A Novel Modeling Technique for the Forecasting of Multiple-Asset Trading Volumes: Innovative Initial-Value-Problem Differential Equation Algorithms for Reinforcement Machine Learning

Liquidity risk arises from the inability to unwind or hedge trading positions at the prevailing market prices. The risk of liquidity is a wide and complex topic as it depends on several factors and causes. While much has been written on the subject, there exists no clear-cut mathematical description...

Full description

Saved in:
Bibliographic Details
Published inComplexity (New York, N.Y.) Vol. 2022; no. 1
Main Author Al Janabi, Mazin A. M.
Format Journal Article
LanguageEnglish
Published Hoboken Hindawi 2022
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liquidity risk arises from the inability to unwind or hedge trading positions at the prevailing market prices. The risk of liquidity is a wide and complex topic as it depends on several factors and causes. While much has been written on the subject, there exists no clear-cut mathematical description of the phenomena and typical market risk modeling methods fail to identify the effect of illiquidity risk. In this paper, we do not propose a definitive one either, but we attempt to derive novel mathematical algorithms for the dynamic modeling of trading volumes during the closeout period from the perspective of multiple-asset portfolio(s), as well as for financial entities with different subsidiary firms and multiple agents. The robust modeling techniques are based on the application of initial-value-problem differential equations technique for portfolio selection and risk management purposes. This paper provides some crucial parameters for the assessment of the trading volumes of multiple-asset portfolio(s) during the closeout period, where the mathematical proofs for each theorem and corollary are provided. Based on the new developed econophysics theory, this paper presents for the first time a closed-form solution for key parameters for the estimation of trading volumes and liquidity risk, such as the unwinding constant, half-life, and mean lifetime and discusses how these novel parameters can be estimated and incorporated into the proposed techniques. The developed modeling algorithms are appealing in terms of theory and are promising for practical econophysics applications, particularly in developing dynamic and robust portfolio management algorithms in light of the 2007–2009 global financial crunch. In addition, they can be applied to artificial intelligence and machine learning for the policymaking process, reinforcement machine learning techniques for the Internet of Things (IoT) data analytics, expert systems in finance, FinTech, and within big data ecosystems.
AbstractList Liquidity risk arises from the inability to unwind or hedge trading positions at the prevailing market prices. The risk of liquidity is a wide and complex topic as it depends on several factors and causes. While much has been written on the subject, there exists no clear-cut mathematical description of the phenomena and typical market risk modeling methods fail to identify the effect of illiquidity risk. In this paper, we do not propose a definitive one either, but we attempt to derive novel mathematical algorithms for the dynamic modeling of trading volumes during the closeout period from the perspective of multiple-asset portfolio(s), as well as for financial entities with different subsidiary firms and multiple agents. The robust modeling techniques are based on the application of initial-value-problem differential equations technique for portfolio selection and risk management purposes. This paper provides some crucial parameters for the assessment of the trading volumes of multiple-asset portfolio(s) during the closeout period, where the mathematical proofs for each theorem and corollary are provided. Based on the new developed econophysics theory, this paper presents for the first time a closed-form solution for key parameters for the estimation of trading volumes and liquidity risk, such as the unwinding constant, half-life, and mean lifetime and discusses how these novel parameters can be estimated and incorporated into the proposed techniques. The developed modeling algorithms are appealing in terms of theory and are promising for practical econophysics applications, particularly in developing dynamic and robust portfolio management algorithms in light of the 2007–2009 global financial crunch. In addition, they can be applied to artificial intelligence and machine learning for the policymaking process, reinforcement machine learning techniques for the Internet of Things (IoT) data analytics, expert systems in finance, FinTech, and within big data ecosystems.
Audience Academic
Author Al Janabi, Mazin A. M.
Author_xml – sequence: 1
  givenname: Mazin A. M.
  orcidid: 0000-0002-2249-932X
  surname: Al Janabi
  fullname: Al Janabi, Mazin A. M.
  organization: Full Professor of Finance & Banking and Financial EngineeringTecnologico de MonterreyEGADE Business SchoolSanta Fe CampusMexicoMexicotec.mx
BookMark eNp9Uk2P0zAQjdAisbtw4wdY4gjZtRPbSbhV-wGVWkCo7DWynXHryrG7truIP8bvw2lXIBAgH8aaefOePfPOihPnHRTFS4IvCGHsssJVdUk7zhjjT4pTgruuxKziJ9O94WXVtM2z4izGLca443VzWnyfoQ_-ASxa-gGscWu0ArVx5n4PSPuA0gbQrQ-gRExT1Wu03NtkdhbKWYyQ0CqIYarcebsfIb5Fc-f8g0jmAfLVJCNseSfsHspPwUsLI7o2WkMAN5XQzf0-Y71DM7v2waTNGA_Cn8G4HBWMGYiWQm2MA7QAEVxWe1481cJGePEYz4svtzerq_fl4uO7-dVsUSra4FQOrKkGPgCnoKWoMFe8rhWXmg6aS0mx6qig0HYdF1iolrCGE0mUIjAMUFf1eTE_8g5ebPtdMKMI33ovTH9I-LDuRUhGWegZ8LalCpOGSgodlRyk0lpSIYlURGSuV0euXfB5vDH1W78PLj-_rzitW0Ibwn6h1iKTTjNIQajRRNXP2rqijLWcZ9TFX1D5DDAalV2hTc7_1vDm2KCCjzGA_vkZgvvJPP1knv7RPBle_QFXJh32lHWM_VfT62NTXtUgvpr_S_wAWQvYkQ
CitedBy_id crossref_primary_10_1080_00036846_2024_2302934
Cites_doi 10.1093/rfs/10.4.1035
10.1016/j.jbankfin.2013.05.013
10.1142/s0219024913500374
10.1007/978-3-642-29581
10.1016/j.ejor.2016.11.019
10.1080/1350486x.2017.1374871
10.1016/j.physa.2019.122579
10.1111/j.1540-6288.2001.tb00024.x
10.1287/mnsc.2016.2644
10.21314/jor.2001.041
10.1109/jsyst.2016.2550538
10.1016/j.eswa.2018.08.003
10.2307/2331067
10.1080/00036846.2019.1644442
10.1007/s10479-019-03285-0
10.1080/14697688.2015.1032543
10.1002/for.2714
10.1109/comst.2018.2812301
10.3905/jpm.2002.319836
10.1016/j.eswa.2019.02.011
10.21314/jrmv.2014.127
ContentType Journal Article
Copyright Copyright © 2022 Mazin A. M. Al Janabi.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Mazin A. M. Al Janabi. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2022 Mazin A. M. Al Janabi.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Mazin A. M. Al Janabi. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7X5
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K6~
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1155/2022/4965556
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
Entrepreneurship Database
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection
Computer Science Database
ProQuest - Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest Entrepreneurship
Advanced Technologies & Aerospace Collection
Business Premium Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Research Library Prep


Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-0526
Editor Askar, Sameh S.
Editor_xml – sequence: 1
  givenname: Sameh S.
  surname: Askar
  fullname: Askar, Sameh S.
ExternalDocumentID oai_doaj_org_article_5e6884c0174b4e94b6ebcffb4ab1bc1a
A832455866
10_1155_2022_4965556
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
24P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACCMX
ACSCC
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AFPKN
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ATUGU
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
H13
HBH
HCIFZ
HHY
HZ~
IAO
ICD
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LP6
LP7
M2O
MK4
N04
N05
N9A
NF~
NNB
O9-
OIG
OK1
P2P
P2X
P4D
P62
PHGZT
PQQKQ
PROAC
Q.N
Q11
QB0
QRW
R.K
RHU
RHW
RHX
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WQJ
XG1
XPP
XSW
XV2
~IA
~WT
.Y3
31~
3R3
5VS
AAEVG
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACRPL
ACXQS
ACYXJ
ADNMO
ADZOD
AEEZP
AEIMD
AEQDE
AFZJQ
AGQPQ
AIWBW
AJBDE
AMVHM
ASPBG
AVWKF
AZFZN
BDRZF
BFHJK
CITATION
DCZOG
EJD
FEDTE
HF~
HVGLF
LH4
LW6
PHGZM
ROL
WYUIH
PMFND
3V.
7X5
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
BEZIV
JQ2
K6~
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c470t-d572d6de64efba206c633c6bf4df6bb40c94a4e8996a0ac815761b1cc1edde323
IEDL.DBID BENPR
ISSN 1076-2787
IngestDate Wed Aug 27 01:29:03 EDT 2025
Fri Jul 25 21:05:51 EDT 2025
Thu May 08 04:13:26 EDT 2025
Tue Jun 10 20:54:17 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Tue Jul 01 02:08:25 EDT 2025
Wed Apr 16 06:23:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-d572d6de64efba206c633c6bf4df6bb40c94a4e8996a0ac815761b1cc1edde323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2249-932X
OpenAccessLink https://doaj.org/article/5e6884c0174b4e94b6ebcffb4ab1bc1a
PQID 2643814715
PQPubID 2029978
ParticipantIDs doaj_primary_oai_doaj_org_article_5e6884c0174b4e94b6ebcffb4ab1bc1a
proquest_journals_2643814715
gale_infotracmisc_A832455866
gale_infotracacademiconefile_A832455866
crossref_primary_10_1155_2022_4965556
crossref_citationtrail_10_1155_2022_4965556
hindawi_primary_10_1155_2022_4965556
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_9_10_2
e_1_2_9_20_2
e_1_2_9_12_2
e_1_2_9_11_2
e_1_2_9_22_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
e_1_2_9_1_2
Meucci A. (e_1_2_9_21_2) 2009; 22
Artzner P. (e_1_2_9_23_2) 1997; 10
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_14_2
e_1_2_9_13_2
e_1_2_9_16_2
Markowitz H. (e_1_2_9_24_2) 1959
e_1_2_9_15_2
e_1_2_9_18_2
e_1_2_9_17_2
e_1_2_9_19_2
References_xml – ident: e_1_2_9_19_2
  doi: 10.1093/rfs/10.4.1035
– ident: e_1_2_9_8_2
  doi: 10.1016/j.jbankfin.2013.05.013
– ident: e_1_2_9_17_2
  doi: 10.1142/s0219024913500374
– ident: e_1_2_9_16_2
  doi: 10.1007/978-3-642-29581
– ident: e_1_2_9_6_2
  doi: 10.1016/j.ejor.2016.11.019
– ident: e_1_2_9_5_2
  doi: 10.1080/1350486x.2017.1374871
– ident: e_1_2_9_7_2
  doi: 10.1016/j.physa.2019.122579
– ident: e_1_2_9_2_2
  doi: 10.1111/j.1540-6288.2001.tb00024.x
– volume-title: Portfolio selection: efficient diversification of investments
  year: 1959
  ident: e_1_2_9_24_2
– ident: e_1_2_9_11_2
  doi: 10.1287/mnsc.2016.2644
– ident: e_1_2_9_22_2
  doi: 10.21314/jor.2001.041
– ident: e_1_2_9_14_2
  doi: 10.1109/jsyst.2016.2550538
– ident: e_1_2_9_13_2
  doi: 10.1016/j.eswa.2018.08.003
– volume: 22
  start-page: 74
  year: 2009
  ident: e_1_2_9_21_2
  article-title: Managing diversification
  publication-title: Risk
– ident: e_1_2_9_1_2
  doi: 10.2307/2331067
– ident: e_1_2_9_3_2
  doi: 10.1080/00036846.2019.1644442
– ident: e_1_2_9_4_2
  doi: 10.1007/s10479-019-03285-0
– ident: e_1_2_9_9_2
  doi: 10.1080/14697688.2015.1032543
– ident: e_1_2_9_12_2
  doi: 10.1002/for.2714
– ident: e_1_2_9_15_2
  doi: 10.1109/comst.2018.2812301
– ident: e_1_2_9_20_2
  doi: 10.3905/jpm.2002.319836
– ident: e_1_2_9_10_2
  doi: 10.1016/j.eswa.2019.02.011
– ident: e_1_2_9_18_2
  doi: 10.21314/jrmv.2014.127
– volume: 10
  start-page: 68
  year: 1997
  ident: e_1_2_9_23_2
  article-title: Thinking coherently
  publication-title: Risk magazine
SSID ssj0009637
Score 2.275811
Snippet Liquidity risk arises from the inability to unwind or hedge trading positions at the prevailing market prices. The risk of liquidity is a wide and complex...
SourceID doaj
proquest
gale
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Agents (artificial intelligence)
Algorithms
Artificial intelligence
Big Data
Differential equations
Dynamic models
Expert systems
Forecasting techniques
Forecasts and trends
International finance
Internet of Things
Investment analysis
Liquidity (Finance)
Machine learning
Market prices
Methods
Multiagent systems
Optimization
Parameters
Portfolio management
Pricing
R&D
Research & development
Risk assessment
Risk management
Robustness (mathematics)
Securities markets
Stock exchanges
Stock markets
Volatility
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpwQLSAWNgiH4oAIat52N6E2wKtCtJWCLVVb5btTNqVwm7bpO0_6-9jxnFWrRDqhVuUOLGTGc_DGX8fY9sSKl-i2ROA7kpIp1NhIfMi9UkhZVVntaWNwrMDvX8kf5yokztUX1QT1sMD9x9uR4EuCulRcaSTUOLTwPm6dtK61Pk0hEbo84ZkaoDb1flkKHNXijL8bIeQ0RURVd9xQAGnf2WN188oD76Z_2WXg7PZe8aexiiRT_vRbbBHsNhkT2YriNV2k23EWdnyDxE6-uNzdjvlB8traDhRnNFGc344YLRyjE453s-JjNPblsqd-bLms1hRKOj3b8fRd5E348fBarWf-fdIm3oNeDhHe9CIY9tcgfjZU9Hwb5FihS7x3YseOpxPm9Pl5bw7-92Gjn9BQGj1YTGSz0IFJ_AI7nr6gh3t7R5-3ReRmUF4OUk6UalJVukKtITa2SzRXue511T0V2vnZOJLaSVgLqdtYn2RYlaTutT7FNCc5ln-kq0tlgt4xbie2DSXLqkSAFmXdemkBmkVqpBFqZcj9mkQl_ERtpzYMxoT0helDAnXROGO2LtV6_MeruMf7b6Q5FdtCGQ7nEDVM1H1zEOqN2LvSW8MfUAckrdxRwO-GIFqmSlaS6lUobG78b2WOIX9vcvbUfMeGPR4UEsTLU1rMKDFoAtDDPX6f7zTG_aYuuwXmcZsrbu8gi0Muzr3NsywPztnLSw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJCR4QGyAKBTkhyFAyCIftpvwVmBTQeqE0Db1zbKdy1Ypa7clG_8Zfx93jltUJgRvSWzHTu58H_b5d4ztSah8iWJPAKorIZ1OhYXMi9QnhZRVndWWDgpPD_XkWH6dqVkESWpvb-GjtiP3PHtPsOZK6S22hQxGTvlk9htbVwdoTHRktMiQAVfx7X-03dA8AaB_LYbvnpED_GN-SyAHLXPwkD2I5iEf9_TcYXdgscvuT9fYqu0u24nTseVvImb020fs55gfLm-g4ZTbjE6Y86MVOCtHs5Rje05ZOL1tKc6ZL2s-jaGEgvZ9O45Ki9QYPwniqv3Av8R8qTeAl3MUBI04sc01iG99Dhr-OeZWoSK-f9ljhvNxc7q8mndn523o-DsEaFYfViH5NIRuAo-orqeP2fHB_tGniYgpGYSXo6QTlRplla5AS6idzRLtdZ57TdF-tXZOJr6UVgI6cdom1hcpujOpS71PAeVonuVP2PZiuYCnjOuRTXPpkioBkHVZl05qkFYh71iPhueAvVuRy_iIV05pMxoT_BalDBHXROIO2Kt17Ysep-Mv9T4S5dd1CF07PECOM3GyGgW6KCQOYiSdhBI5GJyvayetS51P7YC9Jr4x9ANxSN7Gowz4YYSmZcYoJqVShcbuhhs1ce76jeK9yHn_GPRwxZYmipjWoCWL1hbaFurZ_73lObtHt_360ZBtd1fX8AItqs69DPPpF_CxGtM
  priority: 102
  providerName: Hindawi Publishing
Title A Novel Modeling Technique for the Forecasting of Multiple-Asset Trading Volumes: Innovative Initial-Value-Problem Differential Equation Algorithms for Reinforcement Machine Learning
URI https://dx.doi.org/10.1155/2022/4965556
https://www.proquest.com/docview/2643814715
https://doaj.org/article/5e6884c0174b4e94b6ebcffb4ab1bc1a
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELbYJiR4QGyAKJTKD0OAkLX8sN2EF9RBS0FqNVXb1LfIdi7dpNJuSzb-M_4-7ly3Y0LAS1XVbuPm7r7zXc7fMbYvoXQ5wp4AdFdCWh0LA4kTsYsyKcsqqQwdFB6N9fBEfpuqaUi41aGsco2JHqjLpaMc-QE6bnQuCKXq48WloK5R9HQ1tNDYYjsIwRkGXzuH_fHR5JZ2V3vWTIxxtEhQN9el70pR1J8cEFu6oubVvzklz92_Qej7ZxQb_zj_A6u9Axo8Zo_CzpH3VqLeZfdgsccejja0q_Ue2w2WWvO3gU763RP2s8fHyxuYc2p7RofP-fGat5XjjpXj9zk16HSmphJovqz4KFQZCnok3HD0Z-Th-KlHsvoD_xpaqd4Avj1HjJiLUzO_BnG0ak_DP4e2KzTE-5crOnHem8_wjjZn32t_4Ql41lbnE5R85Ks6gQfC19lTdjLoH38aitCtQTjZjRpRqm5S6hK0hMqaJNJOp6nTVAhYaWtl5HJpJGB8p01kXBZjpBPb2LkYEGLTJH3GthfLBTxnXHdNnEoblRGArPIqt1KDNArVyjjck7bY-7W4CheozKmjxrzwIY1SBQm3CMJtsdeb2RcrCo-_zDskyW_mEPG2_2B5NSuCHRcKdJZJXERXWgk5KjdYV1VWGhtbF5sWe0N6U9ANxCU5E0454B8joq2ihwgqlco0Xq59ZyaatbszvB807z-Lbq_VsgjoUxe3tvLi38Mv2QP6sVVKqc22m6treIWbrMZ22FY2-NIJ9tTxqQp8nQynvwCOQClX
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELWqIgQcEC0gAgF8aAUIWd0P29lFQijQhoQ2EUJt1Zuxvd60UkjabtqKP8WR38eM15tSIeDUW7T2Zp3MzBvbO36PkDXuCpsD7DEH6YpxI2OmXWJZbKOM86JMSo0HhYcj2d_jnw7EwRL50ZyFwbLKBhM9UBczi3vkG5C4IbkAlIp3xycMVaPw7WojoVG7xbb7fgFLturtYBPsu54kva3dD30WVAWY5Z1ozgrRSQpZOMldaXQSSSvT1EosWCulMTyyOdfcwTpE6kjbLIYZeWxia2MHUJAi0QFA_g2epjlGVNb7eEnyKz1HJ6yoJEsgEppCeyFwjyHZQG52gVLZv6VArxSwyAc3D3ElfnH0R2bw6a53j9wN81TarR1rhSy56Sq5M1yQvFarZCXgQkVfBvLqV_fJzy4dzc7dhKLIGh51p7sNSyyF-TGF-ynKgVpdYcE1nZV0GGoaGb6AnlPInphP6b7HzeoNHQTh1nMHH48AkSZsX0_OHPtci-HQzSDygk1066QmL6fdyRjsNz_8VvkHf3GeI9b67VA69DWkjgZ62fEDsnctVnxIlqezqXtEqOzoOOUmKiLneJmXueHScS3AibWFGXCLvG7MpWwgTkf9jonyCyghFBpXBeO2yPqi93FNGPKXfu_R8os-SPPtL8xOxyqghhJOZhmHQXS44S6HUHLGlqXh2sTGxrpFXqDfKPwDYUhWhzMV8MOQ1kt1Aa-5EJmEx7Wv9AQQsVea14Ln_WfQ7cYtVcC6Sl1G5uN_Nz8nt_q7wx21MxhtPyG38Yvrzaw2WZ6fnrmnML2bm2c-pij5et1B_AtU1mN9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Modeling+Technique+for+the+Forecasting+of+Multiple-Asset+Trading+Volumes%3A+Innovative+Initial-Value-Problem+Differential+Equation+Algorithms+for+Reinforcement+Machine+Learning&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Al+Janabi%2C+Mazin+A.+M&rft.date=2022&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1076-2787&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F4965556&rft.externalDocID=A832455866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon