Decoupling economic growth from carbon dioxide emissions in China's metal industrial sectors: A technological and efficiency perspective

As an energy-intensive industry, the mining, smelting, processing and production of metallic mineral resources consumes a large amount of fossil energy and simultaneously emits high amounts of carbon dioxide. This paper discusses the decoupling relationship between the economy and CO2 emissions of C...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 691; pp. 1173 - 1181
Main Authors Wang, Miao, Feng, Chao
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.11.2019
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2019.07.190

Cover

Loading…
Abstract As an energy-intensive industry, the mining, smelting, processing and production of metallic mineral resources consumes a large amount of fossil energy and simultaneously emits high amounts of carbon dioxide. This paper discusses the decoupling relationship between the economy and CO2 emissions of China's metal industry (MI) and then adopts an integrated decomposition approach (which reveals the roles of technology and efficiency) to investigate the drivers of CO2 emissions. The main findings indicate that, during 2000–2016: (1) China's MI experienced four decoupling stages (i.e., weak decoupling, expansive negative decoupling, expansive coupling, and strong decoupling) and was characterized by weak decoupling. Overall, China's MI showed a clear tendency toward strong decoupling. (2) Potential energy intensity change, investment efficiency decline, and production technological progress were three pivotal factors contributing to emission abatement. Industrial structure regulation and energy-saving technology advancement also made a small contribution to emission abatement and the decoupling state. (3) Investment scale expansion was the primary factor promoting emission growth and impeding the progress of decoupling. Meanwhile, the energy structure adjustment during the sampling period failed to inhibit emissions but restricted decoupling. Finally, possible policies for mitigating carbon emissions in China's MI are provided. The decoupling states of China's metal industry and their driving factors, including: energy structure adjustment (ΔCECS), industrial structure regulation (ΔCIS), investment efficiency change (ΔCIEF), investment scale expansion (ΔCI), potential energy intensity change (ΔCPEI), energy saving technology change (ΔCESTC), energy usage efficiency (ΔCEUEF), production technology change (ΔCPTC), and production efficiency (ΔCPEF). [Display omitted] •The decoupling state is studied from a technological and efficiency perspective.•A combined decomposition approach was applied for factors decomposition.•Investment scale expansion was the principal obstructor for decoupling progress.•Potential energy intensity change contributed to emission abatement and decoupling.•Investment efficiency decline and production technological progress facilitated decoupling.
AbstractList As an energy-intensive industry, the mining, smelting, processing and production of metallic mineral resources consumes a large amount of fossil energy and simultaneously emits high amounts of carbon dioxide. This paper discusses the decoupling relationship between the economy and CO2 emissions of China's metal industry (MI) and then adopts an integrated decomposition approach (which reveals the roles of technology and efficiency) to investigate the drivers of CO2 emissions. The main findings indicate that, during 2000–2016: (1) China's MI experienced four decoupling stages (i.e., weak decoupling, expansive negative decoupling, expansive coupling, and strong decoupling) and was characterized by weak decoupling. Overall, China's MI showed a clear tendency toward strong decoupling. (2) Potential energy intensity change, investment efficiency decline, and production technological progress were three pivotal factors contributing to emission abatement. Industrial structure regulation and energy-saving technology advancement also made a small contribution to emission abatement and the decoupling state. (3) Investment scale expansion was the primary factor promoting emission growth and impeding the progress of decoupling. Meanwhile, the energy structure adjustment during the sampling period failed to inhibit emissions but restricted decoupling. Finally, possible policies for mitigating carbon emissions in China's MI are provided. The decoupling states of China's metal industry and their driving factors, including: energy structure adjustment (ΔCECS), industrial structure regulation (ΔCIS), investment efficiency change (ΔCIEF), investment scale expansion (ΔCI), potential energy intensity change (ΔCPEI), energy saving technology change (ΔCESTC), energy usage efficiency (ΔCEUEF), production technology change (ΔCPTC), and production efficiency (ΔCPEF). [Display omitted] •The decoupling state is studied from a technological and efficiency perspective.•A combined decomposition approach was applied for factors decomposition.•Investment scale expansion was the principal obstructor for decoupling progress.•Potential energy intensity change contributed to emission abatement and decoupling.•Investment efficiency decline and production technological progress facilitated decoupling.
As an energy-intensive industry, the mining, smelting, processing and production of metallic mineral resources consumes a large amount of fossil energy and simultaneously emits high amounts of carbon dioxide. This paper discusses the decoupling relationship between the economy and CO emissions of China's metal industry (MI) and then adopts an integrated decomposition approach (which reveals the roles of technology and efficiency) to investigate the drivers of CO emissions. The main findings indicate that, during 2000-2016: (1) China's MI experienced four decoupling stages (i.e., weak decoupling, expansive negative decoupling, expansive coupling, and strong decoupling) and was characterized by weak decoupling. Overall, China's MI showed a clear tendency toward strong decoupling. (2) Potential energy intensity change, investment efficiency decline, and production technological progress were three pivotal factors contributing to emission abatement. Industrial structure regulation and energy-saving technology advancement also made a small contribution to emission abatement and the decoupling state. (3) Investment scale expansion was the primary factor promoting emission growth and impeding the progress of decoupling. Meanwhile, the energy structure adjustment during the sampling period failed to inhibit emissions but restricted decoupling. Finally, possible policies for mitigating carbon emissions in China's MI are provided.
As an energy-intensive industry, the mining, smelting, processing and production of metallic mineral resources consumes a large amount of fossil energy and simultaneously emits high amounts of carbon dioxide. This paper discusses the decoupling relationship between the economy and CO2 emissions of China's metal industry (MI) and then adopts an integrated decomposition approach (which reveals the roles of technology and efficiency) to investigate the drivers of CO2 emissions. The main findings indicate that, during 2000-2016: (1) China's MI experienced four decoupling stages (i.e., weak decoupling, expansive negative decoupling, expansive coupling, and strong decoupling) and was characterized by weak decoupling. Overall, China's MI showed a clear tendency toward strong decoupling. (2) Potential energy intensity change, investment efficiency decline, and production technological progress were three pivotal factors contributing to emission abatement. Industrial structure regulation and energy-saving technology advancement also made a small contribution to emission abatement and the decoupling state. (3) Investment scale expansion was the primary factor promoting emission growth and impeding the progress of decoupling. Meanwhile, the energy structure adjustment during the sampling period failed to inhibit emissions but restricted decoupling. Finally, possible policies for mitigating carbon emissions in China's MI are provided.As an energy-intensive industry, the mining, smelting, processing and production of metallic mineral resources consumes a large amount of fossil energy and simultaneously emits high amounts of carbon dioxide. This paper discusses the decoupling relationship between the economy and CO2 emissions of China's metal industry (MI) and then adopts an integrated decomposition approach (which reveals the roles of technology and efficiency) to investigate the drivers of CO2 emissions. The main findings indicate that, during 2000-2016: (1) China's MI experienced four decoupling stages (i.e., weak decoupling, expansive negative decoupling, expansive coupling, and strong decoupling) and was characterized by weak decoupling. Overall, China's MI showed a clear tendency toward strong decoupling. (2) Potential energy intensity change, investment efficiency decline, and production technological progress were three pivotal factors contributing to emission abatement. Industrial structure regulation and energy-saving technology advancement also made a small contribution to emission abatement and the decoupling state. (3) Investment scale expansion was the primary factor promoting emission growth and impeding the progress of decoupling. Meanwhile, the energy structure adjustment during the sampling period failed to inhibit emissions but restricted decoupling. Finally, possible policies for mitigating carbon emissions in China's MI are provided.
As an energy-intensive industry, the mining, smelting, processing and production of metallic mineral resources consumes a large amount of fossil energy and simultaneously emits high amounts of carbon dioxide. This paper discusses the decoupling relationship between the economy and CO₂ emissions of China's metal industry (MI) and then adopts an integrated decomposition approach (which reveals the roles of technology and efficiency) to investigate the drivers of CO₂ emissions. The main findings indicate that, during 2000–2016: (1) China's MI experienced four decoupling stages (i.e., weak decoupling, expansive negative decoupling, expansive coupling, and strong decoupling) and was characterized by weak decoupling. Overall, China's MI showed a clear tendency toward strong decoupling. (2) Potential energy intensity change, investment efficiency decline, and production technological progress were three pivotal factors contributing to emission abatement. Industrial structure regulation and energy-saving technology advancement also made a small contribution to emission abatement and the decoupling state. (3) Investment scale expansion was the primary factor promoting emission growth and impeding the progress of decoupling. Meanwhile, the energy structure adjustment during the sampling period failed to inhibit emissions but restricted decoupling. Finally, possible policies for mitigating carbon emissions in China's MI are provided.
Author Wang, Miao
Feng, Chao
Author_xml – sequence: 1
  givenname: Miao
  orcidid: 0000-0003-3903-2643
  surname: Wang
  fullname: Wang, Miao
  organization: School of Management, China Institute for Studies in Energy Policy, Collaborative Innovation Center for Energy Economics and Energy Policy, Xiamen University, Xiamen 361005, China
– sequence: 2
  givenname: Chao
  orcidid: 0000-0002-3568-7418
  surname: Feng
  fullname: Feng, Chao
  email: littlefc@126.com
  organization: School of Economics and Business Administration, Chongqing University, Chongqing 400030, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31466199$$D View this record in MEDLINE/PubMed
BookMark eNqFkc2O2yAUhVE1VScz7Su07NqNXTCOMZW6iNJfaaRuZo8wXBIiG1zAaecN-tglykwX3YQNV9zvXHTPuUFXPnhA6A0lNSW0e3-ok3Y5ZPDHuiFU1ITXVJBnaEV7LipKmu4KrQhp-0p0gl-jm5QOpBze0xfomtG266gQK_TnE-iwzKPzO1wqHyan8S6GX3mPbQwT1ioOwWPjwm9nAMPkUnLBJ-w83u6dV28TniCrsTyYJeXoSplA5xDTB7zBGfTehzHsnC4N5Q0Ga5124PUDniGmubDuCC_Rc6vGBK8e71t0_-Xz_fZbdffj6_ft5q7SLSe5Mh3vYeBqTRpNDR26jnWWW1A9aUUjRNv1plcWWj1YtVbQCoA1t4NiglFG2C16dx47x_BzgZRlWUjDOCoPYUmyYWTdsOJSfxltekYp6zkv6OtHdBkmMHKOblLxQT75XICPZ0DHkFIEK0t8Khcjc1RulJTIU67yIP_lKk-5SsJlybXo-X_6py8uKzdnJRRTjw7iiSvmg3GxOC9NcBdn_AXDzsX0
CitedBy_id crossref_primary_10_1007_s11356_020_11006_5
crossref_primary_10_1016_j_physa_2022_128302
crossref_primary_10_1007_s11356_021_18098_7
crossref_primary_10_1080_1331677X_2022_2080744
crossref_primary_10_1016_j_energy_2020_118053
crossref_primary_10_1007_s11356_023_31214_z
crossref_primary_10_3389_fenvs_2022_979129
crossref_primary_10_1016_j_iref_2024_02_009
crossref_primary_10_1016_j_ecolind_2021_107859
crossref_primary_10_1016_j_resourpol_2022_103271
crossref_primary_10_3390_su14052733
crossref_primary_10_1016_j_resourpol_2021_102249
crossref_primary_10_1016_j_scitotenv_2021_150104
crossref_primary_10_3390_buildings11110510
crossref_primary_10_1016_j_scs_2023_104396
crossref_primary_10_1007_s11356_021_15741_1
crossref_primary_10_1016_j_egyr_2020_12_043
crossref_primary_10_1108_K_05_2022_0712
crossref_primary_10_1016_j_jclepro_2020_120250
crossref_primary_10_1007_s11356_022_22366_5
crossref_primary_10_1016_j_techfore_2020_120050
crossref_primary_10_1016_j_jenvman_2022_116798
crossref_primary_10_1007_s00126_022_01106_2
crossref_primary_10_3390_su162310785
crossref_primary_10_1108_MEQ_06_2022_0174
crossref_primary_10_1007_s10668_024_04605_6
crossref_primary_10_1002_ise3_6
crossref_primary_10_1007_s11356_020_09605_3
crossref_primary_10_1007_s11356_021_15447_4
crossref_primary_10_3846_tede_2022_16730
crossref_primary_10_1016_j_trd_2019_12_003
crossref_primary_10_1016_j_eiar_2021_106600
crossref_primary_10_1016_j_envres_2020_109701
crossref_primary_10_1016_j_scitotenv_2019_135447
crossref_primary_10_1111_rode_13077
crossref_primary_10_3390_land10101015
crossref_primary_10_1007_s11356_023_30675_6
crossref_primary_10_1016_j_resourpol_2021_102226
crossref_primary_10_1016_j_resourpol_2022_102800
crossref_primary_10_1007_s11356_023_28215_3
crossref_primary_10_1111_grow_12519
crossref_primary_10_1016_j_resourpol_2023_103874
crossref_primary_10_1016_j_scs_2024_105558
crossref_primary_10_3390_su14159123
crossref_primary_10_1016_j_jclepro_2020_120630
crossref_primary_10_3390_pr8091033
crossref_primary_10_1016_j_jclepro_2024_141857
crossref_primary_10_1371_journal_pone_0302733
crossref_primary_10_1016_j_apenergy_2020_115247
crossref_primary_10_1016_j_energy_2024_133008
crossref_primary_10_1080_1331677X_2022_2081236
crossref_primary_10_3390_land13060839
crossref_primary_10_1016_j_landusepol_2024_107055
crossref_primary_10_1007_s10668_024_04509_5
crossref_primary_10_1111_1477_8947_12276
crossref_primary_10_1016_j_spc_2020_10_029
crossref_primary_10_1016_j_energy_2024_131194
crossref_primary_10_1016_j_energy_2021_120208
crossref_primary_10_3390_su12093867
crossref_primary_10_1016_j_rser_2023_113320
crossref_primary_10_1016_j_resourpol_2021_102448
crossref_primary_10_1016_j_techfore_2020_120507
crossref_primary_10_1051_e3sconf_202127502054
crossref_primary_10_3390_land11081129
crossref_primary_10_1007_s11356_022_19035_y
crossref_primary_10_1016_j_spc_2020_12_026
crossref_primary_10_1002_sd_2920
crossref_primary_10_1016_j_jclepro_2020_123110
crossref_primary_10_1016_j_scitotenv_2020_140843
crossref_primary_10_1016_j_jclepro_2019_119188
crossref_primary_10_1061__ASCE_UP_1943_5444_0000619
crossref_primary_10_1007_s11356_021_13508_2
crossref_primary_10_3390_en14113273
crossref_primary_10_1016_j_resourpol_2023_104505
crossref_primary_10_1016_j_erss_2024_103671
crossref_primary_10_1007_s11356_021_14041_y
crossref_primary_10_1016_j_heliyon_2023_e17442
crossref_primary_10_1186_s13021_023_00237_x
crossref_primary_10_1016_j_jmse_2021_03_002
crossref_primary_10_1016_j_jclepro_2020_121545
crossref_primary_10_1016_j_psep_2021_04_005
crossref_primary_10_1142_S2010007824500015
crossref_primary_10_1016_j_uclim_2024_101895
crossref_primary_10_1016_j_trd_2020_102225
crossref_primary_10_1016_j_eneco_2021_105327
crossref_primary_10_1016_j_eiar_2022_107009
crossref_primary_10_1007_s10668_023_04057_4
crossref_primary_10_1080_09640568_2022_2142906
crossref_primary_10_3389_fenvs_2022_855971
crossref_primary_10_1007_s11356_021_14959_3
crossref_primary_10_1007_s11356_022_24885_7
crossref_primary_10_1007_s11869_020_00854_2
crossref_primary_10_1016_j_jclepro_2020_120226
crossref_primary_10_1007_s11356_020_10734_y
crossref_primary_10_3390_su15065329
crossref_primary_10_1016_j_jenvman_2020_111042
crossref_primary_10_1016_j_eneco_2021_105715
crossref_primary_10_3390_ijerph20021496
crossref_primary_10_1016_j_jenvman_2020_111035
crossref_primary_10_1016_j_segan_2025_101666
crossref_primary_10_1016_j_energy_2023_127689
crossref_primary_10_1016_j_jclepro_2020_122528
crossref_primary_10_1080_15568318_2021_1952661
crossref_primary_10_1080_1540496X_2022_2119842
Cites_doi 10.1016/j.rser.2017.01.102
10.1016/j.econlet.2005.02.013
10.1016/j.enpol.2009.03.054
10.1162/003355399555954
10.1016/j.scitotenv.2017.11.061
10.1016/j.enpol.2010.07.007
10.1061/(ASCE)CO.1943-7862.0001177
10.1016/j.resourpol.2018.09.003
10.1016/j.resourpol.2018.05.008
10.1016/j.resconrec.2016.08.015
10.1016/S0305-750X(99)00154-0
10.1016/j.jclepro.2018.05.122
10.1016/S0140-9883(02)00059-2
10.1016/j.energy.2017.04.004
10.1016/j.jclepro.2017.10.156
10.1016/j.jclepro.2019.05.207
10.1016/j.jclepro.2019.03.301
10.1016/j.rser.2018.11.030
10.1016/j.jclepro.2018.08.152
10.1016/j.tranpol.2005.01.001
10.1016/j.gloenvcha.2017.03.003
10.1016/j.resourpol.2018.10.010
10.1016/j.eneco.2018.12.011
10.1016/j.eneco.2016.10.008
10.1016/j.enpol.2012.01.021
10.1016/j.jclepro.2018.09.257
10.1016/j.eiar.2018.04.005
10.1016/j.energy.2015.07.079
10.1016/j.rser.2017.09.103
10.1016/j.jclepro.2016.09.206
10.1016/j.jclepro.2006.08.010
10.1016/j.resconrec.2016.06.021
10.1016/j.scitotenv.2018.07.045
10.1016/j.eneco.2012.02.009
10.1016/j.resourpol.2018.06.004
10.1016/j.apenergy.2017.10.084
10.1016/j.scitotenv.2018.04.043
10.1016/j.eneco.2018.02.019
10.1016/j.eneco.2018.10.008
10.1016/j.jclepro.2016.10.117
10.1016/j.enpol.2013.12.065
10.1016/j.scitotenv.2019.02.103
10.1016/j.jclepro.2016.10.161
10.1016/j.ecolecon.2011.02.011
10.1016/j.enpol.2019.02.003
10.1016/j.enpol.2006.11.003
10.1016/j.jclepro.2016.12.046
10.1016/S0301-4215(03)00076-4
10.1016/j.resourpol.2018.12.006
10.5547/01956574.39.2.dcro
10.1016/j.energy.2014.06.078
10.1016/j.rser.2018.04.022
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2019.07.190
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 1181
ExternalDocumentID 31466199
10_1016_j_scitotenv_2019_07_190
S0048969719333042
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c470t-d678eb7a502c1d1b6636f7fea8049299468d8afe4cbfa5ae49ee57fba3931303
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Jul 10 22:24:38 EDT 2025
Thu Aug 07 15:06:20 EDT 2025
Wed Feb 19 02:32:31 EST 2025
Tue Jul 01 03:35:05 EDT 2025
Thu Apr 24 23:12:36 EDT 2025
Fri Feb 23 02:47:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Efficiency improvement
Decoupling index
Decomposition model
Technological progress
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-d678eb7a502c1d1b6636f7fea8049299468d8afe4cbfa5ae49ee57fba3931303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3568-7418
0000-0003-3903-2643
PMID 31466199
PQID 2283113877
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2305237818
proquest_miscellaneous_2283113877
pubmed_primary_31466199
crossref_citationtrail_10_1016_j_scitotenv_2019_07_190
crossref_primary_10_1016_j_scitotenv_2019_07_190
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_07_190
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-15
PublicationDateYYYYMMDD 2019-11-15
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Jiang (bb0215) 2019; 225
Du, Lin (bb0060) 2015; 90
Feng, Huang, Wang (bb0070) 2018; 59
Pastor, Lovell (bb2010) 2005; 88
Sorrell, Lehtonen, Stapleton, Pujol, Champion (bb0185) 2012; 41
Ma, Yan, Du, Ma, Cai, Xu (bb0145) 2017; 143
Ma, Zhang, Xiong, Tian (bb0150) 2018; 34
Chen, Xu, Cui, Huang, Song (bb0025) 2019; 78
Tan, Lin (bb0190) 2018; 71
Vehmas, Luukkanen, Kaivo-Oja (bb0200) 2007; 15
Xie, Lin (bb0230) 2019; 129
Kim, Kim (bb0115) 2012; 34
Yao, Kou, Shao, Li, Wang, Zhang (bb0245) 2018; 71
Zhao, Zhang, Li, Shao, Geng (bb0280) 2017; 142
Song, Cui, Wang (bb2015) 2018
Zhang, Zhao, Jiang, Shao (bb0260) 2017; 44
Chen, Yang, Zhang, Andrews-Speed, Li (bb0030) 2019; 231
Xu, Zhang, Liu, Zhang, He, Long (bb0235) 2017; 142
Koçak, Ulucak (bb0120) 2019
Ang (bb0005) 2004; 32
Bithas, Kalimeris (bb0010) 2018; 619
Lu, Lin, Lewis (bb0135) 2007; 35
Scherer, de Koning, Tukker (bb0170) 2019; 665
Tapio (bb0195) 2005; 12
Feng, Huang, Wang (bb0080) 2019; 60
Kaya (bb2005) 1989
Song, Peng, Wang, Dong (bb2025) 2018; 128
Zhang, Bai, Zhou (bb0265) 2018; 129
Shuai, Chen, Wu, Zhang, Tan (bb0175) 2019; 646
Wang, Feng (bb0205) 2018; 202
Hoekstra, Van den Bergh (bb0100) 2003; 25
De Freitas, Kaneko (bb0050) 2011; 70
Zhao, Zhang, Shao (bb0275) 2016; 60
Jin, Kim (bb0110) 2018; 91
Liu, Bae (bb0130) 2018; 172
Wang, Zhan, Li, Zhang, Zhang (bb0225) 2019; 208
China Energy Statistical Yearbook, 2017.
Huang, Luo, Feng (bb0105) 2019
Li, Zhang, Zhou, Yao (bb0125) 2017; 141
Zhang, Bai (bb0255) 2018; 194
Chen (bb0020) 2011; 10
Wang, Li, Zhang (bb0220) 2017; 128
Wang, Feng (bb2030) 2018; 76
Ma, Cai (bb0140) 2018; 634
Wang, Feng (bb0210) 2018; 82
Fernández González, Landajo, Presno (bb0090) 2014; 73
De Oliveira-De Jesus (bb0055) 2019; 101
Ren, Hu (bb0160) 2012; 43
Feng, Huang, Wang (bb0075) 2018; 58
China Statistical Yearbook, 2017.
Croner, Frankovic (bb0045) 2018; 39
Zhang (bb0250) 2000; 28
Song, Wang, Wang, Zhao (bb2020) 2018
Yanjia, Chandler (bb0240) 2010; 38
Du, Xie, Ouyang (bb0065) 2017; 73
Hall, Jones (bb0095) 1999; 114
Zhang, Xu, Wang, Hasanbeigi, Zhang, Lu, Arens (bb0270) 2018; 209
Chancellor, Lu (bb0015) 2016; 142
Fernández González, Landajo, Presno (bb0085) 2014; 68
Song, Huang, Feng (bb0180) 2018; 59
OECD (bb0155) 2002; vol. 2002
De Freitas (10.1016/j.scitotenv.2019.07.190_bb0050) 2011; 70
Zhang (10.1016/j.scitotenv.2019.07.190_bb0270) 2018; 209
Feng (10.1016/j.scitotenv.2019.07.190_bb0080) 2019; 60
Song (10.1016/j.scitotenv.2019.07.190_bb2015) 2018
Chen (10.1016/j.scitotenv.2019.07.190_bb0025) 2019; 78
Bithas (10.1016/j.scitotenv.2019.07.190_bb0010) 2018; 619
Koçak (10.1016/j.scitotenv.2019.07.190_bb0120) 2019
Liu (10.1016/j.scitotenv.2019.07.190_bb0130) 2018; 172
Ang (10.1016/j.scitotenv.2019.07.190_bb0005) 2004; 32
Xie (10.1016/j.scitotenv.2019.07.190_bb0230) 2019; 129
Yao (10.1016/j.scitotenv.2019.07.190_bb0245) 2018; 71
Zhang (10.1016/j.scitotenv.2019.07.190_bb0265) 2018; 129
Kim (10.1016/j.scitotenv.2019.07.190_bb0115) 2012; 34
Li (10.1016/j.scitotenv.2019.07.190_bb0125) 2017; 141
Fernández González (10.1016/j.scitotenv.2019.07.190_bb0090) 2014; 73
Du (10.1016/j.scitotenv.2019.07.190_bb0065) 2017; 73
Sorrell (10.1016/j.scitotenv.2019.07.190_bb0185) 2012; 41
Pastor (10.1016/j.scitotenv.2019.07.190_bb2010) 2005; 88
Wang (10.1016/j.scitotenv.2019.07.190_bb0205) 2018; 202
OECD (10.1016/j.scitotenv.2019.07.190_bb0155) 2002; vol. 2002
Chen (10.1016/j.scitotenv.2019.07.190_bb0020) 2011; 10
Tapio (10.1016/j.scitotenv.2019.07.190_bb0195) 2005; 12
Song (10.1016/j.scitotenv.2019.07.190_bb0180) 2018; 59
Wang (10.1016/j.scitotenv.2019.07.190_bb0215) 2019; 225
Wang (10.1016/j.scitotenv.2019.07.190_bb0210) 2018; 82
Kaya (10.1016/j.scitotenv.2019.07.190_bb2005) 1989
Ma (10.1016/j.scitotenv.2019.07.190_bb0145) 2017; 143
Wang (10.1016/j.scitotenv.2019.07.190_bb2030) 2018; 76
Huang (10.1016/j.scitotenv.2019.07.190_bb0105) 2019
Zhao (10.1016/j.scitotenv.2019.07.190_bb0275) 2016; 60
10.1016/j.scitotenv.2019.07.190_bb0040
Zhao (10.1016/j.scitotenv.2019.07.190_bb0280) 2017; 142
Lu (10.1016/j.scitotenv.2019.07.190_bb0135) 2007; 35
Wang (10.1016/j.scitotenv.2019.07.190_bb0225) 2019; 208
Feng (10.1016/j.scitotenv.2019.07.190_bb0070) 2018; 59
Song (10.1016/j.scitotenv.2019.07.190_bb2020) 2018
Song (10.1016/j.scitotenv.2019.07.190_bb2025) 2018; 128
Hall (10.1016/j.scitotenv.2019.07.190_bb0095) 1999; 114
Yanjia (10.1016/j.scitotenv.2019.07.190_bb0240) 2010; 38
Hoekstra (10.1016/j.scitotenv.2019.07.190_bb0100) 2003; 25
Xu (10.1016/j.scitotenv.2019.07.190_bb0235) 2017; 142
De Oliveira-De Jesus (10.1016/j.scitotenv.2019.07.190_bb0055) 2019; 101
Fernández González (10.1016/j.scitotenv.2019.07.190_bb0085) 2014; 68
Jin (10.1016/j.scitotenv.2019.07.190_bb0110) 2018; 91
Chancellor (10.1016/j.scitotenv.2019.07.190_bb0015) 2016; 142
Scherer (10.1016/j.scitotenv.2019.07.190_bb0170) 2019; 665
10.1016/j.scitotenv.2019.07.190_bb0035
Feng (10.1016/j.scitotenv.2019.07.190_bb0075) 2018; 58
Ma (10.1016/j.scitotenv.2019.07.190_bb0140) 2018; 634
Zhang (10.1016/j.scitotenv.2019.07.190_bb0250) 2000; 28
Wang (10.1016/j.scitotenv.2019.07.190_bb0220) 2017; 128
Zhang (10.1016/j.scitotenv.2019.07.190_bb0260) 2017; 44
Chen (10.1016/j.scitotenv.2019.07.190_bb0030) 2019; 231
Du (10.1016/j.scitotenv.2019.07.190_bb0060) 2015; 90
Shuai (10.1016/j.scitotenv.2019.07.190_bb0175) 2019; 646
Ma (10.1016/j.scitotenv.2019.07.190_bb0150) 2018; 34
Zhang (10.1016/j.scitotenv.2019.07.190_bb0255) 2018; 194
Croner (10.1016/j.scitotenv.2019.07.190_bb0045) 2018; 39
Vehmas (10.1016/j.scitotenv.2019.07.190_bb0200) 2007; 15
Ren (10.1016/j.scitotenv.2019.07.190_bb0160) 2012; 43
Tan (10.1016/j.scitotenv.2019.07.190_bb0190) 2018; 71
References_xml – volume: 231
  start-page: 161
  year: 2019
  end-page: 170
  ident: bb0030
  article-title: What accounts for the China-US difference in solar PV electricity output? An LMDI analysis
  publication-title: J. Clean. Prod.
– volume: 91
  start-page: 464
  year: 2018
  end-page: 471
  ident: bb0110
  article-title: What is better for mitigating carbon emissions–renewable energy or nuclear energy? A panel data analysis
  publication-title: Renew. Sust. Energ. Rev.
– volume: 225
  start-page: 1194
  year: 2019
  end-page: 1208
  ident: bb0215
  article-title: Is China's economic growth decoupled from carbon emissions?
  publication-title: J. Clean. Prod.
– volume: 38
  start-page: 6475
  year: 2010
  end-page: 6484
  ident: bb0240
  article-title: The Chinese nonferrous metals industry—energy use and CO2 emissions
  publication-title: Energy Policy
– volume: 15
  start-page: 1662
  year: 2007
  end-page: 1673
  ident: bb0200
  article-title: Linking analyses and environmental Kuznets curves for aggregated material flows in the EU
  publication-title: J. Clean. Prod.
– volume: 142
  start-page: 3500
  year: 2017
  end-page: 3516
  ident: bb0280
  article-title: Decoupling economic growth from carbon dioxide emissions in China: a sectoral factor decomposition analysis
  publication-title: J. Clean. Prod.
– volume: 73
  start-page: 19
  year: 2017
  end-page: 25
  ident: bb0065
  article-title: A comparison of carbon dioxide (CO2) emission trends among provinces in China
  publication-title: Renew. Sust. Energ. Rev.
– volume: 39
  start-page: 103
  year: 2018
  end-page: 122
  ident: bb0045
  article-title: A structural decomposition analysis of global and national energy intensity trends
  publication-title: Energy J.
– year: 1989
  ident: bb2005
  article-title: Impact of carbon dioxide emission control on GNP growth: interpretation of proposed scenarios
– volume: 88
  start-page: 266
  year: 2005
  end-page: 271
  ident: bb2010
  article-title: A global Malmquist productivity index
  publication-title: Econ. Lett.
– volume: 60
  start-page: 275
  year: 2016
  end-page: 292
  ident: bb0275
  article-title: Decoupling CO2 emissions and industrial growth in China over 1993–2013: the role of investment
  publication-title: Energy Econ.
– volume: 44
  start-page: 83
  year: 2017
  end-page: 97
  ident: bb0260
  article-title: How to achieve the 2030 CO2 emission-reduction targets for China's industrial sector: retrospective decomposition and prospective trajectories
  publication-title: Glob. Environ. Chang.
– volume: 34
  start-page: 1724
  year: 2012
  end-page: 1741
  ident: bb0115
  article-title: International comparison of industrial CO2 emission trends and the energy efficiency paradox utilizing production-based decomposition
  publication-title: Energy Econ.
– volume: 619
  start-page: 338
  year: 2018
  end-page: 351
  ident: bb0010
  article-title: Unmasking decoupling: redefining the resource intensity of the economy
  publication-title: Sci. Total Environ.
– year: 2018
  ident: bb2015
  article-title: Simulation of land green supply chain based on system dynamics and policy optimization
  publication-title: Int. J. Prod. Econ.
– volume: 60
  start-page: 215
  year: 2019
  end-page: 224
  ident: bb0080
  article-title: The sustainability of China's metal industries: features, challenges and future focuses
  publication-title: Resour. Policy
– volume: 172
  start-page: 178
  year: 2018
  end-page: 186
  ident: bb0130
  article-title: Urbanization and industrialization impact of CO2 emissions in China
  publication-title: J. Clean. Prod.
– volume: 101
  start-page: 516
  year: 2019
  end-page: 526
  ident: bb0055
  article-title: Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis
  publication-title: Renew. Sust. Energ. Rev.
– volume: 32
  start-page: 1131
  year: 2004
  end-page: 1139
  ident: bb0005
  article-title: Decomposition analysis for policymaking in energy: which is the preferred method?
  publication-title: Energy Policy
– volume: 82
  start-page: 2652
  year: 2018
  end-page: 2663
  ident: bb0210
  article-title: Decomposing the change in energy consumption in China's nonferrous metal industry: an empirical analysis based on the LMDI method
  publication-title: Renew. Sust. Energ. Rev.
– volume: 143
  start-page: 784
  year: 2017
  end-page: 793
  ident: bb0145
  article-title: A methodology to assess China's building energy savings at the national level: an IPAT–LMDI model approach
  publication-title: J. Clean. Prod.
– volume: 68
  start-page: 576
  year: 2014
  end-page: 584
  ident: bb0085
  article-title: Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27
  publication-title: Energ Policy
– volume: 634
  start-page: 884
  year: 2018
  end-page: 899
  ident: bb0140
  article-title: What drives the carbon mitigation in Chinese commercial building sector? Evidence from decomposing an extended Kaya identity
  publication-title: Sci. Total Environ.
– year: 2018
  ident: bb2020
  article-title: Knowledge accumulation, development potential and efficiency evaluation: an example using the Hainan free trade zone
  publication-title: J. Knowl. Manag.
– volume: 208
  start-page: 1357
  year: 2019
  end-page: 1364
  ident: bb0225
  article-title: Structural decomposition analysis of carbon emissions from residential consumption in the Beijing-Tianjin-Hebei region, China
  publication-title: J. Clean. Prod.
– volume: 43
  start-page: 407
  year: 2012
  end-page: 414
  ident: bb0160
  article-title: Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry
  publication-title: Energy Policy
– volume: 90
  start-page: 570
  year: 2015
  end-page: 577
  ident: bb0060
  article-title: Understanding the rapid growth of China's energy consumption: a comprehensive decomposition framework
  publication-title: Energy
– volume: 129
  start-page: 454
  year: 2018
  end-page: 462
  ident: bb0265
  article-title: Decomposition analysis for assessing the progress in decoupling relationship between coal consumption and economic growth in China
  publication-title: Resour. Conserv. Recycl.
– volume: 78
  start-page: 589
  year: 2019
  end-page: 597
  ident: bb0025
  article-title: Driving factors of CO2 emissions and inequality characteristics in China: a combined decomposition approach
  publication-title: Energy Econ.
– volume: 114
  start-page: 83
  year: 1999
  end-page: 116
  ident: bb0095
  article-title: Why do some countries produce so much more output per worker than others?
  publication-title: Q. J. Econ.
– volume: 129
  start-page: 53
  year: 2019
  end-page: 68
  ident: bb0230
  article-title: Understanding the energy intensity change in China's food industry: a comprehensive decomposition method
  publication-title: Energy Policy
– volume: 59
  start-page: 487
  year: 2018
  end-page: 494
  ident: bb0070
  article-title: The driving forces and potential mitigation of energy-related CO2 emissions in China's metal industry
  publication-title: Resour. Policy
– volume: 646
  start-page: 524
  year: 2019
  end-page: 543
  ident: bb0175
  article-title: A three-step strategy for decoupling economic growth from carbon emission: empirical evidences from 133 countries
  publication-title: Sci. Total Environ.
– volume: 194
  start-page: 253
  year: 2018
  end-page: 262
  ident: bb0255
  article-title: Exploring the influencing factors and decoupling state of residential energy consumption in Shandong
  publication-title: J. Clean. Prod.
– start-page: 541
  year: 2019
  end-page: 549
  ident: bb0105
  article-title: An ⁠ overview of carbon dioxide emissions from China's ferrous metal industry: 1991–2030
  publication-title: Resour. Policy
– reference: China Energy Statistical Yearbook, 2017.
– volume: 70
  start-page: 1459
  year: 2011
  end-page: 1469
  ident: bb0050
  article-title: Decomposing the decoupling of CO
  publication-title: Ecol. Econ.
– volume: 12
  start-page: 137
  year: 2005
  end-page: 151
  ident: bb0195
  article-title: Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001
  publication-title: Transp. Policy
– volume: 28
  start-page: 739
  year: 2000
  end-page: 752
  ident: bb0250
  article-title: Decoupling China's carbon emissions increase from economic growth: an economic analysis and policy implications
  publication-title: World Dev.
– volume: 10
  start-page: 735
  year: 2011
  end-page: 776
  ident: bb0020
  article-title: Reconstruction of sub-industrial statistical data in China (1980–2008)
  publication-title: Chin. Econ. Q.
– reference: China Statistical Yearbook, 2017.
– volume: 58
  start-page: 219
  year: 2018
  end-page: 229
  ident: bb0075
  article-title: Analysis of green total-factor productivity in China's regional metal industry: a meta-frontier approach
  publication-title: Resour. Policy
– volume: 41
  start-page: 84
  year: 2012
  end-page: 97
  ident: bb0185
  article-title: Decoupling of road freight energy use from economic growth in the United Kingdom
  publication-title: Energ Policy
– volume: 142
  start-page: 3061
  year: 2017
  end-page: 3074
  ident: bb0235
  article-title: Determination of the factors that influence increments in CO
  publication-title: J. Clean. Prod.
– start-page: 1
  year: 2019
  end-page: 11
  ident: bb0120
  article-title: The effect of energy R&D expenditures on CO2 emission reduction: estimation of the STIRPAT model for OECD countries
  publication-title: Environ. Sci. Pollut. Res.
– volume: 34
  start-page: 96
  year: 2018
  end-page: 102
  ident: bb0150
  article-title: Environmental efficiency and factors analysis of industry sector in China: an empirical analysis based on super-SBM
  publication-title: Ecol. Econ.
– volume: 128
  start-page: 11
  year: 2017
  end-page: 18
  ident: bb0220
  article-title: Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China
  publication-title: Energy
– volume: vol. 2002
  year: 2002
  ident: bb0155
  article-title: Organization for Economic Co-operation and Development, Indicators to Measure Decoupling of Environmental Pressure From Economic Growth
– volume: 142
  year: 2016
  ident: bb0015
  article-title: A regional and provincial productivity analysis of the Chinese construction industry: 1995 to 2012
  publication-title: J. Constr. Eng. Manag.
– volume: 71
  start-page: 70
  year: 2018
  end-page: 83
  ident: bb0245
  article-title: Can urbanization process and carbon emission abatement be harmonious? New evidence from China
  publication-title: Environ. Impact Assess. Rev.
– volume: 141
  start-page: 1428
  year: 2017
  end-page: 1444
  ident: bb0125
  article-title: Decomposition analysis of factors affecting carbon dioxide emissions across provinces in China
  publication-title: J. Clean. Prod.
– volume: 665
  start-page: 52
  year: 2019
  end-page: 60
  ident: bb0170
  article-title: BRIC and MINT countries' environmental impacts rising despite alleviative consumption patterns
  publication-title: Sci. Total Environ.
– volume: 71
  start-page: 213
  year: 2018
  end-page: 221
  ident: bb0190
  article-title: What factors lead to the decline of energy intensity in China's energy intensive industries?
  publication-title: Energy Econ.
– volume: 25
  start-page: 39
  year: 2003
  end-page: 64
  ident: bb0100
  article-title: Comparing structural decomposition analysis and index
  publication-title: Energy Econ.
– volume: 128
  start-page: 197
  year: 2018
  end-page: 205
  ident: bb2025
  article-title: Better resource management: An improved resource and environmental efficiency evaluation approach that considers undesirable outputs
  publication-title: Resour. Conserv. Recycl.
– volume: 59
  start-page: 103
  year: 2018
  end-page: 116
  ident: bb0180
  article-title: Decomposition of energy-related CO2 emissions in China's iron and steel industry: a comprehensive decomposition framework
  publication-title: Resour. Policy
– volume: 73
  start-page: 741
  year: 2014
  end-page: 750
  ident: bb0090
  article-title: Tracking European Union CO
  publication-title: Energy
– volume: 202
  start-page: 710
  year: 2018
  end-page: 719
  ident: bb0205
  article-title: Exploring the driving forces of energy-related CO2 emissions in China's construction industry by utilizing production-theoretical decomposition analysis
  publication-title: J. Clean. Prod.
– volume: 35
  start-page: 3226
  year: 2007
  end-page: 3235
  ident: bb0135
  article-title: Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea
  publication-title: Energ Policy
– volume: 76
  start-page: 101
  year: 2018
  end-page: 114
  ident: bb2030
  article-title: Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China
  publication-title: Energy Econ.
– volume: 209
  start-page: 251
  year: 2018
  end-page: 265
  ident: bb0270
  article-title: Comprehensive assessment of energy conservation and CO2 emissions mitigation in China's iron and steel industry based on dynamic material flows
  publication-title: Appl. Energy
– volume: 73
  start-page: 19
  year: 2017
  ident: 10.1016/j.scitotenv.2019.07.190_bb0065
  article-title: A comparison of carbon dioxide (CO2) emission trends among provinces in China
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2017.01.102
– volume: 88
  start-page: 266
  issue: 2
  year: 2005
  ident: 10.1016/j.scitotenv.2019.07.190_bb2010
  article-title: A global Malmquist productivity index
  publication-title: Econ. Lett.
  doi: 10.1016/j.econlet.2005.02.013
– volume: 10
  start-page: 735
  issue: 3
  year: 2011
  ident: 10.1016/j.scitotenv.2019.07.190_bb0020
  article-title: Reconstruction of sub-industrial statistical data in China (1980–2008)
  publication-title: Chin. Econ. Q.
– year: 1989
  ident: 10.1016/j.scitotenv.2019.07.190_bb2005
– volume: vol. 2002
  year: 2002
  ident: 10.1016/j.scitotenv.2019.07.190_bb0155
– volume: 38
  start-page: 6475
  issue: 11
  year: 2010
  ident: 10.1016/j.scitotenv.2019.07.190_bb0240
  article-title: The Chinese nonferrous metals industry—energy use and CO2 emissions
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.03.054
– volume: 114
  start-page: 83
  issue: 1
  year: 1999
  ident: 10.1016/j.scitotenv.2019.07.190_bb0095
  article-title: Why do some countries produce so much more output per worker than others?
  publication-title: Q. J. Econ.
  doi: 10.1162/003355399555954
– volume: 619
  start-page: 338
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0010
  article-title: Unmasking decoupling: redefining the resource intensity of the economy
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.11.061
– volume: 41
  start-page: 84
  year: 2012
  ident: 10.1016/j.scitotenv.2019.07.190_bb0185
  article-title: Decoupling of road freight energy use from economic growth in the United Kingdom
  publication-title: Energ Policy
  doi: 10.1016/j.enpol.2010.07.007
– volume: 142
  issue: 11
  year: 2016
  ident: 10.1016/j.scitotenv.2019.07.190_bb0015
  article-title: A regional and provincial productivity analysis of the Chinese construction industry: 1995 to 2012
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001177
– volume: 59
  start-page: 487
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0070
  article-title: The driving forces and potential mitigation of energy-related CO2 emissions in China's metal industry
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2018.09.003
– volume: 58
  start-page: 219
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0075
  article-title: Analysis of green total-factor productivity in China's regional metal industry: a meta-frontier approach
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2018.05.008
– year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb2015
  article-title: Simulation of land green supply chain based on system dynamics and policy optimization
  publication-title: Int. J. Prod. Econ.
– volume: 128
  start-page: 197
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb2025
  article-title: Better resource management: An improved resource and environmental efficiency evaluation approach that considers undesirable outputs
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2016.08.015
– year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb2020
  article-title: Knowledge accumulation, development potential and efficiency evaluation: an example using the Hainan free trade zone
  publication-title: J. Knowl. Manag.
– volume: 28
  start-page: 739
  year: 2000
  ident: 10.1016/j.scitotenv.2019.07.190_bb0250
  article-title: Decoupling China's carbon emissions increase from economic growth: an economic analysis and policy implications
  publication-title: World Dev.
  doi: 10.1016/S0305-750X(99)00154-0
– volume: 194
  start-page: 253
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0255
  article-title: Exploring the influencing factors and decoupling state of residential energy consumption in Shandong
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.05.122
– volume: 25
  start-page: 39
  issue: 1
  year: 2003
  ident: 10.1016/j.scitotenv.2019.07.190_bb0100
  article-title: Comparing structural decomposition analysis and index
  publication-title: Energy Econ.
  doi: 10.1016/S0140-9883(02)00059-2
– volume: 128
  start-page: 11
  year: 2017
  ident: 10.1016/j.scitotenv.2019.07.190_bb0220
  article-title: Study on the changes of the decoupling indicator between energy-related CO2 emission and GDP in China
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.004
– volume: 172
  start-page: 178
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0130
  article-title: Urbanization and industrialization impact of CO2 emissions in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.10.156
– volume: 231
  start-page: 161
  year: 2019
  ident: 10.1016/j.scitotenv.2019.07.190_bb0030
  article-title: What accounts for the China-US difference in solar PV electricity output? An LMDI analysis
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.05.207
– ident: 10.1016/j.scitotenv.2019.07.190_bb0040
– volume: 225
  start-page: 1194
  year: 2019
  ident: 10.1016/j.scitotenv.2019.07.190_bb0215
  article-title: Is China's economic growth decoupled from carbon emissions?
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.03.301
– volume: 101
  start-page: 516
  year: 2019
  ident: 10.1016/j.scitotenv.2019.07.190_bb0055
  article-title: Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2018.11.030
– volume: 202
  start-page: 710
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0205
  article-title: Exploring the driving forces of energy-related CO2 emissions in China's construction industry by utilizing production-theoretical decomposition analysis
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.08.152
– volume: 12
  start-page: 137
  year: 2005
  ident: 10.1016/j.scitotenv.2019.07.190_bb0195
  article-title: Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001
  publication-title: Transp. Policy
  doi: 10.1016/j.tranpol.2005.01.001
– volume: 44
  start-page: 83
  year: 2017
  ident: 10.1016/j.scitotenv.2019.07.190_bb0260
  article-title: How to achieve the 2030 CO2 emission-reduction targets for China's industrial sector: retrospective decomposition and prospective trajectories
  publication-title: Glob. Environ. Chang.
  doi: 10.1016/j.gloenvcha.2017.03.003
– start-page: 541
  year: 2019
  ident: 10.1016/j.scitotenv.2019.07.190_bb0105
  article-title: An ⁠ overview of carbon dioxide emissions from China's ferrous metal industry: 1991–2030
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2018.10.010
– volume: 78
  start-page: 589
  year: 2019
  ident: 10.1016/j.scitotenv.2019.07.190_bb0025
  article-title: Driving factors of CO2 emissions and inequality characteristics in China: a combined decomposition approach
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2018.12.011
– volume: 60
  start-page: 275
  year: 2016
  ident: 10.1016/j.scitotenv.2019.07.190_bb0275
  article-title: Decoupling CO2 emissions and industrial growth in China over 1993–2013: the role of investment
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2016.10.008
– volume: 43
  start-page: 407
  year: 2012
  ident: 10.1016/j.scitotenv.2019.07.190_bb0160
  article-title: Effects of decoupling of carbon dioxide emission by Chinese nonferrous metals industry
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2012.01.021
– volume: 208
  start-page: 1357
  year: 2019
  ident: 10.1016/j.scitotenv.2019.07.190_bb0225
  article-title: Structural decomposition analysis of carbon emissions from residential consumption in the Beijing-Tianjin-Hebei region, China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.09.257
– volume: 71
  start-page: 70
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0245
  article-title: Can urbanization process and carbon emission abatement be harmonious? New evidence from China
  publication-title: Environ. Impact Assess. Rev.
  doi: 10.1016/j.eiar.2018.04.005
– volume: 90
  start-page: 570
  year: 2015
  ident: 10.1016/j.scitotenv.2019.07.190_bb0060
  article-title: Understanding the rapid growth of China's energy consumption: a comprehensive decomposition framework
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.079
– volume: 82
  start-page: 2652
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0210
  article-title: Decomposing the change in energy consumption in China's nonferrous metal industry: an empirical analysis based on the LMDI method
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2017.09.103
– volume: 141
  start-page: 1428
  year: 2017
  ident: 10.1016/j.scitotenv.2019.07.190_bb0125
  article-title: Decomposition analysis of factors affecting carbon dioxide emissions across provinces in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.09.206
– volume: 15
  start-page: 1662
  year: 2007
  ident: 10.1016/j.scitotenv.2019.07.190_bb0200
  article-title: Linking analyses and environmental Kuznets curves for aggregated material flows in the EU
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2006.08.010
– volume: 129
  start-page: 454
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0265
  article-title: Decomposition analysis for assessing the progress in decoupling relationship between coal consumption and economic growth in China
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2016.06.021
– volume: 646
  start-page: 524
  year: 2019
  ident: 10.1016/j.scitotenv.2019.07.190_bb0175
  article-title: A three-step strategy for decoupling economic growth from carbon emission: empirical evidences from 133 countries
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.07.045
– start-page: 1
  year: 2019
  ident: 10.1016/j.scitotenv.2019.07.190_bb0120
  article-title: The effect of energy R&D expenditures on CO2 emission reduction: estimation of the STIRPAT model for OECD countries
  publication-title: Environ. Sci. Pollut. Res.
– volume: 34
  start-page: 1724
  issue: 5
  year: 2012
  ident: 10.1016/j.scitotenv.2019.07.190_bb0115
  article-title: International comparison of industrial CO2 emission trends and the energy efficiency paradox utilizing production-based decomposition
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2012.02.009
– volume: 59
  start-page: 103
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0180
  article-title: Decomposition of energy-related CO2 emissions in China's iron and steel industry: a comprehensive decomposition framework
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2018.06.004
– ident: 10.1016/j.scitotenv.2019.07.190_bb0035
– volume: 209
  start-page: 251
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0270
  article-title: Comprehensive assessment of energy conservation and CO2 emissions mitigation in China's iron and steel industry based on dynamic material flows
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.10.084
– volume: 634
  start-page: 884
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0140
  article-title: What drives the carbon mitigation in Chinese commercial building sector? Evidence from decomposing an extended Kaya identity
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.04.043
– volume: 71
  start-page: 213
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0190
  article-title: What factors lead to the decline of energy intensity in China's energy intensive industries?
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2018.02.019
– volume: 76
  start-page: 101
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb2030
  article-title: Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2018.10.008
– volume: 142
  start-page: 3500
  year: 2017
  ident: 10.1016/j.scitotenv.2019.07.190_bb0280
  article-title: Decoupling economic growth from carbon dioxide emissions in China: a sectoral factor decomposition analysis
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.10.117
– volume: 68
  start-page: 576
  year: 2014
  ident: 10.1016/j.scitotenv.2019.07.190_bb0085
  article-title: Multilevel LMDI decomposition of changes in aggregate energy consumption. A cross country analysis in the EU-27
  publication-title: Energ Policy
  doi: 10.1016/j.enpol.2013.12.065
– volume: 665
  start-page: 52
  year: 2019
  ident: 10.1016/j.scitotenv.2019.07.190_bb0170
  article-title: BRIC and MINT countries' environmental impacts rising despite alleviative consumption patterns
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.103
– volume: 142
  start-page: 3061
  year: 2017
  ident: 10.1016/j.scitotenv.2019.07.190_bb0235
  article-title: Determination of the factors that influence increments in CO2 emissions in Jiangsu, China using the SDA method
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.10.161
– volume: 34
  start-page: 96
  issue: 11
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0150
  article-title: Environmental efficiency and factors analysis of industry sector in China: an empirical analysis based on super-SBM
  publication-title: Ecol. Econ.
– volume: 70
  start-page: 1459
  year: 2011
  ident: 10.1016/j.scitotenv.2019.07.190_bb0050
  article-title: Decomposing the decoupling of CO2 emissions and economic growth in Brazil
  publication-title: Ecol. Econ.
  doi: 10.1016/j.ecolecon.2011.02.011
– volume: 129
  start-page: 53
  year: 2019
  ident: 10.1016/j.scitotenv.2019.07.190_bb0230
  article-title: Understanding the energy intensity change in China's food industry: a comprehensive decomposition method
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2019.02.003
– volume: 35
  start-page: 3226
  year: 2007
  ident: 10.1016/j.scitotenv.2019.07.190_bb0135
  article-title: Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea
  publication-title: Energ Policy
  doi: 10.1016/j.enpol.2006.11.003
– volume: 143
  start-page: 784
  year: 2017
  ident: 10.1016/j.scitotenv.2019.07.190_bb0145
  article-title: A methodology to assess China's building energy savings at the national level: an IPAT–LMDI model approach
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.12.046
– volume: 32
  start-page: 1131
  issue: 9
  year: 2004
  ident: 10.1016/j.scitotenv.2019.07.190_bb0005
  article-title: Decomposition analysis for policymaking in energy: which is the preferred method?
  publication-title: Energy Policy
  doi: 10.1016/S0301-4215(03)00076-4
– volume: 60
  start-page: 215
  year: 2019
  ident: 10.1016/j.scitotenv.2019.07.190_bb0080
  article-title: The sustainability of China's metal industries: features, challenges and future focuses
  publication-title: Resour. Policy
  doi: 10.1016/j.resourpol.2018.12.006
– volume: 39
  start-page: 103
  issue: 2
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0045
  article-title: A structural decomposition analysis of global and national energy intensity trends
  publication-title: Energy J.
  doi: 10.5547/01956574.39.2.dcro
– volume: 73
  start-page: 741
  year: 2014
  ident: 10.1016/j.scitotenv.2019.07.190_bb0090
  article-title: Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.078
– volume: 91
  start-page: 464
  year: 2018
  ident: 10.1016/j.scitotenv.2019.07.190_bb0110
  article-title: What is better for mitigating carbon emissions–renewable energy or nuclear energy? A panel data analysis
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2018.04.022
SSID ssj0000781
Score 2.5917773
Snippet As an energy-intensive industry, the mining, smelting, processing and production of metallic mineral resources consumes a large amount of fossil energy and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1173
SubjectTerms air pollution
carbon
carbon dioxide
China
Decomposition model
Decoupling index
economic development
Efficiency improvement
energy conservation
fossil fuels
greenhouse gas emissions
issues and policy
metals
mining
potential energy
Technological progress
Title Decoupling economic growth from carbon dioxide emissions in China's metal industrial sectors: A technological and efficiency perspective
URI https://dx.doi.org/10.1016/j.scitotenv.2019.07.190
https://www.ncbi.nlm.nih.gov/pubmed/31466199
https://www.proquest.com/docview/2283113877
https://www.proquest.com/docview/2305237818
Volume 691
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiQkVMFCYXlURkLiFBrXdmz3tiqtFlb0gIrozbJjpwTRZNVkEVw487OZyWNXlYAeOEWJ7MTKjP3N2PPNEPKScRU09yIB8POJAMRNPJd5EnOjpInahC5PwfvTbP5RvDuX51vkaOTCYFjlsPb3a3q3Wg9P9oe_ub8sS-T4Cm0yo8AE6ZxyZLALhVr--ucmzAOT2fSnzDCxofW1GC94b1uDbfoNY7wMZvFkuDj_GaH-ZoF2SHRyj-wMJiSd9aO8T7ZiNSG3-6KSPyZk93jDXYNmw-RtJuRuv0VHe-bRA_LrDbieK2TkXtA48JPpBbjl7WeKrBOauytfVzSU9fcyRIqV4XBvraFlRbu6268aehnxI-W6AAhtumOA5pDOaDtu26MiUFcFGruEFcj2pMsNy_MhOTs5PjuaJ0NhhiQXKm2TAAgXvXIyPchZYB6slqxQRXQa_A3AN5HpoF0RRe4LJ10UJkapCu-44YiZu2S7qqv4mFATUhd0qpyKRrCcucgPgjS-kF4XzrMpyUZZ2HxIWo61M77aMTrti10L0aIQbaosCHFK0nXHZZ-34-Yuh6Ow7TUVtIAuN3d-MaqHBWngqYurYr1qLOYXYoxrpf7RhuPuPGiqnpJHvW6tR80By8DLNU_-Z3hPyR28QxIlk8_Idnu1is_Bmmr9Xjdd9sit2dvF_BSviw-fFr8BzH0lpA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbKVggkhGChsDyNhMQpatzYsd3bqrTa0nZPi9SbZcdOGwTJqslW5R_ws5nJY1eVgB64JpnEyoznm7H9zRDykSXSq8TxCMDPRRwQN3KJyKKQaSl0UNq3dQrO5unsK_9yLs63yMHAhcFjlb3v73x66637K7v939xdFgVyfLnSqZYQgrRJ-T2yjdWpxIhsT49PZvONQ5aqa5zHYW6DwK1jXvDqpoLw9BqPeWks5MnQP_8ZpP4WhLZgdPSEPO6jSDrtBvqUbIVyTO53fSV_jsnO4Ya-Bo_187cek0fdKh3tyEfPyK_PkH2ukJR7QUNPUaYXkJk3lxSJJzSzV64qqS-qm8IHis3hcHmtpkVJ29bbn2r6I-BHinUPEFq3OwH1Pp3SZli5R1ugtvQ0tDUrkPBJlxui53OyODpcHMyivjdDlHEZN5EHkAtOWhHvZcwzB4FLmss8WAUpB0AcT5VXNg88c7kVNnAdgpC5s4lOEDZ3yKisyvCSUO1j61UsrQyas4zZkOx5oV0unMqtYxOSDrowWV-3HNtnfDfDAbVvZq1Eg0o0sTSgxAmJ14LLrnTH3SL7g7LNLSs0ADB3C38YzMOANnDjxZahWtUGSwwxligp__FMggv0YKlqQl50trUedQJwBomufvU_w3tPHswWZ6fm9Hh-8po8xDvIqWTiDRk1V6vwFoKrxr3rJ89vhRYmsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoupling+economic+growth+from+carbon+dioxide+emissions+in+China%27s+metal+industrial+sectors%3A+A+technological+and+efficiency+perspective&rft.jtitle=The+Science+of+the+total+environment&rft.au=Wang%2C+Miao&rft.au=Feng%2C+Chao&rft.date=2019-11-15&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=691&rft.spage=1173&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.07.190&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon