The Mechanism Behind Top-Down UVPD Experiments: Making Sense of Apparent Contradictions
Top-down ultraviolet photodissociation (UVPD) allows greater sequence coverage than any other currently available method, often fracturing the vast majority of peptide bonds in whole proteins. At the same time, UVPD can be used to dissociate noncovalent complexes assembled from multiple proteins wit...
Saved in:
Published in | Journal of the American Society for Mass Spectrometry Vol. 28; no. 9; pp. 1823 - 1826 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Top-down ultraviolet photodissociation (UVPD) allows greater sequence coverage than any other currently available method, often fracturing the vast majority of peptide bonds in whole proteins. At the same time, UVPD can be used to dissociate noncovalent complexes assembled from multiple proteins without breaking any covalent bonds. Although the utility of these experiments is unquestioned, the mechanism underlying these seemingly contradictory results has been the subject of many discussions. Herein, some fundamental considerations of photochemistry are briefly summarized within the context of a proposed mechanism that rationalizes the experimental results obtained by UVPD. Considerations for future instrument design, in terms of wavelength choice and power, are briefly discussed.
Graphical Abstract
ᅟ |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1044-0305 1879-1123 1879-1123 |
DOI: | 10.1007/s13361-017-1721-0 |