A Benchmark Dataset for RSVP-Based Brain–Computer Interfaces
This paper reports a benchmark dataset acquired with a brain-computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The dataset consists of 64-channel Electroencephalogram (EEG) data from 64 healthy subjects (sub1, …, sub64) while they performed a target image...
Saved in:
Published in | Frontiers in neuroscience Vol. 14; p. 568000 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Frontiers Research Foundation
02.10.2020
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper reports a benchmark dataset acquired with a brain-computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The dataset consists of 64-channel Electroencephalogram (EEG) data from 64 healthy subjects (sub1, …, sub64) while they performed a target images detection task. For each subject, the data contained 2 groups (‘A’ and ‘B’). Each group contained 2 blocks and each block included 40 trials which corresponded to 40 stimuli sequences. Each sequence contained 100 images presented at 10 Hz (10 images per second). The stimuli images were street view images of two categories: target images with human and non-target images without human. Target images were presented randomly in the stimulus sequence with a probability of 1~4%. During the stimulus presentation, subjects were asked to search for the target images and ignore the non-target images in a subjective manner. To keep all original information, the dataset was the raw continuous data without any processing. On one hand, the dataset can be used as a benchmark dataset to compare the algorithms for target identification in RSVP-based BCIs. On the other hand, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data through offline simulation. Furthermore, the dataset also provides high-quality data for characterizing and modeling event-related potentials (ERPs) and steady-state visual evoked potentials (SSVEPs) in RSVP-based BCIs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html. |
---|---|
AbstractList | This paper reports on a benchmark dataset acquired with a brain-computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The dataset consists of 64-channel electroencephalogram (EEG) data from 64 healthy subjects (sub1,…, sub64) while they performed a target image detection task. For each subject, the data contained two groups ("A" and "B"). Each group contained two blocks, and each block included 40 trials that corresponded to 40 stimulus sequences. Each sequence contained 100 images presented at 10 Hz (10 images per second). The stimulus images were street-view images of two categories: target images with human and non-target images without human. Target images were presented randomly in the stimulus sequence with a probability of 1∼4%. During the stimulus presentation, subjects were asked to search for the target images and ignore the non-target images in a subjective manner. To keep all original information, the dataset was the raw continuous data without any processing. On one hand, the dataset can be used as a benchmark dataset to compare the algorithms for target identification in RSVP-based BCIs. On the other hand, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data through offline simulation. Furthermore, the dataset also provides high-quality data for characterizing and modeling event-related potentials (ERPs) and steady-state visual evoked potentials (SSVEPs) in RSVP-based BCIs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html.This paper reports on a benchmark dataset acquired with a brain-computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The dataset consists of 64-channel electroencephalogram (EEG) data from 64 healthy subjects (sub1,…, sub64) while they performed a target image detection task. For each subject, the data contained two groups ("A" and "B"). Each group contained two blocks, and each block included 40 trials that corresponded to 40 stimulus sequences. Each sequence contained 100 images presented at 10 Hz (10 images per second). The stimulus images were street-view images of two categories: target images with human and non-target images without human. Target images were presented randomly in the stimulus sequence with a probability of 1∼4%. During the stimulus presentation, subjects were asked to search for the target images and ignore the non-target images in a subjective manner. To keep all original information, the dataset was the raw continuous data without any processing. On one hand, the dataset can be used as a benchmark dataset to compare the algorithms for target identification in RSVP-based BCIs. On the other hand, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data through offline simulation. Furthermore, the dataset also provides high-quality data for characterizing and modeling event-related potentials (ERPs) and steady-state visual evoked potentials (SSVEPs) in RSVP-based BCIs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html. This paper reports a benchmark dataset acquired with a brain-computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The dataset consists of 64-channel Electroencephalogram (EEG) data from 64 healthy subjects (sub1, …, sub64) while they performed a target images detection task. For each subject, the data contained 2 groups (‘A’ and ‘B’). Each group contained 2 blocks and each block included 40 trials which corresponded to 40 stimuli sequences. Each sequence contained 100 images presented at 10 Hz (10 images per second). The stimuli images were street view images of two categories: target images with human and non-target images without human. Target images were presented randomly in the stimulus sequence with a probability of 1~4%. During the stimulus presentation, subjects were asked to search for the target images and ignore the non-target images in a subjective manner. To keep all original information, the dataset was the raw continuous data without any processing. On one hand, the dataset can be used as a benchmark dataset to compare the algorithms for target identification in RSVP-based BCIs. On the other hand, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data through offline simulation. Furthermore, the dataset also provides high-quality data for characterizing and modeling event-related potentials (ERPs) and steady-state visual evoked potentials (SSVEPs) in RSVP-based BCIs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html. This paper reports on a benchmark dataset acquired with a brain–computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The dataset consists of 64-channel electroencephalogram (EEG) data from 64 healthy subjects (sub1,…, sub64) while they performed a target image detection task. For each subject, the data contained two groups (“A” and “B”). Each group contained two blocks, and each block included 40 trials that corresponded to 40 stimulus sequences. Each sequence contained 100 images presented at 10 Hz (10 images per second). The stimulus images were street-view images of two categories: target images with human and non-target images without human. Target images were presented randomly in the stimulus sequence with a probability of 1∼4%. During the stimulus presentation, subjects were asked to search for the target images and ignore the non-target images in a subjective manner. To keep all original information, the dataset was the raw continuous data without any processing. On one hand, the dataset can be used as a benchmark dataset to compare the algorithms for target identification in RSVP-based BCIs. On the other hand, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data through offline simulation. Furthermore, the dataset also provides high-quality data for characterizing and modeling event-related potentials (ERPs) and steady-state visual evoked potentials (SSVEPs) in RSVP-based BCIs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html . This paper reports on a benchmark dataset acquired with a brain–computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The dataset consists of 64-channel electroencephalogram (EEG) data from 64 healthy subjects (sub1,…, sub64) while they performed a target image detection task. For each subject, the data contained two groups (“A” and “B”). Each group contained two blocks, and each block included 40 trials that corresponded to 40 stimulus sequences. Each sequence contained 100 images presented at 10 Hz (10 images per second). The stimulus images were street-view images of two categories: target images with human and non-target images without human. Target images were presented randomly in the stimulus sequence with a probability of 1∼4%. During the stimulus presentation, subjects were asked to search for the target images and ignore the non-target images in a subjective manner. To keep all original information, the dataset was the raw continuous data without any processing. On one hand, the dataset can be used as a benchmark dataset to compare the algorithms for target identification in RSVP-based BCIs. On the other hand, the dataset can be used to design new system diagrams and evaluate their BCI performance without collecting any new data through offline simulation. Furthermore, the dataset also provides high-quality data for characterizing and modeling event-related potentials (ERPs) and steady-state visual evoked potentials (SSVEPs) in RSVP-based BCIs. The dataset is freely available from http://bci.med.tsinghua.edu.cn/download.html. |
Author | Zhang, Shangen Gao, Xiaorong Zhang, Lijian Wang, Yijun |
AuthorAffiliation | 2 Beijing Key Laboratory of Knowledge Engineering for Materials Science , Beijing , China 4 Beijing Machine and Equipment Institute , Beijing , China 1 School of Computer and Communication Engineering, University of Science and Technology Beijing , Beijing , China 3 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences , Beijing , China 5 Department of Biomedical Engineering, School of Medicine, Tsinghua University , Beijing , China |
AuthorAffiliation_xml | – name: 5 Department of Biomedical Engineering, School of Medicine, Tsinghua University , Beijing , China – name: 2 Beijing Key Laboratory of Knowledge Engineering for Materials Science , Beijing , China – name: 4 Beijing Machine and Equipment Institute , Beijing , China – name: 1 School of Computer and Communication Engineering, University of Science and Technology Beijing , Beijing , China – name: 3 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences , Beijing , China |
Author_xml | – sequence: 1 givenname: Shangen surname: Zhang fullname: Zhang, Shangen – sequence: 2 givenname: Yijun surname: Wang fullname: Wang, Yijun – sequence: 3 givenname: Lijian surname: Zhang fullname: Zhang, Lijian – sequence: 4 givenname: Xiaorong surname: Gao fullname: Gao, Xiaorong |
BookMark | eNp1kcluFDEURS0URAb4AHYlsWFTHU_lYRMp3RDSUiQQk9hZLterxE213bGrImWXf-AP-RLc6SCRSGw8PN97bL97iPZCDIDQa4JnjCl93Acf8oxiimeNUBjjZ-iACEFr3rAfe_-s99FhziuMBVWcvkD7jBFKtcYH6OS0mkNwV2ubflbv7GgzjFUfU_X5y_dP9bxsu2qerA-_734t4nozjZCqZShjbx3kl-h5b4cMrx7mI_Tt7P3XxXl98fHDcnF6UTsu8Vg7ykhrWSctEQ4wgZ4yS7XkXUsAc8lZS0u1VW3XtFT2QjACklLJe-E0luwILXfcLtqV2SRf3ntrovXmvhDTpbFp9G4A04jGiY4QCbblvAerWEe0goYJq4TqCutkx9pM7Ro6B2FMdngEfXwS_JW5jDdGNkIQSQrg7QMgxesJ8mjWPjsYBhsgTtlQ3giONee6SN88ka7ilEJpVVFxhUsPtCoquVO5FHNO0BvnRzv6uL3fD4Zgs83b3OdttnmbXd7FSZ44_37j_54_SRuvHw |
CitedBy_id | crossref_primary_10_1088_1741_2552_ac0489 crossref_primary_10_1088_1741_2552_ad5d17 crossref_primary_10_1109_TNNLS_2022_3190448 crossref_primary_10_3390_bioengineering11040347 crossref_primary_10_1016_j_bspc_2024_106583 crossref_primary_10_1109_LSP_2021_3095761 crossref_primary_10_26599_BSA_2022_9050007 crossref_primary_10_1088_1741_2552_ad9777 crossref_primary_10_1088_1741_2552_ad8964 crossref_primary_10_1016_j_jconrel_2024_12_006 crossref_primary_10_1088_1741_2552_ac2628 crossref_primary_10_1088_1741_2552_ad2495 crossref_primary_10_1109_TCSII_2022_3208197 crossref_primary_10_1016_j_neunet_2024_106844 crossref_primary_10_3389_fnhum_2024_1385360 crossref_primary_10_1088_1741_2552_ad2710 crossref_primary_10_1088_1741_2552_ac4a3e crossref_primary_10_3389_fnrgo_2023_1216440 crossref_primary_10_1016_j_neunet_2024_106313 crossref_primary_10_1088_1741_2552_acb96f crossref_primary_10_1088_1741_2552_ad658e crossref_primary_10_12720_jait_15_10_1089_1105 |
Cites_doi | 10.1088/1741-2552/aa9817 10.1109/TNSRE.2008.2003381 10.1109/NER.2019.8716892 10.1109/TBME.2010.2082539 10.1109/TNSRE.2006.875550 10.1186/s12938-018-0483-7 10.1038/sdata.2018.211 10.1016/j.neucom.2017.01.061 10.1101/862375 10.3390/electronics9030422 10.3389/fncom.2016.00130 10.1073/pnas.1508080112 10.7551/mitpress/9609.001.0001 10.1109/TBME.2014.2300164 10.26599/TST.2019.9010028 10.1109/TNSRE.2016.2627556 10.1016/s0893-6080(00)00026-5 10.1109/TBME.2019.2958641 10.1093/gigascience/giz002 10.1088/1741-2552/aabb82 10.5281/zenodo.1494163 10.1016/j.jneumeth.2003.10.009 10.1093/gigascience/gix034 10.1088/1741-2552/ab1f4e 10.1163/156856897X00357 10.1109/TBME.2017.2694818 10.1109/THMS.2020.2968411 10.1109/TBME.2013.2289898 10.21227/8aae-d579 10.1016/j.patrec.2005.10.010 10.1007/978-3-030-00563-4_18 10.1109/JPROC.2009.2038406 10.1088/1741-2560/12/4/046008 10.1109/TNSRE.2019.2953975 10.1109/CNE.2003.1196297 |
ContentType | Journal Article |
Copyright | 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2020 Zhang, Wang, Zhang and Gao. Copyright © 2020 Zhang, Wang, Zhang and Gao. 2020 Zhang, Wang, Zhang and Gao |
Copyright_xml | – notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2020 Zhang, Wang, Zhang and Gao. – notice: Copyright © 2020 Zhang, Wang, Zhang and Gao. 2020 Zhang, Wang, Zhang and Gao |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fnins.2020.568000 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) Biological Sciences Science Database (ProQuest) Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-453X |
ExternalDocumentID | oai_doaj_org_article_565c6d117eab44fea83d198e536a868d PMC7566171 10_3389_fnins_2020_568000 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 88I 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBS EJD EMOBN F5P FRP GNUQQ GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM W2D 3V. 7XB 8FK PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c470t-c231ba3d7a16ce01ef23a2974db1e04743b201eb8bd5b27f6631e72274f6c9073 |
IEDL.DBID | M48 |
ISSN | 1662-453X 1662-4548 |
IngestDate | Wed Aug 27 01:29:32 EDT 2025 Thu Aug 21 18:26:04 EDT 2025 Fri Jul 11 03:46:05 EDT 2025 Fri Jul 25 11:45:41 EDT 2025 Tue Jul 01 01:39:14 EDT 2025 Thu Apr 24 23:04:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-c231ba3d7a16ce01ef23a2974db1e04743b201eb8bd5b27f6631e72274f6c9073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Ian Daly, University of Essex, United Kingdom This article was submitted to Neural Technology, a section of the journal Frontiers in Neuroscience Reviewed by: Yu Zhang, Stanford University, United States; Jing Jin, East China University of Science and Technology, China |
OpenAccessLink | https://doaj.org/article/565c6d117eab44fea83d198e536a868d |
PMID | 33122990 |
PQID | 2448029798 |
PQPubID | 4424402 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_565c6d117eab44fea83d198e536a868d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7566171 proquest_miscellaneous_2456409449 proquest_journals_2448029798 crossref_citationtrail_10_3389_fnins_2020_568000 crossref_primary_10_3389_fnins_2020_568000 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-02 |
PublicationDateYYYYMMDD | 2020-10-02 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Frontiers in neuroscience |
PublicationYear | 2020 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | Zhang (B33) 2019; 16 Sajda (B24) 2003; 2003 Zhao (B36) 2019 Singh (B26) 2018 Stegman (B27) 2020; 50 Bigdely-Shamlo (B3) 2008; 16 Wu (B30) 2018; 17 Wang (B29) 2017; 25 Delorme (B9) 2004; 134 Hyvarinen (B15) 2000; 13 Alpert (B2) 2014; 61 Fawcett (B10) 2006; 27 Lees (B18) 2017; 15 Zhang (B35) 2020; 25 Lees (B19) 2020; 28 Vaineau (B28) 2019 Lee (B17) 2019; 8 Chen (B5); 12 Abibullaev (B1) 2019 Xiao (B32) 2020; 67 Wu (B31) 2011 Nakanishi (B23) 2018; 65 Huang (B14) 2017; 238 Kaya (B16) 2018; 5 Chen (B6); 112 Cho (B7) 2017; 6 Lioi (B20) 2019 Brainard (B4) 1997; 10 Manor (B22) 2016; 10 Cohen (B8) 2014 Han (B13) 2020; 9 Lotte (B21) 2011; 58 Sajda (B25) 2010; 98 Gao (B11) 2014; 61 Gerson (B12) 2006; 14 Zhang (B34) 2018; 15 |
References_xml | – volume: 15 year: 2017 ident: B18 article-title: A review of rapid serial visual presentation-based brain-computer interfaces. publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa9817 – volume: 16 start-page: 432 year: 2008 ident: B3 article-title: Brain activity-based image classification from rapid serial visual presentation. publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2008.2003381 – year: 2019 ident: B36 article-title: Obviating session-to-session variability in a rapid serial visual presentation-based brain-computer interface,” publication-title: Proceedings of the 9TH International IEEE/EMBS Conference on Neural Engineering (NER) doi: 10.1109/NER.2019.8716892 – volume: 58 start-page: 355 year: 2011 ident: B21 article-title: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2010.2082539 – volume: 14 start-page: 174 year: 2006 ident: B12 article-title: Cortically coupled computer vision for rapid image search. publication-title: IEEE Trans. Neural Syst. Rehabit. Eng. doi: 10.1109/TNSRE.2006.875550 – volume: 17 year: 2018 ident: B30 article-title: Anti-deception: reliable EEG-based biometrics with real-time capability from the neural response of face rapid serial visual presentation. publication-title: Biomed. Eng. doi: 10.1186/s12938-018-0483-7 – volume: 5 year: 2018 ident: B16 article-title: A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. publication-title: Sci. Data doi: 10.1038/sdata.2018.211 – volume: 238 start-page: 255 year: 2017 ident: B14 article-title: BHCR: RSVP target retrieval BCI framework coupling with CNN by a Bayesian method. publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.061 – year: 2019 ident: B20 article-title: Simultaneous MRI-EEG during a motor imagery neurofeedback task: an open access brain imaging dataset for multi-modal data integration. publication-title: bioRxiv[Preprint]. doi: 10.1101/862375 – volume: 9 year: 2020 ident: B13 article-title: Brain-switches for asynchronous brain-computer interfaces: a systematic review. publication-title: Electronics doi: 10.3390/electronics9030422 – volume: 10 year: 2016 ident: B22 article-title: Multimodal neural network for rapid serial visual presentation brain computer interface. publication-title: Front. Comp. Neurosci. doi: 10.3389/fncom.2016.00130 – volume: 112 start-page: E6058 ident: B6 article-title: High speed spelling with a noninvasive brain-computer interface. publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1508080112 – year: 2014 ident: B8 publication-title: Analyzing Neural Time Series Data: Theory and Practice. doi: 10.7551/mitpress/9609.001.0001 – volume: 61 start-page: 1436 year: 2014 ident: B11 article-title: Visual and auditory brain-computer interfaces. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2300164 – volume: 25 start-page: 435 year: 2020 ident: B35 article-title: Studying the effect of the pre-stimulation paradigm on steady-state visual evoked potentials with dynamic models based on the zero-pole analytical method. publication-title: Tsingh. Sci. Technol. doi: 10.26599/TST.2019.9010028 – volume: 25 start-page: 1746 year: 2017 ident: B29 article-title: A benchmark dataset for SSVEP-based brain-computer interfaces. publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2627556 – volume: 13 start-page: 411 year: 2000 ident: B15 article-title: Independent component analysis: algorithms and applications. publication-title: Neural Netw. doi: 10.1016/s0893-6080(00)00026-5 – volume: 67 start-page: 2266 year: 2020 ident: B32 article-title: Discriminative canonical pattern matching for single-trial classification of ERP components. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2958641 – volume: 8 start-page: 1 year: 2019 ident: B17 article-title: EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. publication-title: Gigascience doi: 10.1093/gigascience/giz002 – volume: 15 year: 2018 ident: B34 article-title: A study on dynamic model of steady-state visual evoked potentials. publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aabb82 – year: 2019 ident: B28 article-title: Brain invaders adaptive versus non-adaptive P300 brain-computer interface dataset. publication-title: arXiv[Preprint]. doi: 10.5281/zenodo.1494163 – volume: 134 start-page: 9 year: 2004 ident: B9 article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. publication-title: J. Neurosci. Methods. doi: 10.1016/j.jneumeth.2003.10.009 – volume: 6 year: 2017 ident: B7 article-title: EEG datasets for motor imagery brain-computer interface. publication-title: Gigascience doi: 10.1093/gigascience/gix034 – volume: 16 year: 2019 ident: B33 article-title: The effect of visual stimuli noise and fatigue on steady-state visual evoked potentials. publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab1f4e – volume: 10 start-page: 433 year: 1997 ident: B4 article-title: The psychophysics toolbox. publication-title: Spatial Vision. doi: 10.1163/156856897X00357 – start-page: 6959 year: 2011 ident: B31 article-title: Learning Event-Related Potentials (ERPs) from multichannel EEG recordings: a spatio-temporal modeling framework with a fast estimation algorithm [M] publication-title: Proceedings of the 33rd Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society (EMBS) – volume: 65 start-page: 104 year: 2018 ident: B23 article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2694818 – volume: 50 year: 2020 ident: B27 article-title: Brain-computer interface software: a review and discussion. publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/THMS.2020.2968411 – volume: 61 start-page: 2290 year: 2014 ident: B2 article-title: Spatiotemporal representations of rapid visual target detection: a single-trial EEG classification algorithm. publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2289898 – year: 2019 ident: B1 publication-title: Event-Related Potentials (P300, EEG) - BCI dataset. IEEE DataPort. doi: 10.21227/8aae-d579 – volume: 27 start-page: 861 year: 2006 ident: B10 article-title: An introduction to ROC analysis. publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2005.10.010 – start-page: 184 year: 2018 ident: B26 article-title: P300 brain waves instigated semi supervised video surveillance for inclusive security systems. Advances in Brain Inspired Cognitive Systems publication-title: Proceedings of the 9th International Conference doi: 10.1007/978-3-030-00563-4_18 – volume: 98 start-page: 462 year: 2010 ident: B25 article-title: In a blink of an eye and a switch of a transistor: cortically coupled computer vision. publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2038406 – volume: 12 ident: B5 article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface. publication-title: J. Neural Eng. doi: 10.1088/1741-2560/12/4/046008 – volume: 28 year: 2020 ident: B19 article-title: Speed of rapid serial visual presentation of pictures, numbers and words affects event-related potential-based detection accuracy. publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2953975 – volume: 2003 start-page: 7 year: 2003 ident: B24 article-title: High-throughput image search via single-trial event detection in a rapid serial visual presentation task [M]. 1st International IEEE/EMBS Conference on Neural Engineering. publication-title: Capri Italy doi: 10.1109/CNE.2003.1196297 |
SSID | ssj0062842 |
Score | 2.3806973 |
Snippet | This paper reports a benchmark dataset acquired with a brain-computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm. The... This paper reports on a benchmark dataset acquired with a brain-computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm.... This paper reports on a benchmark dataset acquired with a brain–computer interface (BCI) system based on the rapid serial visual presentation (RSVP) paradigm.... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 568000 |
SubjectTerms | Algorithms Artificial intelligence Brain brain–computer interface Computer applications Datasets EEG Electrodes electroencephalogram Electroencephalography event-related potential Event-related potentials Experiments Implants Interfaces Machine learning Neuroscience public dataset rapid serial visual presentation Signal processing target detection Visual evoked potentials |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LSsUwEA3iyo34xPoigrgQqk2aJu1GuNcHIijiC3clSRMUtYrUhTv_wT_0S5xJey92oxuXbVLankwz5yTTGUI2RaE0Z1rFFrx7LPC_nJxhbjynvZXgb12oWnJ6Jo-vxcltdvuj1BfGhLXpgVvgdoFwWFkxppw2Qnin87QCoeyyVOpc5hXOvuDzRmKqnYMlTLq83cMECVbs-vq-xtzcPNnJJFCkpOeFQrL-HsPsx0f-cDhHM2S6Y4p00D7hLJlw9RyZH9Sgkp_e6RYNsZthUXye7A3oEMzt7km_PtAD3YBraijQUXpxeXMeD-GwokMsBvH18Tmq40DDYqDHkKwFcn10eLV_HHeVEWIrVNLEFliZ0WmlNJPWJcx5nmoO0qAyzCUCWIEBx-5MbqrMcOWBVjCnOChQLy3I4XSRTNbPtVsiNAVFZ5zJlEs9tPLC8gQkhMyM8ACsjkgyQqq0XdpwrF7xWIJ8QHDLAG6J4JYtuBHZHl_y0ubM-K3zEOEfd8R01-EEGEHZGUH5lxFEZHU0eGX3DcJNQHliaa4ij8jGuBm-HtwS0bV7fsM-mUSFK4qIqN6g9x6o31Lf34U83AqoMFNs-T_eYIVMISghTJCvksnm9c2tAd1pzHqw7G-8nf2- priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3BbtQwELWgvXBBLQURKMhIiANSaOw4tnOh2kCrComqKhT1FtmO3VbQbLukB279h_4hX8KM11mRS4-JJ0oytmfes8czhLwVtTKcGZU78O65wHM5mmFuPG-Ck-Bvfaxa8vVQHpyIL6fVaVpw-53CKkebGA11N3e4Rr4DbkhjoaVa715d51g1CndXUwmNh2QdTLAG8rXe7B0eHY-2WILxjfudEs8GAThf7msCLat3Qn_RY75uXnyoJMCmYuKZYgL_Ceqcxkz-54T2N8jjhB7pbNndm-SB75-QrVkPzPnyD31HYzxnXCjfIh9ntIEheH5pFj_pZzOAuxooQFR6_O3HUd7AZUcbLBDx9_ZurO1A4wJhwDCtp-Rkf-_7p4M8VUvInVDFkDtAataUnTJMOl8wH3hpQGGis8wXApCCBWfvrbZdZbkKADWYVxxYaZAOKHL5jKz1894_J7QElme9rZQvA7Ty2vECaIWsrAi8qE1GilFTrUupxLGixa8WKAUqt43KbVG57VK5GXm_euRqmUfjPuEG1b8SxBTY8cZ8cdamGQWilZMdY8obK0TwRpcdq7WvSmm01F1GtsfOa9O8hJesRlFG3qyaYUbhNonp_fwGZSqJrFfUGVGTTp980LSlvziPubkVwGOm2Iv7X_6SPMLfjUGBfJusDYsb_wrAzWBfpxH8D2da-GM priority: 102 providerName: ProQuest |
Title | A Benchmark Dataset for RSVP-Based Brain–Computer Interfaces |
URI | https://www.proquest.com/docview/2448029798 https://www.proquest.com/docview/2456409449 https://pubmed.ncbi.nlm.nih.gov/PMC7566171 https://doaj.org/article/565c6d117eab44fea83d198e536a868d |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELaq9sIFAQURKCsjIQ5IKbHjn-QAaAMtFVKrqrBob5Ht2G1Fm4UlleiNd-ANeRJmvMmKSBUSl0iOJ1EyHme-z57MEPJMlNpwZnTqwLunAv_LKRjmxvMmOAX-1seqJYdH6mAmPszlfIMM5a16BX6_kdphPanZ8mL3x7frNzDhXyHjBH_7MrTnLWbe5tmuVACAgMFvgWPSOE8PxXpTQcGXOG5-KvxRSObz1SbnzbcYuamYzX8EQccBlH95pP075HYPJel0NfZ3yYZv75HtaQs0-vKaPqcxuDOumm-T11NagT2eXZrlF_rOdOC7Ogp4lZ58_HycVtBsaIXVIn7__DUUeqBxtTBgzNZ9Mtvf-_T2IO1LJ6RO6KxLHcA2a_JGG6acz5gPPDccuENjmc8EwAYLnt_bwjbSch0AdzCvOVDUoBzw5fwB2WwXrX9IaA6Uz3ortc8D9PLS8Qw4hpJWBJ6VJiHZoKna9XnFsbzFRQ38ApVbR-XWqNx6pdyEvFhf8nWVVONfwhWqfy2I-bDjicXytO6nF4hKpxrGtDdWiOBNkTesLLzMlSlU0SRkZxi8erCxGpBNgbW7yiIhT9fdML1wz8S0fnGFMlIhBRZlQvRo0EcPNO5pz89iom4NWBnM8NH_vO5jcgtbMV6Q75DNbnnlnwDu6eyEbFV7R8cnk7huAMf3czaJFv4H6FkCtw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwELVKe4ALAgoitICRgANSaOw4dnIAtKGttrRdVaVFvaW247QVNFuWVKg3_oH_4KP4EmacZEUuvfWY2JtsxuN58-zxDCEvRaY0Z1qFFtA9FHguJ2WYG8_pykrAW-erluxO5PhQfDpKjhbIn_4sDIZV9jbRG-pyanGNfA1gKMVCS1n64eJ7iFWjcHe1L6HRqsW2u_oJlO3Hu611GN9XnG9uHHwch11VgdAKFTWhBY_G6LhUmknrIuYqHmt4sCgNc5EARDUAis6kpkwMVxVAMnOKA3urpAUqGcNzb5El-KwIDMFSvjHZ2-9tvwRj7_dXJZ5FAjLQ7qMCDczWqvqsxvzgPHqbSHDTogES-oIBAy93GKP5H-ht3iN3O2-Vjlr1uk8WXP2ALI9qYOrnV_Q19fGjfmF-mbwf0RxU_vRcz77Sdd0APDYUXGK6__nLXpjDZUlzLEjx99fvvpYE9QuSFYaFPSSHNyLHR2SxntbuMaExsErjTKJcXEErzyyPgMbIxIiKR5kOSNRLqrBd6nKsoPGtAAqDwi28cAsUbtEKNyBv5j-5aPN2XNc5R_HPO2LKbX9jOjspuhkMXRMrS8aU00aIyuk0LlmWuiSWOpVpGZDVfvCKzg7AS-ZaG5AX82aYwbgto2s3vcQ-iUSWLbKAqMGgD_7QsKU-O_W5wBW440yxJ9e__Dm5PT7Y3Sl2tibbK-QOfroPSOSrZLGZXbqn4Fg15lmnzZQc3_QE-gfNdzR9 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtQwEB2VrYS4IKAgQgsYCTgghY0dx04OgDZsVy2F1apQ1FuwHYdWpdmypEK98Q_8DZ_DlzD2Jity6a3HxE6cjMd-8-zxDMBTnknFqJKhQXQPuTuXk1IXG8-qygjEW-uzlnyYip0D_u4wOVyDP91ZGOdW2c2JfqIu58atkQ8RhlKXaClLh1XrFjEbT96cfQ9dBim309ql01iqyJ69-In07cer3TH29TPGJtuf3u6EbYaB0HAZNaFB60aruJSKCmMjaisWK2yEl5raiCO6agRIq1NdJprJCuGZWsmQyVXCIK2M8b3XYF0iK4oGsJ5vT2f7HQ4InPj9Xqtw55KQGCz3VJESZsOqPq5drHAWvUwEmmxRDxV98oCexdv31_wPACe34GZruZLRUtVuw5qt78DGqEbWfnpBnhPvS-oX6Tfg9YjkqP5Hp2pxQsaqQahsCJrHZP_j51mY42VJcpec4u-v311eCeIXJyvnInYXDq5EjvdgUM9rex9IjLLUVifSxhWWssywCCmNSDSvWJSpAKJOUoVpw5i7bBrfCqQzTriFF27hhFsshRvAi9UjZ8sYHpdVzp34VxVd-G1_Y774WrSjGasmRpSUSqs055VVaVzSLLVJLFQq0jKAra7zinZOwEZWGhzAk1Uxjma3RaNqOz93dRLhGDfPApC9Tu99UL-kPj7yccElmuZU0geXN_4YruPAKd7vTvc24Yb7c--byLZg0CzO7UO0sRr9qFVmAl-uevz8AxrUOLI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Benchmark+Dataset+for+RSVP-Based+Brain%E2%80%93Computer+Interfaces&rft.jtitle=Frontiers+in+neuroscience&rft.au=Zhang%2C+Shangen&rft.au=Wang%2C+Yijun&rft.au=Zhang%2C+Lijian&rft.au=Gao%2C+Xiaorong&rft.date=2020-10-02&rft.issn=1662-453X&rft.eissn=1662-453X&rft.volume=14&rft_id=info:doi/10.3389%2Ffnins.2020.568000&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fnins_2020_568000 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon |