A Benchmark Dataset for RSVP-Based Brain–Computer Interfaces

This paper reports a benchmark dataset acquired with a brain-computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The dataset consists of 64-channel Electroencephalogram (EEG) data from 64 healthy subjects (sub1, …, sub64) while they performed a target image...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 14; p. 568000
Main Authors Zhang, Shangen, Wang, Yijun, Zhang, Lijian, Gao, Xiaorong
Format Journal Article
LanguageEnglish
Published Lausanne Frontiers Research Foundation 02.10.2020
Frontiers Media S.A
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper reports a benchmark dataset acquired with a brain-computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The dataset consists of 64-channel Electroencephalogram (EEG) data from 64 healthy subjects (sub1, …, sub64) while they performed a target images detection task. For each subject, the data contained 2 groups (‘A’ and ‘B’). Each group contained 2 blocks and each block included 40 trials which corresponded to 40 stimuli sequences. Each sequence contained 100 images presented at 10 Hz (10 images per second). The stimuli images were street view images of two categories: target images with human and non-target images without human. Target images were presented randomly in the stimulus sequence with a probability of 1~4%. During the stimulus presentation, subjects were asked to search for the target images and ignore the non-target images in a subjective manner. To keep all original information, the dataset was the raw continuous data without any processing. On one hand, the dataset can be used as a benchmark dataset to compare the algorithms for target identification in RSVP-based BCIs. On the other hand, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data through offline simulation. Furthermore, the dataset also provides high-quality data for characterizing and modeling event-related potentials (ERPs) and steady-state visual evoked potentials (SSVEPs) in RSVP-based BCIs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html.
AbstractList This paper reports on a benchmark dataset acquired with a brain-computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The dataset consists of 64-channel electroencephalogram (EEG) data from 64 healthy subjects (sub1,…, sub64) while they performed a target image detection task. For each subject, the data contained two groups ("A" and "B"). Each group contained two blocks, and each block included 40 trials that corresponded to 40 stimulus sequences. Each sequence contained 100 images presented at 10 Hz (10 images per second). The stimulus images were street-view images of two categories: target images with human and non-target images without human. Target images were presented randomly in the stimulus sequence with a probability of 1∼4%. During the stimulus presentation, subjects were asked to search for the target images and ignore the non-target images in a subjective manner. To keep all original information, the dataset was the raw continuous data without any processing. On one hand, the dataset can be used as a benchmark dataset to compare the algorithms for target identification in RSVP-based BCIs. On the other hand, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data through offline simulation. Furthermore, the dataset also provides high-quality data for characterizing and modeling event-related potentials (ERPs) and steady-state visual evoked potentials (SSVEPs) in RSVP-based BCIs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html.This paper reports on a benchmark dataset acquired with a brain-computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The dataset consists of 64-channel electroencephalogram (EEG) data from 64 healthy subjects (sub1,…, sub64) while they performed a target image detection task. For each subject, the data contained two groups ("A" and "B"). Each group contained two blocks, and each block included 40 trials that corresponded to 40 stimulus sequences. Each sequence contained 100 images presented at 10 Hz (10 images per second). The stimulus images were street-view images of two categories: target images with human and non-target images without human. Target images were presented randomly in the stimulus sequence with a probability of 1∼4%. During the stimulus presentation, subjects were asked to search for the target images and ignore the non-target images in a subjective manner. To keep all original information, the dataset was the raw continuous data without any processing. On one hand, the dataset can be used as a benchmark dataset to compare the algorithms for target identification in RSVP-based BCIs. On the other hand, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data through offline simulation. Furthermore, the dataset also provides high-quality data for characterizing and modeling event-related potentials (ERPs) and steady-state visual evoked potentials (SSVEPs) in RSVP-based BCIs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html.
This paper reports a benchmark dataset acquired with a brain-computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The dataset consists of 64-channel Electroencephalogram (EEG) data from 64 healthy subjects (sub1, …, sub64) while they performed a target images detection task. For each subject, the data contained 2 groups (‘A’ and ‘B’). Each group contained 2 blocks and each block included 40 trials which corresponded to 40 stimuli sequences. Each sequence contained 100 images presented at 10 Hz (10 images per second). The stimuli images were street view images of two categories: target images with human and non-target images without human. Target images were presented randomly in the stimulus sequence with a probability of 1~4%. During the stimulus presentation, subjects were asked to search for the target images and ignore the non-target images in a subjective manner. To keep all original information, the dataset was the raw continuous data without any processing. On one hand, the dataset can be used as a benchmark dataset to compare the algorithms for target identification in RSVP-based BCIs. On the other hand, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data through offline simulation. Furthermore, the dataset also provides high-quality data for characterizing and modeling event-related potentials (ERPs) and steady-state visual evoked potentials (SSVEPs) in RSVP-based BCIs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html.
This paper reports on a benchmark dataset acquired with a brain–computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The dataset consists of 64-channel electroencephalogram (EEG) data from 64 healthy subjects (sub1,…, sub64) while they performed a target image detection task. For each subject, the data contained two groups (“A” and “B”). Each group contained two blocks, and each block included 40 trials that corresponded to 40 stimulus sequences. Each sequence contained 100 images presented at 10 Hz (10 images per second). The stimulus images were street-view images of two categories: target images with human and non-target images without human. Target images were presented randomly in the stimulus sequence with a probability of 1∼4%. During the stimulus presentation, subjects were asked to search for the target images and ignore the non-target images in a subjective manner. To keep all original information, the dataset was the raw continuous data without any processing. On one hand, the dataset can be used as a benchmark dataset to compare the algorithms for target identification in RSVP-based BCIs. On the other hand, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data through offline simulation. Furthermore, the dataset also provides high-quality data for characterizing and modeling event-related potentials (ERPs) and steady-state visual evoked potentials (SSVEPs) in RSVP-based BCIs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html .
This paper reports on a benchmark dataset acquired with a brain–computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The dataset consists of 64-channel electroencephalogram (EEG) data from 64 healthy subjects (sub1,…, sub64) while they performed a target image detection task. For each subject, the data contained two groups (“A” and “B”). Each group contained two blocks, and each block included 40 trials that corresponded to 40 stimulus sequences. Each sequence contained 100 images presented at 10 Hz (10 images per second). The stimulus images were street-view images of two categories: target images with human and non-target images without human. Target images were presented randomly in the stimulus sequence with a probability of 1∼4%. During the stimulus presentation, subjects were asked to search for the target images and ignore the non-target images in a subjective manner. To keep all original information, the dataset was the raw continuous data without any processing. On one hand, the dataset can be used as a benchmark dataset to compare the algorithms for target identification in RSVP-based BCIs. On the other hand, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data through offline simulation. Furthermore, the dataset also provides high-quality data for characterizing and modeling event-related potentials (ERPs) and steady-state visual evoked potentials (SSVEPs) in RSVP-based BCIs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html.
Author Zhang, Shangen
Gao, Xiaorong
Zhang, Lijian
Wang, Yijun
AuthorAffiliation 2 Beijing Key Laboratory of Knowledge Engineering for Materials Science , Beijing , China
4 Beijing Machine and Equipment Institute , Beijing , China
1 School of Computer and Communication Engineering, University of Science and Technology Beijing , Beijing , China
3 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences , Beijing , China
5 Department of Biomedical Engineering, School of Medicine, Tsinghua University , Beijing , China
AuthorAffiliation_xml – name: 5 Department of Biomedical Engineering, School of Medicine, Tsinghua University , Beijing , China
– name: 2 Beijing Key Laboratory of Knowledge Engineering for Materials Science , Beijing , China
– name: 4 Beijing Machine and Equipment Institute , Beijing , China
– name: 1 School of Computer and Communication Engineering, University of Science and Technology Beijing , Beijing , China
– name: 3 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences , Beijing , China
Author_xml – sequence: 1
  givenname: Shangen
  surname: Zhang
  fullname: Zhang, Shangen
– sequence: 2
  givenname: Yijun
  surname: Wang
  fullname: Wang, Yijun
– sequence: 3
  givenname: Lijian
  surname: Zhang
  fullname: Zhang, Lijian
– sequence: 4
  givenname: Xiaorong
  surname: Gao
  fullname: Gao, Xiaorong
BookMark eNp1kcluFDEURS0URAb4AHYlsWFTHU_lYRMp3RDSUiQQk9hZLterxE213bGrImWXf-AP-RLc6SCRSGw8PN97bL97iPZCDIDQa4JnjCl93Acf8oxiimeNUBjjZ-iACEFr3rAfe_-s99FhziuMBVWcvkD7jBFKtcYH6OS0mkNwV2ubflbv7GgzjFUfU_X5y_dP9bxsu2qerA-_734t4nozjZCqZShjbx3kl-h5b4cMrx7mI_Tt7P3XxXl98fHDcnF6UTsu8Vg7ykhrWSctEQ4wgZ4yS7XkXUsAc8lZS0u1VW3XtFT2QjACklLJe-E0luwILXfcLtqV2SRf3ntrovXmvhDTpbFp9G4A04jGiY4QCbblvAerWEe0goYJq4TqCutkx9pM7Ro6B2FMdngEfXwS_JW5jDdGNkIQSQrg7QMgxesJ8mjWPjsYBhsgTtlQ3giONee6SN88ka7ilEJpVVFxhUsPtCoquVO5FHNO0BvnRzv6uL3fD4Zgs83b3OdttnmbXd7FSZ44_37j_54_SRuvHw
CitedBy_id crossref_primary_10_1088_1741_2552_ac0489
crossref_primary_10_1088_1741_2552_ad5d17
crossref_primary_10_1109_TNNLS_2022_3190448
crossref_primary_10_3390_bioengineering11040347
crossref_primary_10_1016_j_bspc_2024_106583
crossref_primary_10_1109_LSP_2021_3095761
crossref_primary_10_26599_BSA_2022_9050007
crossref_primary_10_1088_1741_2552_ad9777
crossref_primary_10_1088_1741_2552_ad8964
crossref_primary_10_1016_j_jconrel_2024_12_006
crossref_primary_10_1088_1741_2552_ac2628
crossref_primary_10_1088_1741_2552_ad2495
crossref_primary_10_1109_TCSII_2022_3208197
crossref_primary_10_1016_j_neunet_2024_106844
crossref_primary_10_3389_fnhum_2024_1385360
crossref_primary_10_1088_1741_2552_ad2710
crossref_primary_10_1088_1741_2552_ac4a3e
crossref_primary_10_3389_fnrgo_2023_1216440
crossref_primary_10_1016_j_neunet_2024_106313
crossref_primary_10_1088_1741_2552_acb96f
crossref_primary_10_1088_1741_2552_ad658e
crossref_primary_10_12720_jait_15_10_1089_1105
Cites_doi 10.1088/1741-2552/aa9817
10.1109/TNSRE.2008.2003381
10.1109/NER.2019.8716892
10.1109/TBME.2010.2082539
10.1109/TNSRE.2006.875550
10.1186/s12938-018-0483-7
10.1038/sdata.2018.211
10.1016/j.neucom.2017.01.061
10.1101/862375
10.3390/electronics9030422
10.3389/fncom.2016.00130
10.1073/pnas.1508080112
10.7551/mitpress/9609.001.0001
10.1109/TBME.2014.2300164
10.26599/TST.2019.9010028
10.1109/TNSRE.2016.2627556
10.1016/s0893-6080(00)00026-5
10.1109/TBME.2019.2958641
10.1093/gigascience/giz002
10.1088/1741-2552/aabb82
10.5281/zenodo.1494163
10.1016/j.jneumeth.2003.10.009
10.1093/gigascience/gix034
10.1088/1741-2552/ab1f4e
10.1163/156856897X00357
10.1109/TBME.2017.2694818
10.1109/THMS.2020.2968411
10.1109/TBME.2013.2289898
10.21227/8aae-d579
10.1016/j.patrec.2005.10.010
10.1007/978-3-030-00563-4_18
10.1109/JPROC.2009.2038406
10.1088/1741-2560/12/4/046008
10.1109/TNSRE.2019.2953975
10.1109/CNE.2003.1196297
ContentType Journal Article
Copyright 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2020 Zhang, Wang, Zhang and Gao.
Copyright © 2020 Zhang, Wang, Zhang and Gao. 2020 Zhang, Wang, Zhang and Gao
Copyright_xml – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2020 Zhang, Wang, Zhang and Gao.
– notice: Copyright © 2020 Zhang, Wang, Zhang and Gao. 2020 Zhang, Wang, Zhang and Gao
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2020.568000
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
Biological Sciences
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_565c6d117eab44fea83d198e536a868d
PMC7566171
10_3389_fnins_2020_568000
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c470t-c231ba3d7a16ce01ef23a2974db1e04743b201eb8bd5b27f6631e72274f6c9073
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:29:32 EDT 2025
Thu Aug 21 18:26:04 EDT 2025
Fri Jul 11 03:46:05 EDT 2025
Fri Jul 25 11:45:41 EDT 2025
Tue Jul 01 01:39:14 EDT 2025
Thu Apr 24 23:04:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-c231ba3d7a16ce01ef23a2974db1e04743b201eb8bd5b27f6631e72274f6c9073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by: Ian Daly, University of Essex, United Kingdom
This article was submitted to Neural Technology, a section of the journal Frontiers in Neuroscience
Reviewed by: Yu Zhang, Stanford University, United States; Jing Jin, East China University of Science and Technology, China
OpenAccessLink https://doaj.org/article/565c6d117eab44fea83d198e536a868d
PMID 33122990
PQID 2448029798
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_565c6d117eab44fea83d198e536a868d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7566171
proquest_miscellaneous_2456409449
proquest_journals_2448029798
crossref_citationtrail_10_3389_fnins_2020_568000
crossref_primary_10_3389_fnins_2020_568000
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-02
PublicationDateYYYYMMDD 2020-10-02
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-02
  day: 02
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationYear 2020
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Zhang (B33) 2019; 16
Sajda (B24) 2003; 2003
Zhao (B36) 2019
Singh (B26) 2018
Stegman (B27) 2020; 50
Bigdely-Shamlo (B3) 2008; 16
Wu (B30) 2018; 17
Wang (B29) 2017; 25
Delorme (B9) 2004; 134
Hyvarinen (B15) 2000; 13
Alpert (B2) 2014; 61
Fawcett (B10) 2006; 27
Lees (B18) 2017; 15
Zhang (B35) 2020; 25
Lees (B19) 2020; 28
Vaineau (B28) 2019
Lee (B17) 2019; 8
Chen (B5); 12
Abibullaev (B1) 2019
Xiao (B32) 2020; 67
Wu (B31) 2011
Nakanishi (B23) 2018; 65
Huang (B14) 2017; 238
Kaya (B16) 2018; 5
Chen (B6); 112
Cho (B7) 2017; 6
Lioi (B20) 2019
Brainard (B4) 1997; 10
Manor (B22) 2016; 10
Cohen (B8) 2014
Han (B13) 2020; 9
Lotte (B21) 2011; 58
Sajda (B25) 2010; 98
Gao (B11) 2014; 61
Gerson (B12) 2006; 14
Zhang (B34) 2018; 15
References_xml – volume: 15
  year: 2017
  ident: B18
  article-title: A review of rapid serial visual presentation-based brain-computer interfaces.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa9817
– volume: 16
  start-page: 432
  year: 2008
  ident: B3
  article-title: Brain activity-based image classification from rapid serial visual presentation.
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2008.2003381
– year: 2019
  ident: B36
  article-title: Obviating session-to-session variability in a rapid serial visual presentation-based brain-computer interface,”
  publication-title: Proceedings of the 9TH International IEEE/EMBS Conference on Neural Engineering (NER)
  doi: 10.1109/NER.2019.8716892
– volume: 58
  start-page: 355
  year: 2011
  ident: B21
  article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2010.2082539
– volume: 14
  start-page: 174
  year: 2006
  ident: B12
  article-title: Cortically coupled computer vision for rapid image search.
  publication-title: IEEE Trans. Neural Syst. Rehabit. Eng.
  doi: 10.1109/TNSRE.2006.875550
– volume: 17
  year: 2018
  ident: B30
  article-title: Anti-deception: reliable EEG-based biometrics with real-time capability from the neural response of face rapid serial visual presentation.
  publication-title: Biomed. Eng.
  doi: 10.1186/s12938-018-0483-7
– volume: 5
  year: 2018
  ident: B16
  article-title: A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces.
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.211
– volume: 238
  start-page: 255
  year: 2017
  ident: B14
  article-title: BHCR: RSVP target retrieval BCI framework coupling with CNN by a Bayesian method.
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.061
– year: 2019
  ident: B20
  article-title: Simultaneous MRI-EEG during a motor imagery neurofeedback task: an open access brain imaging dataset for multi-modal data integration.
  publication-title: bioRxiv[Preprint].
  doi: 10.1101/862375
– volume: 9
  year: 2020
  ident: B13
  article-title: Brain-switches for asynchronous brain-computer interfaces: a systematic review.
  publication-title: Electronics
  doi: 10.3390/electronics9030422
– volume: 10
  year: 2016
  ident: B22
  article-title: Multimodal neural network for rapid serial visual presentation brain computer interface.
  publication-title: Front. Comp. Neurosci.
  doi: 10.3389/fncom.2016.00130
– volume: 112
  start-page: E6058
  ident: B6
  article-title: High speed spelling with a noninvasive brain-computer interface.
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1508080112
– year: 2014
  ident: B8
  publication-title: Analyzing Neural Time Series Data: Theory and Practice.
  doi: 10.7551/mitpress/9609.001.0001
– volume: 61
  start-page: 1436
  year: 2014
  ident: B11
  article-title: Visual and auditory brain-computer interfaces.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2300164
– volume: 25
  start-page: 435
  year: 2020
  ident: B35
  article-title: Studying the effect of the pre-stimulation paradigm on steady-state visual evoked potentials with dynamic models based on the zero-pole analytical method.
  publication-title: Tsingh. Sci. Technol.
  doi: 10.26599/TST.2019.9010028
– volume: 25
  start-page: 1746
  year: 2017
  ident: B29
  article-title: A benchmark dataset for SSVEP-based brain-computer interfaces.
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2627556
– volume: 13
  start-page: 411
  year: 2000
  ident: B15
  article-title: Independent component analysis: algorithms and applications.
  publication-title: Neural Netw.
  doi: 10.1016/s0893-6080(00)00026-5
– volume: 67
  start-page: 2266
  year: 2020
  ident: B32
  article-title: Discriminative canonical pattern matching for single-trial classification of ERP components.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2958641
– volume: 8
  start-page: 1
  year: 2019
  ident: B17
  article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy.
  publication-title: Gigascience
  doi: 10.1093/gigascience/giz002
– volume: 15
  year: 2018
  ident: B34
  article-title: A study on dynamic model of steady-state visual evoked potentials.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aabb82
– year: 2019
  ident: B28
  article-title: Brain invaders adaptive versus non-adaptive P300 brain-computer interface dataset.
  publication-title: arXiv[Preprint].
  doi: 10.5281/zenodo.1494163
– volume: 134
  start-page: 9
  year: 2004
  ident: B9
  article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis.
  publication-title: J. Neurosci. Methods.
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 6
  year: 2017
  ident: B7
  article-title: EEG datasets for motor imagery brain-computer interface.
  publication-title: Gigascience
  doi: 10.1093/gigascience/gix034
– volume: 16
  year: 2019
  ident: B33
  article-title: The effect of visual stimuli noise and fatigue on steady-state visual evoked potentials.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab1f4e
– volume: 10
  start-page: 433
  year: 1997
  ident: B4
  article-title: The psychophysics toolbox.
  publication-title: Spatial Vision.
  doi: 10.1163/156856897X00357
– start-page: 6959
  year: 2011
  ident: B31
  article-title: Learning Event-Related Potentials (ERPs) from multichannel EEG recordings: a spatio-temporal modeling framework with a fast estimation algorithm [M]
  publication-title: Proceedings of the 33rd Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBS)
– volume: 65
  start-page: 104
  year: 2018
  ident: B23
  article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2694818
– volume: 50
  year: 2020
  ident: B27
  article-title: Brain-computer interface software: a review and discussion.
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2020.2968411
– volume: 61
  start-page: 2290
  year: 2014
  ident: B2
  article-title: Spatiotemporal representations of rapid visual target detection: a single-trial EEG classification algorithm.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2289898
– year: 2019
  ident: B1
  publication-title: Event-Related Potentials (P300, EEG) - BCI dataset. IEEE DataPort.
  doi: 10.21227/8aae-d579
– volume: 27
  start-page: 861
  year: 2006
  ident: B10
  article-title: An introduction to ROC analysis.
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– start-page: 184
  year: 2018
  ident: B26
  article-title: P300 brain waves instigated semi supervised video surveillance for inclusive security systems. Advances in Brain Inspired Cognitive Systems
  publication-title: Proceedings of the 9th International Conference
  doi: 10.1007/978-3-030-00563-4_18
– volume: 98
  start-page: 462
  year: 2010
  ident: B25
  article-title: In a blink of an eye and a switch of a transistor: cortically coupled computer vision.
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2038406
– volume: 12
  ident: B5
  article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/12/4/046008
– volume: 28
  year: 2020
  ident: B19
  article-title: Speed of rapid serial visual presentation of pictures, numbers and words affects event-related potential-based detection accuracy.
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2953975
– volume: 2003
  start-page: 7
  year: 2003
  ident: B24
  article-title: High-throughput image search via single-trial event detection in a rapid serial visual presentation task [M]. 1st International IEEE/EMBS Conference on Neural Engineering.
  publication-title: Capri Italy
  doi: 10.1109/CNE.2003.1196297
SSID ssj0062842
Score 2.3806973
Snippet This paper reports a benchmark dataset acquired with a brain-computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The...
This paper reports on a benchmark dataset acquired with a brain-computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm....
This paper reports on a benchmark dataset acquired with a brain–computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm....
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 568000
SubjectTerms Algorithms
Artificial intelligence
Brain
brain–computer interface
Computer applications
Datasets
EEG
Electrodes
electroencephalogram
Electroencephalography
event-related potential
Event-related potentials
Experiments
Implants
Interfaces
Machine learning
Neuroscience
public dataset
rapid serial visual presentation
Signal processing
target detection
Visual evoked potentials
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsUwEA3iyo34xPoigrgQqk2aJu1GuNcHIijiC3clSRMUtYrUhTv_wT_0S5xJey92oxuXbVLankwz5yTTGUI2RaE0Z1rFFrx7LPC_nJxhbjynvZXgb12oWnJ6Jo-vxcltdvuj1BfGhLXpgVvgdoFwWFkxppw2Qnin87QCoeyyVOpc5hXOvuDzRmKqnYMlTLq83cMECVbs-vq-xtzcPNnJJFCkpOeFQrL-HsPsx0f-cDhHM2S6Y4p00D7hLJlw9RyZH9Sgkp_e6RYNsZthUXye7A3oEMzt7km_PtAD3YBraijQUXpxeXMeD-GwokMsBvH18Tmq40DDYqDHkKwFcn10eLV_HHeVEWIrVNLEFliZ0WmlNJPWJcx5nmoO0qAyzCUCWIEBx-5MbqrMcOWBVjCnOChQLy3I4XSRTNbPtVsiNAVFZ5zJlEs9tPLC8gQkhMyM8ACsjkgyQqq0XdpwrF7xWIJ8QHDLAG6J4JYtuBHZHl_y0ubM-K3zEOEfd8R01-EEGEHZGUH5lxFEZHU0eGX3DcJNQHliaa4ij8jGuBm-HtwS0bV7fsM-mUSFK4qIqN6g9x6o31Lf34U83AqoMFNs-T_eYIVMISghTJCvksnm9c2tAd1pzHqw7G-8nf2-
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtQwELWgvXBBLQURKMhIiANSaOw4tnOh2kCrComqKhT1FtmO3VbQbLukB279h_4hX8KM11mRS4-JJ0oytmfes8czhLwVtTKcGZU78O65wHM5mmFuPG-Ck-Bvfaxa8vVQHpyIL6fVaVpw-53CKkebGA11N3e4Rr4DbkhjoaVa715d51g1CndXUwmNh2QdTLAG8rXe7B0eHY-2WILxjfudEs8GAThf7msCLat3Qn_RY75uXnyoJMCmYuKZYgL_Ceqcxkz-54T2N8jjhB7pbNndm-SB75-QrVkPzPnyD31HYzxnXCjfIh9ntIEheH5pFj_pZzOAuxooQFR6_O3HUd7AZUcbLBDx9_ZurO1A4wJhwDCtp-Rkf-_7p4M8VUvInVDFkDtAataUnTJMOl8wH3hpQGGis8wXApCCBWfvrbZdZbkKADWYVxxYaZAOKHL5jKz1894_J7QElme9rZQvA7Ty2vECaIWsrAi8qE1GilFTrUupxLGixa8WKAUqt43KbVG57VK5GXm_euRqmUfjPuEG1b8SxBTY8cZ8cdamGQWilZMdY8obK0TwRpcdq7WvSmm01F1GtsfOa9O8hJesRlFG3qyaYUbhNonp_fwGZSqJrFfUGVGTTp980LSlvziPubkVwGOm2Iv7X_6SPMLfjUGBfJusDYsb_wrAzWBfpxH8D2da-GM
  priority: 102
  providerName: ProQuest
Title A Benchmark Dataset for RSVP-Based Brain–Computer Interfaces
URI https://www.proquest.com/docview/2448029798
https://www.proquest.com/docview/2456409449
https://pubmed.ncbi.nlm.nih.gov/PMC7566171
https://doaj.org/article/565c6d117eab44fea83d198e536a868d
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELaq9sIFAQURKCsjIQ5IKbHjn-QAaAMtFVKrqrBob5Ht2G1Fm4UlleiNd-ANeRJmvMmKSBUSl0iOJ1EyHme-z57MEPJMlNpwZnTqwLunAv_LKRjmxvMmOAX-1seqJYdH6mAmPszlfIMM5a16BX6_kdphPanZ8mL3x7frNzDhXyHjBH_7MrTnLWbe5tmuVACAgMFvgWPSOE8PxXpTQcGXOG5-KvxRSObz1SbnzbcYuamYzX8EQccBlH95pP075HYPJel0NfZ3yYZv75HtaQs0-vKaPqcxuDOumm-T11NagT2eXZrlF_rOdOC7Ogp4lZ58_HycVtBsaIXVIn7__DUUeqBxtTBgzNZ9Mtvf-_T2IO1LJ6RO6KxLHcA2a_JGG6acz5gPPDccuENjmc8EwAYLnt_bwjbSch0AdzCvOVDUoBzw5fwB2WwXrX9IaA6Uz3ortc8D9PLS8Qw4hpJWBJ6VJiHZoKna9XnFsbzFRQ38ApVbR-XWqNx6pdyEvFhf8nWVVONfwhWqfy2I-bDjicXytO6nF4hKpxrGtDdWiOBNkTesLLzMlSlU0SRkZxi8erCxGpBNgbW7yiIhT9fdML1wz8S0fnGFMlIhBRZlQvRo0EcPNO5pz89iom4NWBnM8NH_vO5jcgtbMV6Q75DNbnnlnwDu6eyEbFV7R8cnk7huAMf3czaJFv4H6FkCtw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwELVKe4ALAgoitICRgANSaOw4dnIAtKGttrRdVaVFvaW247QVNFuWVKg3_oH_4KP4EmacZEUuvfWY2JtsxuN58-zxDCEvRaY0Z1qFFtA9FHguJ2WYG8_pykrAW-erluxO5PhQfDpKjhbIn_4sDIZV9jbRG-pyanGNfA1gKMVCS1n64eJ7iFWjcHe1L6HRqsW2u_oJlO3Hu611GN9XnG9uHHwch11VgdAKFTWhBY_G6LhUmknrIuYqHmt4sCgNc5EARDUAis6kpkwMVxVAMnOKA3urpAUqGcNzb5El-KwIDMFSvjHZ2-9tvwRj7_dXJZ5FAjLQ7qMCDczWqvqsxvzgPHqbSHDTogES-oIBAy93GKP5H-ht3iN3O2-Vjlr1uk8WXP2ALI9qYOrnV_Q19fGjfmF-mbwf0RxU_vRcz77Sdd0APDYUXGK6__nLXpjDZUlzLEjx99fvvpYE9QuSFYaFPSSHNyLHR2SxntbuMaExsErjTKJcXEErzyyPgMbIxIiKR5kOSNRLqrBd6nKsoPGtAAqDwi28cAsUbtEKNyBv5j-5aPN2XNc5R_HPO2LKbX9jOjspuhkMXRMrS8aU00aIyuk0LlmWuiSWOpVpGZDVfvCKzg7AS-ZaG5AX82aYwbgto2s3vcQ-iUSWLbKAqMGgD_7QsKU-O_W5wBW440yxJ9e__Dm5PT7Y3Sl2tibbK-QOfroPSOSrZLGZXbqn4Fg15lmnzZQc3_QE-gfNdzR9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2VrYS4IKAgQgsYCTgghY0dx04OgDZsVy2F1apQ1FuwHYdWpdmypEK98Q_8DZ_DlzD2Jity6a3HxE6cjMd-8-zxDMBTnknFqJKhQXQPuTuXk1IXG8-qygjEW-uzlnyYip0D_u4wOVyDP91ZGOdW2c2JfqIu58atkQ8RhlKXaClLh1XrFjEbT96cfQ9dBim309ql01iqyJ69-In07cer3TH29TPGJtuf3u6EbYaB0HAZNaFB60aruJSKCmMjaisWK2yEl5raiCO6agRIq1NdJprJCuGZWsmQyVXCIK2M8b3XYF0iK4oGsJ5vT2f7HQ4InPj9Xqtw55KQGCz3VJESZsOqPq5drHAWvUwEmmxRDxV98oCexdv31_wPACe34GZruZLRUtVuw5qt78DGqEbWfnpBnhPvS-oX6Tfg9YjkqP5Hp2pxQsaqQahsCJrHZP_j51mY42VJcpec4u-v311eCeIXJyvnInYXDq5EjvdgUM9rex9IjLLUVifSxhWWssywCCmNSDSvWJSpAKJOUoVpw5i7bBrfCqQzTriFF27hhFsshRvAi9UjZ8sYHpdVzp34VxVd-G1_Y774WrSjGasmRpSUSqs055VVaVzSLLVJLFQq0jKAra7zinZOwEZWGhzAk1Uxjma3RaNqOz93dRLhGDfPApC9Tu99UL-kPj7yccElmuZU0geXN_4YruPAKd7vTvc24Yb7c--byLZg0CzO7UO0sRr9qFVmAl-uevz8AxrUOLI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Benchmark+Dataset+for+RSVP-Based+Brain%E2%80%93Computer+Interfaces&rft.jtitle=Frontiers+in+neuroscience&rft.au=Zhang%2C+Shangen&rft.au=Wang%2C+Yijun&rft.au=Zhang%2C+Lijian&rft.au=Gao%2C+Xiaorong&rft.date=2020-10-02&rft.issn=1662-453X&rft.eissn=1662-453X&rft.volume=14&rft_id=info:doi/10.3389%2Ffnins.2020.568000&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnins_2020_568000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon