Down syndrome’s brain dynamics: analysis of fractality in resting state

To the best knowledge of the authors there is no study on nonlinear brain dynamics of down syndrome (DS) patients, whereas brain is a highly complex and nonlinear system. In this study, fractal dimension of EEG, as a key characteristic of brain dynamics, showing irregularity and complexity of brain...

Full description

Saved in:
Bibliographic Details
Published inCognitive neurodynamics Vol. 7; no. 4; pp. 333 - 340
Main Authors Hemmati, Sahel, Ahmadlou, Mehran, Gharib, Masoud, Vameghi, Roshanak, Sajedi, Firoozeh
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2013
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1871-4080
1871-4099
DOI10.1007/s11571-013-9248-y

Cover

Abstract To the best knowledge of the authors there is no study on nonlinear brain dynamics of down syndrome (DS) patients, whereas brain is a highly complex and nonlinear system. In this study, fractal dimension of EEG, as a key characteristic of brain dynamics, showing irregularity and complexity of brain dynamics, was used for evaluation of the dynamical changes in the DS brain. The results showed higher fractality of the DS brain in almost all regions compared to the normal brain, which indicates less centrality and higher irregular or random functioning of the DS brain regions. Also, laterality analysis of the frontal lobe showed that the normal brain had a right frontal laterality of complexity whereas the DS brain had an inverse pattern (left frontal laterality). Furthermore, the high accuracy of 95.8 % obtained by enhanced probabilistic neural network classifier showed the potential of nonlinear dynamic analysis of the brain for diagnosis of DS patients. Moreover, the results showed that the higher EEG fractality in DS is associated with the higher fractality in the low frequencies (delta and theta), in broad regions of the brain, and the high frequencies (beta and gamma), majorly in the frontal regions.
AbstractList To the best knowledge of the authors there is no study on nonlinear brain dynamics of down syndrome (DS) patients, whereas brain is a highly complex and nonlinear system. In this study, fractal dimension of EEG, as a key characteristic of brain dynamics, showing irregularity and complexity of brain dynamics, was used for evaluation of the dynamical changes in the DS brain. The results showed higher fractality of the DS brain in almost all regions compared to the normal brain, which indicates less centrality and higher irregular or random functioning of the DS brain regions. Also, laterality analysis of the frontal lobe showed that the normal brain had a right frontal laterality of complexity whereas the DS brain had an inverse pattern (left frontal laterality). Furthermore, the high accuracy of 95.8 % obtained by enhanced probabilistic neural network classifier showed the potential of nonlinear dynamic analysis of the brain for diagnosis of DS patients. Moreover, the results showed that the higher EEG fractality in DS is associated with the higher fractality in the low frequencies (delta and theta), in broad regions of the brain, and the high frequencies (beta and gamma), majorly in the frontal regions.
To the best knowledge of the authors there is no study on nonlinear brain dynamics of down syndrome (DS) patients, whereas brain is a highly complex and nonlinear system. In this study, fractal dimension of EEG, as a key characteristic of brain dynamics, showing irregularity and complexity of brain dynamics, was used for evaluation of the dynamical changes in the DS brain. The results showed higher fractality of the DS brain in almost all regions compared to the normal brain, which indicates less centrality and higher irregular or random functioning of the DS brain regions. Also, laterality analysis of the frontal lobe showed that the normal brain had a right frontal laterality of complexity whereas the DS brain had an inverse pattern (left frontal laterality). Furthermore, the high accuracy of 95.8 % obtained by enhanced probabilistic neural network classifier showed the potential of nonlinear dynamic analysis of the brain for diagnosis of DS patients. Moreover, the results showed that the higher EEG fractality in DS is associated with the higher fractality in the low frequencies (delta and theta), in broad regions of the brain, and the high frequencies (beta and gamma), majorly in the frontal regions.
To the best knowledge of the authors there is no study on nonlinear brain dynamics of down syndrome (DS) patients, whereas brain is a highly complex and nonlinear system. In this study, fractal dimension of EEG, as a key characteristic of brain dynamics, showing irregularity and complexity of brain dynamics, was used for evaluation of the dynamical changes in the DS brain. The results showed higher fractality of the DS brain in almost all regions compared to the normal brain, which indicates less centrality and higher irregular or random functioning of the DS brain regions. Also, laterality analysis of the frontal lobe showed that the normal brain had a right frontal laterality of complexity whereas the DS brain had an inverse pattern (left frontal laterality). Furthermore, the high accuracy of 95.8 % obtained by enhanced probabilistic neural network classifier showed the potential of nonlinear dynamic analysis of the brain for diagnosis of DS patients. Moreover, the results showed that the higher EEG fractality in DS is associated with the higher fractality in the low frequencies (delta and theta), in broad regions of the brain, and the high frequencies (beta and gamma), majorly in the frontal regions.To the best knowledge of the authors there is no study on nonlinear brain dynamics of down syndrome (DS) patients, whereas brain is a highly complex and nonlinear system. In this study, fractal dimension of EEG, as a key characteristic of brain dynamics, showing irregularity and complexity of brain dynamics, was used for evaluation of the dynamical changes in the DS brain. The results showed higher fractality of the DS brain in almost all regions compared to the normal brain, which indicates less centrality and higher irregular or random functioning of the DS brain regions. Also, laterality analysis of the frontal lobe showed that the normal brain had a right frontal laterality of complexity whereas the DS brain had an inverse pattern (left frontal laterality). Furthermore, the high accuracy of 95.8 % obtained by enhanced probabilistic neural network classifier showed the potential of nonlinear dynamic analysis of the brain for diagnosis of DS patients. Moreover, the results showed that the higher EEG fractality in DS is associated with the higher fractality in the low frequencies (delta and theta), in broad regions of the brain, and the high frequencies (beta and gamma), majorly in the frontal regions.
Author Vameghi, Roshanak
Ahmadlou, Mehran
Gharib, Masoud
Sajedi, Firoozeh
Hemmati, Sahel
Author_xml – sequence: 1
  givenname: Sahel
  surname: Hemmati
  fullname: Hemmati, Sahel
  organization: Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences
– sequence: 2
  givenname: Mehran
  surname: Ahmadlou
  fullname: Ahmadlou, Mehran
  organization: Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Dynamic Brain Research Group, Netherlands Institute for Neuroscience
– sequence: 3
  givenname: Masoud
  surname: Gharib
  fullname: Gharib, Masoud
  email: pediatricnrc@yahoo.com
  organization: Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences
– sequence: 4
  givenname: Roshanak
  surname: Vameghi
  fullname: Vameghi, Roshanak
  organization: Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences
– sequence: 5
  givenname: Firoozeh
  surname: Sajedi
  fullname: Sajedi, Firoozeh
  organization: Pediatric Neurorehabilitation Research Center, University of Social Welfare and Rehabilitation Sciences, Dynamic Brain Research Group
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24427209$$D View this record in MEDLINE/PubMed
BookMark eNp9UctuFDEQtFAi8oAP4IJG4sJlSNvjHdsckFB4RYrEBc5Wj6dncTRjB3sWNDd-g9_jS_BqwyZEgpMtu6q6uuqEHYQYiLEnHF5wAHWWOV8pXgNvaiOkrpcH7Jjr8iLBmIP9XcMRO8n5CmDVai4fsiMhpVACzDG7eBO_hyovoU9xol8_fuaqS-hD1S8BJ-_yywoDjkv2uYpDNSR0M45-XqqCSZRnH9ZVnnGmR-xwwDHT45vzlH1-9_bT-Yf68uP7i_PXl7WTCua6N9BqaRpn0LRSodEo2k73pAWRM0YQb7pVj4ROg6QO3AC8bTtpFHRO8OaUvdrpXm-6iXpHYU442uvkJ0yLjejt3z_Bf7Hr-M02ijcCZBF4fiOQ4tdNWcFOPjsaRwwUN9lyWSwa3eqmQJ_dg17FTSp5ZCsM160yQm8dPb3raG_lT8oFwHcAl2LOiYY9hIPdNml3TdrSpN02aZfCUfc4zpeYfdwu5cf_MsWOmcuUsKZ0a_rfpN9HWLRU
CitedBy_id crossref_primary_10_3389_fnagi_2022_988540
crossref_primary_10_1016_j_lmot_2020_101685
crossref_primary_10_1007_s11571_016_9418_9
crossref_primary_10_3390_brainsci11050551
crossref_primary_10_1162_netn_a_00177
crossref_primary_10_1016_j_neuroimage_2024_120636
Cites_doi 10.1007/s11571-011-9159-8
10.1109/TBME.2006.886855
10.1007/BF00294247
10.1007/s11571-009-9082-4
10.1097/WAD.0b013e3181ed1160
10.1007/s11571-008-9038-0
10.1016/0010-4825(88)90041-8
10.1016/j.neuroimage.2011.04.070
10.1016/j.clinph.2011.05.004
10.1016/j.physd.2011.09.008
10.1177/155005941104200105
10.1016/j.jneumeth.2012.08.020
10.1007/s11571-011-9168-7
10.1016/j.physa.2012.04.025
10.1007/s11571-012-9196-y
10.1016/j.clinph.2010.04.007
10.1093/cercor/10.10.981
10.1034/j.1601-183X.2003.00026.x
10.1177/155005941004100103
10.1007/s00702-010-0450-3
10.1016/j.ijpsycho.2012.05.001
10.1016/j.clinph.2009.06.017
10.1016/j.neulet.2012.03.087
10.1007/s11571-007-9023-z
10.1016/0013-4694(92)90024-C
10.1016/0167-2789(88)90081-4
10.1176/appi.ajp.158.10.1659
10.1016/j.plrev.2012.07.010
10.1097/WNP.0b013e3181f40dc8
10.1007/s11571-011-9151-3
10.1177/1550059411428555
10.1007/s11571-010-9120-2
10.1016/j.biopsych.2008.10.046
10.1016/S2171-9748(12)70018-1
10.1016/j.clinph.2012.12.003
10.1109/81.904882
10.3233/ICA-2010-0345
10.1016/0013-4694(93)91069-D
ContentType Journal Article
Copyright Springer Science+Business Media Dordrecht 2013
Springer Science+Business Media Dordrecht 2013.
Copyright_xml – notice: Springer Science+Business Media Dordrecht 2013
– notice: Springer Science+Business Media Dordrecht 2013.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0S
M7P
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
7X8
5PM
DOI 10.1007/s11571-013-9248-y
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Sciences Collection
ProQuest One
ProQuest Central Korea
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Psychology
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 1871-4099
EndPage 340
ExternalDocumentID PMC3713204
24427209
10_1007_s11571_013_9248_y
Genre Journal Article
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67N
67Z
6NX
7X7
875
8FI
8FJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARAPS
ARMRJ
AXYYD
B-.
BA0
BAWUL
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GX1
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HYE
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KPH
LLZTM
M4Y
M7P
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OK1
OVD
P2P
PF0
PSYQQ
PT4
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TEORI
TR2
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
NPM
PQGLB
3V.
7XB
8FE
8FG
8FH
8FK
AZQEC
DWQXO
GNUQQ
JQ2
K9.
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c470t-d9068493c9a9647a98a26b8de82eec992e13b5daeac804eb0cf0166b4970bc213
IEDL.DBID 8FG
ISSN 1871-4080
IngestDate Thu Aug 21 18:28:50 EDT 2025
Thu Sep 04 19:33:07 EDT 2025
Fri Jul 25 11:01:06 EDT 2025
Mon Jul 21 06:00:01 EDT 2025
Tue Jul 01 02:55:06 EDT 2025
Thu Apr 24 22:55:37 EDT 2025
Fri Feb 21 02:32:40 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Fractal dimension
EEG
Down syndrome
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-d9068493c9a9647a98a26b8de82eec992e13b5daeac804eb0cf0166b4970bc213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://doi.org/10.1007/s11571-013-9248-y
PMID 24427209
PQID 2918679281
PQPubID 2043944
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3713204
proquest_miscellaneous_1490698683
proquest_journals_2918679281
pubmed_primary_24427209
crossref_primary_10_1007_s11571_013_9248_y
crossref_citationtrail_10_1007_s11571_013_9248_y
springer_journals_10_1007_s11571_013_9248_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationTitle Cognitive neurodynamics
PublicationTitleAbbrev Cogn Neurodyn
PublicationTitleAlternate Cogn Neurodyn
PublicationYear 2013
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Sohn, Kim, Lee, Peterson, Hong, Chae, Hong, Jeong (CR36) 2010; 121
Wang, Zou, Zhang, Wang, Wang (CR38) 2010; 4
Ahmadlou, Adeli, Adeli (CR8) 2010; 117
Esteller, Vachtsevanos, Echauz, Litt (CR19) 2001; 48
Pinter, Eliez, Schmitt, Capone, Reiss (CR32) 2001; 158
Ozaki, Sato, Kitajo, Someya, Anami, Mizuhara, Ogawa, Yamaguchi (CR31) 2012; 6
Babiloni, Albertini, Onorati, Vecchio, Buffo, Sarà, Condoluci, Pistoia, Carducci, Rossini (CR16) 2009; 120
Vialatte, Dauwels, Maurice, Yamaguchi, Cichocki (CR37) 2009; 3
Kiebel, Garrido, Moran, Friston (CR27) 2008; 2
Ahmadlou, Adeli, Adeli (CR9) 2011; 25
CR15
Ahmadlou, Adeli (CR3) 2010; 17
Ahmadlou, Adeli, Adeli (CR12) 2012; 85
Ahmadlou, Adeli, Adeli (CR7) 2010; 27
Ahmadlou, Adeli (CR4) 2011; 58
Gao, Hu, Tung (CR22) 2011; 5
Fernández, Quintero, Hornero, Zuluaga, Navas, Gómez, Escudero, García-Campos, Biederman, Ortiz (CR20) 2009; 65
Higuchi (CR23) 1988; 31
Kaufmann, Moser (CR26) 2000; 10
Ahmadlou, Adeli, Adeli (CR10) 2012; 43
Ahmadlou, Adeli, Adeli (CR13) 2012; 211
Ahmadlou, Adeli (CR5) 2011; 42
Catarino, Churches, Baron-Cohen, Andrade, Ring (CR17) 2011; 122
Ahmadlou, Adeli (CR2) 2010; 41
Ferrer, Gullotta (CR21) 1990; 79
Klimesch, Arora (CR28) 2012; 9
Adeli, Ghosh-Dastidar, Dadmehr (CR1) 2007; 54
Danés (CR18) 2012; 16
Katz (CR25) 1988; 18
Nakatani, Orlandi, van Leeuwen (CR30) 2011; 5
Ahmadlou, Rostami, Sadeghi (CR14) 2012; 516
Schmid, Tirsch, Rappelsberger, Weinmann, Pöppl (CR35) 1992; 83
Nadel (CR29) 2003; 2
Schinkel, Marwan, Kurths (CR34) 2007; 1
Sannita, Di Bon, Rosadini, Shmeuli (CR33) 1993; 87
Ahmadlou, Adeli (CR6) 2012; 241
Ahmadlou, Adeli, Adeli (CR11) 2012; 391
Hu, Liang (CR24) 2011; 5
M Ahmadlou (9248_CR7) 2010; 27
M Ahmadlou (9248_CR14) 2012; 516
C Wang (9248_CR38) 2010; 4
WG Sannita (9248_CR33) 1993; 87
RG Schmid (9248_CR35) 1992; 83
M Ahmadlou (9248_CR4) 2011; 58
M Ahmadlou (9248_CR5) 2011; 42
SJ Kiebel (9248_CR27) 2008; 2
T Higuchi (9248_CR23) 1988; 31
M Katz (9248_CR25) 1988; 18
9248_CR15
M Ahmadlou (9248_CR3) 2010; 17
H Sohn (9248_CR36) 2010; 121
H Adeli (9248_CR1) 2007; 54
M Ahmadlou (9248_CR8) 2010; 117
M Ahmadlou (9248_CR11) 2012; 391
I Ferrer (9248_CR21) 1990; 79
WE Kaufmann (9248_CR26) 2000; 10
9248_CR18
M Hu (9248_CR24) 2011; 5
J Gao (9248_CR22) 2011; 5
W Klimesch (9248_CR28) 2012; 9
JD Pinter (9248_CR32) 2001; 158
FB Vialatte (9248_CR37) 2009; 3
R Esteller (9248_CR19) 2001; 48
M Ahmadlou (9248_CR9) 2011; 25
M Ahmadlou (9248_CR2) 2010; 41
S Schinkel (9248_CR34) 2007; 1
C Babiloni (9248_CR16) 2009; 120
M Ahmadlou (9248_CR10) 2012; 43
M Ahmadlou (9248_CR13) 2012; 211
TJ Ozaki (9248_CR31) 2012; 6
H Nakatani (9248_CR30) 2011; 5
A Catarino (9248_CR17) 2011; 122
M Ahmadlou (9248_CR12) 2012; 85
A Fernández (9248_CR20) 2009; 65
L Nadel (9248_CR29) 2003; 2
M Ahmadlou (9248_CR6) 2012; 241
References_xml – volume: 5
  start-page: 277
  issue: 3
  year: 2011
  end-page: 284
  ident: CR24
  article-title: Intrinsic mode entropy based on multivariate empirical mode decomposition and its application to neural data analysis
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-011-9159-8
– volume: 54
  start-page: 205
  issue: 2
  year: 2007
  end-page: 211
  ident: CR1
  article-title: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.886855
– volume: 79
  start-page: 680
  issue: 6
  year: 1990
  end-page: 685
  ident: CR21
  article-title: Down’s syndrome and Alzheimer’s disease: dendritic spine counts in the hippocampus
  publication-title: Acta Neuropathol
  doi: 10.1007/BF00294247
– volume: 87
  start-page: S51
  issue: 2
  year: 1993
  ident: CR33
  article-title: Correlation of quantitative EEG with age in down’s syndrome
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 3
  start-page: 251
  issue: 3
  year: 2009
  end-page: 261
  ident: CR37
  article-title: On the synchrony of steady state visual evoked potentials and oscillatory burst events
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-009-9082-4
– volume: 25
  start-page: 85
  issue: 1
  year: 2011
  end-page: 92
  ident: CR9
  article-title: Fractality and a wavelet-chaos methodology for EEG-based diagnosis of Alzheimer’s disease
  publication-title: Alzheimer Dis Assoc Disord
  doi: 10.1097/WAD.0b013e3181ed1160
– volume: 48
  start-page: 177
  issue: 2
  year: 2001
  end-page: 183
  ident: CR19
  article-title: A comparison of waveform fractal dimension algorithms
  publication-title: IEEE Trans Circuit Syst
– volume: 2
  start-page: 121
  issue: 2
  year: 2008
  end-page: 136
  ident: CR27
  article-title: Dynamic causal modeling for EEG and MEG
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-008-9038-0
– volume: 18
  start-page: 145
  issue: 3
  year: 1988
  end-page: 156
  ident: CR25
  article-title: Fractals and the analysis of waveforms
  publication-title: Comput Biol Med
  doi: 10.1016/0010-4825(88)90041-8
– volume: 58
  start-page: 401
  issue: 2
  year: 2011
  end-page: 408
  ident: CR4
  article-title: Functional community analysis of brain: a new approach for EEG-based investigation of the brain pathology
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.04.070
– volume: 122
  start-page: 2375
  issue: 12
  year: 2011
  end-page: 2383
  ident: CR17
  article-title: Atypical EEG complexity in autism spectrum conditions: a multiscale entropy analysis
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2011.05.004
– volume: 241
  start-page: 326
  issue: 4
  year: 2012
  end-page: 332
  ident: CR6
  article-title: Visibility graph similarity: a new measure of generalized synchronization in coupled dynamic systems
  publication-title: Physica D
  doi: 10.1016/j.physd.2011.09.008
– volume: 42
  start-page: 6
  issue: 1
  year: 2011
  end-page: 13
  ident: CR5
  article-title: Fuzzy synchronization likelihood with application to attention deficit hyperactivity disorder
  publication-title: Clin EEG Neurosci
  doi: 10.1177/155005941104200105
– volume: 211
  start-page: 203
  issue: 2
  year: 2012
  end-page: 209
  ident: CR13
  article-title: Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2012.08.020
– volume: 5
  start-page: 399
  issue: 4
  year: 2011
  end-page: 409
  ident: CR30
  article-title: Precisely timed oculomotor and parietal EEG activity in perceptual switching
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-011-9168-7
– volume: 391
  start-page: 4720
  issue: 20
  year: 2012
  end-page: 4726
  ident: CR11
  article-title: Improved visibility graph fractality with application for the diagnosis of autism spectrum disorder
  publication-title: Phys A
  doi: 10.1016/j.physa.2012.04.025
– volume: 16
  start-page: 3
  issue: 1
  year: 2012
  end-page: 10
  ident: CR18
  article-title: Specific aspects of ageing in down’s syndrome
  publication-title: Rev Med Int Sindr Down
– volume: 6
  start-page: 185
  issue: 2
  year: 2012
  end-page: 198
  ident: CR31
  article-title: Traveling EEG slow oscillation along the dorsal attention network initiates spontaneous perceptual switching
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-012-9196-y
– volume: 121
  start-page: 1863
  issue: 11
  year: 2010
  end-page: 1870
  ident: CR36
  article-title: Linear and non-linear EEG analysis of adolescents with attention-deficit/hyperactivity disorder during a cognitive task
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.04.007
– volume: 10
  start-page: 981
  issue: 10
  year: 2000
  end-page: 991
  ident: CR26
  article-title: Dendritic anomalies in disorders associated with mental retardation
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/10.10.981
– volume: 2
  start-page: 156
  issue: 3
  year: 2003
  end-page: 166
  ident: CR29
  article-title: Down’s syndrome: a genetic disorder in biobehavioral perspective
  publication-title: Genes Brain Behav
  doi: 10.1034/j.1601-183X.2003.00026.x
– volume: 41
  start-page: 1
  issue: 1
  year: 2010
  end-page: 10
  ident: CR2
  article-title: Wavelet-synchronization methodology: a new approach for EEG-based diagnosis of ADHD
  publication-title: Clin EEG Neurosci
  doi: 10.1177/155005941004100103
– volume: 117
  start-page: 1099
  issue: 9
  year: 2010
  end-page: 1109
  ident: CR8
  article-title: New diagnostic EEG markers of the Alzheimer’s disease using visibility graphs
  publication-title: J Neural Transm
  doi: 10.1007/s00702-010-0450-3
– ident: CR15
– volume: 85
  start-page: 206
  issue: 2
  year: 2012
  end-page: 211
  ident: CR12
  article-title: Fractality analysis of frontal brain in major depressive disorder
  publication-title: Int J Psychophysiol
  doi: 10.1016/j.ijpsycho.2012.05.001
– volume: 120
  start-page: 1619
  issue: 9
  year: 2009
  end-page: 1627
  ident: CR16
  article-title: Inter-hemispheric functional coupling of eyes-closed resting EEG rhythms in adolescents with down syndrome
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.06.017
– volume: 516
  start-page: 156
  issue: 1
  year: 2012
  end-page: 160
  ident: CR14
  article-title: Which attention-deficit/hyperactivity disorder children will be improved through neurofeedback therapy? A graph theoretical approach to neocortex neuronal network of ADHD
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2012.03.087
– volume: 1
  start-page: 317
  issue: 4
  year: 2007
  end-page: 325
  ident: CR34
  article-title: Order patterns recurrence plots in the analysis of ERP data
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-007-9023-z
– volume: 83
  start-page: 112
  issue: 2
  year: 1992
  end-page: 123
  ident: CR35
  article-title: Comparative coherence studies in healthy volunteers and down’s syndrome patients from childhood to adult age
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(92)90024-C
– volume: 17
  start-page: 197
  issue: 3
  year: 2010
  end-page: 210
  ident: CR3
  article-title: Enhanced probabilistic neural network with local decision circles: a robust classifier
  publication-title: Integr Comput Aided Eng
– volume: 31
  start-page: 277
  issue: 2
  year: 1988
  end-page: 283
  ident: CR23
  article-title: Approach to an irregular time series on the basis of the fractal theory
  publication-title: Phys D
  doi: 10.1016/0167-2789(88)90081-4
– volume: 158
  start-page: 1659
  issue: 10
  year: 2001
  end-page: 1665
  ident: CR32
  article-title: Neuroanatomy of down’s syndrome: a high-resolution MRI study
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.158.10.1659
– volume: 9
  start-page: 295
  issue: 3
  year: 2012
  end-page: 296
  ident: CR28
  article-title: The EEG frequency architecture, coupled oscillations and consciousness: comment on ‘consciousness, biology and quantum hypotheses’ by Baars and Edelman
  publication-title: Phys Life Rev
  doi: 10.1016/j.plrev.2012.07.010
– volume: 27
  start-page: 328
  issue: 5
  year: 2010
  end-page: 333
  ident: CR7
  article-title: Fractality and a wavelet-chaos-neural network methodology for automated EEG-based diagnosis of autistic spectrum disorder
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0b013e3181f40dc8
– volume: 5
  start-page: 171
  issue: 2
  year: 2011
  end-page: 182
  ident: CR22
  article-title: Complexity measures of brain wave dynamics
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-011-9151-3
– volume: 43
  start-page: 5
  issue: 1
  year: 2012
  end-page: 13
  ident: CR10
  article-title: Graph theoretical analysis of organization of functional brain networks in ADHD
  publication-title: Clin EEG Neurosci
  doi: 10.1177/1550059411428555
– volume: 4
  start-page: 233
  issue: 3
  year: 2010
  end-page: 240
  ident: CR38
  article-title: Feature extraction and recognition of epileptiform activity in EEG by combining PCA with ApEn
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-010-9120-2
– volume: 65
  start-page: 571
  issue: 7
  year: 2009
  end-page: 577
  ident: CR20
  article-title: Complexity analysis of spontaneous brain activity in attention-deficit/hyperactivity disorder: diagnostic implications
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2008.10.046
– ident: 9248_CR18
  doi: 10.1016/S2171-9748(12)70018-1
– volume: 54
  start-page: 205
  issue: 2
  year: 2007
  ident: 9248_CR1
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.886855
– volume: 41
  start-page: 1
  issue: 1
  year: 2010
  ident: 9248_CR2
  publication-title: Clin EEG Neurosci
  doi: 10.1177/155005941004100103
– volume: 27
  start-page: 328
  issue: 5
  year: 2010
  ident: 9248_CR7
  publication-title: J Clin Neurophysiol
  doi: 10.1097/WNP.0b013e3181f40dc8
– volume: 58
  start-page: 401
  issue: 2
  year: 2011
  ident: 9248_CR4
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.04.070
– volume: 18
  start-page: 145
  issue: 3
  year: 1988
  ident: 9248_CR25
  publication-title: Comput Biol Med
  doi: 10.1016/0010-4825(88)90041-8
– volume: 121
  start-page: 1863
  issue: 11
  year: 2010
  ident: 9248_CR36
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2010.04.007
– volume: 5
  start-page: 277
  issue: 3
  year: 2011
  ident: 9248_CR24
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-011-9159-8
– volume: 2
  start-page: 156
  issue: 3
  year: 2003
  ident: 9248_CR29
  publication-title: Genes Brain Behav
  doi: 10.1034/j.1601-183X.2003.00026.x
– ident: 9248_CR15
  doi: 10.1016/j.clinph.2012.12.003
– volume: 79
  start-page: 680
  issue: 6
  year: 1990
  ident: 9248_CR21
  publication-title: Acta Neuropathol
  doi: 10.1007/BF00294247
– volume: 2
  start-page: 121
  issue: 2
  year: 2008
  ident: 9248_CR27
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-008-9038-0
– volume: 83
  start-page: 112
  issue: 2
  year: 1992
  ident: 9248_CR35
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(92)90024-C
– volume: 117
  start-page: 1099
  issue: 9
  year: 2010
  ident: 9248_CR8
  publication-title: J Neural Transm
  doi: 10.1007/s00702-010-0450-3
– volume: 1
  start-page: 317
  issue: 4
  year: 2007
  ident: 9248_CR34
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-007-9023-z
– volume: 9
  start-page: 295
  issue: 3
  year: 2012
  ident: 9248_CR28
  publication-title: Phys Life Rev
  doi: 10.1016/j.plrev.2012.07.010
– volume: 48
  start-page: 177
  issue: 2
  year: 2001
  ident: 9248_CR19
  publication-title: IEEE Trans Circuit Syst
  doi: 10.1109/81.904882
– volume: 25
  start-page: 85
  issue: 1
  year: 2011
  ident: 9248_CR9
  publication-title: Alzheimer Dis Assoc Disord
  doi: 10.1097/WAD.0b013e3181ed1160
– volume: 31
  start-page: 277
  issue: 2
  year: 1988
  ident: 9248_CR23
  publication-title: Phys D
  doi: 10.1016/0167-2789(88)90081-4
– volume: 85
  start-page: 206
  issue: 2
  year: 2012
  ident: 9248_CR12
  publication-title: Int J Psychophysiol
  doi: 10.1016/j.ijpsycho.2012.05.001
– volume: 65
  start-page: 571
  issue: 7
  year: 2009
  ident: 9248_CR20
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2008.10.046
– volume: 6
  start-page: 185
  issue: 2
  year: 2012
  ident: 9248_CR31
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-012-9196-y
– volume: 17
  start-page: 197
  issue: 3
  year: 2010
  ident: 9248_CR3
  publication-title: Integr Comput Aided Eng
  doi: 10.3233/ICA-2010-0345
– volume: 158
  start-page: 1659
  issue: 10
  year: 2001
  ident: 9248_CR32
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.158.10.1659
– volume: 5
  start-page: 399
  issue: 4
  year: 2011
  ident: 9248_CR30
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-011-9168-7
– volume: 5
  start-page: 171
  issue: 2
  year: 2011
  ident: 9248_CR22
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-011-9151-3
– volume: 122
  start-page: 2375
  issue: 12
  year: 2011
  ident: 9248_CR17
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2011.05.004
– volume: 10
  start-page: 981
  issue: 10
  year: 2000
  ident: 9248_CR26
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/10.10.981
– volume: 43
  start-page: 5
  issue: 1
  year: 2012
  ident: 9248_CR10
  publication-title: Clin EEG Neurosci
  doi: 10.1177/1550059411428555
– volume: 516
  start-page: 156
  issue: 1
  year: 2012
  ident: 9248_CR14
  publication-title: Neurosci Lett
  doi: 10.1016/j.neulet.2012.03.087
– volume: 3
  start-page: 251
  issue: 3
  year: 2009
  ident: 9248_CR37
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-009-9082-4
– volume: 241
  start-page: 326
  issue: 4
  year: 2012
  ident: 9248_CR6
  publication-title: Physica D
  doi: 10.1016/j.physd.2011.09.008
– volume: 211
  start-page: 203
  issue: 2
  year: 2012
  ident: 9248_CR13
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2012.08.020
– volume: 42
  start-page: 6
  issue: 1
  year: 2011
  ident: 9248_CR5
  publication-title: Clin EEG Neurosci
  doi: 10.1177/155005941104200105
– volume: 391
  start-page: 4720
  issue: 20
  year: 2012
  ident: 9248_CR11
  publication-title: Phys A
  doi: 10.1016/j.physa.2012.04.025
– volume: 120
  start-page: 1619
  issue: 9
  year: 2009
  ident: 9248_CR16
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2009.06.017
– volume: 87
  start-page: S51
  issue: 2
  year: 1993
  ident: 9248_CR33
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(93)91069-D
– volume: 4
  start-page: 233
  issue: 3
  year: 2010
  ident: 9248_CR38
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-010-9120-2
SSID ssj0056814
Score 1.9566091
Snippet To the best knowledge of the authors there is no study on nonlinear brain dynamics of down syndrome (DS) patients, whereas brain is a highly complex and...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 333
SubjectTerms Algorithms
Artificial Intelligence
Autism
Biochemistry
Biomedical and Life Sciences
Biomedicine
Birth weight
Brain
Cognitive Psychology
Complexity
Computer Science
Down syndrome
Down's syndrome
Dynamical systems
EEG
Electrodes
Fractal geometry
Fractals
Frontal lobe
Handedness
Neural networks
Neurosciences
Nonlinear dynamics
Nonlinear systems
Research Article
Time series
Variance analysis
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B7oULCy0tgYJcCXGgSpWH14_eVqVLKYJTK7WnyHYcgYBs1ewelhN_g7_HL2HsxFltH0g9244fGdvzeWa-AXhjpGWlpio2aZojQElMLKlUMaoSHPee1aV_7_j8hR2f0ZPz8XkXx90Eb_dgkvQn9SrYLR1zB33zGDGDiJcPYThOhRQDGE4-XHw6Cgewo9TyxmTEAti76I2Zt31k_Tq6oWPedJW8Zi_119B0BKdhAq33yff9xVzvm1_XuB3vOcMn8LhTS8mklaOn8MDWG7A5qRGS_1ySt8Q7ivoX-A0YhUwQpDsYNuHjewTzJLAf_P39pyHa5Z4gZZvwvjkgqmM_IbOKVC40ywMAgnVcdhAcJvGxTc_gbHp0engcd0kaYkN5Mo9LmTBBZW6kckGtSgqVMS1KKzJrjZSZTXM9LhUe8CKhViemQi2TaSp5ok2W5lswqGe1fQ4Em_KyskqbklHGLEI3TnVSGa5ThnpMBEn4V4XpGMxdIo0fxYp72a1ggStYuBUslhG865tctvQd_6u8EwSg6HZyU2TSUf7JTKQR7PbFuAedYUXVdrZoED7hIkjBRB7BdisvfW-oPjlTt4yAr0lSX8Hxe6-X1N--ep7vnLv4dhrBXhCX1bDunMSLe9V-CY8yn9_DeTTuwGB-tbCvUMua69fdrvoH4jMgqA
  priority: 102
  providerName: Springer Nature
Title Down syndrome’s brain dynamics: analysis of fractality in resting state
URI https://link.springer.com/article/10.1007/s11571-013-9248-y
https://www.ncbi.nlm.nih.gov/pubmed/24427209
https://www.proquest.com/docview/2918679281
https://www.proquest.com/docview/1490698683
https://pubmed.ncbi.nlm.nih.gov/PMC3713204
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7R9sIFQcsjtKyMhDiALPLw-sEFbcvuFhAVQqy0nKLYcQQSZFuyPeyNv8Hf45d0xptktVT0kkixrdgzY3vG4_kG4JkzXpZWFNwlSYYGSuy4EabgqEoonHveluG84-OZPJ2J9_PhvD1wa9prld2aGBbqcuHojPxVagh6zaQ6eXN-wSlrFHlX2xQaO7CX4E5Dcq4n024lJmyt4FVGowC7oXuvZgidS4aKDOmMowWi-Wp7X7qmbF6_M_mP4zTsR5O7cKdVJNlozfl7cMvX-3AwqtGI_rliz1m42hnOzA_g3Vu0tVkHTvD395-GWUoNwcp1PvrmNStacBK2qFhFkVNBP2dYh5J3YA9YCD26D7PJ-MvJKW9zKHAnVLzkpYmlFiZzpqCY08LoIpVWl16n3jtjUp9kdlgWuP7qWHgbuwqVQGmFUbF1aZI9gN16UftHwLCpKitfWFdKIaVHy0oJG1dO2USimhFB3FEwdy3AOOW5-JFvoJGJ6DkSPSei56sIXvRNztfoGjdVPurYkrcTrck3YhHB074Ypwj5PYraLy4btG6QCEZLnUXwcM3F_m-o3ZAn2kSgtvjbVyD47e2S-vu3AMOdKQo_FxG87CRh063_DuLxzYM4hNtpyLdBNwyPYHf569I_Qa1naQewo-ZqEAR8AHuj6dcPY3wfj88-fcav03mCz1k6ugKj9QYu
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuCCg_KQWMBBxAEfnxOjYSQoW22qXtCqFW6i3YjiMq0WxLtkK58Rq8BA_FkzDjTbJaKnrr2XZij8f2fB7PNwDPrHKiMFyHNo5TBCiRDRVXOkRTIsO150zh7zv2J2J0yD8eDY9W4HcXC0PPKrs90W_UxdTSHfnrRBH1mkpk_O70LKSsUeRd7VJozNVi1zU_ELLVb8dbOL_Pk2Rn--DDKGyzCoSWZ9EsLFQkJFepVZqiMLWSOhFGFk4mzlmlEhenZlho3JFkxJ2JbIlmkTBcZZGxSZzid6_BKqeI1gGsvt-efPrc7f3E5uX92AhDcOCy96P6YL14mBF0T0PEPDJslk_CC-btxVea_7hq_Qm4cwtutqYr25zr2m1YcdUdWNusELafNOwF849J_S39Goy3EN2zjg7hz89fNTOUjIIVTaVPjm39humWDoVNS1ZSrJZHBAzrULoQ7AHzwU534fBK5HsPBtW0cg-AYdOsKJ02thBcCIdYLuMmKm1mYoGGTQBRJ8HctpTmlFnjW74gYyah5yj0nISeNwG87Juczvk8Lqu80U1L3i7tOl8oYgBP-2JclORp0ZWbnteIp1AISgqZBnB_Pov939CeIt-3CiBbmt--AhF-L5dUx1898XeaUcA7D-BVpwmLbv13EOuXD-IJXB8d7O_le-PJ7kO4kfhsH_S-cQMGs-_n7hHaXDPzuFV0Bl-uem39BXAoPsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbhQxEC1BkBAXloSlIYCREAdQK714vHAbEUYJS8SBkXJreWsRKfRE9OQwN36D38uXpMq9jIYAEue2u90ul_3KVfUK4KXTQXjLTeryvEQDJXOp5tqkCCUk6l6wPt53fD4SB3P-4Xhy3Nc5bYdo98El2eU0EEtTs9w78_XeOvEtn0gyg8sU7QeVrq7DDdyNc1ro82I6bMVErhXdymgV4DjU6Nb80ys2D6YraPNq0ORvntN4IM3uwu0eSbJpJ_p7cC0027AzbdCK_r5ir1iM7YyX5ttwZyjewHpd3oHDfbS_2UBYcPHzV8sslYtgvqtR375lpicsYYua1ZRNFTE7wzZU0AMHxWI60n2Yz95_fXeQ9nUVUsdltky9zoTiunTaUB6q0coUwiofVBGC07oIeWkn3uCerDIebOZqBIbCci0z64q8fABbzaIJj4BhV-nrYKzzggsR0NqS3Ga1kzYXCD0SyIZJrVxPOk61L06rNV0yyaFCOVQkh2qVwOuxy1nHuPGvxruDpKpe-dqq0MTSpwuVJ_BifIxqQ74Q04TFeYsWD06CVkKVCTzsBDt-DREPead1AnJD5GMDouTefNKcfIvU3KWklHSewJthcayH9defePxfrZ_DzS_7s-rT4dHHJ3CriNU5KB5xF7aWP87DU8RIS_ss6sElbNIKtw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Down+syndrome%E2%80%99s+brain+dynamics%3A+analysis+of+fractality+in+resting+state&rft.jtitle=Cognitive+neurodynamics&rft.au=Hemmati%2C+Sahel&rft.au=Ahmadlou%2C+Mehran&rft.au=Gharib%2C+Masoud&rft.au=Vameghi%2C+Roshanak&rft.date=2013-08-01&rft.issn=1871-4080&rft.eissn=1871-4099&rft.volume=7&rft.issue=4&rft.spage=333&rft.epage=340&rft_id=info:doi/10.1007%2Fs11571-013-9248-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11571_013_9248_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-4080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-4080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-4080&client=summon