3D printed drug loaded nanomaterials for wound healing applications

Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. R...

Full description

Saved in:
Bibliographic Details
Published inRegenerative therapy Vol. 24; pp. 361 - 376
Main Authors Yayehrad, Ashagrachew Tewabe, Siraj, Ebrahim Abdella, Matsabisa, Motlalepula, Birhanu, Gebremariam
Format Journal Article
LanguageEnglish
Published Japanese Society for Regenerative Medicine 01.12.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. Researchers discovered that two-dimensional (2D) media lacks appropriate real-life detection of cellular matter as these have highly complicated and diverse structures, compositions, and interactions. Hence, innovation towards three-dimensional (3D) media is called to conquer the high-level assessment and characterization in vivo using new technologies. The application of modern wound dressings prepared from a degenerated natural tissue, biodegradable biopolymer, synthetic polymer, or a composite of these materials in wound healing is currently an area of innovation in tissue regeneration medicine. Moreover, the integration of 3D printing and nanomaterial science is a promising approach with the potential for individualized, flexible, and precise technology for wound care approaches. This review encompasses the outcomes of various investigations on recent advances in 3D-printed drug-loaded natural, synthetic, and composite nanomaterials for wound healing. The challenges associated with their fabrication, clinical application progress, and future perspectives are also addressed.Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. Researchers discovered that two-dimensional (2D) media lacks appropriate real-life detection of cellular matter as these have highly complicated and diverse structures, compositions, and interactions. Hence, innovation towards three-dimensional (3D) media is called to conquer the high-level assessment and characterization in vivo using new technologies. The application of modern wound dressings prepared from a degenerated natural tissue, biodegradable biopolymer, synthetic polymer, or a composite of these materials in wound healing is currently an area of innovation in tissue regeneration medicine. Moreover, the integration of 3D printing and nanomaterial science is a promising approach with the potential for individualized, flexible, and precise technology for wound care approaches. This review encompasses the outcomes of various investigations on recent advances in 3D-printed drug-loaded natural, synthetic, and composite nanomaterials for wound healing. The challenges associated with their fabrication, clinical application progress, and future perspectives are also addressed.
AbstractList Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. Researchers discovered that two-dimensional (2D) media lacks appropriate real-life detection of cellular matter as these have highly complicated and diverse structures, compositions, and interactions. Hence, innovation towards three-dimensional (3D) media is called to conquer the high-level assessment and characterization in vivo using new technologies. The application of modern wound dressings prepared from a degenerated natural tissue, biodegradable biopolymer, synthetic polymer, or a composite of these materials in wound healing is currently an area of innovation in tissue regeneration medicine. Moreover, the integration of 3D printing and nanomaterial science is a promising approach with the potential for individualized, flexible, and precise technology for wound care approaches. This review encompasses the outcomes of various investigations on recent advances in 3D-printed drug-loaded natural, synthetic, and composite nanomaterials for wound healing. The challenges associated with their fabrication, clinical application progress, and future perspectives are also addressed.
Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. Researchers discovered that two-dimensional (2D) media lacks appropriate real-life detection of cellular matter as these have highly complicated and diverse structures, compositions, and interactions. Hence, innovation towards three-dimensional (3D) media is called to conquer the high-level assessment and characterization in vivo using new technologies. The application of modern wound dressings prepared from a degenerated natural tissue, biodegradable biopolymer, synthetic polymer, or a composite of these materials in wound healing is currently an area of innovation in tissue regeneration medicine. Moreover, the integration of 3D printing and nanomaterial science is a promising approach with the potential for individualized, flexible, and precise technology for wound care approaches. This review encompasses the outcomes of various investigations on recent advances in 3D-printed drug-loaded natural, synthetic, and composite nanomaterials for wound healing. The challenges associated with their fabrication, clinical application progress, and future perspectives are also addressed. • 3D multiple-layer printed preparations for wound healing can simulate the entire skin structure and layers. • Combining natural and synthetic materials improved 3D product compatibility and strength. • Metallic NPs, when applied as a 3D-printed wound healing scaffold, demonstrated promising broad-spectrum antimicrobial properties. • Smart 3D-printed drug-loaded hydrogels have opened a new horizon for wound dressing with controlled release of bioactive substances/drugs. • Further investigations should progress into the application of 4D printing systems which comprises “3D printing plus time”.
Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. Researchers discovered that two-dimensional (2D) media lacks appropriate real-life detection of cellular matter as these have highly complicated and diverse structures, compositions, and interactions. Hence, innovation towards three-dimensional (3D) media is called to conquer the high-level assessment and characterization in vivo using new technologies. The application of modern wound dressings prepared from a degenerated natural tissue, biodegradable biopolymer, synthetic polymer, or a composite of these materials in wound healing is currently an area of innovation in tissue regeneration medicine. Moreover, the integration of 3D printing and nanomaterial science is a promising approach with the potential for individualized, flexible, and precise technology for wound care approaches. This review encompasses the outcomes of various investigations on recent advances in 3D-printed drug-loaded natural, synthetic, and composite nanomaterials for wound healing. The challenges associated with their fabrication, clinical application progress, and future perspectives are also addressed.Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external health. Advancements in the current and newer management systems for wound healing should be in place to counter the health burden of wounds. Researchers discovered that two-dimensional (2D) media lacks appropriate real-life detection of cellular matter as these have highly complicated and diverse structures, compositions, and interactions. Hence, innovation towards three-dimensional (3D) media is called to conquer the high-level assessment and characterization in vivo using new technologies. The application of modern wound dressings prepared from a degenerated natural tissue, biodegradable biopolymer, synthetic polymer, or a composite of these materials in wound healing is currently an area of innovation in tissue regeneration medicine. Moreover, the integration of 3D printing and nanomaterial science is a promising approach with the potential for individualized, flexible, and precise technology for wound care approaches. This review encompasses the outcomes of various investigations on recent advances in 3D-printed drug-loaded natural, synthetic, and composite nanomaterials for wound healing. The challenges associated with their fabrication, clinical application progress, and future perspectives are also addressed.
Author Matsabisa, Motlalepula
Yayehrad, Ashagrachew Tewabe
Siraj, Ebrahim Abdella
Birhanu, Gebremariam
Author_xml – sequence: 1
  givenname: Ashagrachew Tewabe
  orcidid: 0000-0001-5122-7684
  surname: Yayehrad
  fullname: Yayehrad, Ashagrachew Tewabe
– sequence: 2
  givenname: Ebrahim Abdella
  orcidid: 0000-0003-4921-6526
  surname: Siraj
  fullname: Siraj, Ebrahim Abdella
– sequence: 3
  givenname: Motlalepula
  surname: Matsabisa
  fullname: Matsabisa, Motlalepula
– sequence: 4
  givenname: Gebremariam
  orcidid: 0000-0003-2149-9624
  surname: Birhanu
  fullname: Birhanu, Gebremariam
BookMark eNp9kUFr3DAQhU1IIGmaP5CTj72sO7JsWT6Vsm3aQKCX9ixG0mhXi1faSnZL_3202RSSHgoCDZr3Pkbz3lTnIQaqqlsGDQMm3u-aRPO2aaHlDcgGYDirrlretyveQnf-or6sbnLeAQCTPWtHeVWt-af6kHyYydY2LZt6imhLHTDEPc6UPE65djHVv-MSbL0lnHzY1Hg4TN7g7GPIb6sLV1R083xfVz_uPn9ff109fPtyv_74sDLdAPPKjtxa7YgMd2QFGE1A0hEgaMM44SDFqLuBwTAY5BY66I0GQ-SsK4dfV_cnro24U2XqPaY_KqJXTw8xbRSm2ZuJ1Fi-7BwKM468M53BodfaSq0ZCq0FFtaHE-uw6D1ZQ2FOOL2Cvu4Ev1Wb-Esx6EY2yL4Q3j0TUvy5UJ7V3mdD04SB4pJVKwUfhBDjUSpPUpNizomcMn5-2l1B-6kw1TFItVPHINUxSAVSlSCLtf3H-nfE_5geAYmiqNY
CitedBy_id crossref_primary_10_1021_acsomega_4c04961
crossref_primary_10_1016_j_ijbiomac_2024_131207
crossref_primary_10_1016_j_hybadv_2024_100364
crossref_primary_10_1007_s13346_024_01744_1
crossref_primary_10_1016_j_engreg_2025_02_002
crossref_primary_10_1002_adhm_202402711
crossref_primary_10_1016_j_ijbiomac_2024_136991
crossref_primary_10_7759_cureus_75331
crossref_primary_10_1002_adhm_202404274
crossref_primary_10_5312_wjo_v16_i3_105130
crossref_primary_10_1016_j_ccr_2024_216093
crossref_primary_10_1097_DSS_0000000000004611
crossref_primary_10_1080_17425247_2024_2388214
crossref_primary_10_1039_D4RA05456C
crossref_primary_10_1177_15280837241291215
crossref_primary_10_3390_pharmaceutics17030352
crossref_primary_10_1007_s11706_024_0691_y
crossref_primary_10_13005_bpj_2953
crossref_primary_10_3390_ma17246045
crossref_primary_10_3390_pharmaceutics16080990
crossref_primary_10_1080_00914037_2024_2402364
crossref_primary_10_1016_j_jddst_2024_105689
crossref_primary_10_1038_s41428_024_00902_z
Cites_doi 10.3390/gels9020103
10.3390/pharmaceutics12010056
10.1089/ten.tea.2014.0102
10.1016/j.ijbiomac.2021.07.067
10.3390/polym8010019
10.4236/jbnb.2019.104011
10.1016/j.ceramint.2020.08.099
10.1073/pnas.1521342113
10.1126/science.1064829
10.1016/j.ijbiomac.2020.06.086
10.18063/ijb.v6i1.246
10.1021/acs.biomac.7b01165
10.21037/atm-21-2854
10.18063/ijb.689
10.3390/biomedicines10071562
10.1586/17434440.4.2.147
10.1007/s40204-018-0083-4
10.1002/adma.201806133
10.1039/D2BM00903J
10.1016/j.jcis.2019.03.024
10.3390/pharmaceutics14020464
10.1080/10717544.2020.1858998
10.1016/j.foodhyd.2011.02.007
10.1021/acsomega.0c06242
10.1007/s42242-018-0004-3
10.3390/nano11020420
10.1039/D0BM00055H
10.1126/science.aau5119
10.1021/acsami.7b09223
10.1088/1748-605X/abf1a8
10.1021/acsabm.8b00637
10.1016/j.addr.2012.03.009
10.1016/j.carbpol.2010.12.023
10.3390/ijms22031408
10.1021/acs.biomac.8b00053
10.1016/j.apsb.2012.07.004
10.3390/polym13162584
10.1080/21691401.2017.1349778
10.1002/slct.201803740
10.1021/acsnano.1c04499
10.2147/IJN.S276001
10.1007/s10965-022-02899-6
10.1016/j.reth.2021.05.001
10.1016/j.ijbiomac.2021.07.115
10.3390/biomedicines9111537
10.3390/polym12081782
10.1016/j.actbio.2016.11.017
10.1002/jbm.a.36036
10.1016/j.actbio.2019.11.014
10.3390/pharmaceutics13040564
10.3390/nano10020390
10.18063/ijb.v8i4.618
10.1021/acsabm.9b01026
10.1002/adfm.202105932
10.1016/j.addr.2018.03.002
10.1021/acsbiomaterials.9b01048
10.1039/D1MH00508A
10.1016/j.bioactmat.2020.01.012
10.1016/j.jddst.2022.103564
10.3390/pharmaceutics11040165
10.1021/acsabm.0c01108
10.1021/acsbiomaterials.1c01193
10.1016/j.carbpol.2015.05.081
10.1002/anbr.202000097
10.1186/s41205-022-00134-y
10.1021/acs.biomac.0c00801
10.1016/j.cobme.2017.06.002
10.1371/journal.pone.0097835
10.1080/10717544.2020.1797239
10.1039/D0TB02099K
10.1080/17425247.2016.1182485
10.3390/polym13152510
10.1080/17425247.2017.1371698
10.3390/ma16041364
10.1039/C6RA10652H
10.3390/ijms24020947
10.3390/polym14051012
10.1039/C7TB00478H
10.1016/j.carbpol.2018.07.057
10.1016/j.ijpharm.2017.04.077
10.1016/j.ijpharm.2013.12.015
10.1002/adhm.202102068
10.3934/matersci.2017.2.452
10.1016/j.bbagen.2014.01.010
10.1016/j.ijpharm.2019.02.020
10.1002/mabi.201800068
10.1021/acs.chemrev.7b00074
10.12968/jowc.2018.27.5.262
10.1002/stem.309
10.5966/sctm.2012-0088
10.1002/adfm.202000187
10.1016/j.mattod.2014.06.001
10.1016/j.carbpol.2018.01.060
10.1016/j.smaim.2022.09.005
10.1016/j.jiec.2017.06.033
10.1089/ten.tec.2013.0458
10.1002/adma.201700339
10.3390/bioengineering8060079
10.3390/ani12080966
10.1016/j.biomaterials.2010.08.089
10.1002/adma.201606061
10.1208/s12249-016-0704-y
10.1016/j.biotechadv.2015.12.011
10.3390/gels9020129
10.1002/bit.24455
10.1016/j.addr.2018.04.008
10.1002/9781119433316.ch17
10.1002/adhm.201700718
10.1242/dmm.016782
10.1021/cr400714j
10.1021/acsami.9b14090
10.1002/anie.202114111
10.1021/acsbiomaterials.8b01018
10.1021/acsami.5b11879
10.1016/j.msec.2019.03.056
10.1007/s10971-018-4630-1
10.7150/ijbs.37552
10.1002/adfm.202009691
10.3390/polym4031590
10.1016/j.foodhyd.2016.07.003
10.1111/iwj.12566
10.3390/mi14010137
10.1038/s41570-018-0058-y
10.1007/978-1-0716-0520-2_6
10.1208/s12249-023-02503-0
10.3390/nano9071049
10.3390/bioengineering4040096
10.1016/j.msec.2019.03.058
10.1089/ten.teb.2020.0339
10.1016/j.apsusc.2019.03.003
10.1016/j.actbio.2019.12.025
10.1016/j.actbio.2020.12.026
10.1016/j.matbio.2018.02.010
ContentType Journal Article
Copyright 2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.
2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2023 The Japanese Society for Regenerative Medicine
Copyright_xml – notice: 2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V.
– notice: 2023 The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. 2023 The Japanese Society for Regenerative Medicine
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.reth.2023.08.007
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2352-3204
EndPage 376
ExternalDocumentID oai_doaj_org_article_9235ffa6c9934c4ca75bbd8bb1a6bb6a
PMC10491785
10_1016_j_reth_2023_08_007
GroupedDBID 0R~
4.4
457
53G
5VS
AAEDW
AAIKJ
AALRI
AAXUO
AAYWO
AAYXX
ABMAC
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BCNDV
CITATION
EBS
EJD
FDB
GROUPED_DOAJ
HYE
HZ~
IPNFZ
KQ8
M41
M~E
O9-
OK1
RIG
ROL
RPM
SSZ
7X8
5PM
ID FETCH-LOGICAL-c470t-d93ddbfeec3fed60cbe0e8fe0a0bc13ea7869b471077ca3d0405cb0ceefdffdf3
IEDL.DBID DOA
ISSN 2352-3204
IngestDate Wed Aug 27 01:30:22 EDT 2025
Thu Aug 21 18:36:37 EDT 2025
Fri Jul 11 02:45:17 EDT 2025
Thu Apr 24 22:53:47 EDT 2025
Tue Jul 01 03:44:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-d93ddbfeec3fed60cbe0e8fe0a0bc13ea7869b471077ca3d0405cb0ceefdffdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5122-7684
0000-0003-4921-6526
0000-0003-2149-9624
OpenAccessLink https://doaj.org/article/9235ffa6c9934c4ca75bbd8bb1a6bb6a
PQID 2863766695
PQPubID 23479
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_9235ffa6c9934c4ca75bbd8bb1a6bb6a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10491785
proquest_miscellaneous_2863766695
crossref_citationtrail_10_1016_j_reth_2023_08_007
crossref_primary_10_1016_j_reth_2023_08_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Regenerative therapy
PublicationYear 2023
Publisher Japanese Society for Regenerative Medicine
Elsevier
Publisher_xml – name: Japanese Society for Regenerative Medicine
– name: Elsevier
References Zhou (10.1016/j.reth.2023.08.007_bib59) 2020; 30
Soenen (10.1016/j.reth.2023.08.007_bib157) 2015; 115
Mondal (10.1016/j.reth.2023.08.007_bib187) 2020; 46
Ramiah (10.1016/j.reth.2023.08.007_bib70) 2020; 7
Bai (10.1016/j.reth.2023.08.007_bib10) 2020; 15
Aghamirsalim (10.1016/j.reth.2023.08.007_bib27) 2022; 10
Malekmohammadi (10.1016/j.reth.2023.08.007_bib53) 2021; 9
Rizwan (10.1016/j.reth.2023.08.007_bib92) 2020; 3
Chang (10.1016/j.reth.2023.08.007_bib87) 2011; 84
Radmanesh (10.1016/j.reth.2023.08.007_bib67) 2022; 29
Zhu (10.1016/j.reth.2023.08.007_bib17) 2021
Zheng (10.1016/j.reth.2023.08.007_bib61) 2021; 9
Asadniaye Fardjahromi (10.1016/j.reth.2023.08.007_bib189) 2022; 23
Zelen (10.1016/j.reth.2023.08.007_bib28) 2016; 13
Skardal (10.1016/j.reth.2023.08.007_bib166) 2012; 1
Andriotis (10.1016/j.reth.2023.08.007_bib109) 2020; 12
Zhang (10.1016/j.reth.2023.08.007_bib152) 2021; 121
Sultan (10.1016/j.reth.2023.08.007_bib186) 2017; 2
Cubo-Mateo (10.1016/j.reth.2023.08.007_bib15) 2021; 9
Suamte (10.1016/j.reth.2023.08.007_bib100) 2023; 4
Singh (10.1016/j.reth.2023.08.007_bib175) 2016; 8
Marew (10.1016/j.reth.2023.08.007_bib73) 2021; 18
Guarino (10.1016/j.reth.2023.08.007_bib97) 2012; 4
Shafiee (10.1016/j.reth.2023.08.007_bib37) 2021; 268
Gutierrez (10.1016/j.reth.2023.08.007_bib129) 2019; 5
Diniz (10.1016/j.reth.2023.08.007_bib145) 2020; 10
Hu (10.1016/j.reth.2023.08.007_bib170) 2021; 426
Glover (10.1016/j.reth.2023.08.007_bib74) 2022
Randviir (10.1016/j.reth.2023.08.007_bib151) 2014; 17
Dabbagh (10.1016/j.reth.2023.08.007_bib63) 2021; 24
Hung (10.1016/j.reth.2023.08.007_bib82) 2022; 12
O'Loughlin (10.1016/j.reth.2023.08.007_bib114) 2013; 4
Zou (10.1016/j.reth.2023.08.007_bib131) 2020; 18
Modulevsky (10.1016/j.reth.2023.08.007_bib103) 2014; 9
Shu (10.1016/j.reth.2023.08.007_bib117) 2017; 12
Antezana (10.1016/j.reth.2023.08.007_bib78) 2022; 14
Xu (10.1016/j.reth.2023.08.007_bib14) 2022; 10
Niu (10.1016/j.reth.2023.08.007_bib102) 2022; 11
Zhang (10.1016/j.reth.2023.08.007_bib181) 2023; 10
Si (10.1016/j.reth.2023.08.007_bib83) 2017; 29
Negut (10.1016/j.reth.2023.08.007_bib99) 2020
Kosik-Kozioł (10.1016/j.reth.2023.08.007_bib144) 2019; 5
Tabriz (10.1016/j.reth.2023.08.007_bib3) 2020
Mandrycky (10.1016/j.reth.2023.08.007_bib31) 2016; 34
Maturavongsadit (10.1016/j.reth.2023.08.007_bib154) 2021; 4
D’souza (10.1016/j.reth.2023.08.007_bib96) 2016; 13
Preis (10.1016/j.reth.2023.08.007_bib179) 2017; 18
Huyan (10.1016/j.reth.2023.08.007_bib57) 2020; 6
Alizadehgiashi (10.1016/j.reth.2023.08.007_bib33) 2021; 15
Islam (10.1016/j.reth.2023.08.007_bib36) 2020; 5
Ibañez (10.1016/j.reth.2023.08.007_bib130) 2021; 13
Jang (10.1016/j.reth.2023.08.007_bib1) 2021; 16
Guo (10.1016/j.reth.2023.08.007_bib44) 2022; 1
Saghazadeh (10.1016/j.reth.2023.08.007_bib18) 2018; 127
dos Santos (10.1016/j.reth.2023.08.007_bib60) 2021; 31
Tamay (10.1016/j.reth.2023.08.007_bib56) 2019; 7
Khoeini (10.1016/j.reth.2023.08.007_bib105) 2021; 1
Mohiti-Asli (10.1016/j.reth.2023.08.007_bib136) 2014; 20
Mancini (10.1016/j.reth.2023.08.007_bib139) 2020
Kayser (10.1016/j.reth.2023.08.007_bib155) 2019; 31
Xu (10.1016/j.reth.2023.08.007_bib94) 2020; 12
Cleetus (10.1016/j.reth.2023.08.007_bib120) 2020
Surmeneva (10.1016/j.reth.2023.08.007_bib128) 2019; 480
Preis (10.1016/j.reth.2023.08.007_bib184) 2018
Sun (10.1016/j.reth.2023.08.007_bib190) 2018; 27
P B (10.1016/j.reth.2023.08.007_bib16) 2021
Sirko (10.1016/j.reth.2023.08.007_bib89) 2010; 28
Wang (10.1016/j.reth.2023.08.007_bib135) 2020; 16
Palaganas (10.1016/j.reth.2023.08.007_bib25) 2017; 9
Peng (10.1016/j.reth.2023.08.007_bib113) 2015; 21
Wang (10.1016/j.reth.2023.08.007_bib183) 2021; 187
Zhao (10.1016/j.reth.2023.08.007_bib4) 2022; 9
Fu (10.1016/j.reth.2023.08.007_bib191) 2021; 9
Afghah (10.1016/j.reth.2023.08.007_bib32) 2022; 11
Gattazzo (10.1016/j.reth.2023.08.007_bib41) 2014; 1840
Li (10.1016/j.reth.2023.08.007_bib138) 2018; 18
Hassan (10.1016/j.reth.2023.08.007_bib149) 2019; 121
Wathoni (10.1016/j.reth.2023.08.007_bib64) 2019; 5
Rahmani Del Bakhshayesh (10.1016/j.reth.2023.08.007_bib104) 2018; 46
Kolesky (10.1016/j.reth.2023.08.007_bib174) 2016; 113
Wu (10.1016/j.reth.2023.08.007_bib188) 2019; 11
Wei (10.1016/j.reth.2023.08.007_bib148) 2020; 27
Bergonzi (10.1016/j.reth.2023.08.007_bib12) 2023; 14
Pérez (10.1016/j.reth.2023.08.007_bib160) 2013; 65
Koch (10.1016/j.reth.2023.08.007_bib46) 2012; 109
Tallapaneni (10.1016/j.reth.2023.08.007_bib108) 2022
Tabriz (10.1016/j.reth.2023.08.007_bib65) 2022
Long (10.1016/j.reth.2023.08.007_bib79) 2019; 104
Jain (10.1016/j.reth.2023.08.007_bib182) 2021; 11
Cukierman (10.1016/j.reth.2023.08.007_bib40) 2001; 294
Qiu (10.1016/j.reth.2023.08.007_bib121) 2016; 8
Gomez-Guillen (10.1016/j.reth.2023.08.007_bib91) 2011; 25
Dinoro (10.1016/j.reth.2023.08.007_bib107) 2016
Chen (10.1016/j.reth.2023.08.007_bib58) 2019; 9
Kumar (10.1016/j.reth.2023.08.007_bib150) 2021; 14
Smandri (10.1016/j.reth.2023.08.007_bib176) 2020; 12
Mirani (10.1016/j.reth.2023.08.007_bib6) 2017; 6
Chinga-Carrasco (10.1016/j.reth.2023.08.007_bib7) 2019; 28
Shi (10.1016/j.reth.2023.08.007_bib48) 2019; 100
Thapa (10.1016/j.reth.2023.08.007_bib133) 2020; 103
Pedde (10.1016/j.reth.2023.08.007_bib51) 2017; 29
Radmanesh (10.1016/j.reth.2023.08.007_bib118) 2022; 29
Ligon (10.1016/j.reth.2023.08.007_bib180) 2017; 117
10.1016/j.reth.2023.08.007_bib119
Loukelis (10.1016/j.reth.2023.08.007_bib75) 2023; 9
Van Tomme (10.1016/j.reth.2023.08.007_bib86) 2007; 4
Mogoşanu (10.1016/j.reth.2023.08.007_bib106) 2014; 463
Choi (10.1016/j.reth.2023.08.007_bib62) 2021; 13
Memic (10.1016/j.reth.2023.08.007_bib23) 2019; 2
Domínguez-Robles (10.1016/j.reth.2023.08.007_bib141) 2019; 11
Al-ahmer (10.1016/j.reth.2023.08.007_bib158) 2018; 17
Nizioł (10.1016/j.reth.2023.08.007_bib164) 2021; 8
Vanaei (10.1016/j.reth.2023.08.007_bib69) 2021; 2
Zhao (10.1016/j.reth.2023.08.007_bib39) 2017; 49
Ceccarini (10.1016/j.reth.2023.08.007_bib20) 2023; 24
Lu (10.1016/j.reth.2023.08.007_bib80) 2023; 9
Fayyazbakhsh (10.1016/j.reth.2023.08.007_bib81) 2022; 8
Oran (10.1016/j.reth.2023.08.007_bib95) 2018; 1285
Siebert (10.1016/j.reth.2023.08.007_bib185) 2021; 31
Fu (10.1016/j.reth.2023.08.007_bib42) 2016
Prasathkumar (10.1016/j.reth.2023.08.007_bib29) 2021; 186
Shim (10.1016/j.reth.2023.08.007_bib134) 2017; 55
Milojević (10.1016/j.reth.2023.08.007_bib142) 2021; 13
Clohessy (10.1016/j.reth.2023.08.007_bib11) 2017
Castillo-Henríquez (10.1016/j.reth.2023.08.007_bib162) 2021; 22
Beitler (10.1016/j.reth.2023.08.007_bib8) 2022; 8
Loi (10.1016/j.reth.2023.08.007_bib71) 2023; 9
Kumar (10.1016/j.reth.2023.08.007_bib76) 2020; 2140
Hu (10.1016/j.reth.2023.08.007_bib137) 2019; 545
Muwaffak (10.1016/j.reth.2023.08.007_bib68) 2017; 527
Vahdatinia (10.1016/j.reth.2023.08.007_bib5) 2023; 16
Wang (10.1016/j.reth.2023.08.007_bib47) 2016
Zhang (10.1016/j.reth.2023.08.007_bib163) 2022; 1
Xue (10.1016/j.reth.2023.08.007_bib9) 2018; 129
Tan (10.1016/j.reth.2023.08.007_bib30) 2022; 28
Ilhan (10.1016/j.reth.2023.08.007_bib66) 2020; 161
Singh (10.1016/j.reth.2023.08.007_bib22) 2021; 32
Nunan (10.1016/j.reth.2023.08.007_bib13) 2014; 7
Chouhan (10.1016/j.reth.2023.08.007_bib35) 2019; 216
Boularaoui (10.1016/j.reth.2023.08.007_bib159) 2021; 7
Cao (10.1016/j.reth.2023.08.007_bib111) 2021; 28
Serafin (10.1016/j.reth.2023.08.007_bib146) 2021; 122
Agarwal (10.1016/j.reth.2023.08.007_bib77) 2020; 6
Uchida (10.1016/j.reth.2023.08.007_bib43) 2023; 24
Bendtsen (10.1016/j.reth.2023.08.007_bib143) 2017; 105
Muwaffak (10.1016/j.reth.2023.08.007_bib21) 2017; 527
Hafezi (10.1016/j.reth.2023.08.007_bib45) 2019; 560
Mogosanu (10.1016/j.reth.2023.08.007_bib110) 2012; 53
Masood (10.1016/j.reth.2023.08.007_bib122) 2021; 6
Das (10.1016/j.reth.2023.08.007_bib49) 2016; 4
Yang (10.1016/j.reth.2023.08.007_bib112) 2017; 4
Giri (10.1016/j.reth.2023.08.007_bib88) 2012; 2
Contessi Negrini (10.1016/j.reth.2023.08.007_bib101) 2020; 8
Maver (10.1016/j.reth.2023.08.007_bib116) 2018; 88
Thakur (10.1016/j.reth.2023.08.007_bib172) 2021; 18
Teo (10.1016/j.reth.2023.08.007_bib123) 2011; 32
Ulag (10.1016/j.reth.2023.08.007_bib169) 2019; 4
Glover (10.1016/j.reth.2023.08.007_bib55) 2022
Mir (10.1016/j.reth.2023.08.007_bib115) 2018; 7
Hu (10.1016/j.reth.2023.08.007_bib165) 2020; 8
Zhang (10.1016/j.reth.2023.08.007_bib173) 2018; 1
Serban (10.1016/j.reth.2023.08.007_bib90) 2019; 78–79
Teoh (10.1016/j.reth.2023.08.007_bib26) 2021; 31
Yuk (10.1016/j.reth.2023.08.007_bib93) 2016; 7
10.1016/j.reth.2023.08.007_bib140
Gupta (10.1016/j.reth.2023.08.007_bib171) 2019
Capel (10.1016/j.reth.2023.08.007_bib52) 2018; 2
You (10.1016/j.reth.2023.08.007_bib177) 2023
Gioumouxouzis (10.1016/j.reth.2023.08.007_bib50) 2018
Tsegay (10.1016/j.reth.2023.08.007_bib98) 2022; 14
Xue (10.1016/j.reth.2023.08.007_bib126) 2017; 5
Xu (10.1016/j.reth.2023.08.007_bib54) 2019; 9
Liu (10.1016/j.reth.2023.08.007_bib85) 2016; 61
Ding (10.1016/j.reth.2023.08.007_bib127) 2016; 6
Chinga-Carrasco (10.1016/j.reth.2023.08.007_bib153) 2018; 19
Kanjou M (10.1016/j.reth.2023.08.007_bib2) 2019; 10
Mostafalu (10.1016/j.reth.2023.08.007_bib167) 2018; 14
Wang (10.1016/j.reth.2023.08.007_bib168) 2019; 7
Bracaglia (10.1016/j.reth.2023.08.007_bib34) 2017; 18
Weisman (10.1016/j.reth.2023.08.007_bib124) 2017; 4
Du (10.1016/j.reth.2023.08.007_bib147) 2019; 103
Gao (10.1016/j.reth.2023.08.007_bib156) 2022; 451
Kim (10.1016/j.reth.2023.08.007_bib161) 2023
Sener (10.1016/j.reth.2023.08.007_bib132) 2020; 101
Catanzano (10.1016/j.reth.2023.08.007_bib38) 2015; 131
Hsiao (10.1016/j.reth.2023.08.007_bib178) 2018; 15
Martin (10.1016/j.reth.2023.08.007_bib125) 2019; 101
Intini (10.1016/j.reth.2023.08.007_bib19) 2018; 199
Nun (10.1016/j.reth.2023.08.007_bib24) 2020; 21
Gopinathan (10.1016/j.reth.2023.08.007_bib72) 2018; 1–15
Zarrintaj (10.1016/j.reth.2023.08.007_bib84) 2018; 187
References_xml – volume: 24
  issue: 1
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib63
  article-title: 3D-printed microneedles in biomedical applications
  publication-title: iScience [Internet]
– volume: 9
  start-page: 1
  issue: 2
  year: 2023
  ident: 10.1016/j.reth.2023.08.007_bib75
  article-title: Nanocomposite bioprinting for tissue engineering applications
  publication-title: Gels
  doi: 10.3390/gels9020103
– volume: 12
  issue: 1
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib109
  article-title: Development of bio-active patches based on Pectin for the treatment of Ulcers and wounds using 3D-bioprinting technology
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12010056
– volume: 21
  start-page: 1036
  issue: 5–6
  year: 2015
  ident: 10.1016/j.reth.2023.08.007_bib113
  article-title: Freeze-dried rat bone marrow mesenchymal stem cell paracrine factors: a simplified novel material for skin wound therapy
  publication-title: Tissue Eng
  doi: 10.1089/ten.tea.2014.0102
– year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib120
– year: 2016
  ident: 10.1016/j.reth.2023.08.007_bib47
  article-title: AC SC
  publication-title: Food Hydrocoll [Internet]
– volume: 186
  start-page: 656
  issue: April
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib29
  article-title: Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing—know-how
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2021.07.067
– volume: 8
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.reth.2023.08.007_bib175
  article-title: 3D printing of scaffold for cells delivery: advances in skin tissue engineering
  publication-title: Polymers
  doi: 10.3390/polym8010019
– volume: 31
  start-page: 1
  issue: 22
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib185
  article-title: Light-controlled growth factors release on tetrapodal ZnO-incorporated 3D-printed hydrogels for developing smart wound scaffold
  publication-title: Adv Funct Mater
– volume: 10
  start-page: 190
  issue: 4
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib2
  article-title: 3-D print celulose nanoskin: future diabetic wound healing
  publication-title: J Biomaterials Nanobiotechnol
  doi: 10.4236/jbnb.2019.104011
– volume: 46
  start-page: 29249
  issue: 18
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib187
  article-title: Rare earth element doped hydroxyapatite luminescent bioceramics contrast agent for enhanced biomedical imaging and therapeutic applications
  publication-title: Ceram Int [Internet
  doi: 10.1016/j.ceramint.2020.08.099
– volume: 113
  start-page: 3179
  issue: 12
  year: 2016
  ident: 10.1016/j.reth.2023.08.007_bib174
  article-title: Threedimensional Nat, bioprinting of thick vascularized tissues
  publication-title: Proc Nat Acad Sci USA
  doi: 10.1073/pnas.1521342113
– volume: 294
  start-page: 1708
  issue: 5547
  year: 2001
  ident: 10.1016/j.reth.2023.08.007_bib40
  article-title: Taking cell-matrix adhesions to the third dimension
  publication-title: Science
  doi: 10.1126/science.1064829
– volume: 161
  start-page: 1040
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib66
  article-title: Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2020.06.086
– volume: 6
  start-page: 53
  issue: 1
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib57
  article-title: Pilot study of the biological properties and vascularization of 3D printed bilayer skin grafts
  publication-title: Int J Bioprinting
  doi: 10.18063/ijb.v6i1.246
– start-page: 208
  issue: March
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib17
  article-title: 3D printed gellan gum/graphene oxide scaffold for tumor therapy and bone reconstruction
  publication-title: Compos Sci Technol
– volume: 18
  start-page: 3802
  issue: 11
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib34
  article-title: 3D printed pericardium hydrogels to promote wound healing in vascular applications
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01165
– volume: 426
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib170
  article-title: Cryogenic 3D printed hydrogel scaffolds loading exosomes accelerate diabetic wound healing
  publication-title: Chem Eng J [Internet]
– year: 2016
  ident: 10.1016/j.reth.2023.08.007_bib42
  article-title: Delivery systems in wound healing and nanomedicine
  publication-title: In: Intech Open. IntechOpen
– volume: 9
  issue: 19
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib191
  article-title: Narrative review of gene modification: applications in three-dimensional (3D) bioprinting
  publication-title: Ann Transl Med
  doi: 10.21037/atm-21-2854
– volume: 9
  issue: 2
  year: 2023
  ident: 10.1016/j.reth.2023.08.007_bib80
  article-title: A biocompatible double-crosslinked gelatin/sodium alginate/dopamine/quaterniazed chitosan hydrogel for wound dressings based on 3D bioprinting technology
  publication-title: Int J Bioprinting
  doi: 10.18063/ijb.689
– volume: 10
  issue: 7
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib27
  article-title: 3D printed hydrogels for ocular wound healing
  publication-title: Biomedicines
  doi: 10.3390/biomedicines10071562
– volume: 4
  start-page: 147
  issue: 2
  year: 2007
  ident: 10.1016/j.reth.2023.08.007_bib86
  article-title: Biodegradable dextran hydrogels for protein delivery applications
  publication-title: Expet Rev Med Dev
  doi: 10.1586/17434440.4.2.147
– volume: 7
  issue: 1
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib115
  article-title: Synthetic polymeric biomaterials for wound healing: a review
  publication-title: Prog Biomater
  doi: 10.1007/s40204-018-0083-4
– volume: 31
  start-page: 1
  issue: 10
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib155
  article-title: Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS
  publication-title: Adv Mater
  doi: 10.1002/adma.201806133
– volume: 4
  start-page: 1
  issue: OCT
  year: 2016
  ident: 10.1016/j.reth.2023.08.007_bib49
  article-title: Biomaterials and nanotherapeutics for enhancing skin wound healing
  publication-title: Front Bioeng Biotechnol
– volume: 10
  start-page: 5648
  issue: 19
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib14
  article-title: 3D printed heterogeneous hybrid hydrogel scaffolds for sequential tumor photothermal-chemotherapy and wound healing
  publication-title: Biomater Sci
  doi: 10.1039/D2BM00903J
– volume: 545
  start-page: 104
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib137
  article-title: Facile preparation of bioactive nanoparticle/poly(ε-caprolactone) hierarchical porous scaffolds via 3D printing of high internal phase Pickering emulsions
  publication-title: J Colloid Interface Sci [Internet]
  doi: 10.1016/j.jcis.2019.03.024
– volume: 14
  start-page: 1
  issue: 2
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib78
  article-title: The 3D bioprinted scaffolds for wound healing
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics14020464
– volume: 28
  start-page: 390
  issue: 1
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib111
  article-title: Cerium oxide nanoparticle-loaded polyvinyl alcohol nanogels delivery for wound healing care systems on surgery
  publication-title: Drug Deliv [Internet]
  doi: 10.1080/10717544.2020.1858998
– volume: 268
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib37
  article-title: Convergence of 3D printed biomimetic wound dressings and adult stem cell therapy
  publication-title: Biomaterials [Internet]
– volume: 25
  start-page: 1813
  issue: 8
  year: 2011
  ident: 10.1016/j.reth.2023.08.007_bib91
  article-title: Functional and bioactive properties of collagen and gelatin from alternative sources: a review
  publication-title: Food Hydrocoll [Internet]
  doi: 10.1016/j.foodhyd.2011.02.007
– year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib99
– volume: 6
  start-page: 8210
  issue: 12
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib122
  article-title: Pharmaco-technical evaluation of statistically formulated and optimized dual drug-loaded silica nanoparticles for improved antifungal efficacy and wound healing
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c06242
– volume: 1
  start-page: 2
  issue: 1
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib173
  article-title: 3D bioprinting: an emerging technology full of opportunities and challenges
  publication-title: Bio-Design Manuf.
  doi: 10.1007/s42242-018-0004-3
– volume: 1–15
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib72
  article-title: Review 5 2018 Recent trends in bioinks for 3D printing.pdf
  publication-title: Biomater Res
– volume: 11
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib102
  article-title: Fabrication of SA/Gel/C scaffold with 3D bioprinting to generate micro-nano porosity structure for skin wound healing: a detailed animal in vivo study
  publication-title: Cell Regen [Internet
– volume: 11
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib182
  article-title: 3D printing in development of nanomedicines
  publication-title: Nanomaterials
  doi: 10.3390/nano11020420
– volume: 8
  start-page: 2084
  issue: 8
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib165
  article-title: Rational design and latest advances of polysaccharide-based hydrogels for wound healing
  publication-title: Biomater Sci
  doi: 10.1039/D0BM00055H
– volume: 1285
  start-page: 1281
  issue: December
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib95
  article-title: 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds
  publication-title: Science
  doi: 10.1126/science.aau5119
– volume: 18
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib131
  article-title: Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF-8 nanocomposite scaffolds for infected bone repair
  publication-title: J Nanobiotechnology [Internet
– volume: 9
  start-page: 34314
  issue: 39
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib25
  article-title: 3D printing of photocurable cellulose nanocrystal composite for fabrication of complex architectures via stereolithography
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.7b09223
– volume: 16
  issue: 4
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib1
  article-title: Enhanced wound healing using a 3D printed VEGF-mimicking peptide incorporated hydrogel patch in a pig model
  publication-title: Biomed Mater
  doi: 10.1088/1748-605X/abf1a8
– volume: 2
  start-page: 952
  issue: 3
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib23
  article-title: Latest progress in electrospun nanofibers for wound healing applications
  publication-title: ACS Appl Bio Mater
  doi: 10.1021/acsabm.8b00637
– volume: 65
  start-page: 471
  issue: 4
  year: 2013
  ident: 10.1016/j.reth.2023.08.007_bib160
  article-title: Naturally and synthetic smart composite biomaterials for tissue regeneration
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2012.03.009
– volume: 121
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib149
  article-title: 3D printing of biopolymer nanocomposites for tissue engineering: nanomaterials, processing and structure-function relation
  publication-title: Eur Polym J [Internet]
– volume: 84
  start-page: 40
  issue: 1
  year: 2011
  ident: 10.1016/j.reth.2023.08.007_bib87
  article-title: Cellulose-based hydrogels: present status and application prospects
  publication-title: Carbohydr Polym [Internet]
  doi: 10.1016/j.carbpol.2010.12.023
– volume: 29
  issue: 2
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib118
  article-title: 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review
  publication-title: J Polym Res [Internet]
– volume: 22
  start-page: 1
  issue: 3
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib162
  article-title: Exploration of bioengineered scaffolds composed of thermo-responsive polymers for drug delivery in wound healing
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22031408
– volume: 19
  start-page: 701
  issue: 3
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib153
  article-title: Potential and limitations of nanocelluloses as components in biocomposite inks for three-dimensional bioprinting and for biomedical devices
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b00053
– volume: 10
  issue: December 2022
  year: 2023
  ident: 10.1016/j.reth.2023.08.007_bib181
  article-title: Advances in 3D skin bioprinting for wound healing and disease modeling
  publication-title: Regen Biomater
– volume: 2
  start-page: 439
  issue: 5
  year: 2012
  ident: 10.1016/j.reth.2023.08.007_bib88
  article-title: Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications
  publication-title: Acta Pharm Sin B [Internet]
  doi: 10.1016/j.apsb.2012.07.004
– volume: 13
  issue: 16
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib62
  article-title: Development of a multi-layer skin substitute using human hair keratinic extract-based hybrid 3d printing
  publication-title: Polymers
  doi: 10.3390/polym13162584
– volume: 46
  start-page: 691
  issue: 4
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib104
  article-title: Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering
  publication-title: Artif Cells, Nanomedicine Biotechnol [Internet]
  doi: 10.1080/21691401.2017.1349778
– volume: 4
  start-page: 2387
  issue: 8
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib169
  article-title: 3D printing artificial blood vessel constructs using PCL/Chitosan/Hydrogel biocomposites
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201803740
– year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib108
  article-title: Dual-drug loaded biomimetic chitosan-collagen hybrid nanocomposite scaffolds for ameliorating potential tissue regeneration in diabetic wounds
  publication-title: bioRxiv [Internet]
– volume: 15
  start-page: 12375
  issue: 7
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib33
  article-title: Multifunctional 3D-printed wound dressings
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c04499
– volume: 15
  start-page: 9717
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib10
  article-title: Potential applications of nanomaterials and technology for diabetic wound healing
  publication-title: Int J Nanomed
  doi: 10.2147/IJN.S276001
– volume: 29
  start-page: 50
  issue: 2
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib67
  article-title: 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review
  publication-title: J Polym Res
  doi: 10.1007/s10965-022-02899-6
– volume: 18
  start-page: 102
  issue: May
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib73
  article-title: Three dimensional printed nanostructure biomaterials for bone tissue engineering
  publication-title: Regen Ther
  doi: 10.1016/j.reth.2021.05.001
– volume: 187
  start-page: 91
  issue: 30
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib183
  article-title: 3D-printed antioxidant antibacterial carboxymethyl cellulose/ε-polylysine hydrogel promoted skin wound repair
  publication-title: Int J Biol Macromol [Internet]
  doi: 10.1016/j.ijbiomac.2021.07.115
– volume: 9
  start-page: 1
  issue: 11
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib53
  article-title: Smart and biomimetic 3d and 4d printed composite hydrogels: opportunities for different biomedical applications
  publication-title: Biomedicines
  doi: 10.3390/biomedicines9111537
– volume: 12
  issue: 8
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib176
  article-title: Natural 3D-printed bioinks for skin regeneration and wound healing: a systematic review
  publication-title: Polymers
  doi: 10.3390/polym12081782
– volume: 49
  start-page: 66
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib39
  article-title: Cell infiltrative hydrogel fibrous scaffolds for accelerated wound healing
  publication-title: Acta Biomater [Internet]
  doi: 10.1016/j.actbio.2016.11.017
– start-page: 415
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib171
  publication-title: Chem Soc Rev Combatting antibiotic-resistant bacteria using nanomaterials
– volume: 4
  start-page: 1
  issue: 6
  year: 2013
  ident: 10.1016/j.reth.2023.08.007_bib114
  article-title: Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model
  publication-title: Stem Cell Res Ther
– volume: 105
  start-page: 1457
  issue: 5
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib143
  article-title: Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds
  publication-title: J Biomed Mater Res, Part A
  doi: 10.1002/jbm.a.36036
– volume: 104
  issue: May
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib79
  article-title: A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery
  publication-title: Mater Sci Eng C [Internet]
– volume: 101
  start-page: 262
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib132
  article-title: Injectable, self-healable zwitterionic cryogels with sustained microRNA - cerium oxide nanoparticle release promote accelerated wound healing
  publication-title: Acta Biomater [Internet
  doi: 10.1016/j.actbio.2019.11.014
– start-page: 1
  year: 2023
  ident: 10.1016/j.reth.2023.08.007_bib177
  publication-title: High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues
– volume: 13
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib142
  article-title: Hybrid 3D printing of advanced hydrogel-based wound dressings with tailorable properties
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13040564
– volume: 10
  issue: 2
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib145
  article-title: Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo
  publication-title: Nanomaterials
  doi: 10.3390/nano10020390
– volume: 8
  start-page: 274
  issue: 4
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib81
  article-title: 3D-Printed gelatin-alginate hydrogel dressings for burn wound healing: a comprehensive study
  publication-title: Int J Bioprinting
  doi: 10.18063/ijb.v8i4.618
– volume: 3
  start-page: 693
  issue: 1
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib92
  article-title: One-pot covalent grafting of gelatin on poly(vinyl alcohol) hydrogel to enhance endothelialization and hemocompatibility for synthetic vascular graft applications
  publication-title: ACS Appl Bio Mater
  doi: 10.1021/acsabm.9b01026
– volume: 31
  start-page: 1
  issue: 48
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib26
  article-title: 3D printing personalized, photocrosslinkable hydrogel wound dressings for the treatment of thermal burns
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202105932
– volume: 122
  issue: February
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib146
  article-title: Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering
  publication-title: Mater Sci Eng C [Internet]
– volume: 129
  start-page: 219
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib9
  article-title: Delivery systems of current biologicals for the treatment of chronic cutaneous wounds and severe burns
  publication-title: Adv Drug Deliv Rev [Internet
  doi: 10.1016/j.addr.2018.03.002
– start-page: 85
  year: 2016
  ident: 10.1016/j.reth.2023.08.007_bib107
  article-title: 3D printing PhycoTrixTM for wound healing
  publication-title: Univ Wollongong Thesis Collect 1954-2016 [Internet]
– volume: 5
  start-page: 6290
  issue: 11
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib129
  article-title: 3D printing of antimicrobial alginate/bacterial-cellulose composite hydrogels by incorporating copper nanostructures
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.9b01048
– volume: 9
  start-page: 342
  issue: 1
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib4
  article-title: 3D printing of artificial skin patches with bioactive and optically active polymer materials for anti-infection and augmenting wound repair
  publication-title: Mater Horiz
  doi: 10.1039/D1MH00508A
– volume: 5
  start-page: 164
  issue: 1
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib36
  article-title: Chitosan based bioactive materials in tissue engineering applications-A review
  publication-title: Bioact Mater [Internet]
  doi: 10.1016/j.bioactmat.2020.01.012
– year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib65
  article-title: Recent advances in 3D printing for wound healing: a systematic review
  publication-title: J Drug Deliv Sci Technol
  doi: 10.1016/j.jddst.2022.103564
– volume: 11
  start-page: 5
  issue: 4
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib141
  article-title: Antioxidant pla composites containing lignin for 3D printing applications: a potential material for healthcare applications
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics11040165
– volume: 4
  start-page: 2342
  issue: 3
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib154
  article-title: Cell-Laden nanocellulose/chitosan-based bioinks for 3D bioprinting and enhanced osteogenic cell differentiation
  publication-title: ACS Appl Bio Mater
  doi: 10.1021/acsabm.0c01108
– volume: 7
  start-page: 5810
  issue: 12
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib159
  article-title: Nanocomposite conductive bioinks based on low-concentration GelMA and MXene nanosheets/gold nanoparticles providing enhanced printability of functional skeletal muscle tissues
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.1c01193
– volume: 131
  start-page: 407
  year: 2015
  ident: 10.1016/j.reth.2023.08.007_bib38
  article-title: Alginate-hyaluronan composite hydrogels accelerate wound healing process
  publication-title: Carbohydr Polym [Internet]
  doi: 10.1016/j.carbpol.2015.05.081
– volume: 1
  issue: 8
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib105
  article-title: Natural and synthetic bioinks for 3D bioprinting
  publication-title: Adv NanoBiomed Res
  doi: 10.1002/anbr.202000097
– volume: 8
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib8
  article-title: Interpretation of regulatory factors for 3D printing at hospitals and medical centers, or at the point of care
  publication-title: 3D Print Med.
  doi: 10.1186/s41205-022-00134-y
– volume: 21
  start-page: 4030
  issue: 10
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib24
  article-title: Thread size and polymer composition of 3D printed and electrospun wound dressings affect wound healing outcomes in an excisional wound rat model
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.0c00801
– volume: 2
  start-page: 29
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib186
  article-title: 3D printing of nano-cellulosic biomaterials for medical applications
  publication-title: Curr Opin Biomed Eng [Internet
  doi: 10.1016/j.cobme.2017.06.002
– volume: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib44
  article-title: Microfluidic 3D printing polyhydroxyalkanoates-based bionic skin for wound healing
  publication-title: Mater Futur
– volume: 9
  issue: 5
  year: 2014
  ident: 10.1016/j.reth.2023.08.007_bib103
  article-title: Apple derived cellulose scaffolds for 3D mammalian cell culture
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0097835
– volume: 27
  start-page: 1106
  issue: 1
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib148
  article-title: IGF-1-releasing PLGA nanoparticles modified 3D printed PCL scaffolds for cartilage tissue engineering
  publication-title: Drug Deliv [Internet
  doi: 10.1080/10717544.2020.1797239
– start-page: 153
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib50
  article-title: Emerging 3D printing technologies to develop novel pharmaceutical formulations
  publication-title: 3D 4D Print Biomed Appl.
– volume: 9
  start-page: 1238
  issue: 5
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib61
  article-title: Functional silk fibroin hydrogels: preparation, properties and applications
  publication-title: J Mater Chem B
  doi: 10.1039/D0TB02099K
– volume: 7
  start-page: 1
  issue: November
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib168
  article-title: Three dimensional printing bilayer membrane scaffold promotes wound healing
  publication-title: Front Bioeng Biotechnol
– volume: 13
  start-page: 1257
  issue: 9
  year: 2016
  ident: 10.1016/j.reth.2023.08.007_bib96
  article-title: Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications
  publication-title: Expert Opin Drug Deliv [Internet]
  doi: 10.1080/17425247.2016.1182485
– volume: 7
  issue: JUL
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib56
  article-title: 3D and 4D printing of polymers for tissue engineering applications
  publication-title: Front Bioeng Biotechnol
– volume: 13
  issue: 15
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib130
  article-title: 3D-Printed gelatin methacrylate scaffolds with controlled architecture and stiffness modulate the fibroblast phenotype towards dermal regeneration
  publication-title: Polymers
  doi: 10.3390/polym13152510
– year: 2023
  ident: 10.1016/j.reth.2023.08.007_bib161
– volume: 15
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib178
  article-title: 3D printing of oral drugs: a new reality or hype?
  publication-title: Expet Opin Drug Deliv
  doi: 10.1080/17425247.2017.1371698
– volume: 16
  issue: 4
  year: 2023
  ident: 10.1016/j.reth.2023.08.007_bib5
  article-title: 3D-Printed soft membrane for periodontal guided tissue regeneration
  publication-title: Materials
  doi: 10.3390/ma16041364
– volume: 6
  start-page: 76785
  issue: 80
  year: 2016
  ident: 10.1016/j.reth.2023.08.007_bib127
  article-title: A lotus root inspired implant system with fever responsive characteristics and 3D printing defined nano-antibiotic release patterns
  publication-title: RSC Adv
  doi: 10.1039/C6RA10652H
– volume: 24
  issue: 2
  year: 2023
  ident: 10.1016/j.reth.2023.08.007_bib20
  article-title: Biomaterial inks from peptide-functionalized silk fibers for 3D printing of futuristic wound-healing and sensing materials
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms24020947
– volume: 14
  issue: 5
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib98
  article-title: Smart 3D printed hydrogel skin wound bandages: a review
  publication-title: Polymers
  doi: 10.3390/polym14051012
– volume: 5
  start-page: 4128
  issue: 22
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib126
  article-title: A highly efficient, low-toxic, wide-spectrum antibacterial coating designed for 3D printed implants with tailorable release properties
  publication-title: J Mater Chem B
  doi: 10.1039/C7TB00478H
– volume: 199
  start-page: 593
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib19
  article-title: 3D-printed chitosan-based scaffolds: an in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats
  publication-title: Carbohydr Polym [Internet]
  doi: 10.1016/j.carbpol.2018.07.057
– volume: 12
  start-page: 1
  issue: 580
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib94
  article-title: Poly(N-isopropylacrylamide)-Based thermoresponsive composite hydrogels for biomedical applications
  publication-title: Polymers
– volume: 527
  start-page: 161
  issue: 1–2
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib21
  article-title: Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings
  publication-title: Int J Pharm [Internet]
  doi: 10.1016/j.ijpharm.2017.04.077
– volume: 463
  start-page: 127
  issue: 2
  year: 2014
  ident: 10.1016/j.reth.2023.08.007_bib106
  article-title: Natural and synthetic polymers for wounds and burns dressing
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2013.12.015
– volume: 11
  start-page: 1
  issue: 11
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib32
  article-title: 3D fiber reinforced hydrogel scaffolds by melt electrowriting and gel casting as a hybrid design for wound healing
  publication-title: Adv Healthcare Mater
  doi: 10.1002/adhm.202102068
– volume: 53
  start-page: 249
  year: 2012
  ident: 10.1016/j.reth.2023.08.007_bib110
  article-title: Naturalproducts locally modulators of the cellular response: therapeutic perspectivesin skin burns
  publication-title: Rom J Morphol Embryol
– volume: 14
  start-page: 1
  issue: 33
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib167
  article-title: Smart bandage for monitoring and treatment of chronic wounds
  publication-title: Small
– volume: 4
  start-page: 452
  issue: 2
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib112
  article-title: Inkjet printed drug-releasing polyelectrolyte multilayers for wound dressings
  publication-title: AIMS Mater Sci
  doi: 10.3934/matersci.2017.2.452
– start-page: 145
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib184
  article-title: Potential of 3D printing in pharmaceutical drug delivery and manufacturing
  publication-title: 3D 4D Print Biomed Appl.
– volume: 1840
  start-page: 2506
  issue: 8
  year: 2014
  ident: 10.1016/j.reth.2023.08.007_bib41
  article-title: Extracellular matrix: a dynamic microenvironment for stem cell niche
  publication-title: Biochim Biophys Acta - Gen Subj [Internet]
  doi: 10.1016/j.bbagen.2014.01.010
– year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib74
  article-title: 3D bioprinted scaffolds for diabetic wound - healing applications
  publication-title: Drug Deliv Transl Res
– volume: 560
  start-page: 406
  issue: January
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib45
  article-title: 3D printed chitosan dressing crosslinked with genipin for potential healing of chronic wounds
  publication-title: Int J Pharm [Internet
  doi: 10.1016/j.ijpharm.2019.02.020
– year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib11
– volume: 23
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib189
  article-title: Metal-organic framework-based nanomaterials for bone tissue engineering and wound healing
  publication-title: Mater Today Chem
– volume: 451
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib156
  article-title: 3D bioprinted conductive spinal cord biomimetic scaffolds for promoting neuronal differentiation of neural stem cells and repairing of spinal cord injury
  publication-title: Chem Eng J
– volume: 32
  start-page: 1
  issue: 4
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib22
  article-title: Design and characterization of 3D printed, neomycin-eluting poly-L-lactide mats for wound-healing applications
  publication-title: J Mater Sci Mater Med [Internet]
– volume: 18
  start-page: 1
  issue: 6
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib138
  article-title: Composite PLA/PEG/nHA/Dexamethasone scaffold prepared by 3D printing for bone regeneration
  publication-title: Macromol Biosci
  doi: 10.1002/mabi.201800068
– volume: 117
  start-page: 10212
  issue: 15
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib180
  article-title: Polymers for 3D printing and customized additive manufacturing
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.7b00074
– volume: 27
  start-page: 262
  issue: 5
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib190
  article-title: Clinical application of a 3D-printed scaffold in chronic wound treatment: a case series
  publication-title: J Wound Care
  doi: 10.12968/jowc.2018.27.5.262
– start-page: 1
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib16
  publication-title: Hernia Repair
– volume: 28
  start-page: 775
  issue: 4
  year: 2010
  ident: 10.1016/j.reth.2023.08.007_bib89
  article-title: Chondroitin sulfates are required for fibroblast growth factor-2-dependent proliferation and maintenance in neural stem cells and for epidermal growth factor-dependent migration of their progeny
  publication-title: Stem Cell
  doi: 10.1002/stem.309
– volume: 1
  start-page: 792
  issue: 11
  year: 2012
  ident: 10.1016/j.reth.2023.08.007_bib166
  article-title: Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds
  publication-title: Stem Cells Transl Med
  doi: 10.5966/sctm.2012-0088
– volume: 30
  start-page: 1
  issue: 28
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib59
  article-title: A review of 3D printing technologies for soft polymer materials
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202000187
– volume: 7
  start-page: 1
  issue: May
  year: 2016
  ident: 10.1016/j.reth.2023.08.007_bib93
  article-title: Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures
  publication-title: Nat Commun
– volume: 17
  start-page: 426
  issue: 9
  year: 2014
  ident: 10.1016/j.reth.2023.08.007_bib151
  article-title: A decade of graphene research: production, applications and outlook
  publication-title: Mater Today [Internet]
  doi: 10.1016/j.mattod.2014.06.001
– volume: 187
  start-page: 66
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib84
  article-title: Agarose-based biomaterials for tissue engineering
  publication-title: Carbohydr Polym [Internet]
  doi: 10.1016/j.carbpol.2018.01.060
– volume: 4
  start-page: 243
  issue: June 2022
  year: 2023
  ident: 10.1016/j.reth.2023.08.007_bib100
  article-title: Design of 3D smart scaffolds using natural, synthetic and hybrid derived polymers for skin regenerative applications
  publication-title: Smart Mater Med [Internet
  doi: 10.1016/j.smaim.2022.09.005
– volume: 55
  start-page: 101
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib134
  article-title: Surface immobilization of biphasic calcium phosphate nanoparticles on 3D printed poly(caprolactone) scaffolds enhances osteogenesis and bone tissue regeneration
  publication-title: J Ind Eng Chem [Internet
  doi: 10.1016/j.jiec.2017.06.033
– volume: 20
  start-page: 790
  issue: 10
  year: 2014
  ident: 10.1016/j.reth.2023.08.007_bib136
  article-title: Skin tissue engineering for the infected wound site: biodegradable PLA nanofibers and a novel approach for silver ion release evaluated in a 3D coculture system of keratinocytes and staphylococcus aureus
  publication-title: Tissue Eng C Methods
  doi: 10.1089/ten.tec.2013.0458
– volume: 29
  start-page: 1
  issue: 24
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib83
  article-title: Ultrahigh-water-content, superelastic, and shape-memory nanofiber-assembled hydrogels exhibiting pressure-responsive conductivity
  publication-title: Adv Mater
  doi: 10.1002/adma.201700339
– volume: 8
  start-page: 1
  issue: 6
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib164
  article-title: 3D printing of thermoresponsive hydrogel laden with an antimicrobial agent towards wound healing applications
  publication-title: Bioengineering
  doi: 10.3390/bioengineering8060079
– volume: 12
  start-page: 1
  issue: 8
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib82
  article-title: A novel application of 3D printing technology facilitating shell wound healing of freshwater turtle
  publication-title: Animals
  doi: 10.3390/ani12080966
– year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib55
  article-title: 3D bioprinted scaffolds for diabetic wound-healing applications
  publication-title: Drug Deliv Transl Res [Internet]
– volume: 32
  start-page: 279
  issue: 1
  year: 2011
  ident: 10.1016/j.reth.2023.08.007_bib123
  article-title: Polycaprolactone-based fused deposition modeled mesh for delivery of antibacterial agents to infected wounds
  publication-title: Biomaterials [Internet]
  doi: 10.1016/j.biomaterials.2010.08.089
– volume: 29
  start-page: 1
  issue: 19
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib51
  article-title: Emerging biofabrication strategies for engineering complex tissue constructs
  publication-title: Adv Mater
  doi: 10.1002/adma.201606061
– volume: 2
  start-page: 1
  issue: December 2020
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib69
  article-title: An overview on materials and techniques in 3D bioprinting toward biomedical application
  publication-title: Eng Regen [Internet]
– volume: 18
  start-page: 303
  issue: 2
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib179
  article-title: 3D-Printed drugs for children—are we ready yet?
  publication-title: AAPS PharmSciTech [Internet]
  doi: 10.1208/s12249-016-0704-y
– volume: 34
  start-page: 422
  issue: 4
  year: 2016
  ident: 10.1016/j.reth.2023.08.007_bib31
  article-title: 3D bioprinting for engineering complex tissues
  publication-title: Biotechnol Adv [Internet]
  doi: 10.1016/j.biotechadv.2015.12.011
– volume: 1
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib163
  article-title: Recent advances in 3D printing hydrogel for topical drug delivery
  publication-title: MedComm – Biomater Appl.
– volume: 527
  start-page: 161
  issue: 1–2
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib68
  article-title: Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings
  publication-title: Int J Pharm
  doi: 10.1016/j.ijpharm.2017.04.077
– volume: 9
  issue: 2
  year: 2023
  ident: 10.1016/j.reth.2023.08.007_bib71
  article-title: Characterization of a bioink combining extracellular matrix-like hydrogel with osteosarcoma cells: preliminary results
  publication-title: Gels
  doi: 10.3390/gels9020129
– volume: 109
  start-page: 1855
  issue: 7
  year: 2012
  ident: 10.1016/j.reth.2023.08.007_bib46
  article-title: Skin tissue generation by laser cell printing
  publication-title: Biotechnol Bioeng
  doi: 10.1002/bit.24455
– volume: 127
  start-page: 138
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib18
  article-title: Drug delivery systems and materials for wound healing applications
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2018.04.008
– start-page: 385
  issue: i
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib3
  article-title: 3D printed scaffolds for wound healing and tissue regeneration
  publication-title: Ther Dressings Wound Heal Appl
  doi: 10.1002/9781119433316.ch17
– volume: 6
  start-page: 1
  issue: 19
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib6
  article-title: An advanced multifunctional hydrogel-based dressing for wound monitoring and drug delivery
  publication-title: Adv Healthcare Mater
  doi: 10.1002/adhm.201700718
– volume: 28
  start-page: 267
  issue: May
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib7
  article-title: Bagasse—a major agro-industrial residue as potential resource for nanocellulose inks for 3D printing of wound dressing devices
  publication-title: Addit Manuf [Internet]
– volume: 7
  start-page: 1205
  issue: 11
  year: 2014
  ident: 10.1016/j.reth.2023.08.007_bib13
  article-title: Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity
  publication-title: DMM Dis Model Mech
  doi: 10.1242/dmm.016782
– volume: 115
  start-page: 2109
  issue: 5
  year: 2015
  ident: 10.1016/j.reth.2023.08.007_bib157
  article-title: (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications
  publication-title: Chem Rev
  doi: 10.1021/cr400714j
– volume: 7
  start-page: 1
  issue: April
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib70
  article-title: Hydrogel-based bioinks for 3D bioprinting in tissue regeneration
  publication-title: Front Mater
– year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib139
– volume: 9
  start-page: 1
  issue: October
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib15
  article-title: Wound and skin healing in space: the 3D bioprinting perspective
  publication-title: Front Bioeng Biotechnol
– volume: 11
  start-page: 33734
  issue: 37
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib188
  article-title: Combination of the silver-ethylene interaction and 3D printing to develop antibacterial superporous hydrogels for wound management
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b14090
– volume: 216
  issue: June
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib35
  article-title: Emerging and innovative approaches for wound healing and skin regeneration: current status and advances
  publication-title: Biomaterials [Internet]
– ident: 10.1016/j.reth.2023.08.007_bib140
  doi: 10.1002/anie.202114111
– volume: 5
  start-page: 318
  issue: 1
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib144
  article-title: Surface modification of 3D printed polycaprolactone constructs via a solvent treatment: impact on physical and osteogenic properties
  publication-title: ACS Biomater Sci Eng
  doi: 10.1021/acsbiomaterials.8b01018
– volume: 17
  start-page: 1
  issue: 3
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib158
  publication-title: Using of hybrid nanoantibiotics antimicrobial agent as promising
– volume: 8
  start-page: 4137
  issue: 6
  year: 2016
  ident: 10.1016/j.reth.2023.08.007_bib121
  article-title: Electrophoretic deposition of dexamethasone-loaded mesoporous silica nanoparticles onto poly(l-lactic acid)/poly(ε-caprolactone) composite scaffold for bone tissue engineering
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b11879
– volume: 103
  issue: May
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib147
  article-title: 3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering
  publication-title: Mater Sci Eng C [Internet]
– volume: 12
  start-page: 0
  issue: 1
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib117
  article-title: Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity
  publication-title: Nanoscale Res Lett [Internet
– volume: 101
  start-page: 15
  issue: February
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib125
  article-title: Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration
  publication-title: Mater Sci Eng C [Internet]
  doi: 10.1016/j.msec.2019.03.056
– volume: 88
  start-page: 33
  issue: 1
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib116
  article-title: Combining 3D printing and electrospinning for preparation of pain-relieving wound-dressing materials
  publication-title: J Sol Gel Sci Technol
  doi: 10.1007/s10971-018-4630-1
– volume: 16
  start-page: 1821
  issue: 11
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib135
  article-title: A novel vehicle-like drug delivery 3D printing scaffold and its applications for a rat femoral bone repairing in vitro and in vivo
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.37552
– ident: 10.1016/j.reth.2023.08.007_bib119
– volume: 18
  start-page: 7
  issue: 1
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib172
  article-title: An overview on 3D printed medicine
  publication-title: Mater Sci Res Int
– volume: 8
  start-page: 1
  issue: June
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib101
  article-title: Plant tissues as 3D natural scaffolds for adipose, bone and tendon tissue regeneration
  publication-title: Front Bioeng Biotechnol
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib54
  article-title: 3D printed polyvinyl alcohol tablets with multiple release profiles
  publication-title: Sci Rep
– volume: 31
  start-page: 1
  issue: 16
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib60
  article-title: 3D printing and nanotechnology: a multiscale alliance in personalized medicine
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202009691
– volume: 4
  start-page: 1590
  issue: 3
  year: 2012
  ident: 10.1016/j.reth.2023.08.007_bib97
  article-title: Hydrogel-based platforms for the regeneration of osteochondral tissue and intervertebral disc
  publication-title: Polymers
  doi: 10.3390/polym4031590
– volume: 61
  start-page: 793
  year: 2016
  ident: 10.1016/j.reth.2023.08.007_bib85
  article-title: Thermoreversible gelation and scaling behavior of Ca2+-induced κ-carrageenan hydrogels
  publication-title: Food Hydrocoll [Internet]
  doi: 10.1016/j.foodhyd.2016.07.003
– volume: 13
  start-page: 272
  issue: 2
  year: 2016
  ident: 10.1016/j.reth.2023.08.007_bib28
  article-title: Treatment of chronic diabetic lower extremity ulcers with advanced therapies: a prospective, randomised, controlled, multi-centre comparative study examining clinical efficacy and cost
  publication-title: Int Wound J
  doi: 10.1111/iwj.12566
– volume: 14
  issue: 1
  year: 2023
  ident: 10.1016/j.reth.2023.08.007_bib12
  article-title: 3D printed chitosan/alginate hydrogels for the controlled release of silver sulfadiazine in wound healing applications: design, characterization and antimicrobial activity
  publication-title: Micromachines
  doi: 10.3390/mi14010137
– volume: 2
  start-page: 422
  issue: 12
  year: 2018
  ident: 10.1016/j.reth.2023.08.007_bib52
  article-title: 3D printing for chemical, pharmaceutical and biological applications
  publication-title: Nat Rev Chem
  doi: 10.1038/s41570-018-0058-y
– volume: 14
  start-page: 5257
  issue: 1
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib150
  article-title: A recent update on formulation and development of gastro-retentive drug delivery systems
  publication-title: Int J Pharm Sci Nanotechnol
– volume: 2140
  start-page: 93
  issue: May
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib76
  article-title: Stereolithography 3D bioprinting
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-0716-0520-2_6
– volume: 24
  issue: 1
  year: 2023
  ident: 10.1016/j.reth.2023.08.007_bib43
  article-title: 3D printing as a technological strategy for the personalized treatment of wound healing
  publication-title: AAPS PharmSciTech
  doi: 10.1208/s12249-023-02503-0
– volume: 9
  issue: 7
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib58
  article-title: Tio2 and PEEK reinforced 3d printing pmma composite resin for dental denture base applications
  publication-title: Nanomaterials
  doi: 10.3390/nano9071049
– volume: 4
  issue: 4
  year: 2017
  ident: 10.1016/j.reth.2023.08.007_bib124
  article-title: Doped halloysite nanotubes for use in the 3D printing of medical devices
  publication-title: Bioengineering
  doi: 10.3390/bioengineering4040096
– volume: 100
  start-page: 915
  issue: November 2017
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib48
  article-title: Biomimicry of oil infused layer on 3D printed poly(dimethylsiloxane): non-fouling, antibacterial and promoting infected wound healing
  publication-title: Mater Sci Eng C [Internet]
  doi: 10.1016/j.msec.2019.03.058
– volume: 6
  issue: October
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib77
  article-title: Current developments in 3D bioprinting for tissue and organ regeneration
  publication-title: Rev
– volume: 28
  start-page: 160
  issue: 1
  year: 2022
  ident: 10.1016/j.reth.2023.08.007_bib30
  article-title: Recent advances in the design of three-dimensional and bioprinted scaffolds for full-thickness wound healing
  publication-title: Tissue Eng Part B
  doi: 10.1089/ten.teb.2020.0339
– volume: 480
  start-page: 822
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib128
  article-title: Decreased bacterial colonization of additively manufactured Ti6Al4V metallic scaffolds with immobilized silver and calcium phosphate nanoparticles
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2019.03.003
– volume: 103
  start-page: 52
  year: 2020
  ident: 10.1016/j.reth.2023.08.007_bib133
  article-title: Topical antimicrobial peptide formulations for wound healing: current developments and future prospects
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2019.12.025
– volume: 121
  start-page: 637
  year: 2021
  ident: 10.1016/j.reth.2023.08.007_bib152
  article-title: 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization
  publication-title: Acta Biomater [Internet
  doi: 10.1016/j.actbio.2020.12.026
– volume: 5
  issue: 8
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib64
  article-title: Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind
  publication-title: Heliyon [Internet]
– volume: 78–79
  start-page: 337
  year: 2019
  ident: 10.1016/j.reth.2023.08.007_bib90
  article-title: Hyaluronan chemistries for three-dimensional matrix applications
  publication-title: Matrix Biol [Internet
  doi: 10.1016/j.matbio.2018.02.010
SSID ssj0001851298
Score 2.3879175
SecondaryResourceType review_article
Snippet Wounds are a stern healthcare concern in the growth of chronic disease conditions as they can increase healthcare costs and complicate internal and external...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 361
SubjectTerms 3D printing
Biomaterials
Nanocomposite
Nanomaterial scaffolds
Review
Wound healing
Title 3D printed drug loaded nanomaterials for wound healing applications
URI https://www.proquest.com/docview/2863766695
https://pubmed.ncbi.nlm.nih.gov/PMC10491785
https://doaj.org/article/9235ffa6c9934c4ca75bbd8bb1a6bb6a
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp1xKm6R00ySoEHIppvLKeviYJyEhgUIDuQmNJDctqTdsdgn995mRvcG-pJeAMcaWsTwaab6RRt8wti9MsjVoID5tWVQgTAFlFIWpa4r8UxEUbU6-utbnN9XFrbodpPqimLCOHrgT3HcEIKppvA5oSKtQBW8UQLQApdcAOkMjtHkDZyrPrlgyZLbfJdMFdM3TglYfpjJzdlL-2IElyoT9I5Q5jpEcGJ2zD-x9jxb5YVfLj-xdajfY5mGLnvLff_yA5_jNPDG-yY7lCadZOoSQPM6Xv_j9zEe8bn07Q1jaaRpHjMqfKJUSJ4iIdosPl7C32M3Z6c_j86JPkVCEyohFEWsZIzQpBdmkqEWAJJJtkvACQimTN1bXgAZIGBO8jNhlVQCBlrGJDR7yE1trZ236zLixOPjFBqqpwdFzGhE5kTNhZIlCV3U1YeVKXC70_OGUxuLerQLF_jgSsSMRO8ptKcyEfXt556Fjz3i19BG1wktJYr7ON1AfXK8P7n_6MGFfV23osKfQ8odv02z56KZW42iqda0mzI4ad_TF8ZP2913m3EavFR1bq7bfoo5f2Dr9dhcVs8PWFvNl2kVss4C9rMZ4vvxhnwFF_f0m
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+printed+drug+loaded+nanomaterials+for+wound+healing+applications&rft.jtitle=Regenerative+therapy&rft.au=Ashagrachew+Tewabe+Yayehrad&rft.au=Ebrahim+Abdella+Siraj&rft.au=Motlalepula+Matsabisa&rft.au=Gebremariam+Birhanu&rft.date=2023-12-01&rft.pub=Elsevier&rft.eissn=2352-3204&rft.volume=24&rft.spage=361&rft.epage=376&rft_id=info:doi/10.1016%2Fj.reth.2023.08.007&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9235ffa6c9934c4ca75bbd8bb1a6bb6a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-3204&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-3204&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-3204&client=summon