Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir
The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, t...
Saved in:
Published in | The Science of the total environment Vol. 651; no. Pt 1; pp. 998 - 1010 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04–3.38 × 103 copies/mL and 0.71 ± 0.22 × 102 cfu/mL to 5.36–5.81 × 103 copies/mL and 8.64 ± 2.08 × 103 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (SR) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future.
[Display omitted]
•Microbial aerobic denitrification dominates nitrogen loss of water column in the spring.•The abundance of nirS and aerobic denitrification bacteria increased obviously.•The abundance of N-functional bacteria and napA-type denitrification bacteria both exhibited obvious increase process. |
---|---|
AbstractList | The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04–3.38 × 103 copies/mL and 0.71 ± 0.22 × 102 cfu/mL to 5.36–5.81 × 103 copies/mL and 8.64 ± 2.08 × 103 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (SR) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future.
[Display omitted]
•Microbial aerobic denitrification dominates nitrogen loss of water column in the spring.•The abundance of nirS and aerobic denitrification bacteria increased obviously.•The abundance of N-functional bacteria and napA-type denitrification bacteria both exhibited obvious increase process. The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04–3.38 × 103 copies/mL and 0.71 ± 0.22 × 102 cfu/mL to 5.36–5.81 × 103 copies/mL and 8.64 ± 2.08 × 103 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (SR) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future. The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04-3.38 × 10 copies/mL and 0.71 ± 0.22 × 10 cfu/mL to 5.36-5.81 × 10 copies/mL and 8.64 ± 2.08 × 10 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (S ) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future. The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04-3.38 × 103 copies/mL and 0.71 ± 0.22 × 102 cfu/mL to 5.36-5.81 × 103 copies/mL and 8.64 ± 2.08 × 103 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (SR) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future.The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04-3.38 × 103 copies/mL and 0.71 ± 0.22 × 102 cfu/mL to 5.36-5.81 × 103 copies/mL and 8.64 ± 2.08 × 103 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (SR) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future. |
Author | Huang, Tinglin Zhang, Yiran Fang, Kaikai Liu, Yanfang Zhang, Chunhua Zhou, Shilei |
Author_xml | – sequence: 1 givenname: Shilei surname: Zhou fullname: Zhou, Shilei organization: Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China – sequence: 2 givenname: Yiran surname: Zhang fullname: Zhang, Yiran organization: Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China – sequence: 3 givenname: Tinglin surname: Huang fullname: Huang, Tinglin email: huangtinglin@xauat.edu.cn organization: Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China – sequence: 4 givenname: Yanfang surname: Liu fullname: Liu, Yanfang organization: Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China – sequence: 5 givenname: Kaikai surname: Fang fullname: Fang, Kaikai organization: Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China – sequence: 6 givenname: Chunhua surname: Zhang fullname: Zhang, Chunhua organization: Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30266057$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv3CAUhVGUKpmk_Qsty27GBdvDY9FFFDUPaaJukk03CONLwsiGFPBU-ffBmUwrdZOwgAt85yLOOUGHPnhA6AslFSWUfdtUybgcMvhtVRMqKiIrysgBWlDB5ZKSmh2iBSGtWEom-TE6SWlDyuCCHqHjptwzsuIL9OfGmRg6pwesYS4M7sG7HJ11RmcXPO7D6LzOkPB8Hu7B4yGkVPY2hhFHSBC3wUUMJqSnlGHEzuP8ADg9RufvcbD410OYzOT_wR_RB6uHBJ9e11N0d_Hj9vxquf55eX1-tl6alpNcZuDQCkZl31nNOrECy1eNtU1DjZBdbzpuW8Z5TymTsjZFZogQNadtZw1vTtHXXd_HGH5PkLIaXTIwDNpDmJKqqZCruq1l-w6UtkzWUpCCfn5Fp26EXpV_jjo-qb2vBfi-A4q5KUWwqsT1YmeO2g2KEjXnqDbqb45qzlERqUqORc__0--feFt5tlNCcXXrIM4ceAO9i2Cy6oN7s8czHwzAfA |
CitedBy_id | crossref_primary_10_1007_s10533_022_00928_6 crossref_primary_10_1021_acs_est_1c05254 crossref_primary_10_1016_j_envres_2023_115524 crossref_primary_10_2139_ssrn_4184428 crossref_primary_10_3390_su16103993 crossref_primary_10_1007_s00449_020_02376_8 crossref_primary_10_1007_s13762_024_05463_5 crossref_primary_10_1016_j_biortech_2022_127873 crossref_primary_10_1016_j_watres_2023_120601 crossref_primary_10_1016_j_biortech_2023_129656 crossref_primary_10_1016_j_jece_2024_112896 crossref_primary_10_1016_j_envres_2023_118032 crossref_primary_10_1039_D0RA08655J crossref_primary_10_1080_01490451_2019_1711466 crossref_primary_10_2208_jscejj_23_25034 crossref_primary_10_1016_j_watres_2020_115530 crossref_primary_10_48022_mbl_2102_02007 crossref_primary_10_1016_j_chemgeo_2023_121703 crossref_primary_10_1016_j_cej_2021_134459 crossref_primary_10_3389_fmicb_2022_1056860 crossref_primary_10_1016_j_chemosphere_2022_134011 crossref_primary_10_3389_fmicb_2023_1280450 crossref_primary_10_1016_j_cep_2019_107623 crossref_primary_10_1016_j_jece_2024_113493 crossref_primary_10_1016_j_scitotenv_2024_172062 crossref_primary_10_1007_s11356_024_33997_1 crossref_primary_10_3390_ijerph16203868 crossref_primary_10_1016_j_scitotenv_2021_148910 crossref_primary_10_1007_s11356_022_22914_z crossref_primary_10_1007_s11783_021_1391_9 crossref_primary_10_1016_j_biortech_2019_121888 crossref_primary_10_1016_j_biortech_2022_126975 crossref_primary_10_1016_j_envres_2020_110069 crossref_primary_10_1016_j_jhazmat_2024_135708 crossref_primary_10_1016_j_scitotenv_2023_165473 crossref_primary_10_1016_j_envpol_2022_119397 crossref_primary_10_1007_s11356_022_19023_2 crossref_primary_10_1016_j_envres_2025_120816 crossref_primary_10_1007_s10532_021_09945_y crossref_primary_10_1016_j_biortech_2023_129995 crossref_primary_10_1186_s12866_023_02781_5 crossref_primary_10_1016_j_bioelechem_2021_107997 crossref_primary_10_5004_dwt_2020_24941 crossref_primary_10_1016_j_biortech_2022_128265 crossref_primary_10_1016_j_envres_2023_116830 crossref_primary_10_1016_j_jwpe_2022_103245 crossref_primary_10_1016_j_jwpe_2024_104933 crossref_primary_10_3390_w16071000 crossref_primary_10_1016_j_biortech_2023_129997 crossref_primary_10_1007_s11368_023_03615_7 crossref_primary_10_1016_j_ibiod_2020_104955 crossref_primary_10_1016_j_marpolbul_2020_110912 crossref_primary_10_1016_j_scitotenv_2020_141965 crossref_primary_10_1016_j_scitotenv_2019_134109 crossref_primary_10_1016_j_jes_2021_10_013 crossref_primary_10_1016_j_scitotenv_2022_158331 crossref_primary_10_1016_j_cej_2024_154960 crossref_primary_10_1016_j_jenvman_2020_110456 crossref_primary_10_1007_s11270_024_07407_8 crossref_primary_10_1016_j_scitotenv_2019_134741 crossref_primary_10_1016_j_psep_2020_06_008 crossref_primary_10_1021_acsestwater_2c00066 crossref_primary_10_3390_microorganisms8050714 crossref_primary_10_1016_j_chemosphere_2019_125090 crossref_primary_10_1007_s10040_021_02314_2 crossref_primary_10_1016_j_jenvman_2021_112834 crossref_primary_10_1016_j_scitotenv_2024_171978 crossref_primary_10_1002_wer_1568 crossref_primary_10_1007_s00203_019_01798_7 crossref_primary_10_1016_j_scitotenv_2021_151862 crossref_primary_10_1016_j_wroa_2024_100246 crossref_primary_10_1016_j_biortech_2021_126176 crossref_primary_10_1016_j_ecoenv_2020_110879 crossref_primary_10_1016_j_jes_2023_07_004 crossref_primary_10_1016_j_jwpe_2023_104525 crossref_primary_10_1039_D0RA05234E crossref_primary_10_1002_lno_12381 crossref_primary_10_1016_j_biortech_2019_121467 crossref_primary_10_1016_j_scitotenv_2021_146436 crossref_primary_10_1007_s11270_020_04476_3 crossref_primary_10_1016_j_jwpe_2024_104786 crossref_primary_10_1016_j_scitotenv_2019_135848 crossref_primary_10_1016_j_jes_2022_09_006 crossref_primary_10_1016_j_jhazmat_2024_135964 crossref_primary_10_1016_j_envpol_2022_120312 crossref_primary_10_1016_j_jenvman_2020_111197 crossref_primary_10_1016_j_jes_2021_12_034 crossref_primary_10_1016_j_biortech_2020_124297 crossref_primary_10_1016_j_biortech_2021_124903 crossref_primary_10_3390_life13051206 crossref_primary_10_1016_j_scitotenv_2024_173927 crossref_primary_10_1080_01490451_2019_1599469 crossref_primary_10_1016_j_chemosphere_2021_132683 crossref_primary_10_3390_microorganisms8060883 crossref_primary_10_1186_s12866_023_02894_x |
Cites_doi | 10.1016/S0378-1097(03)00620-7 10.1016/j.cej.2017.10.120 10.1128/JB.01376-12 10.1016/j.watres.2013.03.049 10.3390/ijms16048008 10.1038/ismej.2017.51 10.1016/j.biortech.2015.10.064 10.1016/j.chemosphere.2018.02.124 10.1016/j.ibiod.2017.10.002 10.1128/AEM.02894-06 10.1016/j.biortech.2017.03.053 10.1016/j.chemosphere.2017.05.144 10.1016/j.biortech.2017.11.057 10.1016/j.scitotenv.2017.04.105 10.1016/j.marpolbul.2016.01.053 10.1016/j.watres.2016.04.030 10.4319/lo.2012.57.1.0185 10.1016/j.biortech.2015.01.100 10.1007/s11356-017-0903-4 10.1016/j.orggeochem.2009.03.002 10.1016/j.jhazmat.2013.08.050 10.1099/ijs.0.000174-0 10.1021/es030360x 10.4319/lo.2008.53.3.0955 10.1016/j.biortech.2017.01.073 10.1038/ismej.2015.56 10.1016/j.biortech.2014.06.001 10.1007/s00253-014-6221-6 10.1038/ismej.2013.55 10.1007/s10750-009-9722-z 10.1016/j.chemosphere.2018.08.043 10.1007/s11356-017-8824-9 10.1016/j.biortech.2014.12.057 10.1016/j.biortech.2015.11.041 10.1099/ijs.0.64121-0 10.1016/j.biortech.2016.04.071 10.1016/j.biortech.2015.03.060 10.1016/j.biotechadv.2016.07.001 10.1016/j.watres.2015.08.024 10.1016/j.biortech.2017.11.038 10.1016/j.pocean.2018.02.025 10.1078/0723-2020-00037 10.1016/j.jes.2018.03.004 10.2136/sssaj2006.0202 10.1038/srep08605 10.1016/j.scitotenv.2016.07.060 10.1016/j.chemosphere.2018.01.023 10.1038/ismej.2009.127 10.1016/j.watres.2015.02.018 10.1016/j.scitotenv.2018.06.081 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2018.09.160 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 1010 |
ExternalDocumentID | 30266057 10_1016_j_scitotenv_2018_09_160 S0048969718336040 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-c4e7e48619dbfa6b85ef753ff331c89bdcb7f4677d116992cc47c0882714bfc73 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 09:14:18 EDT 2025 Fri Jul 11 02:39:29 EDT 2025 Wed Feb 19 02:44:11 EST 2025 Tue Jul 01 01:21:53 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Fri Feb 23 02:33:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 1 |
Keywords | Nitrogen removal Reservoir Miseq high-throughput sequencing technique Water-lifting and aeration technology Aerobic denitrification In situ |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-c4e7e48619dbfa6b85ef753ff331c89bdcb7f4677d116992cc47c0882714bfc73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 30266057 |
PQID | 2114692980 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2189524294 proquest_miscellaneous_2114692980 pubmed_primary_30266057 crossref_citationtrail_10_1016_j_scitotenv_2018_09_160 crossref_primary_10_1016_j_scitotenv_2018_09_160 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_09_160 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-15 |
PublicationDateYYYYMMDD | 2019-02-15 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Helms, Stubbins, Ritchie, Minor, Kieber, Mopper (bb0080) 2008; 53 Sun, Liang, Li, Zhang, Yang, Fang (bb0180) 2017; 234 Wilhelm, Besemer, Fragner, Peter, Weckwerth, Battin (bb0225) 2015; 9 Lin, Shieh (bb0120) 2006; 56 Jaffrain, Gérard, Meyer, Ranger (bb0100) 2007; 71 Zhang, Zhou (bb0255) 2016 Yu, Meng, Song, Tian (bb0250) 2018; 337 Zhang, Liu, Qin, Feng (bb0260) 2009; 627 Wang, Chen (bb0200) 2018; 201 Xu, Song, Dai, Chai (bb0230) 2018; 197 Tang, Li, Xu, Huang, Sun (bb0190) 2018; 25 Gentry-Shields, Wang, Cory, Stewart (bb0065) 2013; 47 Yang, Zhang, Yang, Wang, Meng, Wang (bb0245) 2017; 232 Polcyn, Luciński (bb0145) 2003; 226 Wang, Dahlgren, Erşan, Karanfil, Chow (bb0210) 2016; 99 Sun, Li, Zhang, Ma (bb0175) 2015; 99 Lavonen, Kothawala, Tranvik, Gonsior, Schmitt-Kopplin, Köhler (bb0105) 2015; 85 Wang, Song, Wang, Zhang, He, Zhang (bb0215) 2018; 642 Huguet, Vacher, Relexans, Saubusse, Froidefond, Parlanti (bb0095) 2009; 40 Abed, Lam, De, Stief (bb0005) 2013; 7 Carr, Davis, Blackbird, Daniels, Preece, Woodward (bb0010) 2018 Yang, Liu, Zhu, Zhang (bb0240) 2016; 104 Szambolics, Toussaint, Buda-Prejbeanu, Alouges, Kritsikis, Fruchart (bb0185) 2010; 10 Li, Gai, Cui, Ma, Yang, Zhang (bb0110) 2012; 194 Coban, Kuschk, Wells, Strauch, Knoeller (bb0030) 2014 Guarch-Ribot, Butturini (bb0070) 2016; 571 Du, Cui, Qiu, Shi, Li, Ma (bb0040) 2017; 24 Gao, Schreiber, Collins, Jensen, Kostka, Lavik (bb0055) 2010; 4 Smith, Nedwell, Dong, Osborn (bb0165) 2007; 73 Huang, Wei, Su, Zhang, Li (bb0085) 2012; 7 Robertson, Kuenen (bb0155) 1983; 129 Subedi, Taylor, Hatam, Baldwin (bb0170) 2017; 183 Yan, Bi, Deng, He, Wu, Van Nostrand (bb0235) 2015; 5 Okamura, Kanbe, Hiraishi (bb0140) 2009; 59 Qiu, Li, He, Zhao, Liu, Yuan (bb0150) 2018 Chen, Wang, Feng, Zhu, Zhou, Tan (bb0015) 2014; 167 Coban, Kuschk, Kappelmeyer, Spott, Martienssen, Jetten (bb0035) 2015; 74 Wang, Chu (bb0205) 2016; 34 Zhou, Huang, Ngo, Zhang, Liu, Zeng (bb0270) 2016; 214 Chen, Li, Feng, Wei, Zheng, Zhao (bb0020) 2017; 598 Marchant, Ahmerkamp, Lavik, Tegetmeyer, Graf, Klatt (bb0130) 2017; 2017 Duan, Fang, Su, Chen, Lin (bb0045) 2015; 179 Mergaert, Boley, Cnockaert, Müller, Swings (bb0135) 2001; 24 Li, Yang, Wang, Wang, Li, He (bb0115) 2015; 182 Zhou, Xia, Huang, Zhang, Fang (bb0280) 2018; 211 Chinese (bb0025) 2002 Ma, Sun, Li, Zhang, Yang (bb0125) 2015; 187 Fu, Yu, Huangshen, Han (bb0050) 2018; 250 He, Li, Sun, Xu, Ye (bb0075) 2016; 200 Zhao, Cheng, Tan, An, Guo (bb0265) 2018; 250 Gao, Matyka, Liu, Khalili, Kostka, Collins (bb0060) 2012; 57 Zhou, Huang, Zhang, Zeng, Liu, Bai (bb0275) 2016; 201 Huang, Zhou, Zhang, Zhou, Guo, Di (bb0090) 2015; 16 Sahinkaya, Kilic, Calimlioglu, Toker (bb0160) 2013; 262 Tang, Li, Zou, Lv, Sun (bb0195) 2018; 126 Weishaar, Aiken, Bergamaschi, Fram, Fujii, Mopper (bb0220) 2003; 37 Okamura (10.1016/j.scitotenv.2018.09.160_bb0140) 2009; 59 Tang (10.1016/j.scitotenv.2018.09.160_bb0190) 2018; 25 Yan (10.1016/j.scitotenv.2018.09.160_bb0235) 2015; 5 Gentry-Shields (10.1016/j.scitotenv.2018.09.160_bb0065) 2013; 47 Xu (10.1016/j.scitotenv.2018.09.160_bb0230) 2018; 197 Gao (10.1016/j.scitotenv.2018.09.160_bb0055) 2010; 4 Wang (10.1016/j.scitotenv.2018.09.160_bb0205) 2016; 34 Zhao (10.1016/j.scitotenv.2018.09.160_bb0265) 2018; 250 Szambolics (10.1016/j.scitotenv.2018.09.160_bb0185) 2010; 10 Carr (10.1016/j.scitotenv.2018.09.160_bb0010) 2018 Wang (10.1016/j.scitotenv.2018.09.160_bb0210) 2016; 99 Wang (10.1016/j.scitotenv.2018.09.160_bb0215) 2018; 642 He (10.1016/j.scitotenv.2018.09.160_bb0075) 2016; 200 Zhou (10.1016/j.scitotenv.2018.09.160_bb0275) 2016; 201 Chen (10.1016/j.scitotenv.2018.09.160_bb0020) 2017; 598 Jaffrain (10.1016/j.scitotenv.2018.09.160_bb0100) 2007; 71 Sahinkaya (10.1016/j.scitotenv.2018.09.160_bb0160) 2013; 262 Wang (10.1016/j.scitotenv.2018.09.160_bb0200) 2018; 201 Sun (10.1016/j.scitotenv.2018.09.160_bb0175) 2015; 99 Chen (10.1016/j.scitotenv.2018.09.160_bb0015) 2014; 167 Duan (10.1016/j.scitotenv.2018.09.160_bb0045) 2015; 179 Li (10.1016/j.scitotenv.2018.09.160_bb0110) 2012; 194 Yu (10.1016/j.scitotenv.2018.09.160_bb0250) 2018; 337 Zhang (10.1016/j.scitotenv.2018.09.160_bb0260) 2009; 627 Fu (10.1016/j.scitotenv.2018.09.160_bb0050) 2018; 250 Subedi (10.1016/j.scitotenv.2018.09.160_bb0170) 2017; 183 Huang (10.1016/j.scitotenv.2018.09.160_bb0085) 2012; 7 Polcyn (10.1016/j.scitotenv.2018.09.160_bb0145) 2003; 226 Marchant (10.1016/j.scitotenv.2018.09.160_bb0130) 2017; 2017 Lin (10.1016/j.scitotenv.2018.09.160_bb0120) 2006; 56 Sun (10.1016/j.scitotenv.2018.09.160_bb0180) 2017; 234 Coban (10.1016/j.scitotenv.2018.09.160_bb0035) 2015; 74 Wilhelm (10.1016/j.scitotenv.2018.09.160_bb0225) 2015; 9 Du (10.1016/j.scitotenv.2018.09.160_bb0040) 2017; 24 Gao (10.1016/j.scitotenv.2018.09.160_bb0060) 2012; 57 Zhou (10.1016/j.scitotenv.2018.09.160_bb0280) 2018; 211 Coban (10.1016/j.scitotenv.2018.09.160_bb0030) 2014 Yang (10.1016/j.scitotenv.2018.09.160_bb0245) 2017; 232 Lavonen (10.1016/j.scitotenv.2018.09.160_bb0105) 2015; 85 Robertson (10.1016/j.scitotenv.2018.09.160_bb0155) 1983; 129 Yang (10.1016/j.scitotenv.2018.09.160_bb0240) 2016; 104 Zhou (10.1016/j.scitotenv.2018.09.160_bb0270) 2016; 214 Mergaert (10.1016/j.scitotenv.2018.09.160_bb0135) 2001; 24 Helms (10.1016/j.scitotenv.2018.09.160_bb0080) 2008; 53 Qiu (10.1016/j.scitotenv.2018.09.160_bb0150) 2018 Smith (10.1016/j.scitotenv.2018.09.160_bb0165) 2007; 73 Chinese (10.1016/j.scitotenv.2018.09.160_bb0025) 2002 Huguet (10.1016/j.scitotenv.2018.09.160_bb0095) 2009; 40 Weishaar (10.1016/j.scitotenv.2018.09.160_bb0220) 2003; 37 Huang (10.1016/j.scitotenv.2018.09.160_bb0090) 2015; 16 Tang (10.1016/j.scitotenv.2018.09.160_bb0195) 2018; 126 Abed (10.1016/j.scitotenv.2018.09.160_bb0005) 2013; 7 Li (10.1016/j.scitotenv.2018.09.160_bb0115) 2015; 182 Zhang (10.1016/j.scitotenv.2018.09.160_bb0255) 2016 Ma (10.1016/j.scitotenv.2018.09.160_bb0125) 2015; 187 Guarch-Ribot (10.1016/j.scitotenv.2018.09.160_bb0070) 2016; 571 |
References_xml | – volume: 71 start-page: 1851 year: 2007 end-page: 1858 ident: bb0100 article-title: Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry publication-title: Soil Sci. Soc. Am. J. – volume: 24 start-page: 303 year: 2001 end-page: 310 ident: bb0135 article-title: Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor publication-title: Syst. Appl. Microbiol. – volume: 598 start-page: 64 year: 2017 end-page: 70 ident: bb0020 article-title: Shifts in soil microbial metabolic activities and community structures along a salinity gradient of irrigation water in a typical arid region of China publication-title: Sci. Total Environ. – volume: 25 start-page: 5980 year: 2018 end-page: 5993 ident: bb0190 article-title: Application potential of aerobic denitrifiers coupled with a biostimulant for nitrogen removal from urban river sediment publication-title: Environ. Sci. Pollut. Res. – volume: 234 start-page: 264 year: 2017 end-page: 272 ident: bb0180 article-title: Ammonium assimilation: an important accessory during aerobic denitrification of publication-title: Bioresour. Technol. – volume: 232 start-page: 408 year: 2017 end-page: 411 ident: bb0245 article-title: Denitrification of aging biogas slurry from livestock farm by photosynthetic bacteria publication-title: Bioresour. Technol. – volume: 47 start-page: 3467 year: 2013 end-page: 3476 ident: bb0065 article-title: Determination of specific types and relative levels of QPCR inhibitors in environmental water samples using excitation–emission matrix spectroscopy and PARAFAC publication-title: Water Res. – volume: 74 start-page: 203 year: 2015 end-page: 212 ident: bb0035 article-title: Nitrogen transforming community in a horizontal subsurface-flow constructed wetland publication-title: Water Res. – volume: 10 start-page: 3082 year: 2010 end-page: 3092 ident: bb0185 article-title: Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates publication-title: Environ. Microbiol. – volume: 226 start-page: 331 year: 2003 end-page: 337 ident: bb0145 article-title: Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of publication-title: FEMS Microbiol. Lett. – volume: 250 start-page: 564 year: 2018 end-page: 573 ident: bb0265 article-title: Characterization of an aerobic denitrifier publication-title: Bioresour. Technol. – volume: 182 start-page: 18 year: 2015 end-page: 25 ident: bb0115 article-title: Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium publication-title: Bioresour. Technol. – year: 2002 ident: bb0025 article-title: Water and Wastewater Monitoring Methods – volume: 7 start-page: 1862 year: 2013 end-page: 1875 ident: bb0005 article-title: High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman publication-title: ISME J. – volume: 571 start-page: 1358 year: 2016 end-page: 1369 ident: bb0070 article-title: Hydrological conditions regulate dissolved organic matter quality in an intermittent headwater stream. From drought to storm analysis publication-title: Sci. Total Environ. – volume: 99 start-page: 66 year: 2016 end-page: 73 ident: bb0210 article-title: Temporal variations of disinfection byproduct precursors in wildfire detritus publication-title: Water Res. – volume: 337 start-page: 755 year: 2018 end-page: 763 ident: bb0250 article-title: Understanding bacterial communities of partial nitritation and nitratation reactors at ambient and low temperature publication-title: Chem. Eng. J. – start-page: 451 year: 2016 end-page: 473 ident: bb0255 article-title: Screening and Cultivation of Oligotrophic Aerobic Denitrifying Bacteria. Water Pollution and Water Quality Control of Selected Chinese reservoir basins – volume: 201 start-page: 195 year: 2016 end-page: 207 ident: bb0275 article-title: Nitrogen removal characteristics of enhanced in situ indigenous aerobic denitrification bacteria for micro-polluted reservoir source water publication-title: Bioresour. Technol. – volume: 24 start-page: 11435 year: 2017 end-page: 11445 ident: bb0040 article-title: Nitrogen removal and microbial community shift in an aerobic denitrification reactor bioaugmented with a publication-title: Environ. Sci. Pollut. Res. – start-page: 1 year: 2014 end-page: 11 ident: bb0030 article-title: Microbial nitrogen transformation in constructed wetlands treating contaminated groundwater publication-title: Environ. Sci. Pollut. Res. – volume: 59 start-page: 531 year: 2009 ident: bb0140 article-title: sp. nov., a purple non-sulfur bacterium isolated from pond water publication-title: Int. J. Syst. Evol. Microbiol. – volume: 56 start-page: 1209 year: 2006 end-page: 1215 ident: bb0120 article-title: gen. nov., sp. nov. and publication-title: Int. J. Syst. Evol. Microbiol. – volume: 57 start-page: 185 year: 2012 end-page: 198 ident: bb0060 article-title: Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea publication-title: Limnol. Oceanogr. – volume: 197 start-page: 96 year: 2018 end-page: 104 ident: bb0230 article-title: PHBV polymer supported denitrification system efficiently treated high nitrate concentration wastewater: denitrification performance, microbial community structure evolution and key denitrifying bacteria publication-title: Chemosphere – volume: 627 start-page: 159 year: 2009 end-page: 168 ident: bb0260 article-title: Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation publication-title: Hydrobiologia – volume: 104 start-page: 113 year: 2016 end-page: 120 ident: bb0240 article-title: Insights into the binding interactions of autochthonous dissolved organic matter released from publication-title: Mar. Pollut. Bull. – year: 2018 ident: bb0010 article-title: Seasonal and spatial variability in the optical characteristics of DOM in a temperate shelf sea publication-title: Prog. Oceanogr. – volume: 99 start-page: 3243 year: 2015 end-page: 3248 ident: bb0175 article-title: Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of publication-title: Appl. Microbiol. Biotechnol. – volume: 194 start-page: 5720 year: 2012 ident: bb0110 article-title: Genome sequence of a highly efficient aerobic denitrifying bacterium, publication-title: J. Bacteriol. – volume: 126 start-page: 119 year: 2018 end-page: 130 ident: bb0195 article-title: Mechanism of aerobic denitrifiers and calcium nitrate on urban river sediment remediation publication-title: Int. Biodeterior. Biodegrad. – volume: 262 start-page: 234 year: 2013 end-page: 239 ident: bb0160 article-title: Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process publication-title: J. Hazard. Mater. – volume: 16 start-page: 8008 year: 2015 end-page: 8026 ident: bb0090 article-title: Nitrogen removal from micro-polluted reservoir water by indigenous aerobic denitrifiers publication-title: Int. J. Mol. Sci. – volume: 9 start-page: 2454 year: 2015 ident: bb0225 article-title: Altitudinal patterns of diversity and functional traits of metabolically active microorganisms in stream biofilms publication-title: ISME J. – volume: 211 start-page: 1123 year: 2018 end-page: 1136 ident: bb0280 article-title: Seasonal variation of potential denitrification rate and enhanced denitrification performance via water-lifting aeration technology in a stratified reservoir—a case study of Zhoucun reservoir publication-title: Chemosphere – volume: 7 year: 2012 ident: bb0085 article-title: Denitrification performance and microbial community structure of a combined WLA–OBCO system publication-title: PLoS ONE – volume: 5 start-page: 8605 year: 2015 ident: bb0235 article-title: Impacts of the Three Gorges Dam on microbial structure and potential function publication-title: Sci. Rep. – volume: 214 start-page: 63 year: 2016 end-page: 73 ident: bb0270 article-title: Nitrogen removal characteristics of indigenous aerobic denitrifiers and changes in the microbial community of a reservoir enclosure system via in situ oxygen enhancement using water lifting and aeration technology publication-title: Bioresour. Technol. – volume: 179 start-page: 421 year: 2015 end-page: 428 ident: bb0045 article-title: Characterization of a halophilic heterotrophic nitrification–aerobic denitrification bacterium and its application on treatment of saline wastewater publication-title: Bioresour. Technol. – volume: 53 start-page: 955 year: 2008 end-page: 969 ident: bb0080 article-title: Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter publication-title: Limnol. Oceanogr. – volume: 187 start-page: 30 year: 2015 end-page: 36 ident: bb0125 article-title: Activation of accumulated nitrite reduction by immobilized publication-title: Bioresour. Technol. – volume: 129 start-page: 2847 year: 1983 end-page: 2855 ident: bb0155 article-title: gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium publication-title: J. Gen. Microbiol. – volume: 183 start-page: 536 year: 2017 end-page: 545 ident: bb0170 article-title: Simultaneous selenate reduction and denitrification by a consortium of enriched mine site bacteria publication-title: Chemosphere – volume: 37 start-page: 4702 year: 2003 end-page: 4708 ident: bb0220 article-title: Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon publication-title: Environ. Sci. Technol. – volume: 200 start-page: 493 year: 2016 end-page: 499 ident: bb0075 article-title: Heterotrophic nitrification and aerobic denitrification by publication-title: Bioresour. Technol. – volume: 40 start-page: 706 year: 2009 end-page: 719 ident: bb0095 article-title: Properties of fluorescent dissolved organic matter in the Gironde estuary publication-title: Org. Geochem. – volume: 250 start-page: 290 year: 2018 end-page: 298 ident: bb0050 article-title: The influence of complex fermentation broth on denitrification of saline sewage in constructed wetlands by heterotrophic nitrifying/aerobic denitrifying bacterial communities publication-title: Bioresour. Technol. – year: 2018 ident: bb0150 article-title: Variations regularity of microorganisms and corrosion of cast iron in water distribution system publication-title: J. Environ. Sci. – volume: 73 start-page: 3612 year: 2007 end-page: 3622 ident: bb0165 article-title: Diversity and abundance of nitrate reductase genes ( publication-title: Appl. Environ. Microbiol. – volume: 34 start-page: 1103 year: 2016 end-page: 1112 ident: bb0205 article-title: Biological nitrate removal from water and wastewater by solid-phase denitrification process publication-title: Biotechnol. Adv. – volume: 167 start-page: 456 year: 2014 end-page: 461 ident: bb0015 article-title: Impact resistance of different factors on ammonia removal by heterotrophic nitrification–aerobic denitrification bacterium publication-title: Bioresour. Technol. – volume: 85 start-page: 286 year: 2015 end-page: 294 ident: bb0105 article-title: Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production publication-title: Water Res. – volume: 201 start-page: 96 year: 2018 end-page: 109 ident: bb0200 article-title: Generation and characterization of DOM in wastewater treatment processes publication-title: Chemosphere – volume: 642 start-page: 1145 year: 2018 end-page: 1152 ident: bb0215 article-title: Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen: effects of carbon to nitrogen ratios publication-title: Sci. Total Environ. – volume: 4 start-page: 417 year: 2010 end-page: 426 ident: bb0055 article-title: Aerobic denitrification in permeable Wadden Sea sediments publication-title: ISME J. – volume: 2017 start-page: 1799 year: 2017 end-page: 1812 ident: bb0130 article-title: Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously publication-title: ISME J. – volume: 226 start-page: 331 year: 2003 ident: 10.1016/j.scitotenv.2018.09.160_bb0145 article-title: Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus) publication-title: FEMS Microbiol. Lett. doi: 10.1016/S0378-1097(03)00620-7 – volume: 337 start-page: 755 year: 2018 ident: 10.1016/j.scitotenv.2018.09.160_bb0250 article-title: Understanding bacterial communities of partial nitritation and nitratation reactors at ambient and low temperature publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.10.120 – volume: 194 start-page: 5720 year: 2012 ident: 10.1016/j.scitotenv.2018.09.160_bb0110 article-title: Genome sequence of a highly efficient aerobic denitrifying bacterium, Pseudomonas stutzeri T13 publication-title: J. Bacteriol. doi: 10.1128/JB.01376-12 – volume: 47 start-page: 3467 year: 2013 ident: 10.1016/j.scitotenv.2018.09.160_bb0065 article-title: Determination of specific types and relative levels of QPCR inhibitors in environmental water samples using excitation–emission matrix spectroscopy and PARAFAC publication-title: Water Res. doi: 10.1016/j.watres.2013.03.049 – volume: 16 start-page: 8008 year: 2015 ident: 10.1016/j.scitotenv.2018.09.160_bb0090 article-title: Nitrogen removal from micro-polluted reservoir water by indigenous aerobic denitrifiers publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms16048008 – volume: 2017 start-page: 1799 year: 2017 ident: 10.1016/j.scitotenv.2018.09.160_bb0130 article-title: Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously publication-title: ISME J. doi: 10.1038/ismej.2017.51 – volume: 200 start-page: 493 year: 2016 ident: 10.1016/j.scitotenv.2018.09.160_bb0075 article-title: Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.10.064 – volume: 201 start-page: 96 year: 2018 ident: 10.1016/j.scitotenv.2018.09.160_bb0200 article-title: Generation and characterization of DOM in wastewater treatment processes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.02.124 – volume: 126 start-page: 119 year: 2018 ident: 10.1016/j.scitotenv.2018.09.160_bb0195 article-title: Mechanism of aerobic denitrifiers and calcium nitrate on urban river sediment remediation publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2017.10.002 – volume: 73 start-page: 3612 year: 2007 ident: 10.1016/j.scitotenv.2018.09.160_bb0165 article-title: Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02894-06 – volume: 234 start-page: 264 year: 2017 ident: 10.1016/j.scitotenv.2018.09.160_bb0180 article-title: Ammonium assimilation: an important accessory during aerobic denitrification of Pseudomonas stutzeri T13 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.03.053 – start-page: 451 year: 2016 ident: 10.1016/j.scitotenv.2018.09.160_bb0255 – volume: 183 start-page: 536 year: 2017 ident: 10.1016/j.scitotenv.2018.09.160_bb0170 article-title: Simultaneous selenate reduction and denitrification by a consortium of enriched mine site bacteria publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.05.144 – volume: 250 start-page: 290 year: 2018 ident: 10.1016/j.scitotenv.2018.09.160_bb0050 article-title: The influence of complex fermentation broth on denitrification of saline sewage in constructed wetlands by heterotrophic nitrifying/aerobic denitrifying bacterial communities publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.11.057 – volume: 598 start-page: 64 year: 2017 ident: 10.1016/j.scitotenv.2018.09.160_bb0020 article-title: Shifts in soil microbial metabolic activities and community structures along a salinity gradient of irrigation water in a typical arid region of China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.04.105 – volume: 104 start-page: 113 year: 2016 ident: 10.1016/j.scitotenv.2018.09.160_bb0240 article-title: Insights into the binding interactions of autochthonous dissolved organic matter released from Microcystis aeruginosa with pyrene using spectroscopy publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2016.01.053 – volume: 99 start-page: 66 year: 2016 ident: 10.1016/j.scitotenv.2018.09.160_bb0210 article-title: Temporal variations of disinfection byproduct precursors in wildfire detritus publication-title: Water Res. doi: 10.1016/j.watres.2016.04.030 – volume: 57 start-page: 185 year: 2012 ident: 10.1016/j.scitotenv.2018.09.160_bb0060 article-title: Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2012.57.1.0185 – volume: 182 start-page: 18 year: 2015 ident: 10.1016/j.scitotenv.2018.09.160_bb0115 article-title: Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.01.100 – volume: 25 start-page: 5980 year: 2018 ident: 10.1016/j.scitotenv.2018.09.160_bb0190 article-title: Application potential of aerobic denitrifiers coupled with a biostimulant for nitrogen removal from urban river sediment publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0903-4 – volume: 40 start-page: 706 year: 2009 ident: 10.1016/j.scitotenv.2018.09.160_bb0095 article-title: Properties of fluorescent dissolved organic matter in the Gironde estuary publication-title: Org. Geochem. doi: 10.1016/j.orggeochem.2009.03.002 – volume: 262 start-page: 234 year: 2013 ident: 10.1016/j.scitotenv.2018.09.160_bb0160 article-title: Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.08.050 – volume: 59 start-page: 531 year: 2009 ident: 10.1016/j.scitotenv.2018.09.160_bb0140 article-title: Rhodoplanes serenus sp. nov., a purple non-sulfur bacterium isolated from pond water publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.000174-0 – volume: 37 start-page: 4702 year: 2003 ident: 10.1016/j.scitotenv.2018.09.160_bb0220 article-title: Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon publication-title: Environ. Sci. Technol. doi: 10.1021/es030360x – volume: 53 start-page: 955 year: 2008 ident: 10.1016/j.scitotenv.2018.09.160_bb0080 article-title: Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2008.53.3.0955 – volume: 232 start-page: 408 year: 2017 ident: 10.1016/j.scitotenv.2018.09.160_bb0245 article-title: Denitrification of aging biogas slurry from livestock farm by photosynthetic bacteria publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.01.073 – volume: 9 start-page: 2454 year: 2015 ident: 10.1016/j.scitotenv.2018.09.160_bb0225 article-title: Altitudinal patterns of diversity and functional traits of metabolically active microorganisms in stream biofilms publication-title: ISME J. doi: 10.1038/ismej.2015.56 – year: 2002 ident: 10.1016/j.scitotenv.2018.09.160_bb0025 – volume: 167 start-page: 456 year: 2014 ident: 10.1016/j.scitotenv.2018.09.160_bb0015 article-title: Impact resistance of different factors on ammonia removal by heterotrophic nitrification–aerobic denitrification bacterium Aeromonas sp. HN-02 publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.06.001 – volume: 99 start-page: 3243 year: 2015 ident: 10.1016/j.scitotenv.2018.09.160_bb0175 article-title: Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-6221-6 – volume: 10 start-page: 3082 year: 2010 ident: 10.1016/j.scitotenv.2018.09.160_bb0185 article-title: Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates publication-title: Environ. Microbiol. – volume: 7 start-page: 1862 year: 2013 ident: 10.1016/j.scitotenv.2018.09.160_bb0005 article-title: High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman publication-title: ISME J. doi: 10.1038/ismej.2013.55 – volume: 627 start-page: 159 year: 2009 ident: 10.1016/j.scitotenv.2018.09.160_bb0260 article-title: Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation publication-title: Hydrobiologia doi: 10.1007/s10750-009-9722-z – volume: 211 start-page: 1123 year: 2018 ident: 10.1016/j.scitotenv.2018.09.160_bb0280 article-title: Seasonal variation of potential denitrification rate and enhanced denitrification performance via water-lifting aeration technology in a stratified reservoir—a case study of Zhoucun reservoir publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.08.043 – volume: 24 start-page: 11435 year: 2017 ident: 10.1016/j.scitotenv.2018.09.160_bb0040 article-title: Nitrogen removal and microbial community shift in an aerobic denitrification reactor bioaugmented with a Pseudomonas strain for coal-based ethylene glycol industry wastewater treatment publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-8824-9 – volume: 129 start-page: 2847 year: 1983 ident: 10.1016/j.scitotenv.2018.09.160_bb0155 article-title: Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium publication-title: J. Gen. Microbiol. – volume: 179 start-page: 421 year: 2015 ident: 10.1016/j.scitotenv.2018.09.160_bb0045 article-title: Characterization of a halophilic heterotrophic nitrification–aerobic denitrification bacterium and its application on treatment of saline wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.12.057 – volume: 201 start-page: 195 year: 2016 ident: 10.1016/j.scitotenv.2018.09.160_bb0275 article-title: Nitrogen removal characteristics of enhanced in situ indigenous aerobic denitrification bacteria for micro-polluted reservoir source water publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.11.041 – volume: 56 start-page: 1209 year: 2006 ident: 10.1016/j.scitotenv.2018.09.160_bb0120 article-title: Zobellella denitrificans gen. nov., sp. nov. and Zobellella taiwanensis sp. nov., denitrifying bacteria capable of fermentative metabolism publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.64121-0 – start-page: 1 year: 2014 ident: 10.1016/j.scitotenv.2018.09.160_bb0030 article-title: Microbial nitrogen transformation in constructed wetlands treating contaminated groundwater publication-title: Environ. Sci. Pollut. Res. – volume: 214 start-page: 63 year: 2016 ident: 10.1016/j.scitotenv.2018.09.160_bb0270 article-title: Nitrogen removal characteristics of indigenous aerobic denitrifiers and changes in the microbial community of a reservoir enclosure system via in situ oxygen enhancement using water lifting and aeration technology publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.04.071 – volume: 187 start-page: 30 year: 2015 ident: 10.1016/j.scitotenv.2018.09.160_bb0125 article-title: Activation of accumulated nitrite reduction by immobilized Pseudomonas stutzeri T13 during aerobic denitrification publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.03.060 – volume: 34 start-page: 1103 year: 2016 ident: 10.1016/j.scitotenv.2018.09.160_bb0205 article-title: Biological nitrate removal from water and wastewater by solid-phase denitrification process publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2016.07.001 – volume: 85 start-page: 286 year: 2015 ident: 10.1016/j.scitotenv.2018.09.160_bb0105 article-title: Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production publication-title: Water Res. doi: 10.1016/j.watres.2015.08.024 – volume: 250 start-page: 564 year: 2018 ident: 10.1016/j.scitotenv.2018.09.160_bb0265 article-title: Characterization of an aerobic denitrifier Pseudomonas stutzeri strain XL-2 to achieve efficient nitrate removal publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.11.038 – volume: 7 year: 2012 ident: 10.1016/j.scitotenv.2018.09.160_bb0085 article-title: Denitrification performance and microbial community structure of a combined WLA–OBCO system publication-title: PLoS ONE – year: 2018 ident: 10.1016/j.scitotenv.2018.09.160_bb0010 article-title: Seasonal and spatial variability in the optical characteristics of DOM in a temperate shelf sea publication-title: Prog. Oceanogr. doi: 10.1016/j.pocean.2018.02.025 – volume: 24 start-page: 303 year: 2001 ident: 10.1016/j.scitotenv.2018.09.160_bb0135 article-title: Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor publication-title: Syst. Appl. Microbiol. doi: 10.1078/0723-2020-00037 – year: 2018 ident: 10.1016/j.scitotenv.2018.09.160_bb0150 article-title: Variations regularity of microorganisms and corrosion of cast iron in water distribution system publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2018.03.004 – volume: 71 start-page: 1851 year: 2007 ident: 10.1016/j.scitotenv.2018.09.160_bb0100 article-title: Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2006.0202 – volume: 5 start-page: 8605 year: 2015 ident: 10.1016/j.scitotenv.2018.09.160_bb0235 article-title: Impacts of the Three Gorges Dam on microbial structure and potential function publication-title: Sci. Rep. doi: 10.1038/srep08605 – volume: 571 start-page: 1358 year: 2016 ident: 10.1016/j.scitotenv.2018.09.160_bb0070 article-title: Hydrological conditions regulate dissolved organic matter quality in an intermittent headwater stream. From drought to storm analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.060 – volume: 197 start-page: 96 year: 2018 ident: 10.1016/j.scitotenv.2018.09.160_bb0230 article-title: PHBV polymer supported denitrification system efficiently treated high nitrate concentration wastewater: denitrification performance, microbial community structure evolution and key denitrifying bacteria publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.01.023 – volume: 4 start-page: 417 year: 2010 ident: 10.1016/j.scitotenv.2018.09.160_bb0055 article-title: Aerobic denitrification in permeable Wadden Sea sediments publication-title: ISME J. doi: 10.1038/ismej.2009.127 – volume: 74 start-page: 203 year: 2015 ident: 10.1016/j.scitotenv.2018.09.160_bb0035 article-title: Nitrogen transforming community in a horizontal subsurface-flow constructed wetland publication-title: Water Res. doi: 10.1016/j.watres.2015.02.018 – volume: 642 start-page: 1145 year: 2018 ident: 10.1016/j.scitotenv.2018.09.160_bb0215 article-title: Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen: effects of carbon to nitrogen ratios publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.081 |
SSID | ssj0000781 |
Score | 2.5632918 |
Snippet | The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 998 |
SubjectTerms | absorption Achromobacter Aerobic denitrification Aeromonas Azospira Bradyrhizobium Brevundimonas Dechloromonas Deinococcus denitrification denitrifying bacteria ecosystems Enterobacter Exiguobacterium fluorescence fulvic acids genes In situ Magnetospirillum Miseq high-throughput sequencing technique nitrates nitrogen nitrogen content nitrogen metabolism Nitrogen removal nutrients Pseudomonas remediation Reservoir Rhodopseudomonas spring Thauera water reservoirs Water-lifting and aeration technology Zobellella |
Title | Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir |
URI | https://dx.doi.org/10.1016/j.scitotenv.2018.09.160 https://www.ncbi.nlm.nih.gov/pubmed/30266057 https://www.proquest.com/docview/2114692980 https://www.proquest.com/docview/2189524294 |
Volume | 651 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CSqFQSrtt2u0jqNDrNn7IltRbCAnbLsmhNDT0IixZog7BChtvSi757Z2x7F0CbXPoZR9mxgjPQ5-smU8AH6RLbJZ5MzM5J1JtUc1Mgr7MeU0MVlUlPb0aOD4p56f8y1lxtgUHYy8MlVUOuT_m9D5bD1f2hqe5d9k01OPLpSoVJtc8L9EXqYOdC_Lyj7ebMg8is4m7zBjYKH2nxgvv2wXEptdU4yWJ8DTtuSr_OEP9DYH2M9HRU3gyQEi2H0f5DLZcO4GH8VDJmwnsHG5611BsCN6rCTyOr-hY7Dx6Dr-Om56FCYUqRz8swyTUdEuqHuoNxupAlTKIRhldD-hs7CLQNjGjthRGrUvL69AsGS5iIyc0a1qGmJLF_V4WPPvxM6zsqt0Iv4DTo8NvB_PZcA7DzHKRdPjphOMSl1q18VVpZOE8rnK8z_PUSmVqa4THhCvqNC2VyiyqWYLuIuXGW5HvwHYbWvcKWOqk87nydeFL1MirRHiVOlFXiTGZkFMox2ev7UBSTmdlXOixGu1cr42myWg6URqNNoVkrXgZeTruV_k0GlffcTmNs8n9yu9Hd9AYkLTLUrUurK50Rn3eCDrlP2WkKhAcKT6Fl9GX1qPOMUZwjSle_8_w3sAj_KeovDwt3sJ2t1y5d4ieOrPbh8cuPNj_vJif0Pfi6_fFbzTyIBc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQSQrBQ2PIyEhyX5uHENhIHBK22tNtTK1VcTOzYIqhKqn206qV_ij_ITJzsqhLQA-olihJP5HjGnz_bM2OAt9JFNkm8GZmUU1JtUYxMhLbMeUkZrIpCeloamBzk4yP-9Tg7XoNffSwMuVV22B8wvUXr7slW15pbp1VFMb5cqlwhuKZpjrbYeVbuuYtznLfNPu5-QSW_S5Kd7cPP41F3tMDIchHN8eqE4xJnD6XxRW5k5jwSd-_TNLZSmdIa4RFDRBnHuVKJRTFLbFTE3HgrUvzuLbjNES7o2IT3lyu_EsqeE7a1EUmwelecyvBH5g2S4TNyKpOUYTVuk2P-cUj8G-Vth76dh_Cg46zsU2iWR7Dm6gHcCadYXgxgY3sVLIfFOrSYDeB-WBNkIdTpMZxPqjbtExYqHN1YhqhXzafkrtRaCCsbcs1B-svoeYPWzU4a2pdmFAfDKFZqetZUU4az5pCEmlU1QxLLwgYzazz79qNZ2EW9KvwEjm5EOxuwXje1ewYsdtL5VPky8zlKpEUkvIqdKIvImETIIeR922vbZUWnwzlOdO_-9lMvlaZJaTpSGpU2hGgpeBoSg1wv8qFXrr5i4xqHr-uF3_TmoBEBaFunqF2zmOmEAsuR5cp_lpEqQzam-BCeBlta1jrFTomTWrH5P9V7DXfHh5N9vb97sPcc7uEbRb7tcfYC1ufThXuJ1G1uXrVdhcH3m-6bvwHgmlqE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+aerobic+denitrification+dominates+nitrogen+losses+from+reservoir+ecosystem+in+the+spring+of+Zhoucun+reservoir&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhou%2C+Shilei&rft.au=Zhang%2C+Yiran&rft.au=Huang%2C+Tinglin&rft.au=Liu%2C+Yanfang&rft.date=2019-02-15&rft.issn=0048-9697&rft.volume=651&rft.spage=998&rft.epage=1010&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.09.160&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2018_09_160 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |