Distinct community structure and microbial functions of biofilms colonizing microplastics
Microplastics are frequently detected in freshwater environments, serving as a new factitious substrate for colonization of biofilm-forming microorganisms. Distinct microbial assemblages between microplastics and surrounding waters have been well documented; however, there is insufficient knowledge...
Saved in:
Published in | The Science of the total environment Vol. 650; no. Pt 2; pp. 2395 - 2402 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.02.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-9697 1879-1026 1879-1026 |
DOI | 10.1016/j.scitotenv.2018.09.378 |
Cover
Loading…
Abstract | Microplastics are frequently detected in freshwater environments, serving as a new factitious substrate for colonization of biofilm-forming microorganisms. Distinct microbial assemblages between microplastics and surrounding waters have been well documented; however, there is insufficient knowledge regarding biofilm colonization of plastic and non-plastic substrates, despite the fact that microbial communities generally aggregate on natural solid surfaces. In this study, the effects of substrate type on microbial communities were evaluated by incubation of biofilms on microplastic substrates (polyethylene and polypropylene) and natural substrates (cobblestone and wood) for 21 days under controlled conditions. Results from high-throughput sequencing of 16S rRNA revealed that the alpha diversity (richness, evenness, and diversity) was lower in the microplastic-associated communities than in those on the natural substrates, indicating substrate-type-coupled species sorting. Distinct community structure and biofilm composition were observed between these two substrate types. Significantly higher abundances of Pirellulaceae, Phycisphaerales, Cyclobacteriaceae, and Roseococcus were observed on the microplastic substrates compared with the natural substrates. Simultaneously, the functional profiles (KEGG) predicted by Tax4Fun showed that the pathways of amino acid metabolism and metabolism of cofactors and vitamins were increased in biofilms on the microplastic substrates. The findings illustrate that microplastic acts as a distinct microbial habitat (compared with natural substrates) that could not only change the community structure but also affect microbial functions, potentially impacting the ecological functions of microbial communities in aquatic ecosystems.
[Display omitted]
•Alpha diversity of biofilms was lower on microplastic than on natural substrates.•Community structure and composition varied between biofilms on different substrates.•Metabolic pathways were altered in biofilms colonizing microplastic.•Microplastic is a new microbial niche affecting microbial structure and function.•This alteration in biofilms may have an ecological impact on aquatic ecosystems. |
---|---|
AbstractList | Microplastics are frequently detected in freshwater environments, serving as a new factitious substrate for colonization of biofilm-forming microorganisms. Distinct microbial assemblages between microplastics and surrounding waters have been well documented; however, there is insufficient knowledge regarding biofilm colonization of plastic and non-plastic substrates, despite the fact that microbial communities generally aggregate on natural solid surfaces. In this study, the effects of substrate type on microbial communities were evaluated by incubation of biofilms on microplastic substrates (polyethylene and polypropylene) and natural substrates (cobblestone and wood) for 21 days under controlled conditions. Results from high-throughput sequencing of 16S rRNA revealed that the alpha diversity (richness, evenness, and diversity) was lower in the microplastic-associated communities than in those on the natural substrates, indicating substrate-type-coupled species sorting. Distinct community structure and biofilm composition were observed between these two substrate types. Significantly higher abundances of Pirellulaceae, Phycisphaerales, Cyclobacteriaceae, and Roseococcus were observed on the microplastic substrates compared with the natural substrates. Simultaneously, the functional profiles (KEGG) predicted by Tax4Fun showed that the pathways of amino acid metabolism and metabolism of cofactors and vitamins were increased in biofilms on the microplastic substrates. The findings illustrate that microplastic acts as a distinct microbial habitat (compared with natural substrates) that could not only change the community structure but also affect microbial functions, potentially impacting the ecological functions of microbial communities in aquatic ecosystems.Microplastics are frequently detected in freshwater environments, serving as a new factitious substrate for colonization of biofilm-forming microorganisms. Distinct microbial assemblages between microplastics and surrounding waters have been well documented; however, there is insufficient knowledge regarding biofilm colonization of plastic and non-plastic substrates, despite the fact that microbial communities generally aggregate on natural solid surfaces. In this study, the effects of substrate type on microbial communities were evaluated by incubation of biofilms on microplastic substrates (polyethylene and polypropylene) and natural substrates (cobblestone and wood) for 21 days under controlled conditions. Results from high-throughput sequencing of 16S rRNA revealed that the alpha diversity (richness, evenness, and diversity) was lower in the microplastic-associated communities than in those on the natural substrates, indicating substrate-type-coupled species sorting. Distinct community structure and biofilm composition were observed between these two substrate types. Significantly higher abundances of Pirellulaceae, Phycisphaerales, Cyclobacteriaceae, and Roseococcus were observed on the microplastic substrates compared with the natural substrates. Simultaneously, the functional profiles (KEGG) predicted by Tax4Fun showed that the pathways of amino acid metabolism and metabolism of cofactors and vitamins were increased in biofilms on the microplastic substrates. The findings illustrate that microplastic acts as a distinct microbial habitat (compared with natural substrates) that could not only change the community structure but also affect microbial functions, potentially impacting the ecological functions of microbial communities in aquatic ecosystems. Microplastics are frequently detected in freshwater environments, serving as a new factitious substrate for colonization of biofilm-forming microorganisms. Distinct microbial assemblages between microplastics and surrounding waters have been well documented; however, there is insufficient knowledge regarding biofilm colonization of plastic and non-plastic substrates, despite the fact that microbial communities generally aggregate on natural solid surfaces. In this study, the effects of substrate type on microbial communities were evaluated by incubation of biofilms on microplastic substrates (polyethylene and polypropylene) and natural substrates (cobblestone and wood) for 21 days under controlled conditions. Results from high-throughput sequencing of 16S rRNA revealed that the alpha diversity (richness, evenness, and diversity) was lower in the microplastic-associated communities than in those on the natural substrates, indicating substrate-type-coupled species sorting. Distinct community structure and biofilm composition were observed between these two substrate types. Significantly higher abundances of Pirellulaceae, Phycisphaerales, Cyclobacteriaceae, and Roseococcus were observed on the microplastic substrates compared with the natural substrates. Simultaneously, the functional profiles (KEGG) predicted by Tax4Fun showed that the pathways of amino acid metabolism and metabolism of cofactors and vitamins were increased in biofilms on the microplastic substrates. The findings illustrate that microplastic acts as a distinct microbial habitat (compared with natural substrates) that could not only change the community structure but also affect microbial functions, potentially impacting the ecological functions of microbial communities in aquatic ecosystems. Microplastics are frequently detected in freshwater environments, serving as a new factitious substrate for colonization of biofilm-forming microorganisms. Distinct microbial assemblages between microplastics and surrounding waters have been well documented; however, there is insufficient knowledge regarding biofilm colonization of plastic and non-plastic substrates, despite the fact that microbial communities generally aggregate on natural solid surfaces. In this study, the effects of substrate type on microbial communities were evaluated by incubation of biofilms on microplastic substrates (polyethylene and polypropylene) and natural substrates (cobblestone and wood) for 21 days under controlled conditions. Results from high-throughput sequencing of 16S rRNA revealed that the alpha diversity (richness, evenness, and diversity) was lower in the microplastic-associated communities than in those on the natural substrates, indicating substrate-type-coupled species sorting. Distinct community structure and biofilm composition were observed between these two substrate types. Significantly higher abundances of Pirellulaceae, Phycisphaerales, Cyclobacteriaceae, and Roseococcus were observed on the microplastic substrates compared with the natural substrates. Simultaneously, the functional profiles (KEGG) predicted by Tax4Fun showed that the pathways of amino acid metabolism and metabolism of cofactors and vitamins were increased in biofilms on the microplastic substrates. The findings illustrate that microplastic acts as a distinct microbial habitat (compared with natural substrates) that could not only change the community structure but also affect microbial functions, potentially impacting the ecological functions of microbial communities in aquatic ecosystems. [Display omitted] •Alpha diversity of biofilms was lower on microplastic than on natural substrates.•Community structure and composition varied between biofilms on different substrates.•Metabolic pathways were altered in biofilms colonizing microplastic.•Microplastic is a new microbial niche affecting microbial structure and function.•This alteration in biofilms may have an ecological impact on aquatic ecosystems. |
Author | Liu, Songqi Miao, Lingzhan Wang, Peifang Yao, Yu Liu, Zhilin Hou, Jun Li, Tengfei |
Author_xml | – sequence: 1 givenname: Lingzhan surname: Miao fullname: Miao, Lingzhan email: lzmiao@hhu.edu.cn – sequence: 2 givenname: Peifang surname: Wang fullname: Wang, Peifang email: pfwang2005@hhu.edu.cn – sequence: 3 givenname: Jun orcidid: 0000-0002-0412-4874 surname: Hou fullname: Hou, Jun email: hhuhjyhj@126.com – sequence: 4 givenname: Yu surname: Yao fullname: Yao, Yu – sequence: 5 givenname: Zhilin surname: Liu fullname: Liu, Zhilin – sequence: 6 givenname: Songqi surname: Liu fullname: Liu, Songqi – sequence: 7 givenname: Tengfei surname: Li fullname: Li, Tengfei |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30292995$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkb1uFDEYRS0URDaBV4ApaWawPeO_giJK-JMi0UBBZXnsz8irGXuxPZHC0-PVhhQ0xI2bc6703XuBzmKKgNAbggeCCX-3H4oNNVWIdwPFRA5YDaOQz9COSKF6gik_QzuMJ9krrsQ5uihlj9sTkrxA5yOmiirFdujHTSg1RFs7m9Z1i6Hed6XmzdYtQ2ei69Zgc5qDWTq_NS6kWLrkuzkkH5a1NG9JMfwO8ecJPSymJdryEj33Zinw6uG_RN8_fvh2_bm__frpy_XVbW8ngWtv3ey8xFO7yoxYgJo895wza511njNDmeKzkU4xsJIZQ-RsjVJgJkH5NI2X6O0p95DTrw1K1WsoFpbFREhb0ZRIxSYmCX0CSgRhgo6qoa8f0G1ewelDDqvJ9_pvcw0QJ6CdXEoG_4gQrI8b6b1-3EgfN9JY6bZRM9__YzbMHIut2YTlCf7VyYfW6l2AfOQgWnAhg63apfDfjD_pGLYI |
CitedBy_id | crossref_primary_10_1016_j_apsoil_2024_105488 crossref_primary_10_1016_j_cej_2024_158060 crossref_primary_10_1017_plc_2024_26 crossref_primary_10_1007_s00253_020_10704_x crossref_primary_10_1016_j_ecoenv_2024_115946 crossref_primary_10_1007_s40726_020_00171_3 crossref_primary_10_1016_j_cej_2023_143648 crossref_primary_10_1016_j_chemosphere_2023_138928 crossref_primary_10_1016_j_envint_2024_108809 crossref_primary_10_1016_j_watres_2020_116466 crossref_primary_10_1007_s11270_025_07827_0 crossref_primary_10_1093_femsec_fiaa230 crossref_primary_10_1002_adfm_201901880 crossref_primary_10_1016_j_envpol_2019_113347 crossref_primary_10_1016_j_jhazmat_2021_126865 crossref_primary_10_1111_wej_12882 crossref_primary_10_3390_w15030434 crossref_primary_10_1016_j_chemosphere_2024_141271 crossref_primary_10_1016_j_envpol_2022_119909 crossref_primary_10_1186_s43591_021_00011_1 crossref_primary_10_1016_j_scitotenv_2020_142427 crossref_primary_10_1016_j_jhazmat_2022_130056 crossref_primary_10_1021_acsestwater_4c01089 crossref_primary_10_1016_j_scitotenv_2021_146094 crossref_primary_10_1016_j_envres_2022_115103 crossref_primary_10_1016_j_marpolbul_2023_115402 crossref_primary_10_1016_j_envint_2022_107382 crossref_primary_10_1016_j_scitotenv_2024_173048 crossref_primary_10_1016_j_envres_2020_110371 crossref_primary_10_1016_j_watres_2021_116883 crossref_primary_10_1016_j_jclepro_2022_131628 crossref_primary_10_1016_j_scitotenv_2019_135790 crossref_primary_10_3390_jmse10111714 crossref_primary_10_3389_fnano_2024_1368437 crossref_primary_10_1016_j_scitotenv_2020_142223 crossref_primary_10_1016_j_jhazmat_2022_130045 crossref_primary_10_1016_j_scitotenv_2022_156199 crossref_primary_10_1016_j_scitotenv_2023_165146 crossref_primary_10_3390_antibiotics10040374 crossref_primary_10_2139_ssrn_3969619 crossref_primary_10_1038_s41396_020_00814_9 crossref_primary_10_1111_gcb_15989 crossref_primary_10_1016_j_ecoenv_2022_114160 crossref_primary_10_1016_j_envpol_2024_124603 crossref_primary_10_3390_w13111465 crossref_primary_10_3390_w14233968 crossref_primary_10_3389_fmars_2024_1430930 crossref_primary_10_1111_raq_12496 crossref_primary_10_1016_j_envpol_2024_124836 crossref_primary_10_3389_fmicb_2019_01453 crossref_primary_10_1016_j_envint_2019_105198 crossref_primary_10_1016_j_scitotenv_2023_164284 crossref_primary_10_1021_acs_est_2c07410 crossref_primary_10_1016_j_watres_2024_121853 crossref_primary_10_1016_j_jece_2023_111287 crossref_primary_10_1016_j_scitotenv_2023_168234 crossref_primary_10_1016_j_scitotenv_2024_169964 crossref_primary_10_1002_wer_11008 crossref_primary_10_1039_D2EN00101B crossref_primary_10_1016_j_scitotenv_2020_140463 crossref_primary_10_1016_j_scitotenv_2020_139472 crossref_primary_10_1007_s44169_023_00035_z crossref_primary_10_1016_j_scitotenv_2020_139237 crossref_primary_10_1139_facets_2022_0210 crossref_primary_10_1016_j_marpolbul_2022_114251 crossref_primary_10_1016_j_watres_2020_116429 crossref_primary_10_1016_j_envpol_2020_116278 crossref_primary_10_1007_s11356_022_18504_8 crossref_primary_10_3389_fevo_2021_629756 crossref_primary_10_1016_j_wasman_2021_11_023 crossref_primary_10_1016_j_marpolbul_2021_112768 crossref_primary_10_1016_j_seh_2023_100002 crossref_primary_10_1016_j_scitotenv_2021_151638 crossref_primary_10_1016_j_scitotenv_2021_152740 crossref_primary_10_1002_elsc_202300249 crossref_primary_10_1016_j_ecohyd_2023_08_013 crossref_primary_10_1016_j_jece_2023_111143 crossref_primary_10_1039_C9EM00458K crossref_primary_10_3390_w16091295 crossref_primary_10_1016_j_marpolbul_2023_115960 crossref_primary_10_1016_j_jhazmat_2024_136023 crossref_primary_10_1038_s43705_021_00058_4 crossref_primary_10_3389_fmicb_2021_660024 crossref_primary_10_1007_s13205_025_04252_2 crossref_primary_10_1016_j_envpol_2024_124755 crossref_primary_10_3389_fmars_2020_567126 crossref_primary_10_1016_j_envpol_2024_124630 crossref_primary_10_1016_j_watres_2020_116205 crossref_primary_10_1016_j_jhazmat_2023_131973 crossref_primary_10_1016_j_scitotenv_2022_158214 crossref_primary_10_1080_09593330_2022_2071638 crossref_primary_10_1016_j_apsoil_2024_105392 crossref_primary_10_1016_j_watres_2024_121622 crossref_primary_10_1016_j_cscee_2023_100536 crossref_primary_10_1016_j_marpolbul_2023_115973 crossref_primary_10_3390_microbiolres15040132 crossref_primary_10_1016_j_cej_2019_122955 crossref_primary_10_1016_j_envpol_2023_121196 crossref_primary_10_1016_j_envres_2024_119250 crossref_primary_10_1016_j_scitotenv_2022_157010 crossref_primary_10_1016_j_scitotenv_2020_142775 crossref_primary_10_1016_j_marpolbul_2019_01_004 crossref_primary_10_1016_j_watres_2021_116852 crossref_primary_10_1016_j_envpol_2021_117339 crossref_primary_10_1134_S0026261722020126 crossref_primary_10_3389_fmicb_2021_673553 crossref_primary_10_1016_j_watres_2019_114979 crossref_primary_10_1016_j_scitotenv_2019_04_419 crossref_primary_10_3390_su13179963 crossref_primary_10_1016_j_hazadv_2022_100225 crossref_primary_10_1016_j_watres_2025_123317 crossref_primary_10_1016_j_trac_2023_117092 crossref_primary_10_1007_s12668_025_01814_9 crossref_primary_10_1016_j_scitotenv_2023_167619 crossref_primary_10_1016_j_scitotenv_2024_170072 crossref_primary_10_1016_j_cej_2021_130282 crossref_primary_10_1016_j_jhazmat_2021_126915 crossref_primary_10_3389_fmars_2021_738877 crossref_primary_10_1016_j_ecoenv_2020_111742 crossref_primary_10_3390_ijms23073837 crossref_primary_10_1007_s11356_022_23810_2 crossref_primary_10_1016_j_chemosphere_2019_125271 crossref_primary_10_1016_j_jhazmat_2019_122012 crossref_primary_10_1016_j_trac_2020_115993 crossref_primary_10_1007_s00128_021_03201_y crossref_primary_10_1016_j_jece_2024_112284 crossref_primary_10_1016_j_scitotenv_2022_160953 crossref_primary_10_1016_j_envpol_2021_118123 crossref_primary_10_1016_j_scitotenv_2022_157790 crossref_primary_10_1016_j_soilbio_2023_108940 crossref_primary_10_1016_j_envpol_2021_118485 crossref_primary_10_3389_fmicb_2024_1395401 crossref_primary_10_1016_j_envpol_2020_114864 crossref_primary_10_1016_j_scitotenv_2023_166880 crossref_primary_10_1016_j_chemosphere_2022_135550 crossref_primary_10_1016_j_scitotenv_2024_176831 crossref_primary_10_1371_journal_pone_0217165 crossref_primary_10_1007_s00248_021_01919_0 crossref_primary_10_1016_j_jclepro_2021_125982 crossref_primary_10_1016_j_jhazmat_2024_134043 crossref_primary_10_1002_wer_1434 crossref_primary_10_1016_j_jece_2025_115504 crossref_primary_10_1007_s10750_022_04999_2 crossref_primary_10_1016_j_scitotenv_2020_143832 crossref_primary_10_1016_j_scitotenv_2022_156470 crossref_primary_10_1080_08927014_2024_2406340 crossref_primary_10_1016_j_scitotenv_2023_162034 crossref_primary_10_1016_j_scitotenv_2020_137276 crossref_primary_10_1016_j_envpol_2022_120707 crossref_primary_10_1016_j_jhazmat_2022_129686 crossref_primary_10_1016_j_envres_2019_109052 crossref_primary_10_1016_j_watres_2024_123057 crossref_primary_10_1016_j_csbj_2022_02_008 crossref_primary_10_1016_j_envpol_2025_125796 crossref_primary_10_1016_j_ecoenv_2023_115274 crossref_primary_10_3390_microorganisms10122441 crossref_primary_10_1007_s11852_022_00913_z crossref_primary_10_1016_j_scitotenv_2020_141879 crossref_primary_10_1016_j_jece_2024_115217 crossref_primary_10_1016_j_watres_2023_120832 crossref_primary_10_1007_s13762_023_05266_0 crossref_primary_10_1016_j_scitotenv_2019_136131 crossref_primary_10_1016_j_seares_2023_102410 crossref_primary_10_1007_s11356_023_27185_w crossref_primary_10_1007_s00027_024_01112_8 crossref_primary_10_1016_j_aquatox_2024_107209 crossref_primary_10_1016_j_jhazmat_2022_130313 crossref_primary_10_1016_j_jhazmat_2021_127094 crossref_primary_10_1016_j_envadv_2024_100518 crossref_primary_10_3389_fmicb_2022_853285 crossref_primary_10_1016_j_hazadv_2022_100077 crossref_primary_10_1016_j_ecoenv_2023_115100 crossref_primary_10_1016_j_scitotenv_2024_176658 crossref_primary_10_1016_j_watres_2022_118046 crossref_primary_10_1007_s44169_024_00063_3 crossref_primary_10_1016_j_hazadv_2022_100075 crossref_primary_10_1016_j_marenvres_2024_106525 crossref_primary_10_1016_j_envpol_2020_114922 crossref_primary_10_1016_j_chemosphere_2020_129219 crossref_primary_10_1016_j_watres_2023_119656 crossref_primary_10_1016_j_scitotenv_2024_173141 crossref_primary_10_1016_j_chemosphere_2020_126185 crossref_primary_10_1007_s00284_024_03722_9 crossref_primary_10_3390_toxics11120987 crossref_primary_10_1016_j_jhazmat_2024_134343 crossref_primary_10_1016_j_ecoenv_2021_112991 crossref_primary_10_1016_j_apsoil_2024_105452 crossref_primary_10_1016_j_cej_2020_126412 crossref_primary_10_1016_j_envpol_2023_123073 crossref_primary_10_1016_j_jclepro_2021_127816 crossref_primary_10_4491_eer_2022_325 crossref_primary_10_1016_j_marenvres_2024_106777 crossref_primary_10_1016_j_envpol_2023_123190 crossref_primary_10_1002_apj_3122 crossref_primary_10_1007_s11270_022_05649_y crossref_primary_10_1016_j_scitotenv_2022_155026 crossref_primary_10_1016_j_jhazmat_2020_124701 crossref_primary_10_1042_ETLS20220015 crossref_primary_10_2144_btn_2022_0080 crossref_primary_10_1007_s00248_022_02013_9 crossref_primary_10_1080_10549811_2022_2123359 crossref_primary_10_1007_s10163_024_02066_7 crossref_primary_10_1007_s00128_020_02876_z crossref_primary_10_1016_j_chemosphere_2019_02_015 crossref_primary_10_1016_j_scitotenv_2023_163293 crossref_primary_10_1016_j_envpol_2022_119313 crossref_primary_10_1021_acs_est_1c04466 crossref_primary_10_1016_j_envpol_2025_125764 crossref_primary_10_1016_j_jenvman_2023_118107 crossref_primary_10_1016_j_scitotenv_2024_172397 crossref_primary_10_1016_j_jhazmat_2024_136660 crossref_primary_10_1016_j_envpol_2024_124237 crossref_primary_10_1016_j_scitotenv_2020_140518 crossref_primary_10_1186_s40793_025_00685_7 crossref_primary_10_1007_s10661_023_11890_7 crossref_primary_10_3390_ijerph16050715 crossref_primary_10_3390_w14213515 crossref_primary_10_1016_j_scitotenv_2020_138682 crossref_primary_10_1016_j_scitotenv_2022_157884 crossref_primary_10_1021_acs_est_1c04108 crossref_primary_10_1016_j_jwpe_2024_106521 crossref_primary_10_1016_j_watres_2022_118495 crossref_primary_10_1016_j_watres_2023_120752 crossref_primary_10_1016_j_marpolbul_2024_116964 crossref_primary_10_1016_j_apsoil_2024_105312 crossref_primary_10_1016_j_scitotenv_2024_172288 crossref_primary_10_1007_s00027_023_00964_w crossref_primary_10_1016_j_cej_2023_145715 crossref_primary_10_1007_s11356_021_17451_0 crossref_primary_10_1016_j_eti_2025_104120 crossref_primary_10_1016_j_scitotenv_2020_139400 crossref_primary_10_1016_j_jhazmat_2022_128443 crossref_primary_10_1016_j_hazadv_2024_100542 crossref_primary_10_1016_j_ese_2021_100121 crossref_primary_10_1016_j_jhazmat_2023_132085 crossref_primary_10_1099_mic_0_001506 crossref_primary_10_1016_j_psep_2022_11_021 crossref_primary_10_1016_j_gsd_2022_100852 crossref_primary_10_1016_j_jhazmat_2021_127285 crossref_primary_10_1016_j_jhazmat_2021_127286 crossref_primary_10_1016_j_marpolbul_2019_06_013 crossref_primary_10_1016_j_chemosphere_2021_133005 crossref_primary_10_1016_j_envpol_2020_114336 crossref_primary_10_3390_su142013099 crossref_primary_10_1016_j_chemosphere_2021_131185 crossref_primary_10_3390_w16152155 crossref_primary_10_1016_j_envres_2023_118005 crossref_primary_10_1016_j_scitotenv_2024_171335 crossref_primary_10_1016_j_ecoenv_2024_117332 crossref_primary_10_1021_acs_est_2c05817 crossref_primary_10_1016_j_biortech_2021_124894 crossref_primary_10_3390_ijerph19159148 crossref_primary_10_1016_j_cej_2022_136285 crossref_primary_10_1016_j_trac_2024_117667 crossref_primary_10_1016_j_envpol_2022_120456 crossref_primary_10_1016_j_susmat_2024_e01152 crossref_primary_10_1016_j_watres_2022_118636 crossref_primary_10_1016_j_chemosphere_2020_128942 crossref_primary_10_1016_j_marenvres_2021_105377 crossref_primary_10_1080_10934529_2020_1833591 crossref_primary_10_1016_j_scitotenv_2021_145697 crossref_primary_10_1016_j_jhazmat_2020_124516 crossref_primary_10_2139_ssrn_3997606 crossref_primary_10_3389_fmicb_2021_684903 crossref_primary_10_1016_j_clce_2025_100162 crossref_primary_10_1007_s12601_021_00032_0 crossref_primary_10_1016_j_jhazmat_2020_124882 crossref_primary_10_1080_01490451_2023_2209750 crossref_primary_10_1021_acs_est_0c07952 crossref_primary_10_1016_j_eng_2023_02_007 crossref_primary_10_1007_s44274_024_00139_w crossref_primary_10_1016_j_jhazmat_2024_136975 crossref_primary_10_1016_j_cej_2021_129123 crossref_primary_10_1016_j_scitotenv_2024_174814 crossref_primary_10_3390_w13162214 crossref_primary_10_1016_j_jhazmat_2022_130714 crossref_primary_10_3390_ijerph20010042 crossref_primary_10_1016_j_scitotenv_2024_174997 crossref_primary_10_1007_s00343_024_3291_x crossref_primary_10_1016_j_chemosphere_2024_143800 crossref_primary_10_4491_eer_2022_716 crossref_primary_10_1016_j_scitotenv_2021_148902 crossref_primary_10_1016_j_greeac_2022_100042 crossref_primary_10_1016_j_jwpe_2024_106134 crossref_primary_10_1016_j_jhazmat_2024_133655 crossref_primary_10_1155_2019_6473690 crossref_primary_10_3390_w16223236 crossref_primary_10_3390_w12041085 crossref_primary_10_1016_j_scitotenv_2023_166855 crossref_primary_10_1007_s00203_024_03904_w crossref_primary_10_1016_j_watres_2023_119936 crossref_primary_10_3389_fmicb_2022_845144 crossref_primary_10_1038_s41579_019_0308_0 crossref_primary_10_3390_microorganisms13020446 crossref_primary_10_1002_jctb_6978 crossref_primary_10_1016_j_dwt_2024_100673 crossref_primary_10_1016_j_scitotenv_2024_171252 crossref_primary_10_1016_j_jhazmat_2022_128503 crossref_primary_10_1016_j_jhazmat_2020_123577 crossref_primary_10_1016_j_jhazmat_2023_131080 crossref_primary_10_1016_j_scitotenv_2021_152292 crossref_primary_10_1016_j_envres_2025_121053 crossref_primary_10_3390_ijerph20053951 crossref_primary_10_1016_j_watres_2022_119406 crossref_primary_10_1016_j_marpolbul_2021_113052 crossref_primary_10_1016_j_desal_2024_117974 crossref_primary_10_1016_j_scitotenv_2020_137603 crossref_primary_10_1016_j_scitotenv_2022_156704 crossref_primary_10_1016_j_chemosphere_2024_141880 crossref_primary_10_1016_j_energy_2024_131683 crossref_primary_10_1016_j_chemosphere_2020_126565 crossref_primary_10_3390_w13192710 crossref_primary_10_1016_j_scitotenv_2024_170499 crossref_primary_10_3390_microorganisms8081172 crossref_primary_10_1016_j_chemosphere_2022_135836 crossref_primary_10_1016_j_marpolbul_2022_113949 crossref_primary_10_1016_j_jhazmat_2024_135974 crossref_primary_10_1016_j_jhazmat_2021_125286 crossref_primary_10_1016_j_jenvman_2023_117529 crossref_primary_10_5334_aogh_4056 crossref_primary_10_1016_j_jenvman_2023_118971 crossref_primary_10_1016_j_scitotenv_2024_170144 crossref_primary_10_1016_j_chemosphere_2023_139151 crossref_primary_10_1016_j_jwpe_2024_105395 crossref_primary_10_1016_j_envpol_2023_121995 crossref_primary_10_1016_j_scitotenv_2021_145303 crossref_primary_10_1016_j_scitotenv_2023_164523 crossref_primary_10_1016_j_envpol_2019_112983 crossref_primary_10_1016_j_envres_2025_121072 crossref_primary_10_1016_j_apsoil_2022_104552 crossref_primary_10_1016_j_eehl_2023_07_004 crossref_primary_10_1016_j_scitotenv_2023_164904 crossref_primary_10_1016_j_jhazmat_2023_131399 crossref_primary_10_1080_24750263_2023_2217200 crossref_primary_10_3390_d16010070 crossref_primary_10_1016_j_scitotenv_2020_136968 crossref_primary_10_1371_journal_pone_0240996 crossref_primary_10_3389_fmars_2023_1070905 crossref_primary_10_1016_j_jwpe_2025_107419 crossref_primary_10_1016_j_cotox_2021_09_006 crossref_primary_10_1021_envhealth_4c00013 crossref_primary_10_1093_etojnl_vgae067 crossref_primary_10_1139_er_2021_0048 crossref_primary_10_1016_j_scitotenv_2023_161990 crossref_primary_10_1016_j_scitotenv_2024_172819 crossref_primary_10_1139_cjz_2021_0104 crossref_primary_10_1016_j_jhazmat_2023_132139 crossref_primary_10_1007_s00343_024_3235_5 crossref_primary_10_1016_j_jhazmat_2021_126221 crossref_primary_10_1016_j_jwpe_2024_106159 crossref_primary_10_1007_s11356_024_34994_0 crossref_primary_10_1002_ieam_4568 crossref_primary_10_1016_j_apsoil_2022_104696 crossref_primary_10_3390_microorganisms13020260 crossref_primary_10_1016_j_watres_2021_117455 crossref_primary_10_1016_j_envpol_2022_120157 crossref_primary_10_1007_s11356_021_18034_9 crossref_primary_10_1038_s43705_022_00117_4 crossref_primary_10_1021_envhealth_4c00148 crossref_primary_10_1007_s11270_021_05445_0 crossref_primary_10_1016_j_chemosphere_2023_139524 crossref_primary_10_1016_j_heliyon_2023_e15104 crossref_primary_10_1016_j_jhazmat_2022_128801 crossref_primary_10_1016_j_jhazmat_2021_127531 crossref_primary_10_1016_j_scitotenv_2019_06_203 crossref_primary_10_1016_j_scitotenv_2023_169697 crossref_primary_10_1016_j_marpolbul_2021_112226 crossref_primary_10_1016_j_jhazmat_2023_132350 crossref_primary_10_1016_j_envint_2020_106007 crossref_primary_10_1007_s11356_022_19382_w crossref_primary_10_1080_20964129_2022_2133638 crossref_primary_10_3390_jmse11071437 crossref_primary_10_3389_fmicb_2022_836052 crossref_primary_10_1016_j_scitotenv_2019_134876 crossref_primary_10_1016_j_emcon_2024_100306 crossref_primary_10_1016_j_scitotenv_2022_154904 crossref_primary_10_1016_j_jhazmat_2021_125586 crossref_primary_10_1016_j_marenvres_2020_105151 crossref_primary_10_1016_j_jhazmat_2020_123049 crossref_primary_10_1016_j_rsma_2022_102647 crossref_primary_10_1016_j_scitotenv_2021_150263 crossref_primary_10_15250_joie_2024_23_4_410 crossref_primary_10_1016_j_envres_2021_111363 crossref_primary_10_1016_j_jhazmat_2021_127529 crossref_primary_10_3390_su152416865 crossref_primary_10_1007_s42995_020_00056_w crossref_primary_10_1016_j_scitotenv_2022_160231 crossref_primary_10_1007_s11356_022_20238_6 crossref_primary_10_1016_j_jhazmat_2023_131350 crossref_primary_10_1016_j_scitotenv_2020_144663 crossref_primary_10_1016_j_scitotenv_2022_161322 crossref_primary_10_1016_j_envpol_2020_115468 crossref_primary_10_1016_j_cej_2020_127079 crossref_primary_10_1016_j_scitotenv_2021_151487 crossref_primary_10_1016_j_scitotenv_2021_152212 crossref_primary_10_1016_j_scitotenv_2022_154975 crossref_primary_10_1016_j_scitotenv_2022_153884 crossref_primary_10_1016_j_pedsph_2022_06_037 crossref_primary_10_1039_D2EA00041E crossref_primary_10_1016_j_ecss_2023_108440 crossref_primary_10_1007_s11368_023_03479_x crossref_primary_10_1021_acs_est_9b03659 crossref_primary_10_1016_j_jhazmat_2021_126780 crossref_primary_10_1016_j_jhazmat_2021_126413 crossref_primary_10_1016_j_jhazmat_2025_137470 crossref_primary_10_1016_j_watres_2024_122207 crossref_primary_10_1016_j_scitotenv_2024_170653 crossref_primary_10_1016_j_scitotenv_2022_154962 crossref_primary_10_1016_j_ecoenv_2023_114834 crossref_primary_10_1080_10643389_2023_2224182 crossref_primary_10_1016_j_marpolbul_2025_117787 crossref_primary_10_1016_j_marenvres_2022_105729 crossref_primary_10_1016_j_scitotenv_2020_140082 crossref_primary_10_1080_26896583_2024_2370715 crossref_primary_10_1016_j_envpol_2021_116896 crossref_primary_10_1016_j_marpolbul_2024_117260 crossref_primary_10_1016_j_jece_2025_116249 crossref_primary_10_1016_j_marpolbul_2022_113775 crossref_primary_10_1016_j_scitotenv_2021_151388 crossref_primary_10_7717_peerj_12135 crossref_primary_10_1007_s10311_022_01552_4 crossref_primary_10_1016_j_teac_2024_e00256 crossref_primary_10_1016_j_scitotenv_2023_162856 crossref_primary_10_1007_s00128_020_03087_2 crossref_primary_10_1039_D3VA00043E crossref_primary_10_1002_wer_11070 crossref_primary_10_1016_j_jhazmat_2023_133400 crossref_primary_10_1016_j_jenvman_2024_120022 crossref_primary_10_3389_fenvs_2022_928247 crossref_primary_10_1016_j_scitotenv_2024_172833 |
Cites_doi | 10.1073/pnas.1314705111 10.1016/j.marpolbul.2017.08.024 10.1021/es401288x 10.1016/j.scitotenv.2018.03.176 10.1038/ismej.2013.34 10.1071/EN15069 10.1016/j.biortech.2017.06.103 10.1039/C6AY02558G 10.1099/ijs.0.046664-0 10.1021/es503610r 10.1002/etc.3829 10.1016/j.scitotenv.2017.10.150 10.1186/s12866-014-0232-4 10.1111/1462-2920.14120 10.1111/1462-2920.13891 10.1016/j.scitotenv.2017.12.105 10.1111/j.1462-2920.2005.00695.x 10.1007/s004420100716 10.1038/ismej.2012.8 10.1016/j.chemosphere.2017.08.131 10.1016/j.envpol.2016.06.036 10.1890/0012-9658(2002)083[0412:TIOSHO]2.0.CO;2 10.1016/j.scitotenv.2018.04.199 10.1016/j.watres.2018.06.015 10.1093/bioinformatics/btv287 10.1021/acs.est.7b00697 10.1038/ismej.2009.84 10.1016/j.envpol.2018.02.058 10.4031/MTSJ.45.2.2 10.1071/EN14172 10.1021/acs.estlett.7b00164 10.1038/ismej.2009.153 10.1016/j.scitotenv.2018.04.304 10.1002/anie.201606957 10.1016/j.marpolbul.2011.09.025 10.1016/j.watres.2015.02.012 10.1002/ecs2.1556 10.1111/j.1574-6941.2007.00375.x 10.3390/nu7042930 10.1007/s11356-017-9910-8 10.1021/acs.est.5b00492 10.1038/nrmicro.2016.94 10.1016/j.marpolbul.2017.01.070 10.1021/acs.est.5b01093 10.1016/j.envpol.2017.11.070 10.1016/j.envpol.2016.10.001 10.1093/bioinformatics/btu494 10.1038/nrmicro.2016.15 10.1021/acs.est.5b06069 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2018.09.378 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 2402 |
ExternalDocumentID | 30292995 10_1016_j_scitotenv_2018_09_378 S0048969718338579 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-cdbdf804016a307e94f6f665ccdcdf65a2596ba8d95ec85aa18bca99ea4726443 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 08:34:00 EDT 2025 Thu Jul 10 18:17:45 EDT 2025 Thu Apr 03 07:05:58 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Tue Jul 01 01:21:55 EDT 2025 Fri Feb 23 02:47:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 2 |
Keywords | PP MP OTUs NMDS Microplastic Species sorting CS ANOVA PE Biofilm KEGG Substrate type Metabolic pathways STAMP |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-cdbdf804016a307e94f6f665ccdcdf65a2596ba8d95ec85aa18bca99ea4726443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0412-4874 |
PMID | 30292995 |
PQID | 2117157239 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2189545812 proquest_miscellaneous_2117157239 pubmed_primary_30292995 crossref_primary_10_1016_j_scitotenv_2018_09_378 crossref_citationtrail_10_1016_j_scitotenv_2018_09_378 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_09_378 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-10 |
PublicationDateYYYYMMDD | 2019-02-10 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dris, Imhof, Sanchez, Gasperi, Galgani, Tassin, Laforsch (bb0085) 2015; 12 Kalcikova, Alic, Skalar, Bundschuh, Gotvajn (bb0130) 2017; 188 Legendre, Gallagher (bb0150) 2001; 129 Asshauer, Wemheuer, Daniel, Meinicke (bb0015) 2015; 31 Ivleva, Wiesheu, Niessner (bb0120) 2017; 56 Arias-Andres, Kettner, Miki, Grossart (bb0010) 2018; 635 De Tender, Devriese, Haegeman, Maes, Vangeyte, Cattrijsse, Dawyndt, Ruttink (bb0075) 2017; 51 Ramette (bb0215) 2007; 62 McCormick, Hoellein, London, Hittie, Scott, Kelly (bb0170) 2016; 7 Cole, Lindeque, Halsband, Galloway (bb0055) 2011; 62 Su, Xue, Li, Yang, Kolandhasamy, Li, Shi (bb0235) 2016; 216 Zettler, Mincer, Amaral-Zettler (bb0250) 2013; 47 Ogonowski, Motiei, Ininbergs, Hell, Gerdes, Udekwu, Bacsik, Gorokhova (bb0190) 2018; 8 Girvan, Campbell, Killham, Prosser, Glover (bb0105) 2005; 7 Sun, Zhang, Esquivel-Elizondo, Ma, Wu (bb0240) 2018; 248 Cózar, Echevarría, González-Gordillo, Irigoien, Úbeda, Hernández-León, Fernández-de-Puelles (bb0065) 2014; 111 Eckert, Di, Kettner, Arias-Andres, Fontaneto, Grossart (bb1000) 2018; 234 Jiang, Zhao, Zhu, Li (bb0125) 2018; 624 Parks, Tyson, Hugenholtz, Beiko (bb0200) 2014; 30 Oberbeckmann, Loder, Labrenz (bb0185) 2015; 12 McBride, Liu, Lu, Zhu, Zhang (bb0160) 2014 Philippot, Spor, Henault, Bru, Bizouard, Jones, Sarr, Maron (bb0205) 2013; 7 Engelbrektson, Kunin, Wrighton, Zvenigorodsky, Chen, Ochman, Hugenholtz (bb0095) 2010; 4 Kettner, Rojas-Jimenez, Oberbeckmann, Labrenz, Grossart (bb0135) 2017; 19 Canniff, Hoang (bb0035) 2018; 633 Di, Wang (bb0080) 2018; 616 Shim, Hong, Eo (bb0230) 2017; 9 Harrison, Schratzberger, Sapp, Osborn (bb0115) 2014; 14 Besseling, Quik, Sun, Koelmans (bb0025) 2017; 220 Chae, An (bb0050) 2017; 124 Park, Baek, Woo, Lee, Yang, Lee (bb0195) 2013; 63 Caporaso, Lauber, Walters, Berg-Lyons, Huntley, Fierer (bb0040) 2012; 6 De Tender, Devriese, Haegeman, Maes, Ruttink, Dawyndt (bb0070) 2015; 49 Sharma, Chatterjee (bb0225) 2017; 24 Viršek, Lovšin, Koren, Kržan, Peterlin (bb0245) 2017; 125 Battin, Besemer, Bengtsson, Romani, Packmann (bb0020) 2016; 14 Cardinale, Palmer, Swan, Brooks, Poff (bb0045) 2002; 83 Rummel, Jahnke, Gorokhova, Kuhnel, Schmitt-Jansen (bb0220) 2017; 4 Eerkes-Medrano, Thompson, Aldridge (bb0090) 2015; 75 PlasticsEurope (bb0210) 2016 Harrison, Sapp, Schratzberger, Osborn (bb0110) 2011; 45 Blettler, Abrial, Khan, Sivri, Espinola (bb0030) 2018; 143 Connors, Dyer, Belanger (bb0060) 2017; 36 Mohamed, Saito, Tal, Hill (bb0175) 2010; 4 McCormick, Hoellein, Mason, Schluep, Kelly (bb0165) 2014; 48 Arias-Andres, Klumper, Rojas-Jimenez, Grossart (bb0005) 2018; 237 Liu, Long, Fang, Ying, Shen (bb0155) 2018; 637–638 Flemming, Wingender, Szewzyk, Steinberg, Rice, Kjelleberg (bb0100) 2016; 14 Neis, Dejong, Rensen (bb0180) 2015; 7 Klein, Worch, Knepper (bb0140) 2015; 49 Koelmans, Bakir, Burton, Janssen (bb0145) 2016; 50 Harrison (10.1016/j.scitotenv.2018.09.378_bb0115) 2014; 14 Koelmans (10.1016/j.scitotenv.2018.09.378_bb0145) 2016; 50 Sharma (10.1016/j.scitotenv.2018.09.378_bb0225) 2017; 24 Kalcikova (10.1016/j.scitotenv.2018.09.378_bb0130) 2017; 188 Dris (10.1016/j.scitotenv.2018.09.378_bb0085) 2015; 12 Arias-Andres (10.1016/j.scitotenv.2018.09.378_bb0005) 2018; 237 Caporaso (10.1016/j.scitotenv.2018.09.378_bb0040) 2012; 6 Besseling (10.1016/j.scitotenv.2018.09.378_bb0025) 2017; 220 Mohamed (10.1016/j.scitotenv.2018.09.378_bb0175) 2010; 4 Arias-Andres (10.1016/j.scitotenv.2018.09.378_bb0010) 2018; 635 Liu (10.1016/j.scitotenv.2018.09.378_bb0155) 2018; 637–638 De Tender (10.1016/j.scitotenv.2018.09.378_bb0075) 2017; 51 Philippot (10.1016/j.scitotenv.2018.09.378_bb0205) 2013; 7 Engelbrektson (10.1016/j.scitotenv.2018.09.378_bb0095) 2010; 4 Battin (10.1016/j.scitotenv.2018.09.378_bb0020) 2016; 14 Rummel (10.1016/j.scitotenv.2018.09.378_bb0220) 2017; 4 Shim (10.1016/j.scitotenv.2018.09.378_bb0230) 2017; 9 Viršek (10.1016/j.scitotenv.2018.09.378_bb0245) 2017; 125 Park (10.1016/j.scitotenv.2018.09.378_bb0195) 2013; 63 McCormick (10.1016/j.scitotenv.2018.09.378_bb0165) 2014; 48 Kettner (10.1016/j.scitotenv.2018.09.378_bb0135) 2017; 19 Su (10.1016/j.scitotenv.2018.09.378_bb0235) 2016; 216 PlasticsEurope (10.1016/j.scitotenv.2018.09.378_bb0210) 2016 Eckert (10.1016/j.scitotenv.2018.09.378_bb1000) 2018; 234 Ramette (10.1016/j.scitotenv.2018.09.378_bb0215) 2007; 62 McCormick (10.1016/j.scitotenv.2018.09.378_bb0170) 2016; 7 Blettler (10.1016/j.scitotenv.2018.09.378_bb0030) 2018; 143 Ivleva (10.1016/j.scitotenv.2018.09.378_bb0120) 2017; 56 De Tender (10.1016/j.scitotenv.2018.09.378_bb0070) 2015; 49 Connors (10.1016/j.scitotenv.2018.09.378_bb0060) 2017; 36 Jiang (10.1016/j.scitotenv.2018.09.378_bb0125) 2018; 624 Flemming (10.1016/j.scitotenv.2018.09.378_bb0100) 2016; 14 Harrison (10.1016/j.scitotenv.2018.09.378_bb0110) 2011; 45 Cardinale (10.1016/j.scitotenv.2018.09.378_bb0045) 2002; 83 Sun (10.1016/j.scitotenv.2018.09.378_bb0240) 2018; 248 Di (10.1016/j.scitotenv.2018.09.378_bb0080) 2018; 616 Neis (10.1016/j.scitotenv.2018.09.378_bb0180) 2015; 7 Eerkes-Medrano (10.1016/j.scitotenv.2018.09.378_bb0090) 2015; 75 Canniff (10.1016/j.scitotenv.2018.09.378_bb0035) 2018; 633 Legendre (10.1016/j.scitotenv.2018.09.378_bb0150) 2001; 129 Klein (10.1016/j.scitotenv.2018.09.378_bb0140) 2015; 49 Ogonowski (10.1016/j.scitotenv.2018.09.378_bb0190) 2018; 8 Chae (10.1016/j.scitotenv.2018.09.378_bb0050) 2017; 124 Zettler (10.1016/j.scitotenv.2018.09.378_bb0250) 2013; 47 Parks (10.1016/j.scitotenv.2018.09.378_bb0200) 2014; 30 Oberbeckmann (10.1016/j.scitotenv.2018.09.378_bb0185) 2015; 12 Asshauer (10.1016/j.scitotenv.2018.09.378_bb0015) 2015; 31 McBride (10.1016/j.scitotenv.2018.09.378_bb0160) 2014 Cole (10.1016/j.scitotenv.2018.09.378_bb0055) 2011; 62 Cózar (10.1016/j.scitotenv.2018.09.378_bb0065) 2014; 111 Girvan (10.1016/j.scitotenv.2018.09.378_bb0105) 2005; 7 |
References_xml | – volume: 47 start-page: 7137 year: 2013 end-page: 7146 ident: bb0250 article-title: Life in the "plastisphere": microbial communities on plastic marine debris publication-title: Environ. Sci. Technol – volume: 8 start-page: 2796 year: 2018 end-page: 2808 ident: bb0190 article-title: Evidence for selective bacterial community structuring on microplastics publication-title: Environ. Microbiol. – volume: 50 start-page: 3315 year: 2016 end-page: 3326 ident: bb0145 article-title: Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies publication-title: Environ. Sci. Technol. – volume: 4 start-page: 642 year: 2010 end-page: 647 ident: bb0095 article-title: Experimental factors affecting PCR-based estimates of microbial species richness and evenness publication-title: ISME J. – volume: 234 start-page: 495 year: 2018 end-page: 502 ident: bb1000 article-title: Microplastics increase impact of treated wastewater on freshwater microbial community publication-title: Environ. Pollut. – volume: 30 start-page: 3123 year: 2014 end-page: 3124 ident: bb0200 article-title: STAMP: statistical analysis of taxonomic and functional profiles publication-title: Bioinformatics – volume: 56 start-page: 1720 year: 2017 end-page: 1739 ident: bb0120 article-title: Microplastic in aquatic ecosystems publication-title: Angew. Chem. Int. Ed. – volume: 14 start-page: 251 year: 2016 end-page: 263 ident: bb0020 article-title: The ecology and biogeochemistry of stream biofilms publication-title: Nat. Rev. Microbiol. – volume: 624 start-page: 48 year: 2018 end-page: 54 ident: bb0125 article-title: Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary publication-title: Sci. Total Environ. – volume: 637–638 start-page: 174 year: 2018 end-page: 181 ident: bb0155 article-title: A novel aerobic sulfate reduction process in landfill mineralized refuse publication-title: Sci. Total Environ. – volume: 49 start-page: 9629 year: 2015 end-page: 9638 ident: bb0070 article-title: Bacterial community profiling of plastic litter in the Belgian part of the North Sea publication-title: Environ. Sci. Technol. – volume: 188 start-page: 25 year: 2017 end-page: 31 ident: bb0130 article-title: Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater publication-title: Chemosphere – volume: 4 start-page: 258 year: 2017 end-page: 267 ident: bb0220 article-title: Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment publication-title: Environ. Sci. Technol. Lett. – year: 2016 ident: bb0210 article-title: Plastics–The Facts 2016 – volume: 7 start-page: 301 year: 2005 end-page: 313 ident: bb0105 article-title: Bacterial diversity promotes community stability and functional resilience after perturbation publication-title: Environ. Microbiol. – volume: 616 start-page: 1620 year: 2018 end-page: 1627 ident: bb0080 article-title: Microplastics in surface waters and sediments of the Three Gorges Reservoir, China publication-title: Sci. Total Environ. – volume: 129 start-page: 271 year: 2001 end-page: 280 ident: bb0150 article-title: Ecologically meaningful transformations for ordination of species data publication-title: Oecologia – volume: 62 start-page: 2588 year: 2011 end-page: 2597 ident: bb0055 article-title: Microplastics as contaminants in the marine environment: a review publication-title: Mar. Pollut. Bull. – volume: 75 start-page: 63 year: 2015 end-page: 82 ident: bb0090 article-title: Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs publication-title: Water Res. – volume: 12 start-page: 551 year: 2015 end-page: 562 ident: bb0185 article-title: Marine microplastic-associated biofilms – a review publication-title: Environ. Chem. – volume: 633 start-page: 500 year: 2018 end-page: 507 ident: bb0035 article-title: Microplastic ingestion by publication-title: Sci. Total Environ. – volume: 220 start-page: 540 year: 2017 end-page: 548 ident: bb0025 article-title: Fate of nano- and microplastic in freshwater systems: a modeling study publication-title: Environ. Pollut. – volume: 111 start-page: 10239 year: 2014 end-page: 10244 ident: bb0065 article-title: Plastic debris in the open ocean publication-title: Proc. Natl. Acad. Sci. – volume: 237 start-page: 253 year: 2018 end-page: 261 ident: bb0005 article-title: Microplastic pollution increases gene exchange in aquatic ecosystems publication-title: Environ. Pollut. – volume: 248 start-page: 56 year: 2018 end-page: 60 ident: bb0240 article-title: Uncovering the flocculating potential of extracellular polymeric substances produced by periphytic biofilms publication-title: Bioresour. Technol. – volume: 83 start-page: 412 year: 2002 end-page: 422 ident: bb0045 article-title: The influence of substrate heterogeneity on biofilm metabolism in a stream ecosystem publication-title: Ecology – volume: 51 start-page: 7350 year: 2017 end-page: 7360 ident: bb0075 article-title: Temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea publication-title: Environ. Sci. Technol. – volume: 19 start-page: 4447 year: 2017 end-page: 4459 ident: bb0135 article-title: Microplastics alter composition of fungal communities in aquatic ecosystems publication-title: Environ. Microbiol. – volume: 124 start-page: 624 year: 2017 end-page: 632 ident: bb0050 article-title: Effects of micro- and nanoplastics on aquatic ecosystems: current research trends and perspectives publication-title: Mar. Pollut. Bull. – volume: 49 start-page: 6070 year: 2015 end-page: 6076 ident: bb0140 article-title: Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany publication-title: Environ. Sci. Technol. – volume: 125 start-page: 301 year: 2017 end-page: 309 ident: bb0245 article-title: Microplastics as a vector for the transport of the bacterial fish pathogen species publication-title: Mar. Pollut. Bull. – volume: 62 start-page: 142 year: 2007 end-page: 160 ident: bb0215 article-title: Multivariate analyses in microbial ecology publication-title: FEMS Microbiol. Ecol. – volume: 7 year: 2016 ident: bb0170 article-title: Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages publication-title: Ecosphere – volume: 7 start-page: 2930 year: 2015 end-page: 2946 ident: bb0180 article-title: The role of microbial amino acid metabolism in host metabolism publication-title: Nutrients – volume: 45 start-page: 12 year: 2011 end-page: 20 ident: bb0110 article-title: Interactions between microorganisms and marine microplastics: a call for research publication-title: Mar. Technol. Soc. J. – volume: 9 start-page: 1384 year: 2017 end-page: 1391 ident: bb0230 article-title: Identification methods in microplastic analysis: a review publication-title: Anal. Methods – volume: 36 start-page: 1697 year: 2017 end-page: 1703 ident: bb0060 article-title: Advancing the quality of environmental microplastic research publication-title: Environ. Toxicol. Chem. – volume: 6 start-page: 1621 year: 2012 end-page: 1624 ident: bb0040 article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms publication-title: ISME J. – volume: 12 start-page: 539 year: 2015 end-page: 550 ident: bb0085 article-title: Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles publication-title: Environ. Chem. – volume: 4 start-page: 38 year: 2010 end-page: 48 ident: bb0175 article-title: Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges publication-title: ISME J. – volume: 216 start-page: 711 year: 2016 end-page: 719 ident: bb0235 article-title: Microplastics in Taihu Lake, China publication-title: Environ. Pollut. – volume: 143 start-page: 416 year: 2018 end-page: 424 ident: bb0030 article-title: Freshwater plastic pollution: recognizing research biases and identifying knowledge gaps publication-title: Water Res. – volume: 7 start-page: 1609 year: 2013 end-page: 1619 ident: bb0205 article-title: Loss in microbial diversity affects nitrogen cycling in soil publication-title: ISME J. – volume: 48 start-page: 11863 year: 2014 end-page: 11871 ident: bb0165 article-title: Microplastic is an abundant and distinct microbial habitat in an urban river publication-title: Environ. Sci. Technol. – volume: 24 start-page: 21530 year: 2017 end-page: 21547 ident: bb0225 article-title: Microplastic pollution, a threat to marine ecosystem and human health: a short review publication-title: Environ. Sci. Pollut. Res. – volume: 63 start-page: 1891 year: 2013 end-page: 1895 ident: bb0195 article-title: sp nov., isolated from activated sludge using algal metabolites publication-title: Int. J. Syst. Evol. Microbiol. – volume: 14 start-page: 563 year: 2016 end-page: 575 ident: bb0100 article-title: Biofilms: an emergent form of bacterial life publication-title: Nat. Rev. Microbiol. – volume: 31 start-page: 2882 year: 2015 end-page: 2884 ident: bb0015 article-title: Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data publication-title: Bioinformatics – volume: 635 start-page: 1152 year: 2018 end-page: 1159 ident: bb0010 article-title: Microplastics: new substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems publication-title: Sci. Total Environ. – volume: 14 start-page: 232 year: 2014 ident: bb0115 article-title: Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms publication-title: BMC Microbiol. – start-page: 577 year: 2014 end-page: 593 ident: bb0160 article-title: The family Cytophagaceae publication-title: The Prokaryotes – volume: 111 start-page: 10239 issue: 28 year: 2014 ident: 10.1016/j.scitotenv.2018.09.378_bb0065 article-title: Plastic debris in the open ocean publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1314705111 – volume: 125 start-page: 301 issue: 1–2 year: 2017 ident: 10.1016/j.scitotenv.2018.09.378_bb0245 article-title: Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2017.08.024 – volume: 47 start-page: 7137 issue: 13 year: 2013 ident: 10.1016/j.scitotenv.2018.09.378_bb0250 article-title: Life in the "plastisphere": microbial communities on plastic marine debris publication-title: Environ. Sci. Technol doi: 10.1021/es401288x – volume: 633 start-page: 500 year: 2018 ident: 10.1016/j.scitotenv.2018.09.378_bb0035 article-title: Microplastic ingestion by Daphnia magna and its enhancement on algal growth publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.03.176 – volume: 7 start-page: 1609 issue: 8 year: 2013 ident: 10.1016/j.scitotenv.2018.09.378_bb0205 article-title: Loss in microbial diversity affects nitrogen cycling in soil publication-title: ISME J. doi: 10.1038/ismej.2013.34 – volume: 12 start-page: 551 issue: 5 year: 2015 ident: 10.1016/j.scitotenv.2018.09.378_bb0185 article-title: Marine microplastic-associated biofilms – a review publication-title: Environ. Chem. doi: 10.1071/EN15069 – volume: 248 start-page: 56 issue: Pt B year: 2018 ident: 10.1016/j.scitotenv.2018.09.378_bb0240 article-title: Uncovering the flocculating potential of extracellular polymeric substances produced by periphytic biofilms publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.103 – volume: 9 start-page: 1384 issue: 9 year: 2017 ident: 10.1016/j.scitotenv.2018.09.378_bb0230 article-title: Identification methods in microplastic analysis: a review publication-title: Anal. Methods doi: 10.1039/C6AY02558G – volume: 63 start-page: 1891 year: 2013 ident: 10.1016/j.scitotenv.2018.09.378_bb0195 article-title: Luteolibacter yonseiensis sp nov., isolated from activated sludge using algal metabolites publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.046664-0 – volume: 48 start-page: 11863 issue: 20 year: 2014 ident: 10.1016/j.scitotenv.2018.09.378_bb0165 article-title: Microplastic is an abundant and distinct microbial habitat in an urban river publication-title: Environ. Sci. Technol. doi: 10.1021/es503610r – volume: 36 start-page: 1697 issue: 7 year: 2017 ident: 10.1016/j.scitotenv.2018.09.378_bb0060 article-title: Advancing the quality of environmental microplastic research publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.3829 – volume: 616 start-page: 1620 year: 2018 ident: 10.1016/j.scitotenv.2018.09.378_bb0080 article-title: Microplastics in surface waters and sediments of the Three Gorges Reservoir, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.150 – volume: 14 start-page: 232 year: 2014 ident: 10.1016/j.scitotenv.2018.09.378_bb0115 article-title: Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms publication-title: BMC Microbiol. doi: 10.1186/s12866-014-0232-4 – volume: 8 start-page: 2796 issue: 20 year: 2018 ident: 10.1016/j.scitotenv.2018.09.378_bb0190 article-title: Evidence for selective bacterial community structuring on microplastics publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.14120 – volume: 19 start-page: 4447 issue: 11 year: 2017 ident: 10.1016/j.scitotenv.2018.09.378_bb0135 article-title: Microplastics alter composition of fungal communities in aquatic ecosystems publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.13891 – volume: 624 start-page: 48 year: 2018 ident: 10.1016/j.scitotenv.2018.09.378_bb0125 article-title: Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.105 – volume: 7 start-page: 301 issue: 3 year: 2005 ident: 10.1016/j.scitotenv.2018.09.378_bb0105 article-title: Bacterial diversity promotes community stability and functional resilience after perturbation publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2005.00695.x – volume: 129 start-page: 271 year: 2001 ident: 10.1016/j.scitotenv.2018.09.378_bb0150 article-title: Ecologically meaningful transformations for ordination of species data publication-title: Oecologia doi: 10.1007/s004420100716 – volume: 6 start-page: 1621 year: 2012 ident: 10.1016/j.scitotenv.2018.09.378_bb0040 article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms publication-title: ISME J. doi: 10.1038/ismej.2012.8 – volume: 188 start-page: 25 year: 2017 ident: 10.1016/j.scitotenv.2018.09.378_bb0130 article-title: Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.08.131 – volume: 216 start-page: 711 year: 2016 ident: 10.1016/j.scitotenv.2018.09.378_bb0235 article-title: Microplastics in Taihu Lake, China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.06.036 – volume: 83 start-page: 412 issue: 2 year: 2002 ident: 10.1016/j.scitotenv.2018.09.378_bb0045 article-title: The influence of substrate heterogeneity on biofilm metabolism in a stream ecosystem publication-title: Ecology doi: 10.1890/0012-9658(2002)083[0412:TIOSHO]2.0.CO;2 – volume: 635 start-page: 1152 year: 2018 ident: 10.1016/j.scitotenv.2018.09.378_bb0010 article-title: Microplastics: new substrates for heterotrophic activity contribute to altering organic matter cycles in aquatic ecosystems publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.199 – volume: 143 start-page: 416 year: 2018 ident: 10.1016/j.scitotenv.2018.09.378_bb0030 article-title: Freshwater plastic pollution: recognizing research biases and identifying knowledge gaps publication-title: Water Res. doi: 10.1016/j.watres.2018.06.015 – volume: 31 start-page: 2882 issue: 17 year: 2015 ident: 10.1016/j.scitotenv.2018.09.378_bb0015 article-title: Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv287 – volume: 51 start-page: 7350 issue: 13 year: 2017 ident: 10.1016/j.scitotenv.2018.09.378_bb0075 article-title: Temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00697 – volume: 4 start-page: 38 issue: 1 year: 2010 ident: 10.1016/j.scitotenv.2018.09.378_bb0175 article-title: Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges publication-title: ISME J. doi: 10.1038/ismej.2009.84 – volume: 237 start-page: 253 year: 2018 ident: 10.1016/j.scitotenv.2018.09.378_bb0005 article-title: Microplastic pollution increases gene exchange in aquatic ecosystems publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.02.058 – volume: 45 start-page: 12 issue: 2 year: 2011 ident: 10.1016/j.scitotenv.2018.09.378_bb0110 article-title: Interactions between microorganisms and marine microplastics: a call for research publication-title: Mar. Technol. Soc. J. doi: 10.4031/MTSJ.45.2.2 – volume: 12 start-page: 539 issue: 5 year: 2015 ident: 10.1016/j.scitotenv.2018.09.378_bb0085 article-title: Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles publication-title: Environ. Chem. doi: 10.1071/EN14172 – volume: 4 start-page: 258 issue: 7 year: 2017 ident: 10.1016/j.scitotenv.2018.09.378_bb0220 article-title: Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.7b00164 – volume: 4 start-page: 642 issue: 5 year: 2010 ident: 10.1016/j.scitotenv.2018.09.378_bb0095 article-title: Experimental factors affecting PCR-based estimates of microbial species richness and evenness publication-title: ISME J. doi: 10.1038/ismej.2009.153 – volume: 637–638 start-page: 174 year: 2018 ident: 10.1016/j.scitotenv.2018.09.378_bb0155 article-title: A novel aerobic sulfate reduction process in landfill mineralized refuse publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.304 – volume: 56 start-page: 1720 issue: 7 year: 2017 ident: 10.1016/j.scitotenv.2018.09.378_bb0120 article-title: Microplastic in aquatic ecosystems publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606957 – volume: 62 start-page: 2588 issue: 12 year: 2011 ident: 10.1016/j.scitotenv.2018.09.378_bb0055 article-title: Microplastics as contaminants in the marine environment: a review publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.09.025 – volume: 75 start-page: 63 year: 2015 ident: 10.1016/j.scitotenv.2018.09.378_bb0090 article-title: Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs publication-title: Water Res. doi: 10.1016/j.watres.2015.02.012 – volume: 7 issue: 11 year: 2016 ident: 10.1016/j.scitotenv.2018.09.378_bb0170 article-title: Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages publication-title: Ecosphere doi: 10.1002/ecs2.1556 – volume: 62 start-page: 142 issue: 2 year: 2007 ident: 10.1016/j.scitotenv.2018.09.378_bb0215 article-title: Multivariate analyses in microbial ecology publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2007.00375.x – volume: 7 start-page: 2930 issue: 4 year: 2015 ident: 10.1016/j.scitotenv.2018.09.378_bb0180 article-title: The role of microbial amino acid metabolism in host metabolism publication-title: Nutrients doi: 10.3390/nu7042930 – volume: 24 start-page: 21530 issue: 27 year: 2017 ident: 10.1016/j.scitotenv.2018.09.378_bb0225 article-title: Microplastic pollution, a threat to marine ecosystem and human health: a short review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-9910-8 – volume: 49 start-page: 6070 issue: 10 year: 2015 ident: 10.1016/j.scitotenv.2018.09.378_bb0140 article-title: Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main area in Germany publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00492 – volume: 14 start-page: 563 issue: 9 year: 2016 ident: 10.1016/j.scitotenv.2018.09.378_bb0100 article-title: Biofilms: an emergent form of bacterial life publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.94 – volume: 124 start-page: 624 issue: 2 year: 2017 ident: 10.1016/j.scitotenv.2018.09.378_bb0050 article-title: Effects of micro- and nanoplastics on aquatic ecosystems: current research trends and perspectives publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2017.01.070 – start-page: 577 year: 2014 ident: 10.1016/j.scitotenv.2018.09.378_bb0160 article-title: The family Cytophagaceae – volume: 49 start-page: 9629 issue: 16 year: 2015 ident: 10.1016/j.scitotenv.2018.09.378_bb0070 article-title: Bacterial community profiling of plastic litter in the Belgian part of the North Sea publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01093 – year: 2016 ident: 10.1016/j.scitotenv.2018.09.378_bb0210 – volume: 234 start-page: 495 year: 2018 ident: 10.1016/j.scitotenv.2018.09.378_bb1000 article-title: Microplastics increase impact of treated wastewater on freshwater microbial community publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.11.070 – volume: 220 start-page: 540 year: 2017 ident: 10.1016/j.scitotenv.2018.09.378_bb0025 article-title: Fate of nano- and microplastic in freshwater systems: a modeling study publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.10.001 – volume: 30 start-page: 3123 issue: 21 year: 2014 ident: 10.1016/j.scitotenv.2018.09.378_bb0200 article-title: STAMP: statistical analysis of taxonomic and functional profiles publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu494 – volume: 14 start-page: 251 issue: 4 year: 2016 ident: 10.1016/j.scitotenv.2018.09.378_bb0020 article-title: The ecology and biogeochemistry of stream biofilms publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.15 – volume: 50 start-page: 3315 issue: 7 year: 2016 ident: 10.1016/j.scitotenv.2018.09.378_bb0145 article-title: Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b06069 |
SSID | ssj0000781 |
Score | 2.6803958 |
Snippet | Microplastics are frequently detected in freshwater environments, serving as a new factitious substrate for colonization of biofilm-forming microorganisms.... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2395 |
SubjectTerms | amino acid metabolism aquatic ecosystems Bacterial Physiological Phenomena - drug effects Biofilm Biofilms - drug effects Biofilms - growth & development community structure Cyclobacteriaceae ecological function freshwater habitats high-throughput nucleotide sequencing Metabolic pathways microbial communities Microbiota - drug effects Microbiota - physiology microorganisms Microplastic microplastics Phycisphaerales Phytoplankton - drug effects Phytoplankton - physiology Plastics - adverse effects polypropylenes ribosomal RNA Roseococcus species diversity Species sorting Substrate type vitamins Water Pollutants, Chemical - adverse effects wood |
Title | Distinct community structure and microbial functions of biofilms colonizing microplastics |
URI | https://dx.doi.org/10.1016/j.scitotenv.2018.09.378 https://www.ncbi.nlm.nih.gov/pubmed/30292995 https://www.proquest.com/docview/2117157239 https://www.proquest.com/docview/2189545812 |
Volume | 650 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Na9wwEB1CSqFQSrNt2k2ToEKvbuy1JEu9hXyw7dIcSkLSk5AlGVwa79J1Cskhvz0zlr0h0DaHnoyNZIRnRvPGmnkD8CHPEbUXVUgyW_GEo8dJVGlFknutQgi5ll1uztcTOT3jXy7ExRocDLUwlFbZ7_1xT-926_7JXv819xZ1TTW-XGmpcXPFMEsUVMTHeUFa_vH2Ps2DyGziKTMaNo5-kOOF723niE1_U46XIsLTnPqt_dlD_Q2Bdp7o-CW86CEk24-r3IC10IzgaWwqeT2CzaP72jUc1hvvcgTP4y86FiuPXsH3Q7LvxrXMxSqR9ppFOtmrX4HZxrPLuqNpwreQ--s0lM0rVtbU5_tyyYjxuqlv0PvFoQuE4kT7_BrOjo9OD6ZJ32khcbxI28T50lcK7TmTFo0-aF7JSkrhnHe-ksJikCRLq7wWwSlhbaZKZ7UOlheEqPJNWG_mTXgLzCO-Ed5jIJUFDG1KxbXNLJHU24lFYY1BDl_XuJ6GnLph_DRDvtkPsxKLIbGYVBsUyxjS1cRFZOJ4fMqnQXzmgVIZ9BePT34_CNygydE5im3C_GppMGYuMlFMcv2vMUrTmWQ2GcObqC2rVefpBEGpFlv_s7x38AzvNCWQZ-k2rKN6hB3ER2252xnALjzZ_zybntB19u18dgcFaBTe |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SDaWFUtpt0276UqFXE3styVJuIQ82TbKnBNKTkCUZXBrv0nUK6a_vjGVvCLTJoVdbEsKjmfnGmvkG4EueI2ovqpBktuIJR4-TqNKKJPdahRByLbvcnLO5nF3wr5ficgP2h1oYSqvsbX-06Z217p_s9F9zZ1nXVOPLlZYajSuGWaLQj2CT2KnECDb3jk9m81uDXKjYOI-jbuOEO2leuHS7QHj6i9K8FHGe5tRy7e9O6l8gtHNGRy_geY8i2V7c6EvYCM0YHse-kjdj2Dq8LV_DYb3-rsbwLP6lY7H46BV8OyAVb1zLXCwUaW9YZJS9_hmYbTy7qjumJlyFPGB3SNmiYmVNrb6vVoxIr5v6NzrAOHSJaJyYn1_DxdHh-f4s6ZstJI4XaZs4X_pKoUpn0qLeB80rWUkpnPPOV1JYjJNkaZXXIjglrM1U6azWwfKCQFW-BaNm0YS3wDxCHOE9xlJZwOimVFzbzBJPvZ1alNcE5PB1jeuZyKkhxg8zpJx9N2uxGBKLSbVBsUwgXU9cRjKOh6fsDuIzd86VQZfx8OTPg8ANah1dpdgmLK5XBsPmIhPFNNf3jVGariWz6QTexNOy3nWeThGXarH9P9v7BE9m52en5vR4fvIOnuIbTfnkWfoeRnhUwgeES235sVeHP7zbFew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distinct+community+structure+and+microbial+functions+of+biofilms+colonizing+microplastics&rft.jtitle=The+Science+of+the+total+environment&rft.au=Miao%2C+Lingzhan&rft.au=Wang%2C+Peifang&rft.au=Hou%2C+Jun&rft.au=Yao%2C+Yu&rft.date=2019-02-10&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=650&rft.issue=Pt+2&rft.spage=2395&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.09.378&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |