A Novel Modeling Technique for the Forecasting of Multiple-Asset Trading Volumes: Innovative Initial-Value-Problem Differential Equation Algorithms for Reinforcement Machine Learning
Liquidity risk arises from the inability to unwind or hedge trading positions at the prevailing market prices. The risk of liquidity is a wide and complex topic as it depends on several factors and causes. While much has been written on the subject, there exists no clear-cut mathematical description...
Saved in:
Published in | Complexity (New York, N.Y.) Vol. 2022; no. 1 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hoboken
Hindawi
2022
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liquidity risk arises from the inability to unwind or hedge trading positions at the prevailing market prices. The risk of liquidity is a wide and complex topic as it depends on several factors and causes. While much has been written on the subject, there exists no clear-cut mathematical description of the phenomena and typical market risk modeling methods fail to identify the effect of illiquidity risk. In this paper, we do not propose a definitive one either, but we attempt to derive novel mathematical algorithms for the dynamic modeling of trading volumes during the closeout period from the perspective of multiple-asset portfolio(s), as well as for financial entities with different subsidiary firms and multiple agents. The robust modeling techniques are based on the application of initial-value-problem differential equations technique for portfolio selection and risk management purposes. This paper provides some crucial parameters for the assessment of the trading volumes of multiple-asset portfolio(s) during the closeout period, where the mathematical proofs for each theorem and corollary are provided. Based on the new developed econophysics theory, this paper presents for the first time a closed-form solution for key parameters for the estimation of trading volumes and liquidity risk, such as the unwinding constant, half-life, and mean lifetime and discusses how these novel parameters can be estimated and incorporated into the proposed techniques. The developed modeling algorithms are appealing in terms of theory and are promising for practical econophysics applications, particularly in developing dynamic and robust portfolio management algorithms in light of the 2007–2009 global financial crunch. In addition, they can be applied to artificial intelligence and machine learning for the policymaking process, reinforcement machine learning techniques for the Internet of Things (IoT) data analytics, expert systems in finance, FinTech, and within big data ecosystems. |
---|---|
AbstractList | Liquidity risk arises from the inability to unwind or hedge trading positions at the prevailing market prices. The risk of liquidity is a wide and complex topic as it depends on several factors and causes. While much has been written on the subject, there exists no clear-cut mathematical description of the phenomena and typical market risk modeling methods fail to identify the effect of illiquidity risk. In this paper, we do not propose a definitive one either, but we attempt to derive novel mathematical algorithms for the dynamic modeling of trading volumes during the closeout period from the perspective of multiple-asset portfolio(s), as well as for financial entities with different subsidiary firms and multiple agents. The robust modeling techniques are based on the application of initial-value-problem differential equations technique for portfolio selection and risk management purposes. This paper provides some crucial parameters for the assessment of the trading volumes of multiple-asset portfolio(s) during the closeout period, where the mathematical proofs for each theorem and corollary are provided. Based on the new developed econophysics theory, this paper presents for the first time a closed-form solution for key parameters for the estimation of trading volumes and liquidity risk, such as the unwinding constant, half-life, and mean lifetime and discusses how these novel parameters can be estimated and incorporated into the proposed techniques. The developed modeling algorithms are appealing in terms of theory and are promising for practical econophysics applications, particularly in developing dynamic and robust portfolio management algorithms in light of the 2007–2009 global financial crunch. In addition, they can be applied to artificial intelligence and machine learning for the policymaking process, reinforcement machine learning techniques for the Internet of Things (IoT) data analytics, expert systems in finance, FinTech, and within big data ecosystems. |
Audience | Academic |
Author | Al Janabi, Mazin A. M. |
Author_xml | – sequence: 1 givenname: Mazin A. M. orcidid: 0000-0002-2249-932X surname: Al Janabi fullname: Al Janabi, Mazin A. M. organization: Full Professor of Finance & Banking and Financial EngineeringTecnologico de MonterreyEGADE Business SchoolSanta Fe CampusMexicoMexicotec.mx |
BookMark | eNp9Uk2P0zAQjdAisbtw4wdY4gjZtRPbSbhV-wGVWkCo7DWynXHryrG7truIP8bvw2lXIBAgH8aaefOePfPOihPnHRTFS4IvCGHsssJVdUk7zhjjT4pTgruuxKziJ9O94WXVtM2z4izGLca443VzWnyfoQ_-ASxa-gGscWu0ArVx5n4PSPuA0gbQrQ-gRExT1Wu03NtkdhbKWYyQ0CqIYarcebsfIb5Fc-f8g0jmAfLVJCNseSfsHspPwUsLI7o2WkMAN5XQzf0-Y71DM7v2waTNGA_Cn8G4HBWMGYiWQm2MA7QAEVxWe1481cJGePEYz4svtzerq_fl4uO7-dVsUSra4FQOrKkGPgCnoKWoMFe8rhWXmg6aS0mx6qig0HYdF1iolrCGE0mUIjAMUFf1eTE_8g5ebPtdMKMI33ovTH9I-LDuRUhGWegZ8LalCpOGSgodlRyk0lpSIYlURGSuV0euXfB5vDH1W78PLj-_rzitW0Ibwn6h1iKTTjNIQajRRNXP2rqijLWcZ9TFX1D5DDAalV2hTc7_1vDm2KCCjzGA_vkZgvvJPP1knv7RPBle_QFXJh32lHWM_VfT62NTXtUgvpr_S_wAWQvYkQ |
CitedBy_id | crossref_primary_10_1080_00036846_2024_2302934 |
Cites_doi | 10.1093/rfs/10.4.1035 10.1016/j.jbankfin.2013.05.013 10.1142/s0219024913500374 10.1007/978-3-642-29581 10.1016/j.ejor.2016.11.019 10.1080/1350486x.2017.1374871 10.1016/j.physa.2019.122579 10.1111/j.1540-6288.2001.tb00024.x 10.1287/mnsc.2016.2644 10.21314/jor.2001.041 10.1109/jsyst.2016.2550538 10.1016/j.eswa.2018.08.003 10.2307/2331067 10.1080/00036846.2019.1644442 10.1007/s10479-019-03285-0 10.1080/14697688.2015.1032543 10.1002/for.2714 10.1109/comst.2018.2812301 10.3905/jpm.2002.319836 10.1016/j.eswa.2019.02.011 10.21314/jrmv.2014.127 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Mazin A. M. Al Janabi. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Mazin A. M. Al Janabi. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2022 Mazin A. M. Al Janabi. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Mazin A. M. Al Janabi. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 3V. 7X5 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K6~ K7- M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1155/2022/4965556 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Entrepreneurship Database ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection Computer Science Database ProQuest - Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest Entrepreneurship Advanced Technologies & Aerospace Collection Business Premium Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-0526 |
Editor | Askar, Sameh S. |
Editor_xml | – sequence: 1 givenname: Sameh S. surname: Askar fullname: Askar, Sameh S. |
ExternalDocumentID | oai_doaj_org_article_5e6884c0174b4e94b6ebcffb4ab1bc1a A832455866 10_1155_2022_4965556 |
GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 24P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACCMX ACSCC ADBBV ADIZJ AENEX AFBPY AFKRA AFPKN AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ATUGU AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBD EBS F00 F01 F04 F5P G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X H13 HBH HCIFZ HHY HZ~ IAO ICD ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LP6 LP7 M2O MK4 N04 N05 N9A NF~ NNB O9- OIG OK1 P2P P2X P4D P62 PHGZT PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHU RHW RHX RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WQJ XG1 XPP XSW XV2 ~IA ~WT .Y3 31~ 3R3 5VS AAEVG AAHHS AANHP AAYXX ACBWZ ACCFJ ACRPL ACXQS ACYXJ ADNMO ADZOD AEEZP AEIMD AEQDE AFZJQ AGQPQ AIWBW AJBDE AMVHM ASPBG AVWKF AZFZN BDRZF BFHJK CITATION DCZOG EJD FEDTE HF~ HVGLF LH4 LW6 PHGZM ROL WYUIH PMFND 3V. 7X5 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY BEZIV JQ2 K6~ MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c470t-d572d6de64efba206c633c6bf4df6bb40c94a4e8996a0ac815761b1cc1edde323 |
IEDL.DBID | BENPR |
ISSN | 1076-2787 |
IngestDate | Wed Aug 27 01:29:03 EDT 2025 Fri Jul 25 21:05:51 EDT 2025 Thu May 08 04:13:26 EDT 2025 Tue Jun 10 20:54:17 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Tue Jul 01 02:08:25 EDT 2025 Wed Apr 16 06:23:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-d572d6de64efba206c633c6bf4df6bb40c94a4e8996a0ac815761b1cc1edde323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2249-932X |
OpenAccessLink | https://doaj.org/article/5e6884c0174b4e94b6ebcffb4ab1bc1a |
PQID | 2643814715 |
PQPubID | 2029978 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5e6884c0174b4e94b6ebcffb4ab1bc1a proquest_journals_2643814715 gale_infotracmisc_A832455866 gale_infotracacademiconefile_A832455866 crossref_primary_10_1155_2022_4965556 crossref_citationtrail_10_1155_2022_4965556 hindawi_primary_10_1155_2022_4965556 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-00-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Complexity (New York, N.Y.) |
PublicationYear | 2022 |
Publisher | Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | e_1_2_9_10_2 e_1_2_9_20_2 e_1_2_9_12_2 e_1_2_9_11_2 e_1_2_9_22_2 e_1_2_9_7_2 e_1_2_9_6_2 e_1_2_9_5_2 e_1_2_9_4_2 e_1_2_9_3_2 e_1_2_9_2_2 e_1_2_9_1_2 Meucci A. (e_1_2_9_21_2) 2009; 22 Artzner P. (e_1_2_9_23_2) 1997; 10 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_14_2 e_1_2_9_13_2 e_1_2_9_16_2 Markowitz H. (e_1_2_9_24_2) 1959 e_1_2_9_15_2 e_1_2_9_18_2 e_1_2_9_17_2 e_1_2_9_19_2 |
References_xml | – ident: e_1_2_9_19_2 doi: 10.1093/rfs/10.4.1035 – ident: e_1_2_9_8_2 doi: 10.1016/j.jbankfin.2013.05.013 – ident: e_1_2_9_17_2 doi: 10.1142/s0219024913500374 – ident: e_1_2_9_16_2 doi: 10.1007/978-3-642-29581 – ident: e_1_2_9_6_2 doi: 10.1016/j.ejor.2016.11.019 – ident: e_1_2_9_5_2 doi: 10.1080/1350486x.2017.1374871 – ident: e_1_2_9_7_2 doi: 10.1016/j.physa.2019.122579 – ident: e_1_2_9_2_2 doi: 10.1111/j.1540-6288.2001.tb00024.x – volume-title: Portfolio selection: efficient diversification of investments year: 1959 ident: e_1_2_9_24_2 – ident: e_1_2_9_11_2 doi: 10.1287/mnsc.2016.2644 – ident: e_1_2_9_22_2 doi: 10.21314/jor.2001.041 – ident: e_1_2_9_14_2 doi: 10.1109/jsyst.2016.2550538 – ident: e_1_2_9_13_2 doi: 10.1016/j.eswa.2018.08.003 – volume: 22 start-page: 74 year: 2009 ident: e_1_2_9_21_2 article-title: Managing diversification publication-title: Risk – ident: e_1_2_9_1_2 doi: 10.2307/2331067 – ident: e_1_2_9_3_2 doi: 10.1080/00036846.2019.1644442 – ident: e_1_2_9_4_2 doi: 10.1007/s10479-019-03285-0 – ident: e_1_2_9_9_2 doi: 10.1080/14697688.2015.1032543 – ident: e_1_2_9_12_2 doi: 10.1002/for.2714 – ident: e_1_2_9_15_2 doi: 10.1109/comst.2018.2812301 – ident: e_1_2_9_20_2 doi: 10.3905/jpm.2002.319836 – ident: e_1_2_9_10_2 doi: 10.1016/j.eswa.2019.02.011 – ident: e_1_2_9_18_2 doi: 10.21314/jrmv.2014.127 – volume: 10 start-page: 68 year: 1997 ident: e_1_2_9_23_2 article-title: Thinking coherently publication-title: Risk magazine |
SSID | ssj0009637 |
Score | 2.275811 |
Snippet | Liquidity risk arises from the inability to unwind or hedge trading positions at the prevailing market prices. The risk of liquidity is a wide and complex... |
SourceID | doaj proquest gale crossref hindawi |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Agents (artificial intelligence) Algorithms Artificial intelligence Big Data Differential equations Dynamic models Expert systems Forecasting techniques Forecasts and trends International finance Internet of Things Investment analysis Liquidity (Finance) Machine learning Market prices Methods Multiagent systems Optimization Parameters Portfolio management Pricing R&D Research & development Risk assessment Risk management Robustness (mathematics) Securities markets Stock exchanges Stock markets Volatility |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpwQLSAWNgiH4oAIat52N6E2wKtCtJWCLVVb5btTNqVwm7bpO0_6-9jxnFWrRDqhVuUOLGTGc_DGX8fY9sSKl-i2ROA7kpIp1NhIfMi9UkhZVVntaWNwrMDvX8kf5yokztUX1QT1sMD9x9uR4EuCulRcaSTUOLTwPm6dtK61Pk0hEbo84ZkaoDb1flkKHNXijL8bIeQ0RURVd9xQAGnf2WN188oD76Z_2WXg7PZe8aexiiRT_vRbbBHsNhkT2YriNV2k23EWdnyDxE6-uNzdjvlB8traDhRnNFGc344YLRyjE453s-JjNPblsqd-bLms1hRKOj3b8fRd5E348fBarWf-fdIm3oNeDhHe9CIY9tcgfjZU9Hwb5FihS7x3YseOpxPm9Pl5bw7-92Gjn9BQGj1YTGSz0IFJ_AI7nr6gh3t7R5-3ReRmUF4OUk6UalJVukKtITa2SzRXue511T0V2vnZOJLaSVgLqdtYn2RYlaTutT7FNCc5ln-kq0tlgt4xbie2DSXLqkSAFmXdemkBmkVqpBFqZcj9mkQl_ERtpzYMxoT0helDAnXROGO2LtV6_MeruMf7b6Q5FdtCGQ7nEDVM1H1zEOqN2LvSW8MfUAckrdxRwO-GIFqmSlaS6lUobG78b2WOIX9vcvbUfMeGPR4UEsTLU1rMKDFoAtDDPX6f7zTG_aYuuwXmcZsrbu8gi0Muzr3NsywPztnLSw priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJCR4QGyAKBTkhyFAyCIftpvwVmBTQeqE0Db1zbKdy1Ypa7clG_8Zfx93jltUJgRvSWzHTu58H_b5d4ztSah8iWJPAKorIZ1OhYXMi9QnhZRVndWWDgpPD_XkWH6dqVkESWpvb-GjtiP3PHtPsOZK6S22hQxGTvlk9htbVwdoTHRktMiQAVfx7X-03dA8AaB_LYbvnpED_GN-SyAHLXPwkD2I5iEf9_TcYXdgscvuT9fYqu0u24nTseVvImb020fs55gfLm-g4ZTbjE6Y86MVOCtHs5Rje05ZOL1tKc6ZL2s-jaGEgvZ9O45Ki9QYPwniqv3Av8R8qTeAl3MUBI04sc01iG99Dhr-OeZWoSK-f9ljhvNxc7q8mndn523o-DsEaFYfViH5NIRuAo-orqeP2fHB_tGniYgpGYSXo6QTlRplla5AS6idzRLtdZ57TdF-tXZOJr6UVgI6cdom1hcpujOpS71PAeVonuVP2PZiuYCnjOuRTXPpkioBkHVZl05qkFYh71iPhueAvVuRy_iIV05pMxoT_BalDBHXROIO2Kt17Ysep-Mv9T4S5dd1CF07PECOM3GyGgW6KCQOYiSdhBI5GJyvayetS51P7YC9Jr4x9ANxSN7Gowz4YYSmZcYoJqVShcbuhhs1ce76jeK9yHn_GPRwxZYmipjWoCWL1hbaFurZ_73lObtHt_360ZBtd1fX8AItqs69DPPpF_CxGtM priority: 102 providerName: Hindawi Publishing |
Title | A Novel Modeling Technique for the Forecasting of Multiple-Asset Trading Volumes: Innovative Initial-Value-Problem Differential Equation Algorithms for Reinforcement Machine Learning |
URI | https://dx.doi.org/10.1155/2022/4965556 https://www.proquest.com/docview/2643814715 https://doaj.org/article/5e6884c0174b4e94b6ebcffb4ab1bc1a |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELbYJiR4QGyAKJTKD0OAkLX8sN2EF9RBS0FqNVXb1LfIdi7dpNJuSzb-M_4-7ly3Y0LAS1XVbuPm7r7zXc7fMbYvoXQ5wp4AdFdCWh0LA4kTsYsyKcsqqQwdFB6N9fBEfpuqaUi41aGsco2JHqjLpaMc-QE6bnQuCKXq48WloK5R9HQ1tNDYYjsIwRkGXzuH_fHR5JZ2V3vWTIxxtEhQN9el70pR1J8cEFu6oubVvzklz92_Qej7ZxQb_zj_A6u9Axo8Zo_CzpH3VqLeZfdgsccejja0q_Ue2w2WWvO3gU763RP2s8fHyxuYc2p7RofP-fGat5XjjpXj9zk16HSmphJovqz4KFQZCnok3HD0Z-Th-KlHsvoD_xpaqd4Avj1HjJiLUzO_BnG0ak_DP4e2KzTE-5crOnHem8_wjjZn32t_4Ql41lbnE5R85Ks6gQfC19lTdjLoH38aitCtQTjZjRpRqm5S6hK0hMqaJNJOp6nTVAhYaWtl5HJpJGB8p01kXBZjpBPb2LkYEGLTJH3GthfLBTxnXHdNnEoblRGArPIqt1KDNArVyjjck7bY-7W4CheozKmjxrzwIY1SBQm3CMJtsdeb2RcrCo-_zDskyW_mEPG2_2B5NSuCHRcKdJZJXERXWgk5KjdYV1VWGhtbF5sWe0N6U9ANxCU5E0454B8joq2ihwgqlco0Xq59ZyaatbszvB807z-Lbq_VsgjoUxe3tvLi38Mv2QP6sVVKqc22m6treIWbrMZ22FY2-NIJ9tTxqQp8nQynvwCOQClX |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELWqIgQcEC0gAgF8aAUIWd0P29lFQijQhoQ2EUJt1Zuxvd60UkjabtqKP8WR38eM15tSIeDUW7T2Zp3MzBvbO36PkDXuCpsD7DEH6YpxI2OmXWJZbKOM86JMSo0HhYcj2d_jnw7EwRL50ZyFwbLKBhM9UBczi3vkG5C4IbkAlIp3xycMVaPw7WojoVG7xbb7fgFLturtYBPsu54kva3dD30WVAWY5Z1ozgrRSQpZOMldaXQSSSvT1EosWCulMTyyOdfcwTpE6kjbLIYZeWxia2MHUJAi0QFA_g2epjlGVNb7eEnyKz1HJ6yoJEsgEppCeyFwjyHZQG52gVLZv6VArxSwyAc3D3ElfnH0R2bw6a53j9wN81TarR1rhSy56Sq5M1yQvFarZCXgQkVfBvLqV_fJzy4dzc7dhKLIGh51p7sNSyyF-TGF-ynKgVpdYcE1nZV0GGoaGb6AnlPInphP6b7HzeoNHQTh1nMHH48AkSZsX0_OHPtci-HQzSDygk1066QmL6fdyRjsNz_8VvkHf3GeI9b67VA69DWkjgZ62fEDsnctVnxIlqezqXtEqOzoOOUmKiLneJmXueHScS3AibWFGXCLvG7MpWwgTkf9jonyCyghFBpXBeO2yPqi93FNGPKXfu_R8os-SPPtL8xOxyqghhJOZhmHQXS44S6HUHLGlqXh2sTGxrpFXqDfKPwDYUhWhzMV8MOQ1kt1Aa-5EJmEx7Wv9AQQsVea14Ln_WfQ7cYtVcC6Sl1G5uN_Nz8nt_q7wx21MxhtPyG38Yvrzaw2WZ6fnrmnML2bm2c-pij5et1B_AtU1mN9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Modeling+Technique+for+the+Forecasting+of+Multiple-Asset+Trading+Volumes%3A+Innovative+Initial-Value-Problem+Differential+Equation+Algorithms+for+Reinforcement+Machine+Learning&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Al+Janabi%2C+Mazin+A.+M&rft.date=2022&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1076-2787&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F4965556&rft.externalDocID=A832455866 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |