Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir

The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, t...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 651; no. Pt 1; pp. 998 - 1010
Main Authors Zhou, Shilei, Zhang, Yiran, Huang, Tinglin, Liu, Yanfang, Fang, Kaikai, Zhang, Chunhua
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04–3.38 × 103 copies/mL and 0.71 ± 0.22 × 102 cfu/mL to 5.36–5.81 × 103 copies/mL and 8.64 ± 2.08 × 103 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (SR) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future. [Display omitted] •Microbial aerobic denitrification dominates nitrogen loss of water column in the spring.•The abundance of nirS and aerobic denitrification bacteria increased obviously.•The abundance of N-functional bacteria and napA-type denitrification bacteria both exhibited obvious increase process.
AbstractList The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04–3.38 × 103 copies/mL and 0.71 ± 0.22 × 102 cfu/mL to 5.36–5.81 × 103 copies/mL and 8.64 ± 2.08 × 103 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (SR) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future. [Display omitted] •Microbial aerobic denitrification dominates nitrogen loss of water column in the spring.•The abundance of nirS and aerobic denitrification bacteria increased obviously.•The abundance of N-functional bacteria and napA-type denitrification bacteria both exhibited obvious increase process.
The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04–3.38 × 103 copies/mL and 0.71 ± 0.22 × 102 cfu/mL to 5.36–5.81 × 103 copies/mL and 8.64 ± 2.08 × 103 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (SR) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future.
The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04-3.38 × 10  copies/mL and 0.71 ± 0.22 × 10  cfu/mL to 5.36-5.81 × 10  copies/mL and 8.64 ± 2.08 × 10  cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (S ) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future.
The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04-3.38 × 103 copies/mL and 0.71 ± 0.22 × 102 cfu/mL to 5.36-5.81 × 103 copies/mL and 8.64 ± 2.08 × 103 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (SR) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future.The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04-3.38 × 103 copies/mL and 0.71 ± 0.22 × 102 cfu/mL to 5.36-5.81 × 103 copies/mL and 8.64 ± 2.08 × 103 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (SR) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future.
Author Huang, Tinglin
Zhang, Yiran
Fang, Kaikai
Liu, Yanfang
Zhang, Chunhua
Zhou, Shilei
Author_xml – sequence: 1
  givenname: Shilei
  surname: Zhou
  fullname: Zhou, Shilei
  organization: Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
– sequence: 2
  givenname: Yiran
  surname: Zhang
  fullname: Zhang, Yiran
  organization: Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
– sequence: 3
  givenname: Tinglin
  surname: Huang
  fullname: Huang, Tinglin
  email: huangtinglin@xauat.edu.cn
  organization: Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
– sequence: 4
  givenname: Yanfang
  surname: Liu
  fullname: Liu, Yanfang
  organization: Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
– sequence: 5
  givenname: Kaikai
  surname: Fang
  fullname: Fang, Kaikai
  organization: Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
– sequence: 6
  givenname: Chunhua
  surname: Zhang
  fullname: Zhang, Chunhua
  organization: Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30266057$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv3CAUhVGUKpmk_Qsty27GBdvDY9FFFDUPaaJukk03CONLwsiGFPBU-ffBmUwrdZOwgAt85yLOOUGHPnhA6AslFSWUfdtUybgcMvhtVRMqKiIrysgBWlDB5ZKSmh2iBSGtWEom-TE6SWlDyuCCHqHjptwzsuIL9OfGmRg6pwesYS4M7sG7HJ11RmcXPO7D6LzOkPB8Hu7B4yGkVPY2hhFHSBC3wUUMJqSnlGHEzuP8ADg9RufvcbD410OYzOT_wR_RB6uHBJ9e11N0d_Hj9vxquf55eX1-tl6alpNcZuDQCkZl31nNOrECy1eNtU1DjZBdbzpuW8Z5TymTsjZFZogQNadtZw1vTtHXXd_HGH5PkLIaXTIwDNpDmJKqqZCruq1l-w6UtkzWUpCCfn5Fp26EXpV_jjo-qb2vBfi-A4q5KUWwqsT1YmeO2g2KEjXnqDbqb45qzlERqUqORc__0--feFt5tlNCcXXrIM4ceAO9i2Cy6oN7s8czHwzAfA
CitedBy_id crossref_primary_10_1007_s10533_022_00928_6
crossref_primary_10_1021_acs_est_1c05254
crossref_primary_10_1016_j_envres_2023_115524
crossref_primary_10_2139_ssrn_4184428
crossref_primary_10_3390_su16103993
crossref_primary_10_1007_s00449_020_02376_8
crossref_primary_10_1007_s13762_024_05463_5
crossref_primary_10_1016_j_biortech_2022_127873
crossref_primary_10_1016_j_watres_2023_120601
crossref_primary_10_1016_j_biortech_2023_129656
crossref_primary_10_1016_j_jece_2024_112896
crossref_primary_10_1016_j_envres_2023_118032
crossref_primary_10_1039_D0RA08655J
crossref_primary_10_1080_01490451_2019_1711466
crossref_primary_10_2208_jscejj_23_25034
crossref_primary_10_1016_j_watres_2020_115530
crossref_primary_10_48022_mbl_2102_02007
crossref_primary_10_1016_j_chemgeo_2023_121703
crossref_primary_10_1016_j_cej_2021_134459
crossref_primary_10_3389_fmicb_2022_1056860
crossref_primary_10_1016_j_chemosphere_2022_134011
crossref_primary_10_3389_fmicb_2023_1280450
crossref_primary_10_1016_j_cep_2019_107623
crossref_primary_10_1016_j_jece_2024_113493
crossref_primary_10_1016_j_scitotenv_2024_172062
crossref_primary_10_1007_s11356_024_33997_1
crossref_primary_10_3390_ijerph16203868
crossref_primary_10_1016_j_scitotenv_2021_148910
crossref_primary_10_1007_s11356_022_22914_z
crossref_primary_10_1007_s11783_021_1391_9
crossref_primary_10_1016_j_biortech_2019_121888
crossref_primary_10_1016_j_biortech_2022_126975
crossref_primary_10_1016_j_envres_2020_110069
crossref_primary_10_1016_j_jhazmat_2024_135708
crossref_primary_10_1016_j_scitotenv_2023_165473
crossref_primary_10_1016_j_envpol_2022_119397
crossref_primary_10_1007_s11356_022_19023_2
crossref_primary_10_1016_j_envres_2025_120816
crossref_primary_10_1007_s10532_021_09945_y
crossref_primary_10_1016_j_biortech_2023_129995
crossref_primary_10_1186_s12866_023_02781_5
crossref_primary_10_1016_j_bioelechem_2021_107997
crossref_primary_10_5004_dwt_2020_24941
crossref_primary_10_1016_j_biortech_2022_128265
crossref_primary_10_1016_j_envres_2023_116830
crossref_primary_10_1016_j_jwpe_2022_103245
crossref_primary_10_1016_j_jwpe_2024_104933
crossref_primary_10_3390_w16071000
crossref_primary_10_1016_j_biortech_2023_129997
crossref_primary_10_1007_s11368_023_03615_7
crossref_primary_10_1016_j_ibiod_2020_104955
crossref_primary_10_1016_j_marpolbul_2020_110912
crossref_primary_10_1016_j_scitotenv_2020_141965
crossref_primary_10_1016_j_scitotenv_2019_134109
crossref_primary_10_1016_j_jes_2021_10_013
crossref_primary_10_1016_j_scitotenv_2022_158331
crossref_primary_10_1016_j_cej_2024_154960
crossref_primary_10_1016_j_jenvman_2020_110456
crossref_primary_10_1007_s11270_024_07407_8
crossref_primary_10_1016_j_scitotenv_2019_134741
crossref_primary_10_1016_j_psep_2020_06_008
crossref_primary_10_1021_acsestwater_2c00066
crossref_primary_10_3390_microorganisms8050714
crossref_primary_10_1016_j_chemosphere_2019_125090
crossref_primary_10_1007_s10040_021_02314_2
crossref_primary_10_1016_j_jenvman_2021_112834
crossref_primary_10_1016_j_scitotenv_2024_171978
crossref_primary_10_1002_wer_1568
crossref_primary_10_1007_s00203_019_01798_7
crossref_primary_10_1016_j_scitotenv_2021_151862
crossref_primary_10_1016_j_wroa_2024_100246
crossref_primary_10_1016_j_biortech_2021_126176
crossref_primary_10_1016_j_ecoenv_2020_110879
crossref_primary_10_1016_j_jes_2023_07_004
crossref_primary_10_1016_j_jwpe_2023_104525
crossref_primary_10_1039_D0RA05234E
crossref_primary_10_1002_lno_12381
crossref_primary_10_1016_j_biortech_2019_121467
crossref_primary_10_1016_j_scitotenv_2021_146436
crossref_primary_10_1007_s11270_020_04476_3
crossref_primary_10_1016_j_jwpe_2024_104786
crossref_primary_10_1016_j_scitotenv_2019_135848
crossref_primary_10_1016_j_jes_2022_09_006
crossref_primary_10_1016_j_jhazmat_2024_135964
crossref_primary_10_1016_j_envpol_2022_120312
crossref_primary_10_1016_j_jenvman_2020_111197
crossref_primary_10_1016_j_jes_2021_12_034
crossref_primary_10_1016_j_biortech_2020_124297
crossref_primary_10_1016_j_biortech_2021_124903
crossref_primary_10_3390_life13051206
crossref_primary_10_1016_j_scitotenv_2024_173927
crossref_primary_10_1080_01490451_2019_1599469
crossref_primary_10_1016_j_chemosphere_2021_132683
crossref_primary_10_3390_microorganisms8060883
crossref_primary_10_1186_s12866_023_02894_x
Cites_doi 10.1016/S0378-1097(03)00620-7
10.1016/j.cej.2017.10.120
10.1128/JB.01376-12
10.1016/j.watres.2013.03.049
10.3390/ijms16048008
10.1038/ismej.2017.51
10.1016/j.biortech.2015.10.064
10.1016/j.chemosphere.2018.02.124
10.1016/j.ibiod.2017.10.002
10.1128/AEM.02894-06
10.1016/j.biortech.2017.03.053
10.1016/j.chemosphere.2017.05.144
10.1016/j.biortech.2017.11.057
10.1016/j.scitotenv.2017.04.105
10.1016/j.marpolbul.2016.01.053
10.1016/j.watres.2016.04.030
10.4319/lo.2012.57.1.0185
10.1016/j.biortech.2015.01.100
10.1007/s11356-017-0903-4
10.1016/j.orggeochem.2009.03.002
10.1016/j.jhazmat.2013.08.050
10.1099/ijs.0.000174-0
10.1021/es030360x
10.4319/lo.2008.53.3.0955
10.1016/j.biortech.2017.01.073
10.1038/ismej.2015.56
10.1016/j.biortech.2014.06.001
10.1007/s00253-014-6221-6
10.1038/ismej.2013.55
10.1007/s10750-009-9722-z
10.1016/j.chemosphere.2018.08.043
10.1007/s11356-017-8824-9
10.1016/j.biortech.2014.12.057
10.1016/j.biortech.2015.11.041
10.1099/ijs.0.64121-0
10.1016/j.biortech.2016.04.071
10.1016/j.biortech.2015.03.060
10.1016/j.biotechadv.2016.07.001
10.1016/j.watres.2015.08.024
10.1016/j.biortech.2017.11.038
10.1016/j.pocean.2018.02.025
10.1078/0723-2020-00037
10.1016/j.jes.2018.03.004
10.2136/sssaj2006.0202
10.1038/srep08605
10.1016/j.scitotenv.2016.07.060
10.1016/j.chemosphere.2018.01.023
10.1038/ismej.2009.127
10.1016/j.watres.2015.02.018
10.1016/j.scitotenv.2018.06.081
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2018.09.160
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 1010
ExternalDocumentID 30266057
10_1016_j_scitotenv_2018_09_160
S0048969718336040
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c470t-c4e7e48619dbfa6b85ef753ff331c89bdcb7f4677d116992cc47c0882714bfc73
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Jul 11 09:14:18 EDT 2025
Fri Jul 11 02:39:29 EDT 2025
Wed Feb 19 02:44:11 EST 2025
Tue Jul 01 01:21:53 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Fri Feb 23 02:33:01 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt 1
Keywords Nitrogen removal
Reservoir
Miseq high-throughput sequencing technique
Water-lifting and aeration technology
Aerobic denitrification
In situ
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-c4e7e48619dbfa6b85ef753ff331c89bdcb7f4677d116992cc47c0882714bfc73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30266057
PQID 2114692980
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2189524294
proquest_miscellaneous_2114692980
pubmed_primary_30266057
crossref_citationtrail_10_1016_j_scitotenv_2018_09_160
crossref_primary_10_1016_j_scitotenv_2018_09_160
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_09_160
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-15
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Helms, Stubbins, Ritchie, Minor, Kieber, Mopper (bb0080) 2008; 53
Sun, Liang, Li, Zhang, Yang, Fang (bb0180) 2017; 234
Wilhelm, Besemer, Fragner, Peter, Weckwerth, Battin (bb0225) 2015; 9
Lin, Shieh (bb0120) 2006; 56
Jaffrain, Gérard, Meyer, Ranger (bb0100) 2007; 71
Zhang, Zhou (bb0255) 2016
Yu, Meng, Song, Tian (bb0250) 2018; 337
Zhang, Liu, Qin, Feng (bb0260) 2009; 627
Wang, Chen (bb0200) 2018; 201
Xu, Song, Dai, Chai (bb0230) 2018; 197
Tang, Li, Xu, Huang, Sun (bb0190) 2018; 25
Gentry-Shields, Wang, Cory, Stewart (bb0065) 2013; 47
Yang, Zhang, Yang, Wang, Meng, Wang (bb0245) 2017; 232
Polcyn, Luciński (bb0145) 2003; 226
Wang, Dahlgren, Erşan, Karanfil, Chow (bb0210) 2016; 99
Sun, Li, Zhang, Ma (bb0175) 2015; 99
Lavonen, Kothawala, Tranvik, Gonsior, Schmitt-Kopplin, Köhler (bb0105) 2015; 85
Wang, Song, Wang, Zhang, He, Zhang (bb0215) 2018; 642
Huguet, Vacher, Relexans, Saubusse, Froidefond, Parlanti (bb0095) 2009; 40
Abed, Lam, De, Stief (bb0005) 2013; 7
Carr, Davis, Blackbird, Daniels, Preece, Woodward (bb0010) 2018
Yang, Liu, Zhu, Zhang (bb0240) 2016; 104
Szambolics, Toussaint, Buda-Prejbeanu, Alouges, Kritsikis, Fruchart (bb0185) 2010; 10
Li, Gai, Cui, Ma, Yang, Zhang (bb0110) 2012; 194
Coban, Kuschk, Wells, Strauch, Knoeller (bb0030) 2014
Guarch-Ribot, Butturini (bb0070) 2016; 571
Du, Cui, Qiu, Shi, Li, Ma (bb0040) 2017; 24
Gao, Schreiber, Collins, Jensen, Kostka, Lavik (bb0055) 2010; 4
Smith, Nedwell, Dong, Osborn (bb0165) 2007; 73
Huang, Wei, Su, Zhang, Li (bb0085) 2012; 7
Robertson, Kuenen (bb0155) 1983; 129
Subedi, Taylor, Hatam, Baldwin (bb0170) 2017; 183
Yan, Bi, Deng, He, Wu, Van Nostrand (bb0235) 2015; 5
Okamura, Kanbe, Hiraishi (bb0140) 2009; 59
Qiu, Li, He, Zhao, Liu, Yuan (bb0150) 2018
Chen, Wang, Feng, Zhu, Zhou, Tan (bb0015) 2014; 167
Coban, Kuschk, Kappelmeyer, Spott, Martienssen, Jetten (bb0035) 2015; 74
Wang, Chu (bb0205) 2016; 34
Zhou, Huang, Ngo, Zhang, Liu, Zeng (bb0270) 2016; 214
Chen, Li, Feng, Wei, Zheng, Zhao (bb0020) 2017; 598
Marchant, Ahmerkamp, Lavik, Tegetmeyer, Graf, Klatt (bb0130) 2017; 2017
Duan, Fang, Su, Chen, Lin (bb0045) 2015; 179
Mergaert, Boley, Cnockaert, Müller, Swings (bb0135) 2001; 24
Li, Yang, Wang, Wang, Li, He (bb0115) 2015; 182
Zhou, Xia, Huang, Zhang, Fang (bb0280) 2018; 211
Chinese (bb0025) 2002
Ma, Sun, Li, Zhang, Yang (bb0125) 2015; 187
Fu, Yu, Huangshen, Han (bb0050) 2018; 250
He, Li, Sun, Xu, Ye (bb0075) 2016; 200
Zhao, Cheng, Tan, An, Guo (bb0265) 2018; 250
Gao, Matyka, Liu, Khalili, Kostka, Collins (bb0060) 2012; 57
Zhou, Huang, Zhang, Zeng, Liu, Bai (bb0275) 2016; 201
Huang, Zhou, Zhang, Zhou, Guo, Di (bb0090) 2015; 16
Sahinkaya, Kilic, Calimlioglu, Toker (bb0160) 2013; 262
Tang, Li, Zou, Lv, Sun (bb0195) 2018; 126
Weishaar, Aiken, Bergamaschi, Fram, Fujii, Mopper (bb0220) 2003; 37
Okamura (10.1016/j.scitotenv.2018.09.160_bb0140) 2009; 59
Tang (10.1016/j.scitotenv.2018.09.160_bb0190) 2018; 25
Yan (10.1016/j.scitotenv.2018.09.160_bb0235) 2015; 5
Gentry-Shields (10.1016/j.scitotenv.2018.09.160_bb0065) 2013; 47
Xu (10.1016/j.scitotenv.2018.09.160_bb0230) 2018; 197
Gao (10.1016/j.scitotenv.2018.09.160_bb0055) 2010; 4
Wang (10.1016/j.scitotenv.2018.09.160_bb0205) 2016; 34
Zhao (10.1016/j.scitotenv.2018.09.160_bb0265) 2018; 250
Szambolics (10.1016/j.scitotenv.2018.09.160_bb0185) 2010; 10
Carr (10.1016/j.scitotenv.2018.09.160_bb0010) 2018
Wang (10.1016/j.scitotenv.2018.09.160_bb0210) 2016; 99
Wang (10.1016/j.scitotenv.2018.09.160_bb0215) 2018; 642
He (10.1016/j.scitotenv.2018.09.160_bb0075) 2016; 200
Zhou (10.1016/j.scitotenv.2018.09.160_bb0275) 2016; 201
Chen (10.1016/j.scitotenv.2018.09.160_bb0020) 2017; 598
Jaffrain (10.1016/j.scitotenv.2018.09.160_bb0100) 2007; 71
Sahinkaya (10.1016/j.scitotenv.2018.09.160_bb0160) 2013; 262
Wang (10.1016/j.scitotenv.2018.09.160_bb0200) 2018; 201
Sun (10.1016/j.scitotenv.2018.09.160_bb0175) 2015; 99
Chen (10.1016/j.scitotenv.2018.09.160_bb0015) 2014; 167
Duan (10.1016/j.scitotenv.2018.09.160_bb0045) 2015; 179
Li (10.1016/j.scitotenv.2018.09.160_bb0110) 2012; 194
Yu (10.1016/j.scitotenv.2018.09.160_bb0250) 2018; 337
Zhang (10.1016/j.scitotenv.2018.09.160_bb0260) 2009; 627
Fu (10.1016/j.scitotenv.2018.09.160_bb0050) 2018; 250
Subedi (10.1016/j.scitotenv.2018.09.160_bb0170) 2017; 183
Huang (10.1016/j.scitotenv.2018.09.160_bb0085) 2012; 7
Polcyn (10.1016/j.scitotenv.2018.09.160_bb0145) 2003; 226
Marchant (10.1016/j.scitotenv.2018.09.160_bb0130) 2017; 2017
Lin (10.1016/j.scitotenv.2018.09.160_bb0120) 2006; 56
Sun (10.1016/j.scitotenv.2018.09.160_bb0180) 2017; 234
Coban (10.1016/j.scitotenv.2018.09.160_bb0035) 2015; 74
Wilhelm (10.1016/j.scitotenv.2018.09.160_bb0225) 2015; 9
Du (10.1016/j.scitotenv.2018.09.160_bb0040) 2017; 24
Gao (10.1016/j.scitotenv.2018.09.160_bb0060) 2012; 57
Zhou (10.1016/j.scitotenv.2018.09.160_bb0280) 2018; 211
Coban (10.1016/j.scitotenv.2018.09.160_bb0030) 2014
Yang (10.1016/j.scitotenv.2018.09.160_bb0245) 2017; 232
Lavonen (10.1016/j.scitotenv.2018.09.160_bb0105) 2015; 85
Robertson (10.1016/j.scitotenv.2018.09.160_bb0155) 1983; 129
Yang (10.1016/j.scitotenv.2018.09.160_bb0240) 2016; 104
Zhou (10.1016/j.scitotenv.2018.09.160_bb0270) 2016; 214
Mergaert (10.1016/j.scitotenv.2018.09.160_bb0135) 2001; 24
Helms (10.1016/j.scitotenv.2018.09.160_bb0080) 2008; 53
Qiu (10.1016/j.scitotenv.2018.09.160_bb0150) 2018
Smith (10.1016/j.scitotenv.2018.09.160_bb0165) 2007; 73
Chinese (10.1016/j.scitotenv.2018.09.160_bb0025) 2002
Huguet (10.1016/j.scitotenv.2018.09.160_bb0095) 2009; 40
Weishaar (10.1016/j.scitotenv.2018.09.160_bb0220) 2003; 37
Huang (10.1016/j.scitotenv.2018.09.160_bb0090) 2015; 16
Tang (10.1016/j.scitotenv.2018.09.160_bb0195) 2018; 126
Abed (10.1016/j.scitotenv.2018.09.160_bb0005) 2013; 7
Li (10.1016/j.scitotenv.2018.09.160_bb0115) 2015; 182
Zhang (10.1016/j.scitotenv.2018.09.160_bb0255) 2016
Ma (10.1016/j.scitotenv.2018.09.160_bb0125) 2015; 187
Guarch-Ribot (10.1016/j.scitotenv.2018.09.160_bb0070) 2016; 571
References_xml – volume: 71
  start-page: 1851
  year: 2007
  end-page: 1858
  ident: bb0100
  article-title: Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry
  publication-title: Soil Sci. Soc. Am. J.
– volume: 24
  start-page: 303
  year: 2001
  end-page: 310
  ident: bb0135
  article-title: Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor
  publication-title: Syst. Appl. Microbiol.
– volume: 598
  start-page: 64
  year: 2017
  end-page: 70
  ident: bb0020
  article-title: Shifts in soil microbial metabolic activities and community structures along a salinity gradient of irrigation water in a typical arid region of China
  publication-title: Sci. Total Environ.
– volume: 25
  start-page: 5980
  year: 2018
  end-page: 5993
  ident: bb0190
  article-title: Application potential of aerobic denitrifiers coupled with a biostimulant for nitrogen removal from urban river sediment
  publication-title: Environ. Sci. Pollut. Res.
– volume: 234
  start-page: 264
  year: 2017
  end-page: 272
  ident: bb0180
  article-title: Ammonium assimilation: an important accessory during aerobic denitrification of
  publication-title: Bioresour. Technol.
– volume: 232
  start-page: 408
  year: 2017
  end-page: 411
  ident: bb0245
  article-title: Denitrification of aging biogas slurry from livestock farm by photosynthetic bacteria
  publication-title: Bioresour. Technol.
– volume: 47
  start-page: 3467
  year: 2013
  end-page: 3476
  ident: bb0065
  article-title: Determination of specific types and relative levels of QPCR inhibitors in environmental water samples using excitation–emission matrix spectroscopy and PARAFAC
  publication-title: Water Res.
– volume: 74
  start-page: 203
  year: 2015
  end-page: 212
  ident: bb0035
  article-title: Nitrogen transforming community in a horizontal subsurface-flow constructed wetland
  publication-title: Water Res.
– volume: 10
  start-page: 3082
  year: 2010
  end-page: 3092
  ident: bb0185
  article-title: Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates
  publication-title: Environ. Microbiol.
– volume: 226
  start-page: 331
  year: 2003
  end-page: 337
  ident: bb0145
  article-title: Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of
  publication-title: FEMS Microbiol. Lett.
– volume: 250
  start-page: 564
  year: 2018
  end-page: 573
  ident: bb0265
  article-title: Characterization of an aerobic denitrifier
  publication-title: Bioresour. Technol.
– volume: 182
  start-page: 18
  year: 2015
  end-page: 25
  ident: bb0115
  article-title: Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium
  publication-title: Bioresour. Technol.
– year: 2002
  ident: bb0025
  article-title: Water and Wastewater Monitoring Methods
– volume: 7
  start-page: 1862
  year: 2013
  end-page: 1875
  ident: bb0005
  article-title: High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman
  publication-title: ISME J.
– volume: 571
  start-page: 1358
  year: 2016
  end-page: 1369
  ident: bb0070
  article-title: Hydrological conditions regulate dissolved organic matter quality in an intermittent headwater stream. From drought to storm analysis
  publication-title: Sci. Total Environ.
– volume: 99
  start-page: 66
  year: 2016
  end-page: 73
  ident: bb0210
  article-title: Temporal variations of disinfection byproduct precursors in wildfire detritus
  publication-title: Water Res.
– volume: 337
  start-page: 755
  year: 2018
  end-page: 763
  ident: bb0250
  article-title: Understanding bacterial communities of partial nitritation and nitratation reactors at ambient and low temperature
  publication-title: Chem. Eng. J.
– start-page: 451
  year: 2016
  end-page: 473
  ident: bb0255
  article-title: Screening and Cultivation of Oligotrophic Aerobic Denitrifying Bacteria. Water Pollution and Water Quality Control of Selected Chinese reservoir basins
– volume: 201
  start-page: 195
  year: 2016
  end-page: 207
  ident: bb0275
  article-title: Nitrogen removal characteristics of enhanced in situ indigenous aerobic denitrification bacteria for micro-polluted reservoir source water
  publication-title: Bioresour. Technol.
– volume: 24
  start-page: 11435
  year: 2017
  end-page: 11445
  ident: bb0040
  article-title: Nitrogen removal and microbial community shift in an aerobic denitrification reactor bioaugmented with a
  publication-title: Environ. Sci. Pollut. Res.
– start-page: 1
  year: 2014
  end-page: 11
  ident: bb0030
  article-title: Microbial nitrogen transformation in constructed wetlands treating contaminated groundwater
  publication-title: Environ. Sci. Pollut. Res.
– volume: 59
  start-page: 531
  year: 2009
  ident: bb0140
  article-title: sp. nov., a purple non-sulfur bacterium isolated from pond water
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 56
  start-page: 1209
  year: 2006
  end-page: 1215
  ident: bb0120
  article-title: gen. nov., sp. nov. and
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 57
  start-page: 185
  year: 2012
  end-page: 198
  ident: bb0060
  article-title: Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea
  publication-title: Limnol. Oceanogr.
– volume: 197
  start-page: 96
  year: 2018
  end-page: 104
  ident: bb0230
  article-title: PHBV polymer supported denitrification system efficiently treated high nitrate concentration wastewater: denitrification performance, microbial community structure evolution and key denitrifying bacteria
  publication-title: Chemosphere
– volume: 627
  start-page: 159
  year: 2009
  end-page: 168
  ident: bb0260
  article-title: Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation
  publication-title: Hydrobiologia
– volume: 104
  start-page: 113
  year: 2016
  end-page: 120
  ident: bb0240
  article-title: Insights into the binding interactions of autochthonous dissolved organic matter released from
  publication-title: Mar. Pollut. Bull.
– year: 2018
  ident: bb0010
  article-title: Seasonal and spatial variability in the optical characteristics of DOM in a temperate shelf sea
  publication-title: Prog. Oceanogr.
– volume: 99
  start-page: 3243
  year: 2015
  end-page: 3248
  ident: bb0175
  article-title: Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 194
  start-page: 5720
  year: 2012
  ident: bb0110
  article-title: Genome sequence of a highly efficient aerobic denitrifying bacterium,
  publication-title: J. Bacteriol.
– volume: 126
  start-page: 119
  year: 2018
  end-page: 130
  ident: bb0195
  article-title: Mechanism of aerobic denitrifiers and calcium nitrate on urban river sediment remediation
  publication-title: Int. Biodeterior. Biodegrad.
– volume: 262
  start-page: 234
  year: 2013
  end-page: 239
  ident: bb0160
  article-title: Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process
  publication-title: J. Hazard. Mater.
– volume: 16
  start-page: 8008
  year: 2015
  end-page: 8026
  ident: bb0090
  article-title: Nitrogen removal from micro-polluted reservoir water by indigenous aerobic denitrifiers
  publication-title: Int. J. Mol. Sci.
– volume: 9
  start-page: 2454
  year: 2015
  ident: bb0225
  article-title: Altitudinal patterns of diversity and functional traits of metabolically active microorganisms in stream biofilms
  publication-title: ISME J.
– volume: 211
  start-page: 1123
  year: 2018
  end-page: 1136
  ident: bb0280
  article-title: Seasonal variation of potential denitrification rate and enhanced denitrification performance via water-lifting aeration technology in a stratified reservoir—a case study of Zhoucun reservoir
  publication-title: Chemosphere
– volume: 7
  year: 2012
  ident: bb0085
  article-title: Denitrification performance and microbial community structure of a combined WLA–OBCO system
  publication-title: PLoS ONE
– volume: 5
  start-page: 8605
  year: 2015
  ident: bb0235
  article-title: Impacts of the Three Gorges Dam on microbial structure and potential function
  publication-title: Sci. Rep.
– volume: 214
  start-page: 63
  year: 2016
  end-page: 73
  ident: bb0270
  article-title: Nitrogen removal characteristics of indigenous aerobic denitrifiers and changes in the microbial community of a reservoir enclosure system via in situ oxygen enhancement using water lifting and aeration technology
  publication-title: Bioresour. Technol.
– volume: 179
  start-page: 421
  year: 2015
  end-page: 428
  ident: bb0045
  article-title: Characterization of a halophilic heterotrophic nitrification–aerobic denitrification bacterium and its application on treatment of saline wastewater
  publication-title: Bioresour. Technol.
– volume: 53
  start-page: 955
  year: 2008
  end-page: 969
  ident: bb0080
  article-title: Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter
  publication-title: Limnol. Oceanogr.
– volume: 187
  start-page: 30
  year: 2015
  end-page: 36
  ident: bb0125
  article-title: Activation of accumulated nitrite reduction by immobilized
  publication-title: Bioresour. Technol.
– volume: 129
  start-page: 2847
  year: 1983
  end-page: 2855
  ident: bb0155
  article-title: gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium
  publication-title: J. Gen. Microbiol.
– volume: 183
  start-page: 536
  year: 2017
  end-page: 545
  ident: bb0170
  article-title: Simultaneous selenate reduction and denitrification by a consortium of enriched mine site bacteria
  publication-title: Chemosphere
– volume: 37
  start-page: 4702
  year: 2003
  end-page: 4708
  ident: bb0220
  article-title: Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon
  publication-title: Environ. Sci. Technol.
– volume: 200
  start-page: 493
  year: 2016
  end-page: 499
  ident: bb0075
  article-title: Heterotrophic nitrification and aerobic denitrification by
  publication-title: Bioresour. Technol.
– volume: 40
  start-page: 706
  year: 2009
  end-page: 719
  ident: bb0095
  article-title: Properties of fluorescent dissolved organic matter in the Gironde estuary
  publication-title: Org. Geochem.
– volume: 250
  start-page: 290
  year: 2018
  end-page: 298
  ident: bb0050
  article-title: The influence of complex fermentation broth on denitrification of saline sewage in constructed wetlands by heterotrophic nitrifying/aerobic denitrifying bacterial communities
  publication-title: Bioresour. Technol.
– year: 2018
  ident: bb0150
  article-title: Variations regularity of microorganisms and corrosion of cast iron in water distribution system
  publication-title: J. Environ. Sci.
– volume: 73
  start-page: 3612
  year: 2007
  end-page: 3622
  ident: bb0165
  article-title: Diversity and abundance of nitrate reductase genes (
  publication-title: Appl. Environ. Microbiol.
– volume: 34
  start-page: 1103
  year: 2016
  end-page: 1112
  ident: bb0205
  article-title: Biological nitrate removal from water and wastewater by solid-phase denitrification process
  publication-title: Biotechnol. Adv.
– volume: 167
  start-page: 456
  year: 2014
  end-page: 461
  ident: bb0015
  article-title: Impact resistance of different factors on ammonia removal by heterotrophic nitrification–aerobic denitrification bacterium
  publication-title: Bioresour. Technol.
– volume: 85
  start-page: 286
  year: 2015
  end-page: 294
  ident: bb0105
  article-title: Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production
  publication-title: Water Res.
– volume: 201
  start-page: 96
  year: 2018
  end-page: 109
  ident: bb0200
  article-title: Generation and characterization of DOM in wastewater treatment processes
  publication-title: Chemosphere
– volume: 642
  start-page: 1145
  year: 2018
  end-page: 1152
  ident: bb0215
  article-title: Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen: effects of carbon to nitrogen ratios
  publication-title: Sci. Total Environ.
– volume: 4
  start-page: 417
  year: 2010
  end-page: 426
  ident: bb0055
  article-title: Aerobic denitrification in permeable Wadden Sea sediments
  publication-title: ISME J.
– volume: 2017
  start-page: 1799
  year: 2017
  end-page: 1812
  ident: bb0130
  article-title: Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously
  publication-title: ISME J.
– volume: 226
  start-page: 331
  year: 2003
  ident: 10.1016/j.scitotenv.2018.09.160_bb0145
  article-title: Aerobic and anaerobic nitrate and nitrite reduction in free-living cells of Bradyrhizobium sp. (Lupinus)
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1016/S0378-1097(03)00620-7
– volume: 337
  start-page: 755
  year: 2018
  ident: 10.1016/j.scitotenv.2018.09.160_bb0250
  article-title: Understanding bacterial communities of partial nitritation and nitratation reactors at ambient and low temperature
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.10.120
– volume: 194
  start-page: 5720
  year: 2012
  ident: 10.1016/j.scitotenv.2018.09.160_bb0110
  article-title: Genome sequence of a highly efficient aerobic denitrifying bacterium, Pseudomonas stutzeri T13
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01376-12
– volume: 47
  start-page: 3467
  year: 2013
  ident: 10.1016/j.scitotenv.2018.09.160_bb0065
  article-title: Determination of specific types and relative levels of QPCR inhibitors in environmental water samples using excitation–emission matrix spectroscopy and PARAFAC
  publication-title: Water Res.
  doi: 10.1016/j.watres.2013.03.049
– volume: 16
  start-page: 8008
  year: 2015
  ident: 10.1016/j.scitotenv.2018.09.160_bb0090
  article-title: Nitrogen removal from micro-polluted reservoir water by indigenous aerobic denitrifiers
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms16048008
– volume: 2017
  start-page: 1799
  year: 2017
  ident: 10.1016/j.scitotenv.2018.09.160_bb0130
  article-title: Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously
  publication-title: ISME J.
  doi: 10.1038/ismej.2017.51
– volume: 200
  start-page: 493
  year: 2016
  ident: 10.1016/j.scitotenv.2018.09.160_bb0075
  article-title: Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.10.064
– volume: 201
  start-page: 96
  year: 2018
  ident: 10.1016/j.scitotenv.2018.09.160_bb0200
  article-title: Generation and characterization of DOM in wastewater treatment processes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.02.124
– volume: 126
  start-page: 119
  year: 2018
  ident: 10.1016/j.scitotenv.2018.09.160_bb0195
  article-title: Mechanism of aerobic denitrifiers and calcium nitrate on urban river sediment remediation
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2017.10.002
– volume: 73
  start-page: 3612
  year: 2007
  ident: 10.1016/j.scitotenv.2018.09.160_bb0165
  article-title: Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02894-06
– volume: 234
  start-page: 264
  year: 2017
  ident: 10.1016/j.scitotenv.2018.09.160_bb0180
  article-title: Ammonium assimilation: an important accessory during aerobic denitrification of Pseudomonas stutzeri T13
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.03.053
– start-page: 451
  year: 2016
  ident: 10.1016/j.scitotenv.2018.09.160_bb0255
– volume: 183
  start-page: 536
  year: 2017
  ident: 10.1016/j.scitotenv.2018.09.160_bb0170
  article-title: Simultaneous selenate reduction and denitrification by a consortium of enriched mine site bacteria
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.05.144
– volume: 250
  start-page: 290
  year: 2018
  ident: 10.1016/j.scitotenv.2018.09.160_bb0050
  article-title: The influence of complex fermentation broth on denitrification of saline sewage in constructed wetlands by heterotrophic nitrifying/aerobic denitrifying bacterial communities
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.11.057
– volume: 598
  start-page: 64
  year: 2017
  ident: 10.1016/j.scitotenv.2018.09.160_bb0020
  article-title: Shifts in soil microbial metabolic activities and community structures along a salinity gradient of irrigation water in a typical arid region of China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.04.105
– volume: 104
  start-page: 113
  year: 2016
  ident: 10.1016/j.scitotenv.2018.09.160_bb0240
  article-title: Insights into the binding interactions of autochthonous dissolved organic matter released from Microcystis aeruginosa with pyrene using spectroscopy
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2016.01.053
– volume: 99
  start-page: 66
  year: 2016
  ident: 10.1016/j.scitotenv.2018.09.160_bb0210
  article-title: Temporal variations of disinfection byproduct precursors in wildfire detritus
  publication-title: Water Res.
  doi: 10.1016/j.watres.2016.04.030
– volume: 57
  start-page: 185
  year: 2012
  ident: 10.1016/j.scitotenv.2018.09.160_bb0060
  article-title: Intensive and extensive nitrogen loss from intertidal permeable sediments of the Wadden Sea
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2012.57.1.0185
– volume: 182
  start-page: 18
  year: 2015
  ident: 10.1016/j.scitotenv.2018.09.160_bb0115
  article-title: Removal of nitrogen by heterotrophic nitrification–aerobic denitrification of a phosphate accumulating bacterium Pseudomonas stutzeri YG-24
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.01.100
– volume: 25
  start-page: 5980
  year: 2018
  ident: 10.1016/j.scitotenv.2018.09.160_bb0190
  article-title: Application potential of aerobic denitrifiers coupled with a biostimulant for nitrogen removal from urban river sediment
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-0903-4
– volume: 40
  start-page: 706
  year: 2009
  ident: 10.1016/j.scitotenv.2018.09.160_bb0095
  article-title: Properties of fluorescent dissolved organic matter in the Gironde estuary
  publication-title: Org. Geochem.
  doi: 10.1016/j.orggeochem.2009.03.002
– volume: 262
  start-page: 234
  year: 2013
  ident: 10.1016/j.scitotenv.2018.09.160_bb0160
  article-title: Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.08.050
– volume: 59
  start-page: 531
  year: 2009
  ident: 10.1016/j.scitotenv.2018.09.160_bb0140
  article-title: Rhodoplanes serenus sp. nov., a purple non-sulfur bacterium isolated from pond water
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.000174-0
– volume: 37
  start-page: 4702
  year: 2003
  ident: 10.1016/j.scitotenv.2018.09.160_bb0220
  article-title: Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es030360x
– volume: 53
  start-page: 955
  year: 2008
  ident: 10.1016/j.scitotenv.2018.09.160_bb0080
  article-title: Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2008.53.3.0955
– volume: 232
  start-page: 408
  year: 2017
  ident: 10.1016/j.scitotenv.2018.09.160_bb0245
  article-title: Denitrification of aging biogas slurry from livestock farm by photosynthetic bacteria
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.01.073
– volume: 9
  start-page: 2454
  year: 2015
  ident: 10.1016/j.scitotenv.2018.09.160_bb0225
  article-title: Altitudinal patterns of diversity and functional traits of metabolically active microorganisms in stream biofilms
  publication-title: ISME J.
  doi: 10.1038/ismej.2015.56
– year: 2002
  ident: 10.1016/j.scitotenv.2018.09.160_bb0025
– volume: 167
  start-page: 456
  year: 2014
  ident: 10.1016/j.scitotenv.2018.09.160_bb0015
  article-title: Impact resistance of different factors on ammonia removal by heterotrophic nitrification–aerobic denitrification bacterium Aeromonas sp. HN-02
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.06.001
– volume: 99
  start-page: 3243
  year: 2015
  ident: 10.1016/j.scitotenv.2018.09.160_bb0175
  article-title: Regulation of dissolved oxygen from accumulated nitrite during the heterotrophic nitrification and aerobic denitrification of Pseudomonas stutzeri T13
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-6221-6
– volume: 10
  start-page: 3082
  year: 2010
  ident: 10.1016/j.scitotenv.2018.09.160_bb0185
  article-title: Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates
  publication-title: Environ. Microbiol.
– volume: 7
  start-page: 1862
  year: 2013
  ident: 10.1016/j.scitotenv.2018.09.160_bb0005
  article-title: High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.55
– volume: 627
  start-page: 159
  year: 2009
  ident: 10.1016/j.scitotenv.2018.09.160_bb0260
  article-title: Photochemical degradation of chromophoric-dissolved organic matter exposed to simulated UV-B and natural solar radiation
  publication-title: Hydrobiologia
  doi: 10.1007/s10750-009-9722-z
– volume: 211
  start-page: 1123
  year: 2018
  ident: 10.1016/j.scitotenv.2018.09.160_bb0280
  article-title: Seasonal variation of potential denitrification rate and enhanced denitrification performance via water-lifting aeration technology in a stratified reservoir—a case study of Zhoucun reservoir
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.08.043
– volume: 24
  start-page: 11435
  year: 2017
  ident: 10.1016/j.scitotenv.2018.09.160_bb0040
  article-title: Nitrogen removal and microbial community shift in an aerobic denitrification reactor bioaugmented with a Pseudomonas strain for coal-based ethylene glycol industry wastewater treatment
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-8824-9
– volume: 129
  start-page: 2847
  year: 1983
  ident: 10.1016/j.scitotenv.2018.09.160_bb0155
  article-title: Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium
  publication-title: J. Gen. Microbiol.
– volume: 179
  start-page: 421
  year: 2015
  ident: 10.1016/j.scitotenv.2018.09.160_bb0045
  article-title: Characterization of a halophilic heterotrophic nitrification–aerobic denitrification bacterium and its application on treatment of saline wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.12.057
– volume: 201
  start-page: 195
  year: 2016
  ident: 10.1016/j.scitotenv.2018.09.160_bb0275
  article-title: Nitrogen removal characteristics of enhanced in situ indigenous aerobic denitrification bacteria for micro-polluted reservoir source water
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.11.041
– volume: 56
  start-page: 1209
  year: 2006
  ident: 10.1016/j.scitotenv.2018.09.160_bb0120
  article-title: Zobellella denitrificans gen. nov., sp. nov. and Zobellella taiwanensis sp. nov., denitrifying bacteria capable of fermentative metabolism
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.64121-0
– start-page: 1
  year: 2014
  ident: 10.1016/j.scitotenv.2018.09.160_bb0030
  article-title: Microbial nitrogen transformation in constructed wetlands treating contaminated groundwater
  publication-title: Environ. Sci. Pollut. Res.
– volume: 214
  start-page: 63
  year: 2016
  ident: 10.1016/j.scitotenv.2018.09.160_bb0270
  article-title: Nitrogen removal characteristics of indigenous aerobic denitrifiers and changes in the microbial community of a reservoir enclosure system via in situ oxygen enhancement using water lifting and aeration technology
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.04.071
– volume: 187
  start-page: 30
  year: 2015
  ident: 10.1016/j.scitotenv.2018.09.160_bb0125
  article-title: Activation of accumulated nitrite reduction by immobilized Pseudomonas stutzeri T13 during aerobic denitrification
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.03.060
– volume: 34
  start-page: 1103
  year: 2016
  ident: 10.1016/j.scitotenv.2018.09.160_bb0205
  article-title: Biological nitrate removal from water and wastewater by solid-phase denitrification process
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2016.07.001
– volume: 85
  start-page: 286
  year: 2015
  ident: 10.1016/j.scitotenv.2018.09.160_bb0105
  article-title: Tracking changes in the optical properties and molecular composition of dissolved organic matter during drinking water production
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.08.024
– volume: 250
  start-page: 564
  year: 2018
  ident: 10.1016/j.scitotenv.2018.09.160_bb0265
  article-title: Characterization of an aerobic denitrifier Pseudomonas stutzeri strain XL-2 to achieve efficient nitrate removal
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.11.038
– volume: 7
  year: 2012
  ident: 10.1016/j.scitotenv.2018.09.160_bb0085
  article-title: Denitrification performance and microbial community structure of a combined WLA–OBCO system
  publication-title: PLoS ONE
– year: 2018
  ident: 10.1016/j.scitotenv.2018.09.160_bb0010
  article-title: Seasonal and spatial variability in the optical characteristics of DOM in a temperate shelf sea
  publication-title: Prog. Oceanogr.
  doi: 10.1016/j.pocean.2018.02.025
– volume: 24
  start-page: 303
  year: 2001
  ident: 10.1016/j.scitotenv.2018.09.160_bb0135
  article-title: Identity and potential functions of heterotrophic bacterial isolates from a continuous-upflow fixed-bed reactor for denitrification of drinking water with bacterial polyester as source of carbon and electron donor
  publication-title: Syst. Appl. Microbiol.
  doi: 10.1078/0723-2020-00037
– year: 2018
  ident: 10.1016/j.scitotenv.2018.09.160_bb0150
  article-title: Variations regularity of microorganisms and corrosion of cast iron in water distribution system
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2018.03.004
– volume: 71
  start-page: 1851
  year: 2007
  ident: 10.1016/j.scitotenv.2018.09.160_bb0100
  article-title: Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0202
– volume: 5
  start-page: 8605
  year: 2015
  ident: 10.1016/j.scitotenv.2018.09.160_bb0235
  article-title: Impacts of the Three Gorges Dam on microbial structure and potential function
  publication-title: Sci. Rep.
  doi: 10.1038/srep08605
– volume: 571
  start-page: 1358
  year: 2016
  ident: 10.1016/j.scitotenv.2018.09.160_bb0070
  article-title: Hydrological conditions regulate dissolved organic matter quality in an intermittent headwater stream. From drought to storm analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.07.060
– volume: 197
  start-page: 96
  year: 2018
  ident: 10.1016/j.scitotenv.2018.09.160_bb0230
  article-title: PHBV polymer supported denitrification system efficiently treated high nitrate concentration wastewater: denitrification performance, microbial community structure evolution and key denitrifying bacteria
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.01.023
– volume: 4
  start-page: 417
  year: 2010
  ident: 10.1016/j.scitotenv.2018.09.160_bb0055
  article-title: Aerobic denitrification in permeable Wadden Sea sediments
  publication-title: ISME J.
  doi: 10.1038/ismej.2009.127
– volume: 74
  start-page: 203
  year: 2015
  ident: 10.1016/j.scitotenv.2018.09.160_bb0035
  article-title: Nitrogen transforming community in a horizontal subsurface-flow constructed wetland
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.02.018
– volume: 642
  start-page: 1145
  year: 2018
  ident: 10.1016/j.scitotenv.2018.09.160_bb0215
  article-title: Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen: effects of carbon to nitrogen ratios
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.081
SSID ssj0000781
Score 2.5632918
Snippet The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 998
SubjectTerms absorption
Achromobacter
Aerobic denitrification
Aeromonas
Azospira
Bradyrhizobium
Brevundimonas
Dechloromonas
Deinococcus
denitrification
denitrifying bacteria
ecosystems
Enterobacter
Exiguobacterium
fluorescence
fulvic acids
genes
In situ
Magnetospirillum
Miseq high-throughput sequencing technique
nitrates
nitrogen
nitrogen content
nitrogen metabolism
Nitrogen removal
nutrients
Pseudomonas
remediation
Reservoir
Rhodopseudomonas
spring
Thauera
water reservoirs
Water-lifting and aeration technology
Zobellella
Title Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir
URI https://dx.doi.org/10.1016/j.scitotenv.2018.09.160
https://www.ncbi.nlm.nih.gov/pubmed/30266057
https://www.proquest.com/docview/2114692980
https://www.proquest.com/docview/2189524294
Volume 651
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CSqFQSrtt2u0jqNDrNn7IltRbCAnbLsmhNDT0IixZog7BChtvSi757Z2x7F0CbXPoZR9mxgjPQ5-smU8AH6RLbJZ5MzM5J1JtUc1Mgr7MeU0MVlUlPb0aOD4p56f8y1lxtgUHYy8MlVUOuT_m9D5bD1f2hqe5d9k01OPLpSoVJtc8L9EXqYOdC_Lyj7ebMg8is4m7zBjYKH2nxgvv2wXEptdU4yWJ8DTtuSr_OEP9DYH2M9HRU3gyQEi2H0f5DLZcO4GH8VDJmwnsHG5611BsCN6rCTyOr-hY7Dx6Dr-Om56FCYUqRz8swyTUdEuqHuoNxupAlTKIRhldD-hs7CLQNjGjthRGrUvL69AsGS5iIyc0a1qGmJLF_V4WPPvxM6zsqt0Iv4DTo8NvB_PZcA7DzHKRdPjphOMSl1q18VVpZOE8rnK8z_PUSmVqa4THhCvqNC2VyiyqWYLuIuXGW5HvwHYbWvcKWOqk87nydeFL1MirRHiVOlFXiTGZkFMox2ev7UBSTmdlXOixGu1cr42myWg6URqNNoVkrXgZeTruV_k0GlffcTmNs8n9yu9Hd9AYkLTLUrUurK50Rn3eCDrlP2WkKhAcKT6Fl9GX1qPOMUZwjSle_8_w3sAj_KeovDwt3sJ2t1y5d4ieOrPbh8cuPNj_vJif0Pfi6_fFbzTyIBc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQSQrBQ2PIyEhyX5uHENhIHBK22tNtTK1VcTOzYIqhKqn206qV_ij_ITJzsqhLQA-olihJP5HjGnz_bM2OAt9JFNkm8GZmUU1JtUYxMhLbMeUkZrIpCeloamBzk4yP-9Tg7XoNffSwMuVV22B8wvUXr7slW15pbp1VFMb5cqlwhuKZpjrbYeVbuuYtznLfNPu5-QSW_S5Kd7cPP41F3tMDIchHN8eqE4xJnD6XxRW5k5jwSd-_TNLZSmdIa4RFDRBnHuVKJRTFLbFTE3HgrUvzuLbjNES7o2IT3lyu_EsqeE7a1EUmwelecyvBH5g2S4TNyKpOUYTVuk2P-cUj8G-Vth76dh_Cg46zsU2iWR7Dm6gHcCadYXgxgY3sVLIfFOrSYDeB-WBNkIdTpMZxPqjbtExYqHN1YhqhXzafkrtRaCCsbcs1B-svoeYPWzU4a2pdmFAfDKFZqetZUU4az5pCEmlU1QxLLwgYzazz79qNZ2EW9KvwEjm5EOxuwXje1ewYsdtL5VPky8zlKpEUkvIqdKIvImETIIeR922vbZUWnwzlOdO_-9lMvlaZJaTpSGpU2hGgpeBoSg1wv8qFXrr5i4xqHr-uF3_TmoBEBaFunqF2zmOmEAsuR5cp_lpEqQzam-BCeBlta1jrFTomTWrH5P9V7DXfHh5N9vb97sPcc7uEbRb7tcfYC1ufThXuJ1G1uXrVdhcH3m-6bvwHgmlqE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbial+aerobic+denitrification+dominates+nitrogen+losses+from+reservoir+ecosystem+in+the+spring+of+Zhoucun+reservoir&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhou%2C+Shilei&rft.au=Zhang%2C+Yiran&rft.au=Huang%2C+Tinglin&rft.au=Liu%2C+Yanfang&rft.date=2019-02-15&rft.issn=0048-9697&rft.volume=651&rft.spage=998&rft.epage=1010&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.09.160&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2018_09_160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon