi: 10.1016/j.actbio.2016.11.017 – start-page: 415 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib171 publication-title: Chem Soc Rev Combatting antibiotic-resistant bacteria using nanomaterials – volume: 4 start-page: 1 issue: 6 year: 2013 ident: 10.1016/j.reth.2023.08.007_bib114 article-title: Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model publication-title: Stem Cell Res Ther – volume: 105 start-page: 1457 issue: 5 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib143 article-title: Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds publication-title: J Biomed Mater Res, Part A doi: 10.1002/jbm.a.36036 – volume: 104 issue: May year: 2019 ident: 10.1016/j.reth.2023.08.007_bib79 article-title: A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery publication-title: Mater Sci Eng C [Internet] – volume: 101 start-page: 262 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib132 article-title: Injectable, self-healable zwitterionic cryogels with sustained microRNA - cerium oxide nanoparticle release promote accelerated wound healing publication-title: Acta Biomater [Internet doi: 10.1016/j.actbio.2019.11.014 – start-page: 1 year: 2023 ident: 10.1016/j.reth.2023.08.007_bib177 publication-title: High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues – volume: 13 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib142 article-title: Hybrid 3D printing of advanced hydrogel-based wound dressings with tailorable properties publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13040564 – volume: 10 issue: 2 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib145 article-title: Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo publication-title: Nanomaterials doi: 10.3390/nano10020390 – volume: 8 start-page: 274 issue: 4 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib81 article-title: 3D-Printed gelatin-alginate hydrogel dressings for burn wound healing: a comprehensive study publication-title: Int J Bioprinting doi: 10.18063/ijb.v8i4.618 – volume: 3 start-page: 693 issue: 1 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib92 article-title: One-pot covalent grafting of gelatin on poly(vinyl alcohol) hydrogel to enhance endothelialization and hemocompatibility for synthetic vascular graft applications publication-title: ACS Appl Bio Mater doi: 10.1021/acsabm.9b01026 – volume: 31 start-page: 1 issue: 48 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib26 article-title: 3D printing personalized, photocrosslinkable hydrogel wound dressings for the treatment of thermal burns publication-title: Adv Funct Mater doi: 10.1002/adfm.202105932 – volume: 122 issue: February year: 2021 ident: 10.1016/j.reth.2023.08.007_bib146 article-title: Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering publication-title: Mater Sci Eng C [Internet] – volume: 129 start-page: 219 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib9 article-title: Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns publication-title: Adv Drug Deliv Rev [Internet doi: 10.1016/j.addr.2018.03.002 – start-page: 85 year: 2016 ident: 10.1016/j.reth.2023.08.007_bib107 article-title: 3D printing PhycoTrixTM for wound healing publication-title: Univ Wollongong Thesis Collect 1954-2016 [Internet] – volume: 5 start-page: 6290 issue: 11 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib129 article-title: 3D printing of antimicrobial alginate/bacterial-cellulose composite hydrogels by incorporating copper nanostructures publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.9b01048 – volume: 9 start-page: 342 issue: 1 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib4 article-title: 3D printing of artificial skin patches with bioactive and optically active polymer materials for anti-infection and augmenting wound repair publication-title: Mater Horiz doi: 10.1039/D1MH00508A – volume: 5 start-page: 164 issue: 1 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib36 article-title: Chitosan based bioactive materials in tissue engineering applications-A review publication-title: Bioact Mater [Internet] doi: 10.1016/j.bioactmat.2020.01.012 – year: 2022 ident: 10.1016/j.reth.2023.08.007_bib65 article-title: Recent advances in 3D printing for wound healing: a systematic review publication-title: J Drug Deliv Sci Technol doi: 10.1016/j.jddst.2022.103564 – volume: 11 start-page: 5 issue: 4 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib141 article-title: Antioxidant pla composites containing lignin for 3D printing applications: a potential material for healthcare applications publication-title: Pharmaceutics doi: 10.3390/pharmaceutics11040165 – volume: 4 start-page: 2342 issue: 3 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib154 article-title: Cell-Laden nanocellulose/chitosan-based bioinks for 3D bioprinting and enhanced osteogenic cell differentiation publication-title: ACS Appl Bio Mater doi: 10.1021/acsabm.0c01108 – volume: 7 start-page: 5810 issue: 12 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib159 article-title: Nanocomposite conductive bioinks based on low-concentration GelMA and MXene nanosheets/gold nanoparticles providing enhanced printability of functional skeletal muscle tissues publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.1c01193 – volume: 131 start-page: 407 year: 2015 ident: 10.1016/j.reth.2023.08.007_bib38 article-title: Alginate-hyaluronan composite hydrogels accelerate wound healing process publication-title: Carbohydr Polym [Internet] doi: 10.1016/j.carbpol.2015.05.081 – volume: 1 issue: 8 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib105 article-title: Natural and synthetic bioinks for 3D bioprinting publication-title: Adv NanoBiomed Res doi: 10.1002/anbr.202000097 – volume: 8 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib8 article-title: Interpretation of regulatory factors for 3D printing at hospitals and medical centers, or at the point of care publication-title: 3D Print Med. doi: 10.1186/s41205-022-00134-y – volume: 21 start-page: 4030 issue: 10 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib24 article-title: Thread size and polymer composition of 3D printed and electrospun wound dressings affect wound healing outcomes in an excisional wound rat model publication-title: Biomacromolecules doi: 10.1021/acs.biomac.0c00801 – volume: 2 start-page: 29 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib186 article-title: 3D printing of nano-cellulosic biomaterials for medical applications publication-title: Curr Opin Biomed Eng [Internet doi: 10.1016/j.cobme.2017.06.002 – volume: 1 issue: 1 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib44 article-title: Microfluidic 3D printing polyhydroxyalkanoates-based bionic skin for wound healing publication-title: Mater Futur – volume: 9 issue: 5 year: 2014 ident: 10.1016/j.reth.2023.08.007_bib103 article-title: Apple derived cellulose scaffolds for 3D mammalian cell culture publication-title: PLoS One doi: 10.1371/journal.pone.0097835 – volume: 27 start-page: 1106 issue: 1 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib148 article-title: IGF-1-releasing PLGA nanoparticles modified 3D printed PCL scaffolds for cartilage tissue engineering publication-title: Drug Deliv [Internet doi: 10.1080/10717544.2020.1797239 – start-page: 153 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib50 article-title: Emerging 3D printing technologies to develop novel pharmaceutical formulations publication-title: 3D 4D Print Biomed Appl. – volume: 9 start-page: 1238 issue: 5 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib61 article-title: Functional silk fibroin hydrogels: preparation, properties and applications publication-title: J Mater Chem B doi: 10.1039/D0TB02099K – volume: 7 start-page: 1 issue: November year: 2019 ident: 10.1016/j.reth.2023.08.007_bib168 article-title: Three dimensional printing bilayer membrane scaffold promotes wound healing publication-title: Front Bioeng Biotechnol – volume: 13 start-page: 1257 issue: 9 year: 2016 ident: 10.1016/j.reth.2023.08.007_bib96 article-title: Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications publication-title: Expert Opin Drug Deliv [Internet] doi: 10.1080/17425247.2016.1182485 – volume: 7 issue: JUL year: 2019 ident: 10.1016/j.reth.2023.08.007_bib56 article-title: 3D and 4D printing of polymers for tissue engineering applications publication-title: Front Bioeng Biotechnol – volume: 13 issue: 15 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib130 article-title: 3D-Printed gelatin methacrylate scaffolds with controlled architecture and stiffness modulate the fibroblast phenotype towards dermal regeneration publication-title: Polymers doi: 10.3390/polym13152510 – year: 2023 ident: 10.1016/j.reth.2023.08.007_bib161 – volume: 15 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib178 article-title: 3D printing of oral drugs: a new reality or hype? publication-title: Expet Opin Drug Deliv doi: 10.1080/17425247.2017.1371698 – volume: 16 issue: 4 year: 2023 ident: 10.1016/j.reth.2023.08.007_bib5 article-title: 3D-Printed soft membrane for periodontal guided tissue regeneration publication-title: Materials doi: 10.3390/ma16041364 – volume: 6 start-page: 76785 issue: 80 year: 2016 ident: 10.1016/j.reth.2023.08.007_bib127 article-title: A lotus root inspired implant system with fever responsive characteristics and 3D printing defined nano-antibiotic release patterns publication-title: RSC Adv doi: 10.1039/C6RA10652H – volume: 24 issue: 2 year: 2023 ident: 10.1016/j.reth.2023.08.007_bib20 article-title: Biomaterial inks from peptide-functionalized silk fibers for 3D printing of futuristic wound-healing and sensing materials publication-title: Int J Mol Sci doi: 10.3390/ijms24020947 – volume: 14 issue: 5 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib98 article-title: Smart 3D printed hydrogel skin wound bandages: a review publication-title: Polymers doi: 10.3390/polym14051012 – volume: 5 start-page: 4128 issue: 22 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib126 article-title: A highly efficient, low-toxic, wide-spectrum antibacterial coating designed for 3D printed implants with tailorable release properties publication-title: J Mater Chem B doi: 10.1039/C7TB00478H – volume: 199 start-page: 593 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib19 article-title: 3D-printed chitosan-based scaffolds: an in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats publication-title: Carbohydr Polym [Internet] doi: 10.1016/j.carbpol.2018.07.057 – volume: 12 start-page: 1 issue: 580 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib94 article-title: Poly(N-isopropylacrylamide)-Based thermoresponsive composite hydrogels for biomedical applications publication-title: Polymers – volume: 527 start-page: 161 issue: 1–2 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib21 article-title: Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings publication-title: Int J Pharm [Internet] doi: 10.1016/j.ijpharm.2017.04.077 – volume: 463 start-page: 127 issue: 2 year: 2014 ident: 10.1016/j.reth.2023.08.007_bib106 article-title: Natural and synthetic polymers for wounds and burns dressing publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2013.12.015 – volume: 11 start-page: 1 issue: 11 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib32 article-title: 3D fiber reinforced hydrogel scaffolds by melt electrowriting and gel casting as a hybrid design for wound healing publication-title: Adv Healthcare Mater doi: 10.1002/adhm.202102068 – volume: 53 start-page: 249 year: 2012 ident: 10.1016/j.reth.2023.08.007_bib110 article-title: Naturalproducts locally modulators of the cellular response: therapeutic perspectivesin skin burns publication-title: Rom J Morphol Embryol – volume: 14 start-page: 1 issue: 33 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib167 article-title: Smart bandage for monitoring and treatment of chronic wounds publication-title: Small – volume: 4 start-page: 452 issue: 2 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib112 article-title: Inkjet printed drug-releasing polyelectrolyte multilayers for wound dressings publication-title: AIMS Mater Sci doi: 10.3934/matersci.2017.2.452 – start-page: 145 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib184 article-title: Potential of 3D printing in pharmaceutical drug delivery and manufacturing publication-title: 3D 4D Print Biomed Appl. – volume: 1840 start-page: 2506 issue: 8 year: 2014 ident: 10.1016/j.reth.2023.08.007_bib41 article-title: Extracellular matrix: a dynamic microenvironment for stem cell niche publication-title: Biochim Biophys Acta - Gen Subj [Internet] doi: 10.1016/j.bbagen.2014.01.010 – year: 2022 ident: 10.1016/j.reth.2023.08.007_bib74 article-title: 3D bioprinted scaffolds for diabetic wound - healing applications publication-title: Drug Deliv Transl Res – volume: 560 start-page: 406 issue: January year: 2019 ident: 10.1016/j.reth.2023.08.007_bib45 article-title: 3D printed chitosan dressing crosslinked with genipin for potential healing of chronic wounds publication-title: Int J Pharm [Internet doi: 10.1016/j.ijpharm.2019.02.020 – year: 2017 ident: 10.1016/j.reth.2023.08.007_bib11 – volume: 23 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib189 article-title: Metal-organic framework-based nanomaterials for bone tissue engineering and wound healing publication-title: Mater Today Chem – volume: 451 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib156 article-title: 3D bioprinted conductive spinal cord biomimetic scaffolds for promoting neuronal differentiation of neural stem cells and repairing of spinal cord injury publication-title: Chem Eng J – volume: 32 start-page: 1 issue: 4 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib22 article-title: Design and characterization of 3D printed, neomycin-eluting poly-L-lactide mats for wound-healing applications publication-title: J Mater Sci Mater Med [Internet] – volume: 18 start-page: 1 issue: 6 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib138 article-title: Composite PLA/PEG/nHA/Dexamethasone scaffold prepared by 3D printing for bone regeneration publication-title: Macromol Biosci doi: 10.1002/mabi.201800068 – volume: 117 start-page: 10212 issue: 15 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib180 article-title: Polymers for 3D printing and customized additive manufacturing publication-title: Chem Rev doi: 10.1021/acs.chemrev.7b00074 – volume: 27 start-page: 262 issue: 5 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib190 article-title: Clinical application of a 3D-printed scaffold in chronic wound treatment: a case series publication-title: J Wound Care doi: 10.12968/jowc.2018.27.5.262 – start-page: 1 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib16 publication-title: Hernia Repair – volume: 28 start-page: 775 issue: 4 year: 2010 ident: 10.1016/j.reth.2023.08.007_bib89 article-title: Chondroitin sulfates are required for fibroblast growth factor-2-dependent proliferation and maintenance in neural stem cells and for epidermal growth factor-dependent migration of their progeny publication-title: Stem Cell doi: 10.1002/stem.309 – volume: 1 start-page: 792 issue: 11 year: 2012 ident: 10.1016/j.reth.2023.08.007_bib166 article-title: Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds publication-title: Stem Cells Transl Med doi: 10.5966/sctm.2012-0088 – volume: 30 start-page: 1 issue: 28 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib59 article-title: A review of 3D printing technologies for soft polymer materials publication-title: Adv Funct Mater doi: 10.1002/adfm.202000187 – volume: 7 start-page: 1 issue: May year: 2016 ident: 10.1016/j.reth.2023.08.007_bib93 article-title: Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures publication-title: Nat Commun – volume: 17 start-page: 426 issue: 9 year: 2014 ident: 10.1016/j.reth.2023.08.007_bib151 article-title: A decade of graphene research: production, applications and outlook publication-title: Mater Today [Internet] doi: 10.1016/j.mattod.2014.06.001 – volume: 187 start-page: 66 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib84 article-title: Agarose-based biomaterials for tissue engineering publication-title: Carbohydr Polym [Internet] doi: 10.1016/j.carbpol.2018.01.060 – volume: 4 start-page: 243 issue: June 2022 year: 2023 ident: 10.1016/j.reth.2023.08.007_bib100 article-title: Design of 3D smart scaffolds using natural, synthetic and hybrid derived polymers for skin regenerative applications publication-title: Smart Mater Med [Internet doi: 10.1016/j.smaim.2022.09.005 – volume: 55 start-page: 101 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib134 article-title: Surface immobilization of biphasic calcium phosphate nanoparticles on 3D printed poly(caprolactone) scaffolds enhances osteogenesis and bone tissue regeneration publication-title: J Ind Eng Chem [Internet doi: 10.1016/j.jiec.2017.06.033 – volume: 20 start-page: 790 issue: 10 year: 2014 ident: 10.1016/j.reth.2023.08.007_bib136 article-title: Skin tissue engineering for the infected wound site: biodegradable PLA nanofibers and a novel approach for silver ion release evaluated in a 3D coculture system of keratinocytes and staphylococcus aureus publication-title: Tissue Eng C Methods doi: 10.1089/ten.tec.2013.0458 – volume: 29 start-page: 1 issue: 24 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib83 article-title: Ultrahigh-water-content, superelastic, and shape-memory nanofiber-assembled hydrogels exhibiting pressure-responsive conductivity publication-title: Adv Mater doi: 10.1002/adma.201700339 – volume: 8 start-page: 1 issue: 6 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib164 article-title: 3D printing of thermoresponsive hydrogel laden with an antimicrobial agent towards wound healing applications publication-title: Bioengineering doi: 10.3390/bioengineering8060079 – volume: 12 start-page: 1 issue: 8 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib82 article-title: A novel application of 3D printing technology facilitating shell wound healing of freshwater turtle publication-title: Animals doi: 10.3390/ani12080966 – year: 2022 ident: 10.1016/j.reth.2023.08.007_bib55 article-title: 3D bioprinted scaffolds for diabetic wound-healing applications publication-title: Drug Deliv Transl Res [Internet] – volume: 32 start-page: 279 issue: 1 year: 2011 ident: 10.1016/j.reth.2023.08.007_bib123 article-title: Polycaprolactone-based fused deposition modeled mesh for delivery of antibacterial agents to infected wounds publication-title: Biomaterials [Internet] doi: 10.1016/j.biomaterials.2010.08.089 – volume: 29 start-page: 1 issue: 19 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib51 article-title: Emerging biofabrication strategies for engineering complex tissue constructs publication-title: Adv Mater doi: 10.1002/adma.201606061 – volume: 2 start-page: 1 issue: December 2020 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib69 article-title: An overview on materials and techniques in 3D bioprinting toward biomedical application publication-title: Eng Regen [Internet] – volume: 18 start-page: 303 issue: 2 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib179 article-title: 3D-Printed drugs for children—are we ready yet? publication-title: AAPS PharmSciTech [Internet] doi: 10.1208/s12249-016-0704-y – volume: 34 start-page: 422 issue: 4 year: 2016 ident: 10.1016/j.reth.2023.08.007_bib31 article-title: 3D bioprinting for engineering complex tissues publication-title: Biotechnol Adv [Internet] doi: 10.1016/j.biotechadv.2015.12.011 – volume: 1 start-page: 1 issue: 1 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib163 article-title: Recent advances in 3D printing hydrogel for topical drug delivery publication-title: MedComm – Biomater Appl. – volume: 527 start-page: 161 issue: 1–2 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib68 article-title: Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2017.04.077 – volume: 9 issue: 2 year: 2023 ident: 10.1016/j.reth.2023.08.007_bib71 article-title: Characterization of a bioink combining extracellular matrix-like hydrogel with osteosarcoma cells: preliminary results publication-title: Gels doi: 10.3390/gels9020129 – volume: 109 start-page: 1855 issue: 7 year: 2012 ident: 10.1016/j.reth.2023.08.007_bib46 article-title: Skin tissue generation by laser cell printing publication-title: Biotechnol Bioeng doi: 10.1002/bit.24455 – volume: 127 start-page: 138 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib18 article-title: Drug delivery systems and materials for wound healing applications publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2018.04.008 – start-page: 385 issue: i year: 2020 ident: 10.1016/j.reth.2023.08.007_bib3 article-title: 3D printed scaffolds for wound healing and tissue regeneration publication-title: Ther Dressings Wound Heal Appl doi: 10.1002/9781119433316.ch17 – volume: 6 start-page: 1 issue: 19 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib6 article-title: An advanced multifunctional hydrogel-based dressing for wound monitoring and drug delivery publication-title: Adv Healthcare Mater doi: 10.1002/adhm.201700718 – volume: 28 start-page: 267 issue: May year: 2019 ident: 10.1016/j.reth.2023.08.007_bib7 article-title: Bagasse—a major agro-industrial residue as potential resource for nanocellulose inks for 3D printing of wound dressing devices publication-title: Addit Manuf [Internet] – volume: 7 start-page: 1205 issue: 11 year: 2014 ident: 10.1016/j.reth.2023.08.007_bib13 article-title: Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity publication-title: DMM Dis Model Mech doi: 10.1242/dmm.016782 – volume: 115 start-page: 2109 issue: 5 year: 2015 ident: 10.1016/j.reth.2023.08.007_bib157 article-title: (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications publication-title: Chem Rev doi: 10.1021/cr400714j – volume: 7 start-page: 1 issue: April year: 2020 ident: 10.1016/j.reth.2023.08.007_bib70 article-title: Hydrogel-based bioinks for 3D bioprinting in tissue regeneration publication-title: Front Mater – year: 2020 ident: 10.1016/j.reth.2023.08.007_bib139 – volume: 9 start-page: 1 issue: October year: 2021 ident: 10.1016/j.reth.2023.08.007_bib15 article-title: Wound and skin healing in space: the 3D bioprinting perspective publication-title: Front Bioeng Biotechnol – volume: 11 start-page: 33734 issue: 37 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib188 article-title: Combination of the silver-ethylene interaction and 3D printing to develop antibacterial superporous hydrogels for wound management publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b14090 – volume: 216 issue: June year: 2019 ident: 10.1016/j.reth.2023.08.007_bib35 article-title: Emerging and innovative approaches for wound healing and skin regeneration: current status and advances publication-title: Biomaterials [Internet] – ident: 10.1016/j.reth.2023.08.007_bib140 doi: 10.1002/anie.202114111 – volume: 5 start-page: 318 issue: 1 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib144 article-title: Surface modification of 3D printed polycaprolactone constructs via a solvent treatment: impact on physical and osteogenic properties publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.8b01018 – volume: 17 start-page: 1 issue: 3 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib158 publication-title: Using of hybrid nanoantibiotics antimicrobial agent as promising – volume: 8 start-page: 4137 issue: 6 year: 2016 ident: 10.1016/j.reth.2023.08.007_bib121 article-title: Electrophoretic deposition of dexamethasone-loaded mesoporous silica nanoparticles onto poly(l-lactic acid)/poly(ε-caprolactone) composite scaffold for bone tissue engineering publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b11879 – volume: 103 issue: May year: 2019 ident: 10.1016/j.reth.2023.08.007_bib147 article-title: 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering publication-title: Mater Sci Eng C [Internet] – volume: 12 start-page: 0 issue: 1 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib117 article-title: Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity publication-title: Nanoscale Res Lett [Internet – volume: 101 start-page: 15 issue: February year: 2019 ident: 10.1016/j.reth.2023.08.007_bib125 article-title: Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration publication-title: Mater Sci Eng C [Internet] doi: 10.1016/j.msec.2019.03.056 – volume: 88 start-page: 33 issue: 1 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib116 article-title: Combining 3D printing and electrospinning for preparation of pain-relieving wound-dressing materials publication-title: J Sol Gel Sci Technol doi: 10.1007/s10971-018-4630-1 – volume: 16 start-page: 1821 issue: 11 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib135 article-title: A novel vehicle-like drug delivery 3D printing scaffold and its applications for a rat femoral bone repairing in vitro and in vivo publication-title: Int J Biol Sci doi: 10.7150/ijbs.37552 – ident: 10.1016/j.reth.2023.08.007_bib119 – volume: 18 start-page: 7 issue: 1 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib172 article-title: An overview on 3D printed medicine publication-title: Mater Sci Res Int – volume: 8 start-page: 1 issue: June year: 2020 ident: 10.1016/j.reth.2023.08.007_bib101 article-title: Plant tissues as 3D natural scaffolds for adipose, bone and tendon tissue regeneration publication-title: Front Bioeng Biotechnol – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib54 article-title: 3D printed polyvinyl alcohol tablets with multiple release profiles publication-title: Sci Rep – volume: 31 start-page: 1 issue: 16 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib60 article-title: 3D printing and nanotechnology: a multiscale alliance in personalized medicine publication-title: Adv Funct Mater doi: 10.1002/adfm.202009691 – volume: 4 start-page: 1590 issue: 3 year: 2012 ident: 10.1016/j.reth.2023.08.007_bib97 article-title: Hydrogel-based platforms for the regeneration of osteochondral tissue and intervertebral disc publication-title: Polymers doi: 10.3390/polym4031590 – volume: 61 start-page: 793 year: 2016 ident: 10.1016/j.reth.2023.08.007_bib85 article-title: Thermoreversible gelation and scaling behavior of Ca2+-induced κ-carrageenan hydrogels publication-title: Food Hydrocoll [Internet] doi: 10.1016/j.foodhyd.2016.07.003 – volume: 13 start-page: 272 issue: 2 year: 2016 ident: 10.1016/j.reth.2023.08.007_bib28 article-title: Treatment of chronic diabetic lower extremity ulcers with advanced therapies: a prospective, randomised, controlled, multi-centre comparative study examining clinical efficacy and cost publication-title: Int Wound J doi: 10.1111/iwj.12566 – volume: 14 issue: 1 year: 2023 ident: 10.1016/j.reth.2023.08.007_bib12 article-title: 3D printed chitosan/alginate hydrogels for the controlled release of silver sulfadiazine in wound healing applications: design, characterization and antimicrobial activity publication-title: Micromachines doi: 10.3390/mi14010137 – volume: 2 start-page: 422 issue: 12 year: 2018 ident: 10.1016/j.reth.2023.08.007_bib52 article-title: 3D printing for chemical, pharmaceutical and biological applications publication-title: Nat Rev Chem doi: 10.1038/s41570-018-0058-y – volume: 14 start-page: 5257 issue: 1 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib150 article-title: A recent update on formulation and development of gastro-retentive drug delivery systems publication-title: Int J Pharm Sci Nanotechnol – volume: 2140 start-page: 93 issue: May year: 2020 ident: 10.1016/j.reth.2023.08.007_bib76 article-title: Stereolithography 3D bioprinting publication-title: Methods Mol Biol doi: 10.1007/978-1-0716-0520-2_6 – volume: 24 issue: 1 year: 2023 ident: 10.1016/j.reth.2023.08.007_bib43 article-title: 3D printing as a technological strategy for the personalized treatment of wound healing publication-title: AAPS PharmSciTech doi: 10.1208/s12249-023-02503-0 – volume: 9 issue: 7 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib58 article-title: Tio2 and PEEK reinforced 3d printing pmma composite resin for dental denture base applications publication-title: Nanomaterials doi: 10.3390/nano9071049 – volume: 4 issue: 4 year: 2017 ident: 10.1016/j.reth.2023.08.007_bib124 article-title: Doped halloysite nanotubes for use in the 3D printing of medical devices publication-title: Bioengineering doi: 10.3390/bioengineering4040096 – volume: 100 start-page: 915 issue: November 2017 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib48 article-title: Biomimicry of oil infused layer on 3D printed poly(dimethylsiloxane): non-fouling, antibacterial and promoting infected wound healing publication-title: Mater Sci Eng C [Internet] doi: 10.1016/j.msec.2019.03.058 – volume: 6 issue: October year: 2020 ident: 10.1016/j.reth.2023.08.007_bib77 article-title: Current developments in 3D bioprinting for tissue and organ regeneration publication-title: Rev – volume: 28 start-page: 160 issue: 1 year: 2022 ident: 10.1016/j.reth.2023.08.007_bib30 article-title: Recent advances in the design of three-dimensional and bioprinted scaffolds for full-thickness wound healing publication-title: Tissue Eng Part B doi: 10.1089/ten.teb.2020.0339 – volume: 480 start-page: 822 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib128 article-title: Decreased bacterial colonization of additively manufactured Ti6Al4V metallic scaffolds with immobilized silver and calcium phosphate nanoparticles publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2019.03.003 – volume: 103 start-page: 52 year: 2020 ident: 10.1016/j.reth.2023.08.007_bib133 article-title: Topical antimicrobial peptide formulations for wound healing: current developments and future prospects publication-title: Acta Biomater doi: 10.1016/j.actbio.2019.12.025 – volume: 121 start-page: 637 year: 2021 ident: 10.1016/j.reth.2023.08.007_bib152 article-title: 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization publication-title: Acta Biomater [Internet doi: 10.1016/j.actbio.2020.12.026 – volume: 5 issue: 8 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib64 article-title: Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind publication-title: Heliyon [Internet] – volume: 78–79 start-page: 337 year: 2019 ident: 10.1016/j.reth.2023.08.007_bib90 article-title: Hyaluronan chemistries for three-dimensional matrix applications publication-title: Matrix Biol [Internet doi: 10.1016/j.matbio.2018.02.010 |
SSID | ssj0001851298 |
Score | 2.3879175 |
SecondaryResourceType | review_article |
Snippet | Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 361 |
SubjectTerms | 3D printing Biomaterials Nanocomposite Nanomaterial scaffolds Review Wound healing |
Title | 3D printed drug loaded nanomaterials for wound healing applications |
URI | https://www.proquest.com/docview/2863766695 https://pubmed.ncbi.nlm.nih.gov/PMC10491785 https://doaj.org/article/9235ffa6c9934c4ca75bbd8bb1a6bb6a |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp1xKm6R00ySoEHIppvLKeviYJyEhgUIDuQmNJDctqTdsdgn995mRvcG-pJeAMcaWsTwaab6RRt8wti9MsjVoID5tWVQgTAFlFIWpa4r8UxEUbU6-utbnN9XFrbodpPqimLCOHrgT3HcEIKppvA5oSKtQBW8UQLQApdcAOkMjtHkDZyrPrlgyZLbfJdMFdM3TglYfpjJzdlL-2IElyoT9I5Q5jpEcGJ2zD-x9jxb5YVfLj-xdajfY5mGLnvLff_yA5_jNPDG-yY7lCadZOoSQPM6Xv_j9zEe8bn07Q1jaaRpHjMqfKJUSJ4iIdosPl7C32M3Z6c_j86JPkVCEyohFEWsZIzQpBdmkqEWAJJJtkvACQimTN1bXgAZIGBO8jNhlVQCBlrGJDR7yE1trZ236zLixOPjFBqqpwdFzGhE5kTNhZIlCV3U1YeVKXC70_OGUxuLerQLF_jgSsSMRO8ptKcyEfXt556Fjz3i19BG1wktJYr7ON1AfXK8P7n_6MGFfV23osKfQ8odv02z56KZW42iqda0mzI4ad_TF8ZP2913m3EavFR1bq7bfoo5f2Dr9dhcVs8PWFvNl2kVss4C9rMZ4vvxhnwFF_f0m |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+printed+drug+loaded+nanomaterials+for+wound+healing+applications&rft.jtitle=Regenerative+therapy&rft.au=Ashagrachew+Tewabe+Yayehrad&rft.au=Ebrahim+Abdella+Siraj&rft.au=Motlalepula+Matsabisa&rft.au=Gebremariam+Birhanu&rft.date=2023-12-01&rft.pub=Elsevier&rft.eissn=2352-3204&rft.volume=24&rft.spage=361&rft.epage=376&rft_id=info:doi/10.1016%2Fj.reth.2023.08.007&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9235ffa6c9934c4ca75bbd8bb1a6bb6a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3204&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3204&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3204&client=summon |