Hepatotoxicity of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (BDE-209) in 28-day exposed Sprague-Dawley rats

Decabromodiphenyl ether (BDE-209) and its substitute decabromodiphenyl ethane (DBDPE) are heavily used in various industrial products as flame retardant. They have been found to be persistent in the environment and have adverse health effects in humans. Although some former studies have reported tox...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 705; p. 135783
Main Authors Sun, Yanmin, Wang, Yuwei, Liang, Baolu, Chen, Tian, Zheng, Dan, Zhao, Xuezhen, Jing, Li, Zhou, Xianqing, Sun, Zhiwei, Shi, Zhixiong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 25.02.2020
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2019.135783

Cover

Loading…
Abstract Decabromodiphenyl ether (BDE-209) and its substitute decabromodiphenyl ethane (DBDPE) are heavily used in various industrial products as flame retardant. They have been found to be persistent in the environment and have adverse health effects in humans. Although some former studies have reported toxic effects of BDE-209, the study of DBDPE's toxic effects is still in its infancy, and the effects of DBDPE on hepatotoxicity are also unclear. This study aimed to evaluate and compare the hepatotoxicity induced by BDE-209 and DBDPE using a rat model. Sprague-Dawley rats were administered DBDPE or BDE-209 (5, 50, 500 mg/kg bodyweight) intragastrically once a day for 28 days. Twenty-four hours after the end of treatment, the rats were sacrificed, and body liver weight, blood biochemical parameters, liver pathology, oxidative stress, inflammation, pregnane X receptor (PXR), constitutive androstane receptor (CAR), and changes in cytochrome P450 (CYP3A) enzymes were measured. Our results showed that both BDE-209 and DBDPE could cause liver morphological changes, induce oxidative stress, increase γ-glutamyl transferase and glucose levels in serum, and down-regulate PXR, CAR, and CYP3A expression. In addition, BDE-209 was found to increase liver weight and the ratio of liver/body weight, lead to elevated total bilirubin and indirect bilirubin levels in serum, and induce inflammation. The present study indicated that BDE-209 and DBDPE may interfere with normal metabolism in rats through oxidative stress and inflammation, which inhibit PXR and CAR to induce the expression of CYP3A enzymes, and finally produce hepatotoxic effects and cause liver damage in rats. Comparatively, our results show that the damage caused by BDE-209 was more serious than that caused by DBDPE. [Display omitted] •Hepatotoxicity induced by BDE-209 and DBDPE in rats was studied and compared.•Both BDE-209 and DBDPE can cause liver damage whereas DBDPE is less toxic.•BDE-209 and DBDPE may interfere metabolism in rats through oxidative stress and inflammation.
AbstractList Decabromodiphenyl ether (BDE-209) and its substitute decabromodiphenyl ethane (DBDPE) are heavily used in various industrial products as flame retardant. They have been found to be persistent in the environment and have adverse health effects in humans. Although some former studies have reported toxic effects of BDE-209, the study of DBDPE's toxic effects is still in its infancy, and the effects of DBDPE on hepatotoxicity are also unclear. This study aimed to evaluate and compare the hepatotoxicity induced by BDE-209 and DBDPE using a rat model. Sprague-Dawley rats were administered DBDPE or BDE-209 (5, 50, 500 mg/kg bodyweight) intragastrically once a day for 28 days. Twenty-four hours after the end of treatment, the rats were sacrificed, and body liver weight, blood biochemical parameters, liver pathology, oxidative stress, inflammation, pregnane X receptor (PXR), constitutive androstane receptor (CAR), and changes in cytochrome P450 (CYP3A) enzymes were measured. Our results showed that both BDE-209 and DBDPE could cause liver morphological changes, induce oxidative stress, increase γ-glutamyl transferase and glucose levels in serum, and down-regulate PXR, CAR, and CYP3A expression. In addition, BDE-209 was found to increase liver weight and the ratio of liver/body weight, lead to elevated total bilirubin and indirect bilirubin levels in serum, and induce inflammation. The present study indicated that BDE-209 and DBDPE may interfere with normal metabolism in rats through oxidative stress and inflammation, which inhibit PXR and CAR to induce the expression of CYP3A enzymes, and finally produce hepatotoxic effects and cause liver damage in rats. Comparatively, our results show that the damage caused by BDE-209 was more serious than that caused by DBDPE.
Decabromodiphenyl ether (BDE-209) and its substitute decabromodiphenyl ethane (DBDPE) are heavily used in various industrial products as flame retardant. They have been found to be persistent in the environment and have adverse health effects in humans. Although some former studies have reported toxic effects of BDE-209, the study of DBDPE's toxic effects is still in its infancy, and the effects of DBDPE on hepatotoxicity are also unclear. This study aimed to evaluate and compare the hepatotoxicity induced by BDE-209 and DBDPE using a rat model. Sprague-Dawley rats were administered DBDPE or BDE-209 (5, 50, 500 mg/kg bodyweight) intragastrically once a day for 28 days. Twenty-four hours after the end of treatment, the rats were sacrificed, and body liver weight, blood biochemical parameters, liver pathology, oxidative stress, inflammation, pregnane X receptor (PXR), constitutive androstane receptor (CAR), and changes in cytochrome P450 (CYP3A) enzymes were measured. Our results showed that both BDE-209 and DBDPE could cause liver morphological changes, induce oxidative stress, increase γ-glutamyl transferase and glucose levels in serum, and down-regulate PXR, CAR, and CYP3A expression. In addition, BDE-209 was found to increase liver weight and the ratio of liver/body weight, lead to elevated total bilirubin and indirect bilirubin levels in serum, and induce inflammation. The present study indicated that BDE-209 and DBDPE may interfere with normal metabolism in rats through oxidative stress and inflammation, which inhibit PXR and CAR to induce the expression of CYP3A enzymes, and finally produce hepatotoxic effects and cause liver damage in rats. Comparatively, our results show that the damage caused by BDE-209 was more serious than that caused by DBDPE.
Decabromodiphenyl ether (BDE-209) and its substitute decabromodiphenyl ethane (DBDPE) are heavily used in various industrial products as flame retardant. They have been found to be persistent in the environment and have adverse health effects in humans. Although some former studies have reported toxic effects of BDE-209, the study of DBDPE's toxic effects is still in its infancy, and the effects of DBDPE on hepatotoxicity are also unclear. This study aimed to evaluate and compare the hepatotoxicity induced by BDE-209 and DBDPE using a rat model. Sprague-Dawley rats were administered DBDPE or BDE-209 (5, 50, 500 mg/kg bodyweight) intragastrically once a day for 28 days. Twenty-four hours after the end of treatment, the rats were sacrificed, and body liver weight, blood biochemical parameters, liver pathology, oxidative stress, inflammation, pregnane X receptor (PXR), constitutive androstane receptor (CAR), and changes in cytochrome P450 (CYP3A) enzymes were measured. Our results showed that both BDE-209 and DBDPE could cause liver morphological changes, induce oxidative stress, increase γ-glutamyl transferase and glucose levels in serum, and down-regulate PXR, CAR, and CYP3A expression. In addition, BDE-209 was found to increase liver weight and the ratio of liver/body weight, lead to elevated total bilirubin and indirect bilirubin levels in serum, and induce inflammation. The present study indicated that BDE-209 and DBDPE may interfere with normal metabolism in rats through oxidative stress and inflammation, which inhibit PXR and CAR to induce the expression of CYP3A enzymes, and finally produce hepatotoxic effects and cause liver damage in rats. Comparatively, our results show that the damage caused by BDE-209 was more serious than that caused by DBDPE.Decabromodiphenyl ether (BDE-209) and its substitute decabromodiphenyl ethane (DBDPE) are heavily used in various industrial products as flame retardant. They have been found to be persistent in the environment and have adverse health effects in humans. Although some former studies have reported toxic effects of BDE-209, the study of DBDPE's toxic effects is still in its infancy, and the effects of DBDPE on hepatotoxicity are also unclear. This study aimed to evaluate and compare the hepatotoxicity induced by BDE-209 and DBDPE using a rat model. Sprague-Dawley rats were administered DBDPE or BDE-209 (5, 50, 500 mg/kg bodyweight) intragastrically once a day for 28 days. Twenty-four hours after the end of treatment, the rats were sacrificed, and body liver weight, blood biochemical parameters, liver pathology, oxidative stress, inflammation, pregnane X receptor (PXR), constitutive androstane receptor (CAR), and changes in cytochrome P450 (CYP3A) enzymes were measured. Our results showed that both BDE-209 and DBDPE could cause liver morphological changes, induce oxidative stress, increase γ-glutamyl transferase and glucose levels in serum, and down-regulate PXR, CAR, and CYP3A expression. In addition, BDE-209 was found to increase liver weight and the ratio of liver/body weight, lead to elevated total bilirubin and indirect bilirubin levels in serum, and induce inflammation. The present study indicated that BDE-209 and DBDPE may interfere with normal metabolism in rats through oxidative stress and inflammation, which inhibit PXR and CAR to induce the expression of CYP3A enzymes, and finally produce hepatotoxic effects and cause liver damage in rats. Comparatively, our results show that the damage caused by BDE-209 was more serious than that caused by DBDPE.
Decabromodiphenyl ether (BDE-209) and its substitute decabromodiphenyl ethane (DBDPE) are heavily used in various industrial products as flame retardant. They have been found to be persistent in the environment and have adverse health effects in humans. Although some former studies have reported toxic effects of BDE-209, the study of DBDPE's toxic effects is still in its infancy, and the effects of DBDPE on hepatotoxicity are also unclear. This study aimed to evaluate and compare the hepatotoxicity induced by BDE-209 and DBDPE using a rat model. Sprague-Dawley rats were administered DBDPE or BDE-209 (5, 50, 500 mg/kg bodyweight) intragastrically once a day for 28 days. Twenty-four hours after the end of treatment, the rats were sacrificed, and body liver weight, blood biochemical parameters, liver pathology, oxidative stress, inflammation, pregnane X receptor (PXR), constitutive androstane receptor (CAR), and changes in cytochrome P450 (CYP3A) enzymes were measured. Our results showed that both BDE-209 and DBDPE could cause liver morphological changes, induce oxidative stress, increase γ-glutamyl transferase and glucose levels in serum, and down-regulate PXR, CAR, and CYP3A expression. In addition, BDE-209 was found to increase liver weight and the ratio of liver/body weight, lead to elevated total bilirubin and indirect bilirubin levels in serum, and induce inflammation. The present study indicated that BDE-209 and DBDPE may interfere with normal metabolism in rats through oxidative stress and inflammation, which inhibit PXR and CAR to induce the expression of CYP3A enzymes, and finally produce hepatotoxic effects and cause liver damage in rats. Comparatively, our results show that the damage caused by BDE-209 was more serious than that caused by DBDPE. [Display omitted] •Hepatotoxicity induced by BDE-209 and DBDPE in rats was studied and compared.•Both BDE-209 and DBDPE can cause liver damage whereas DBDPE is less toxic.•BDE-209 and DBDPE may interfere metabolism in rats through oxidative stress and inflammation.
ArticleNumber 135783
Author Jing, Li
Liang, Baolu
Zhao, Xuezhen
Sun, Zhiwei
Shi, Zhixiong
Zhou, Xianqing
Zheng, Dan
Chen, Tian
Sun, Yanmin
Wang, Yuwei
Author_xml – sequence: 1
  givenname: Yanmin
  surname: Sun
  fullname: Sun, Yanmin
– sequence: 2
  givenname: Yuwei
  surname: Wang
  fullname: Wang, Yuwei
– sequence: 3
  givenname: Baolu
  surname: Liang
  fullname: Liang, Baolu
– sequence: 4
  givenname: Tian
  surname: Chen
  fullname: Chen, Tian
– sequence: 5
  givenname: Dan
  surname: Zheng
  fullname: Zheng, Dan
– sequence: 6
  givenname: Xuezhen
  surname: Zhao
  fullname: Zhao, Xuezhen
– sequence: 7
  givenname: Li
  surname: Jing
  fullname: Jing, Li
  email: jingli@ccmu.edu.cn
– sequence: 8
  givenname: Xianqing
  surname: Zhou
  fullname: Zhou, Xianqing
– sequence: 9
  givenname: Zhiwei
  surname: Sun
  fullname: Sun, Zhiwei
– sequence: 10
  givenname: Zhixiong
  surname: Shi
  fullname: Shi, Zhixiong
  email: szx0127@ccmu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31787299$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9vEzEQxS1URNPCVwAf08MG27vrPwcObRNapEogAWfLsWepo816sZ3SvfDZcZSWQ4VU5jKX33ujee8EHQ1hAITeUbKghPL3m0WyPocMw92CEaoWtG6FrF-gGZVCVZQwfoRmhDSyUlyJY3SS0oaUEZK-Qsc1FVIwpWbo9zWMphiFe18MJxw67MCadQzb4Px4C8PUY8i3ZgA8X14sv6zOsBncvyGIeH6xXFWMqDPsB8xk5cyE4X4MCRz-OkbzYwfV0vzqYcLR5PQavexMn-DNwz5F3z-uvl1eVzefrz5dnt9UthEkV2srubGcMidbSaxTrWKdkG3dQM1l26gSQdMYpijja9JZ4xilonOEAgNuWH2K5gffMYafO0hZb32y0Pflr7BLmtVSCklapv4DZYQ3jDJS0LcP6G69BafH6LcmTvox3gJ8OAA2hpQidLqEbLIPQ47G95oSva9Tb_TfOvW-Tn2os-jFE_3jieeV5wcllFTvPMQ9B4MF5yPYrF3wz3r8AaIHvcI
CitedBy_id crossref_primary_10_1016_j_ecoenv_2023_114771
crossref_primary_10_3390_ijms241713487
crossref_primary_10_1016_j_envint_2023_108410
crossref_primary_10_1016_j_ecoenv_2025_117762
crossref_primary_10_1016_j_envint_2024_109021
crossref_primary_10_1016_j_envint_2023_107802
crossref_primary_10_4239_wjd_v12_i8_1267
crossref_primary_10_1016_j_scitotenv_2024_178074
crossref_primary_10_1002_tox_23727
crossref_primary_10_1016_j_chemosphere_2023_137968
crossref_primary_10_1016_j_ecoenv_2020_111467
crossref_primary_10_1016_j_envint_2020_106307
crossref_primary_10_1016_j_envint_2021_106747
crossref_primary_10_1016_j_envpol_2021_118297
crossref_primary_10_1016_j_toxlet_2021_09_008
crossref_primary_10_1016_j_tox_2024_153959
crossref_primary_10_1016_j_jenvman_2025_124775
crossref_primary_10_1016_j_jhazmat_2022_130223
crossref_primary_10_1021_acs_chemrestox_2c00126
crossref_primary_10_1016_j_envpol_2021_117965
crossref_primary_10_1016_j_fct_2022_113416
crossref_primary_10_1016_j_ecoenv_2023_115460
crossref_primary_10_1021_acs_est_1c06679
crossref_primary_10_1016_j_jhazmat_2022_128625
crossref_primary_10_1016_j_toxlet_2021_02_002
crossref_primary_10_1292_jvms_20_0140
crossref_primary_10_1016_j_scitotenv_2021_151086
crossref_primary_10_1016_j_ecoenv_2023_115336
crossref_primary_10_3390_ani14020232
crossref_primary_10_1016_j_envpol_2022_120263
crossref_primary_10_1016_j_envpol_2024_123775
crossref_primary_10_1016_j_scitotenv_2021_146018
crossref_primary_10_3390_cells9102306
crossref_primary_10_1016_j_jhazmat_2021_127716
crossref_primary_10_1016_j_jhazmat_2021_125938
crossref_primary_10_1080_2833373X_2024_2375113
crossref_primary_10_1007_s10653_024_02255_1
crossref_primary_10_1016_j_jhazmat_2024_133720
crossref_primary_10_1016_j_taap_2022_116194
crossref_primary_10_1039_D4GC00924J
crossref_primary_10_1016_j_ecoenv_2022_113534
crossref_primary_10_1016_j_envpol_2024_124539
crossref_primary_10_1016_j_jhazmat_2022_129872
crossref_primary_10_1016_j_chemosphere_2022_136486
crossref_primary_10_1016_j_envpol_2020_116046
crossref_primary_10_1016_j_envpol_2021_118445
crossref_primary_10_3390_toxics11020101
crossref_primary_10_1016_j_heha_2024_100106
crossref_primary_10_1016_j_envint_2023_107782
crossref_primary_10_1016_j_envpol_2020_114706
crossref_primary_10_1016_j_scitotenv_2021_152545
crossref_primary_10_1055_a_2540_2861
crossref_primary_10_1016_j_scitotenv_2024_172033
crossref_primary_10_1016_j_chemosphere_2020_128867
crossref_primary_10_1016_j_chemosphere_2021_132767
crossref_primary_10_1016_j_scitotenv_2020_142936
crossref_primary_10_1016_j_scitotenv_2024_177364
crossref_primary_10_1007_s11356_022_21980_7
crossref_primary_10_1016_j_envres_2022_114096
crossref_primary_10_1016_j_scitotenv_2022_160724
crossref_primary_10_1016_j_tox_2021_153015
crossref_primary_10_1007_s11356_023_30148_w
crossref_primary_10_1016_j_jhazmat_2024_135735
crossref_primary_10_1016_j_ijheh_2021_113800
crossref_primary_10_1016_j_tox_2021_152807
crossref_primary_10_1016_j_scitotenv_2022_156634
crossref_primary_10_1016_j_jhazmat_2024_134529
crossref_primary_10_1096_fj_202002585R
crossref_primary_10_1016_j_scitotenv_2024_173575
crossref_primary_10_1016_j_envpol_2022_120882
crossref_primary_10_1016_j_scitotenv_2023_164714
crossref_primary_10_1096_fj_202200586R
crossref_primary_10_3390_microorganisms10071441
crossref_primary_10_3390_molecules28052337
crossref_primary_10_1016_j_jhazmat_2024_136858
crossref_primary_10_1016_j_jhazmat_2023_131021
crossref_primary_10_1016_j_crfs_2024_100918
crossref_primary_10_1016_j_scitotenv_2020_139049
crossref_primary_10_1016_j_scitotenv_2023_165851
crossref_primary_10_2903_j_efsa_2024_8497
crossref_primary_10_1016_j_ecoenv_2022_114324
crossref_primary_10_1016_j_jhazmat_2023_133004
crossref_primary_10_1016_j_ecoenv_2020_111570
crossref_primary_10_1016_j_ecoenv_2022_114287
crossref_primary_10_3390_ijms22084282
crossref_primary_10_1016_j_scitotenv_2023_167033
crossref_primary_10_1016_j_chemosphere_2021_131550
crossref_primary_10_1016_j_crtox_2023_100131
Cites_doi 10.1016/j.taap.2013.05.034
10.1016/j.yrtph.2009.02.006
10.3109/03602539709002246
10.1093/toxsci/kfr105
10.1053/jhep.2000.8532
10.1016/j.envpol.2018.09.047
10.1016/j.tox.2019.02.016
10.1016/j.jep.2015.03.002
10.1016/j.etap.2012.02.004
10.1016/j.aquatox.2005.09.006
10.1289/ehp.6559
10.1016/j.jphotochem.2013.11.008
10.3748/wjg.v23.i42.7519
10.1016/j.chemosphere.2018.01.161
10.1016/j.tox.2017.05.016
10.1016/j.ecoenv.2019.02.080
10.1016/j.envint.2018.02.044
10.1016/j.chemosphere.2016.12.052
10.2174/157488408783329896
10.1016/j.envint.2016.09.005
10.1081/DMR-120018248
10.1016/S0045-6535(01)00236-3
10.1016/j.scitotenv.2014.05.037
10.2131/jts.35.535
10.1016/j.envint.2014.09.006
10.1021/es202420g
10.1016/j.chemosphere.2007.06.078
10.1016/j.tox.2006.04.003
10.1016/j.ijheh.2015.08.004
10.1016/j.chemosphere.2019.02.003
10.1016/j.chemosphere.2019.05.165
10.1007/s11356-016-6491-x
10.1111/j.1471-4159.2009.06427.x
10.1093/toxsci/kfl072
10.1016/j.abb.2005.11.019
10.1016/j.reprotox.2010.09.003
10.1016/j.taap.2013.09.016
10.1016/j.aquatox.2018.07.017
10.1016/j.chemosphere.2019.02.115
10.1021/es101158e
10.1007/s10646-013-1097-2
10.1016/j.cbi.2019.05.038
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier B.V.
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2019.135783
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 31787299
10_1016_j_scitotenv_2019_135783
S004896971935778X
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c470t-bc86ac612d8580cd9592f78534e36854901944a29126b0fcad2117fd01e2e6a23
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Jul 10 23:16:09 EDT 2025
Fri Jul 11 16:05:46 EDT 2025
Wed Feb 19 02:30:54 EST 2025
Thu Apr 24 22:57:06 EDT 2025
Tue Jul 01 03:35:22 EDT 2025
Fri Feb 23 02:48:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Decabromodiphenyl ether
Decabromodiphenyl ethane
Rat
Hepatotoxicity
Brominated flame retardants
Language English
License Copyright © 2018. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-bc86ac612d8580cd9592f78534e36854901944a29126b0fcad2117fd01e2e6a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31787299
PQID 2320642120
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2388780529
proquest_miscellaneous_2320642120
pubmed_primary_31787299
crossref_citationtrail_10_1016_j_scitotenv_2019_135783
crossref_primary_10_1016_j_scitotenv_2019_135783
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_135783
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-25
PublicationDateYYYYMMDD 2020-02-25
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-25
  day: 25
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lee, Kim, Choi, Nabanata, Kim, Ahn (bb0080) 2010; 35
Sarkar, Singh (bb0135) 2017; 386
Shi, Zhang, Li, Zhao, Sun, Zhou (bb0140) 2016; 96
Zhang, Mao, Li, Hu, Yu, An (bb0210) 2018; 243
Jan, Mishin, Busch, Thomas (bb0065) 2006; 446
Wang, Wu, Chen, Zhang, Zhao (bb0195) 2015; 166
Zeng, Lin, Gong, Lin, Gao, Li (bb0205) 2019; 308
Chen, Liu, Xu, Zheng, Bai, Pan (bb0010) 2019; 418
Li, Liang, Zhang, Lu, Zhang, Ruan (bb0085) 2011; 45
Morgan (bb0105) 1997; 29
Sanchez-Hernandez, Narvaez, Sabat, Martinez Mocillo (bb0130) 2014; 490
Gill, Chu, Ryan, Feeley (bb0050) 2004; 183
Uno, Ishizuka, Itakura (bb0175) 2012; 34
Gahrs, Roos, Andersson, Schrenk (bb0040) 2013; 272
Wang, Wang, Dai, Hu, Wang, Luo (bb0185) 2010; 44
Nadjia, Abdelkader, Ulrich, Bekka (bb0110) 2014; 275
Fromme, Becher, Hilger, Volkel (bb0025) 2016; 219
Tseng, Li, Tsai, Lee, Pan, Yao (bb0170) 2008; 70
Kakehashi, Hagiwara, Imai, Nagano, Nishimaki, Banton (bb0075) 2013; 273
Gabbia, Pozza, Albertoni, Lazzari, Zigiotto, Carrara (bb0035) 2017; 23
Rajput, Xiao, Yajing, Yaqoob, Sanganyado, Ying (bb0125) 2018; 203
Fonnum, Mariussen (bb0020) 2009; 111
Birnbaum, Staskal (bb0005) 2004; 112
Palatini, De Martin, Pegoraro, Orlando (bb0120) 2008; 3
Lu, Li, Thunders, Cavanagh, Matthew, Wang (bb0095) 2017; 171
Sun, Shang, Zhang, Lin, Wang, Shi (bb0160) 2018; 31
Lyche, Rosseland, Berge, Polder (bb0100) 2015; 74
Shi, Zhang, Li, Wu (bb0145) 2018; 198
Silvestre, Dierick, Dumont, Dieu, Raes, Devos (bb0155) 2006; 76
Tseng, Lee, Pan, Tsai, Li, Chen (bb0165) 2006; 224
Zhu, Li, Liu, Zhou, Yu, Jing (bb0220) 2019; 222
Wang, Chen, Fu, Yang, Li, Sui, Wang, Shi (bb0180) 2019; 231
Noyes, Hinton, Stapleton (bb0115) 2011; 122
Feng, Li, Qu, Wang, Wang (bb0015) 2013; 22
Ghosal, Satoh, Thomas, Bush, Moore (bb0045) 1996; 24
Jing, Sun, Wang, Liang, Chen, Zheng (bb0070) 2019; 223
Wang, Chen, Sun, Zhao, Zheng, Jing (bb0200) 2019; 174
Wang, Scheffler, Willett (bb0190) 2006; 93
Liang, Xu, Tang, Zhang, Zhang, Liu (bb0090) 2016; 23
Hardy (bb0060) 2002; 46
Goodman (bb0055) 2009; 54
Zhou, Gao, Jiang, Huang, Xu, Paxton (bb0215) 2003; 35
Fujimoto, Woo, Inoue, Takahashi, Hirose, Nishikawa (bb0030) 2011; 31
Siewert, Bort, Kluge, Heinrich, Castell, Jover (bb0150) 2000; 32
Zota, Geller, Romano, Coleman-Phox, Adler, Parry (bb0225) 2018; 115
Morgan (10.1016/j.scitotenv.2019.135783_bb0105) 1997; 29
Uno (10.1016/j.scitotenv.2019.135783_bb0175) 2012; 34
Wang (10.1016/j.scitotenv.2019.135783_bb0180) 2019; 231
Sarkar (10.1016/j.scitotenv.2019.135783_bb0135) 2017; 386
Noyes (10.1016/j.scitotenv.2019.135783_bb0115) 2011; 122
Rajput (10.1016/j.scitotenv.2019.135783_bb0125) 2018; 203
Zota (10.1016/j.scitotenv.2019.135783_bb0225) 2018; 115
Gabbia (10.1016/j.scitotenv.2019.135783_bb0035) 2017; 23
Shi (10.1016/j.scitotenv.2019.135783_bb0145) 2018; 198
Nadjia (10.1016/j.scitotenv.2019.135783_bb0110) 2014; 275
Jan (10.1016/j.scitotenv.2019.135783_bb0065) 2006; 446
Tseng (10.1016/j.scitotenv.2019.135783_bb0165) 2006; 224
Lee (10.1016/j.scitotenv.2019.135783_bb0080) 2010; 35
Fujimoto (10.1016/j.scitotenv.2019.135783_bb0030) 2011; 31
Sanchez-Hernandez (10.1016/j.scitotenv.2019.135783_bb0130) 2014; 490
Lyche (10.1016/j.scitotenv.2019.135783_bb0100) 2015; 74
Silvestre (10.1016/j.scitotenv.2019.135783_bb0155) 2006; 76
Hardy (10.1016/j.scitotenv.2019.135783_bb0060) 2002; 46
Zeng (10.1016/j.scitotenv.2019.135783_bb0205) 2019; 308
Shi (10.1016/j.scitotenv.2019.135783_bb0140) 2016; 96
Liang (10.1016/j.scitotenv.2019.135783_bb0090) 2016; 23
Birnbaum (10.1016/j.scitotenv.2019.135783_bb0005) 2004; 112
Kakehashi (10.1016/j.scitotenv.2019.135783_bb0075) 2013; 273
Fonnum (10.1016/j.scitotenv.2019.135783_bb0020) 2009; 111
Zhu (10.1016/j.scitotenv.2019.135783_bb0220) 2019; 222
Tseng (10.1016/j.scitotenv.2019.135783_bb0170) 2008; 70
Wang (10.1016/j.scitotenv.2019.135783_bb0195) 2015; 166
Gill (10.1016/j.scitotenv.2019.135783_bb0050) 2004; 183
Siewert (10.1016/j.scitotenv.2019.135783_bb0150) 2000; 32
Palatini (10.1016/j.scitotenv.2019.135783_bb0120) 2008; 3
Chen (10.1016/j.scitotenv.2019.135783_bb0010) 2019; 418
Sun (10.1016/j.scitotenv.2019.135783_bb0160) 2018; 31
Feng (10.1016/j.scitotenv.2019.135783_bb0015) 2013; 22
Wang (10.1016/j.scitotenv.2019.135783_bb0190) 2006; 93
Fromme (10.1016/j.scitotenv.2019.135783_bb0025) 2016; 219
Li (10.1016/j.scitotenv.2019.135783_bb0085) 2011; 45
Goodman (10.1016/j.scitotenv.2019.135783_bb0055) 2009; 54
Ghosal (10.1016/j.scitotenv.2019.135783_bb0045) 1996; 24
Jing (10.1016/j.scitotenv.2019.135783_bb0070) 2019; 223
Lu (10.1016/j.scitotenv.2019.135783_bb0095) 2017; 171
Zhang (10.1016/j.scitotenv.2019.135783_bb0210) 2018; 243
Wang (10.1016/j.scitotenv.2019.135783_bb0185) 2010; 44
Wang (10.1016/j.scitotenv.2019.135783_bb0200) 2019; 174
Gahrs (10.1016/j.scitotenv.2019.135783_bb0040) 2013; 272
Zhou (10.1016/j.scitotenv.2019.135783_bb0215) 2003; 35
References_xml – volume: 171
  start-page: 485
  year: 2017
  end-page: 490
  ident: bb0095
  article-title: Differential protein expression and localization of CYP450 enzymes in three species of earthworm; is this a reflection of environmental adaptation?
  publication-title: Chemosphere
– volume: 22
  start-page: 1101
  year: 2013
  end-page: 1110
  ident: bb0015
  article-title: Oxidative stress biomarkers in freshwater fish Carassius auratus exposed to decabromodiphenyl ether and ethane, or their mixture
  publication-title: Ecotoxicology
– volume: 166
  start-page: 66
  year: 2015
  end-page: 73
  ident: bb0195
  article-title: Inhibitory effects of cytochrome P450 enzymes CYP1A2, CYP2A6, CYP2E1 and CYP3A4 by extracts and alkaloids of Gelsemium elegans roots
  publication-title: J. Ethnopharmacol.
– volume: 23
  start-page: 14889
  year: 2016
  end-page: 14897
  ident: bb0090
  article-title: Brominated flame retardants in the hair and serum samples from an e-waste recycling area in southeastern China: the possibility of using hair for biomonitoring
  publication-title: Environ. Sci. Pollut. Res. Int.
– volume: 174
  start-page: 224
  year: 2019
  end-page: 235
  ident: bb0200
  article-title: A comparison of the thyroid disruption induced by decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 93
  start-page: 331
  year: 2006
  end-page: 340
  ident: bb0190
  article-title: CYP1C1 messenger RNA expression is inducible by benzo[a]pyrene in Fundulus heteroclitus embryos and adults
  publication-title: Toxicol. Sci.
– volume: 32
  start-page: 49
  year: 2000
  end-page: 55
  ident: bb0150
  article-title: Hepatic cytochrome P450 down-regulation during aseptic inflammation in the mouse is interleukin 6 dependent
  publication-title: Hepatology
– volume: 23
  start-page: 7519
  year: 2017
  end-page: 7530
  ident: bb0035
  article-title: Pregnane X receptor and constitutive androstane receptor modulate differently CYP3A-mediated metabolism in early- and late-stage cholestasis
  publication-title: World J. Gastroenterol.
– volume: 308
  start-page: 185
  year: 2019
  end-page: 193
  ident: bb0205
  article-title: CYP3A suppression during diet-induced nonalcoholic fatty liver disease is independent of PXR regulation
  publication-title: Chem. Biol. Interact.
– volume: 54
  start-page: 91
  year: 2009
  end-page: 104
  ident: bb0055
  article-title: Neurodevelopmental effects of decabromodiphenyl ether (BDE-209) and implications for the reference dose
  publication-title: Regul. Toxicol. Pharmacol.
– volume: 45
  start-page: 9750
  year: 2011
  end-page: 9757
  ident: bb0085
  article-title: Impaired gas bladder inflation in zebrafish exposed to a novel heterocyclic brominated flame retardant tris(2,3-dibromopropyl) isocyanurate
  publication-title: Environ. Sci. Technol.
– volume: 76
  start-page: 46
  year: 2006
  end-page: 58
  ident: bb0155
  article-title: Differential protein expression profiles in anterior gills of Eriocheir sinensis during acclimation to cadmium
  publication-title: Aquat. Toxicol.
– volume: 273
  start-page: 390
  year: 2013
  end-page: 400
  ident: bb0075
  article-title: Mode of action of ethyl tertiary-butyl ether hepatotumorigenicity in the rat: evidence for a role of oxidative stress via activation of CAR, PXR and PPAR signaling pathways
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 122
  start-page: 265
  year: 2011
  end-page: 274
  ident: bb0115
  article-title: Accumulation and debromination of decabromodiphenyl ether (BDE-209) in juvenile fathead minnows (Pimephales promelas) induces thyroid disruption and liver alterations
  publication-title: Toxicol. Sci.
– volume: 183
  start-page: 55
  year: 2004
  end-page: 97
  ident: bb0050
  article-title: Polybrominated diphenyl ethers: human tissue levels and toxicology
  publication-title: Rev. Environ. Contam. Toxicol.
– volume: 112
  start-page: 9
  year: 2004
  end-page: 17
  ident: bb0005
  article-title: Brominated flame retardants: cause for concern?
  publication-title: Environ. Health Perspect.
– volume: 29
  start-page: 1129
  year: 1997
  end-page: 1188
  ident: bb0105
  article-title: Regulation of cytochromes P450 during inflammation and infection
  publication-title: Drug Metab. Rev.
– volume: 115
  start-page: 9
  year: 2018
  end-page: 20
  ident: bb0225
  article-title: Association between persistent endocrine-disrupting chemicals (PBDEs, OH-PBDEs, PCBs, and PFASs) and biomarkers of inflammation and cellular aging during pregnancy and postpartum
  publication-title: Environ. Int.
– volume: 111
  start-page: 1327
  year: 2009
  end-page: 1347
  ident: bb0020
  article-title: Mechanisms involved in the neurotoxic effects of environmental toxicants such as polychlorinated biphenyls and brominated flame retardants
  publication-title: J. Neurochem.
– volume: 44
  start-page: 5655
  year: 2010
  end-page: 5660
  ident: bb0185
  article-title: Comparative tissue distribution, biotransformation and associated biological effects by decabromodiphenyl ethane and decabrominated diphenyl ether in male rats after a 90-day oral exposure study
  publication-title: Environ. Sci. Technol.
– volume: 203
  start-page: 1
  year: 2018
  end-page: 9
  ident: bb0125
  article-title: Establishment of pantropic spotted dolphin (Stenella attenuata) fibroblast cell line and potential influence of polybrominated diphenyl ethers (PBDEs) on cytokines response
  publication-title: Aquat. Toxicol.
– volume: 3
  start-page: 56
  year: 2008
  end-page: 69
  ident: bb0120
  article-title: Enzyme inhibition and induction in liver disease
  publication-title: Curr. Clin. Pharmacol.
– volume: 35
  start-page: 535
  year: 2010
  end-page: 545
  ident: bb0080
  article-title: Evaluation of liver and thyroid toxicity in Sprague-Dawley rats after exposure to polybrominated diphenyl ether BDE-209
  publication-title: J. Toxicol. Sci.
– volume: 490
  start-page: 445
  year: 2014
  end-page: 455
  ident: bb0130
  article-title: Integrated biomarker analysis of chlorpyrifos metabolism and toxicity in the earthworm Aporrectodea caliginosa
  publication-title: Sci. Total Environ.
– volume: 224
  start-page: 33
  year: 2006
  end-page: 43
  ident: bb0165
  article-title: Postnatal exposure of the male mouse to 2,2′,3,3′,4,4′,5,5′,6,6′-decabrominated diphenyl ether: decreased epididymal sperm functions without alterations in DNA content and histology in testis
  publication-title: Toxicology
– volume: 418
  start-page: 70
  year: 2019
  end-page: 80
  ident: bb0010
  article-title: Maternal exposure to low dose BDE209 and Pb mixture induced neurobehavioral anomalies in C57BL/6 male offspring
  publication-title: Toxicology
– volume: 46
  start-page: 717
  year: 2002
  end-page: 728
  ident: bb0060
  article-title: A comparison of the properties of the major commercial PBDPO/PBDE product to those of major PBB and PCB products
  publication-title: Chemosphere
– volume: 386
  start-page: 103
  year: 2017
  end-page: 119
  ident: bb0135
  article-title: Maternal exposure to polybrominated diphenyl ether (BDE-209) during lactation affects germ cell survival with altered testicular glucose homeostasis and oxidative status through down-regulation of Cx43 and p27Kip1 in prepubertal mice offspring
  publication-title: Toxicology
– volume: 243
  start-page: 661
  year: 2018
  end-page: 669
  ident: bb0210
  article-title: Delineation of 3D dose-time-toxicity in human pulmonary epithelial Beas-2B cells induced by decabromodiphenyl ether (BDE209)
  publication-title: Environ. Pollut.
– volume: 35
  start-page: 35
  year: 2003
  end-page: 98
  ident: bb0215
  article-title: Interactions of herbs with cytochrome P450
  publication-title: Drug Metab. Rev.
– volume: 31
  start-page: 86
  year: 2011
  end-page: 94
  ident: bb0030
  article-title: Impaired oligodendroglial development by decabromodiphenyl ether in rat offspring after maternal exposure from mid-gestation through lactation
  publication-title: Reprod. Toxicol.
– volume: 24
  start-page: 940
  year: 1996
  end-page: 947
  ident: bb0045
  article-title: Inhibition and kinetics of cytochrome P4503A activity in microsomes from rat, human, and cdna-expressed human cytochrome P450
  publication-title: Drug Metab. Dispos.
– volume: 74
  start-page: 170
  year: 2015
  end-page: 180
  ident: bb0100
  article-title: Human health risk associated with brominated flame-retardants (BFRs)
  publication-title: Environ. Int.
– volume: 96
  start-page: 82
  year: 2016
  end-page: 90
  ident: bb0140
  article-title: Novel brominated flame retardants in food composites and human milk from the Chinese Total diet study in 2011: concentrations and a dietary exposure assessment
  publication-title: Environ. Int.
– volume: 31
  start-page: 12
  year: 2018
  end-page: 22
  ident: bb0160
  article-title: Endocrine disruption activity of 30-day dietary exposure to Decabromodiphenyl ethane in Balb/C mouse
  publication-title: Biomed. Environ. Sci.
– volume: 223
  start-page: 675
  year: 2019
  end-page: 685
  ident: bb0070
  article-title: Cardiovascular toxicity of decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats
  publication-title: Chemosphere
– volume: 219
  start-page: 1
  year: 2016
  end-page: 23
  ident: bb0025
  article-title: Brominated flame retardants - exposure and risk assessment for the general population
  publication-title: Int. J. Hyg. Environ. Health
– volume: 34
  start-page: 1
  year: 2012
  end-page: 13
  ident: bb0175
  article-title: Cytochrome P450 (CYP) in fish
  publication-title: Environ. Toxicol. Pharmacol.
– volume: 70
  start-page: 640
  year: 2008
  end-page: 647
  ident: bb0170
  article-title: Developmental exposure to decabromodiphenyl ether (PBDE 209): effects on thyroid hormone and hepatic enzyme activity in male mouse offspring
  publication-title: Chemosphere
– volume: 231
  start-page: 385
  year: 2019
  end-page: 392
  ident: bb0180
  article-title: Occupational exposure to polybrominated diphenyl ethers or decabromodiphenyl ethane during chemical manufacturing: occurrence and health risk assessment
  publication-title: Chemosphere
– volume: 275
  start-page: 96
  year: 2014
  end-page: 102
  ident: bb0110
  article-title: Spectroscopic behavior of saytex 8010 under UV-visible light and comparative thermal study with some flame bromine retardant
  publication-title: J. Photoch. Photobio. A
– volume: 198
  start-page: 522
  year: 2018
  end-page: 536
  ident: bb0145
  article-title: Legacy and emerging brominated flame retardants in China: a review on food and human milk contamination, human dietary exposure and risk assessment
  publication-title: Chemosphere
– volume: 272
  start-page: 77
  year: 2013
  end-page: 85
  ident: bb0040
  article-title: Role of the nuclear xenobiotic receptors CAR and PXR in induction of cytochromes P450 by non-dioxinlike polychlorinated biphenyls in cultured rat hepatocytes
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 446
  start-page: 101
  year: 2006
  end-page: 110
  ident: bb0065
  article-title: Generation of specific antibodies and their use to characterize sex differences in four rat P450 3A enzymes following vehicle and pregnenolone 16alpha-carbonitrile treatment
  publication-title: Arch. Biochem. Biophys.
– volume: 222
  start-page: 849
  year: 2019
  end-page: 855
  ident: bb0220
  article-title: The effects of decabromodiphenyl ether on glycolipid metabolism and related signaling pathways in mice
  publication-title: Chemosphere
– volume: 272
  start-page: 77
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135783_bb0040
  article-title: Role of the nuclear xenobiotic receptors CAR and PXR in induction of cytochromes P450 by non-dioxinlike polychlorinated biphenyls in cultured rat hepatocytes
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2013.05.034
– volume: 54
  start-page: 91
  year: 2009
  ident: 10.1016/j.scitotenv.2019.135783_bb0055
  article-title: Neurodevelopmental effects of decabromodiphenyl ether (BDE-209) and implications for the reference dose
  publication-title: Regul. Toxicol. Pharmacol.
  doi: 10.1016/j.yrtph.2009.02.006
– volume: 29
  start-page: 1129
  year: 1997
  ident: 10.1016/j.scitotenv.2019.135783_bb0105
  article-title: Regulation of cytochromes P450 during inflammation and infection
  publication-title: Drug Metab. Rev.
  doi: 10.3109/03602539709002246
– volume: 122
  start-page: 265
  year: 2011
  ident: 10.1016/j.scitotenv.2019.135783_bb0115
  article-title: Accumulation and debromination of decabromodiphenyl ether (BDE-209) in juvenile fathead minnows (Pimephales promelas) induces thyroid disruption and liver alterations
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfr105
– volume: 32
  start-page: 49
  year: 2000
  ident: 10.1016/j.scitotenv.2019.135783_bb0150
  article-title: Hepatic cytochrome P450 down-regulation during aseptic inflammation in the mouse is interleukin 6 dependent
  publication-title: Hepatology
  doi: 10.1053/jhep.2000.8532
– volume: 243
  start-page: 661
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135783_bb0210
  article-title: Delineation of 3D dose-time-toxicity in human pulmonary epithelial Beas-2B cells induced by decabromodiphenyl ether (BDE209)
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.09.047
– volume: 418
  start-page: 70
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135783_bb0010
  article-title: Maternal exposure to low dose BDE209 and Pb mixture induced neurobehavioral anomalies in C57BL/6 male offspring
  publication-title: Toxicology
  doi: 10.1016/j.tox.2019.02.016
– volume: 166
  start-page: 66
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135783_bb0195
  article-title: Inhibitory effects of cytochrome P450 enzymes CYP1A2, CYP2A6, CYP2E1 and CYP3A4 by extracts and alkaloids of Gelsemium elegans roots
  publication-title: J. Ethnopharmacol.
  doi: 10.1016/j.jep.2015.03.002
– volume: 34
  start-page: 1
  year: 2012
  ident: 10.1016/j.scitotenv.2019.135783_bb0175
  article-title: Cytochrome P450 (CYP) in fish
  publication-title: Environ. Toxicol. Pharmacol.
  doi: 10.1016/j.etap.2012.02.004
– volume: 76
  start-page: 46
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135783_bb0155
  article-title: Differential protein expression profiles in anterior gills of Eriocheir sinensis during acclimation to cadmium
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2005.09.006
– volume: 112
  start-page: 9
  year: 2004
  ident: 10.1016/j.scitotenv.2019.135783_bb0005
  article-title: Brominated flame retardants: cause for concern?
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.6559
– volume: 275
  start-page: 96
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135783_bb0110
  article-title: Spectroscopic behavior of saytex 8010 under UV-visible light and comparative thermal study with some flame bromine retardant
  publication-title: J. Photoch. Photobio. A
  doi: 10.1016/j.jphotochem.2013.11.008
– volume: 23
  start-page: 7519
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135783_bb0035
  article-title: Pregnane X receptor and constitutive androstane receptor modulate differently CYP3A-mediated metabolism in early- and late-stage cholestasis
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v23.i42.7519
– volume: 198
  start-page: 522
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135783_bb0145
  article-title: Legacy and emerging brominated flame retardants in China: a review on food and human milk contamination, human dietary exposure and risk assessment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.01.161
– volume: 24
  start-page: 940
  year: 1996
  ident: 10.1016/j.scitotenv.2019.135783_bb0045
  article-title: Inhibition and kinetics of cytochrome P4503A activity in microsomes from rat, human, and cdna-expressed human cytochrome P450
  publication-title: Drug Metab. Dispos.
– volume: 386
  start-page: 103
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135783_bb0135
  article-title: Maternal exposure to polybrominated diphenyl ether (BDE-209) during lactation affects germ cell survival with altered testicular glucose homeostasis and oxidative status through down-regulation of Cx43 and p27Kip1 in prepubertal mice offspring
  publication-title: Toxicology
  doi: 10.1016/j.tox.2017.05.016
– volume: 174
  start-page: 224
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135783_bb0200
  article-title: A comparison of the thyroid disruption induced by decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.02.080
– volume: 115
  start-page: 9
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135783_bb0225
  article-title: Association between persistent endocrine-disrupting chemicals (PBDEs, OH-PBDEs, PCBs, and PFASs) and biomarkers of inflammation and cellular aging during pregnancy and postpartum
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2018.02.044
– volume: 171
  start-page: 485
  year: 2017
  ident: 10.1016/j.scitotenv.2019.135783_bb0095
  article-title: Differential protein expression and localization of CYP450 enzymes in three species of earthworm; is this a reflection of environmental adaptation?
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.12.052
– volume: 3
  start-page: 56
  year: 2008
  ident: 10.1016/j.scitotenv.2019.135783_bb0120
  article-title: Enzyme inhibition and induction in liver disease
  publication-title: Curr. Clin. Pharmacol.
  doi: 10.2174/157488408783329896
– volume: 96
  start-page: 82
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135783_bb0140
  article-title: Novel brominated flame retardants in food composites and human milk from the Chinese Total diet study in 2011: concentrations and a dietary exposure assessment
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2016.09.005
– volume: 35
  start-page: 35
  year: 2003
  ident: 10.1016/j.scitotenv.2019.135783_bb0215
  article-title: Interactions of herbs with cytochrome P450
  publication-title: Drug Metab. Rev.
  doi: 10.1081/DMR-120018248
– volume: 46
  start-page: 717
  year: 2002
  ident: 10.1016/j.scitotenv.2019.135783_bb0060
  article-title: A comparison of the properties of the major commercial PBDPO/PBDE product to those of major PBB and PCB products
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(01)00236-3
– volume: 490
  start-page: 445
  year: 2014
  ident: 10.1016/j.scitotenv.2019.135783_bb0130
  article-title: Integrated biomarker analysis of chlorpyrifos metabolism and toxicity in the earthworm Aporrectodea caliginosa
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.05.037
– volume: 35
  start-page: 535
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135783_bb0080
  article-title: Evaluation of liver and thyroid toxicity in Sprague-Dawley rats after exposure to polybrominated diphenyl ether BDE-209
  publication-title: J. Toxicol. Sci.
  doi: 10.2131/jts.35.535
– volume: 74
  start-page: 170
  year: 2015
  ident: 10.1016/j.scitotenv.2019.135783_bb0100
  article-title: Human health risk associated with brominated flame-retardants (BFRs)
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2014.09.006
– volume: 45
  start-page: 9750
  year: 2011
  ident: 10.1016/j.scitotenv.2019.135783_bb0085
  article-title: Impaired gas bladder inflation in zebrafish exposed to a novel heterocyclic brominated flame retardant tris(2,3-dibromopropyl) isocyanurate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202420g
– volume: 70
  start-page: 640
  year: 2008
  ident: 10.1016/j.scitotenv.2019.135783_bb0170
  article-title: Developmental exposure to decabromodiphenyl ether (PBDE 209): effects on thyroid hormone and hepatic enzyme activity in male mouse offspring
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.06.078
– volume: 224
  start-page: 33
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135783_bb0165
  article-title: Postnatal exposure of the male mouse to 2,2′,3,3′,4,4′,5,5′,6,6′-decabrominated diphenyl ether: decreased epididymal sperm functions without alterations in DNA content and histology in testis
  publication-title: Toxicology
  doi: 10.1016/j.tox.2006.04.003
– volume: 219
  start-page: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135783_bb0025
  article-title: Brominated flame retardants - exposure and risk assessment for the general population
  publication-title: Int. J. Hyg. Environ. Health
  doi: 10.1016/j.ijheh.2015.08.004
– volume: 222
  start-page: 849
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135783_bb0220
  article-title: The effects of decabromodiphenyl ether on glycolipid metabolism and related signaling pathways in mice
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.02.003
– volume: 231
  start-page: 385
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135783_bb0180
  article-title: Occupational exposure to polybrominated diphenyl ethers or decabromodiphenyl ethane during chemical manufacturing: occurrence and health risk assessment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.05.165
– volume: 23
  start-page: 14889
  year: 2016
  ident: 10.1016/j.scitotenv.2019.135783_bb0090
  article-title: Brominated flame retardants in the hair and serum samples from an e-waste recycling area in southeastern China: the possibility of using hair for biomonitoring
  publication-title: Environ. Sci. Pollut. Res. Int.
  doi: 10.1007/s11356-016-6491-x
– volume: 111
  start-page: 1327
  year: 2009
  ident: 10.1016/j.scitotenv.2019.135783_bb0020
  article-title: Mechanisms involved in the neurotoxic effects of environmental toxicants such as polychlorinated biphenyls and brominated flame retardants
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2009.06427.x
– volume: 93
  start-page: 331
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135783_bb0190
  article-title: CYP1C1 messenger RNA expression is inducible by benzo[a]pyrene in Fundulus heteroclitus embryos and adults
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/kfl072
– volume: 446
  start-page: 101
  year: 2006
  ident: 10.1016/j.scitotenv.2019.135783_bb0065
  article-title: Generation of specific antibodies and their use to characterize sex differences in four rat P450 3A enzymes following vehicle and pregnenolone 16alpha-carbonitrile treatment
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/j.abb.2005.11.019
– volume: 31
  start-page: 12
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135783_bb0160
  article-title: Endocrine disruption activity of 30-day dietary exposure to Decabromodiphenyl ethane in Balb/C mouse
  publication-title: Biomed. Environ. Sci.
– volume: 31
  start-page: 86
  year: 2011
  ident: 10.1016/j.scitotenv.2019.135783_bb0030
  article-title: Impaired oligodendroglial development by decabromodiphenyl ether in rat offspring after maternal exposure from mid-gestation through lactation
  publication-title: Reprod. Toxicol.
  doi: 10.1016/j.reprotox.2010.09.003
– volume: 273
  start-page: 390
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135783_bb0075
  article-title: Mode of action of ethyl tertiary-butyl ether hepatotumorigenicity in the rat: evidence for a role of oxidative stress via activation of CAR, PXR and PPAR signaling pathways
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2013.09.016
– volume: 183
  start-page: 55
  year: 2004
  ident: 10.1016/j.scitotenv.2019.135783_bb0050
  article-title: Polybrominated diphenyl ethers: human tissue levels and toxicology
  publication-title: Rev. Environ. Contam. Toxicol.
– volume: 203
  start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2019.135783_bb0125
  article-title: Establishment of pantropic spotted dolphin (Stenella attenuata) fibroblast cell line and potential influence of polybrominated diphenyl ethers (PBDEs) on cytokines response
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2018.07.017
– volume: 223
  start-page: 675
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135783_bb0070
  article-title: Cardiovascular toxicity of decabrominated diphenyl ethers (BDE-209) and decabromodiphenyl ethane (DBDPE) in rats
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.02.115
– volume: 44
  start-page: 5655
  year: 2010
  ident: 10.1016/j.scitotenv.2019.135783_bb0185
  article-title: Comparative tissue distribution, biotransformation and associated biological effects by decabromodiphenyl ethane and decabrominated diphenyl ether in male rats after a 90-day oral exposure study
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101158e
– volume: 22
  start-page: 1101
  year: 2013
  ident: 10.1016/j.scitotenv.2019.135783_bb0015
  article-title: Oxidative stress biomarkers in freshwater fish Carassius auratus exposed to decabromodiphenyl ether and ethane, or their mixture
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-013-1097-2
– volume: 308
  start-page: 185
  year: 2019
  ident: 10.1016/j.scitotenv.2019.135783_bb0205
  article-title: CYP3A suppression during diet-induced nonalcoholic fatty liver disease is independent of PXR regulation
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2019.05.038
SSID ssj0000781
Score 2.5799265
Snippet Decabromodiphenyl ether (BDE-209) and its substitute decabromodiphenyl ethane (DBDPE) are heavily used in various industrial products as flame retardant. They...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 135783
SubjectTerms adverse effects
androstanes
animal models
Animals
bilirubin
blood chemistry
blood serum
body weight
Brominated flame retardants
Bromobenzenes
Chemical and Drug Induced Liver Injury
cytochrome P-450
Decabromodiphenyl ethane
Decabromodiphenyl ether
Flame Retardants
gamma-glutamyltransferase
glucose
Halogenated Diphenyl Ethers
Hepatotoxicity
humans
inflammation
laboratory animals
liver
metabolism
oxidative stress
pregnanes
Rat
Rats
Rats, Sprague-Dawley
Title Hepatotoxicity of decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (BDE-209) in 28-day exposed Sprague-Dawley rats
URI https://dx.doi.org/10.1016/j.scitotenv.2019.135783
https://www.ncbi.nlm.nih.gov/pubmed/31787299
https://www.proquest.com/docview/2320642120
https://www.proquest.com/docview/2388780529
Volume 705
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFH-UiiCI6Grt-lFG8NAeYrOTmcyMt7a7ZXWxiFrcW5jMTCRSkmU_tHvp3-6bTLKlYO3BUyDMhEfe1-_NvA-At4waYQQGOZo5FmH85SItqI0K5yQrONWiaV_86Swdn7OPUz7dgpOuFsanVba2P9j0xlq3bw7bv3k4K0tf48ukSpVACMKFkFNfwc6ET-t7d3Wd5uGb2YRbZlRsXH0jxwu_u6wRm_7yOV7Kz4AQMrnNQ92GQBtPdPoYHrUQkhwFKp_Alqt6cD8MlVz3YGd0XbuGy1rlXfTgYTiiI6Hy6ClcjdEVIWH1ZYkErkldEOuMzn2Cni197tf6gjh_tO7I_vB4-Hl0QHRl_77Izcn-8XCE6qAOSFkRKiOr18RdzuqFs-TrbK5_rFw01L_RChEUu8UzOD8dfTsZR-04hsgwES-j3MhUG0REVnIZG6u4ooVAd8-c72LPEFkoxjRVA5rmcWG0xeBSFDYeOOpSTZMd2K7qyu0CyfMccQZPqEUEYQdGi0QKJ9GjxkluOe9D2rEgM22vcj8y4yLrktJ-ZhveZZ53WeBdH-LNxllo13H3lvcdj7MbkpehU7l785tOKjLUS3_ZgkypV4sMkWpTREzjf61BE-9nSqg-PA8itaEacZ3EwEe9-B_yXsID6s8HfAk-fwXby_nKvUYQtcz3Gi3Zg3tHHybjM_-cfPk--QO6VBzp
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SDaWBUtpt02yfKvSQHEy8smxJvSXZDU6TLIUmsDchS3JwCfayjzZ76W_vaG1vCDTNoVejMYPn9Y08D4DPjBpuOCY5mjkWYP7lAs2pDXLnBMtjqvlqfPH5KEkv2ddxPN6Ao7YXxpdVNr6_9ukrb9082W--5v6kKHyPLxMykRwhSMy5GD-CTT-dinVg8-DkNB3dOmQu6sV5DG0bCe6UeeGr5xXC05--zEv6NRBcRPcFqftA6CoYHT-HZw2KJAc1oy9gw5VdeFzvlVx2YXt4276Gxxr7nXXhaX1LR-rmo5fwO8VohIxVNwUyuCRVTqwzOvM1erbw5V_La-L87boju4PDwbfhHtGl_fshNyW7h4MhWoTcI0VJqAisXhJ3M6lmzpLvk6m-WrhgoH-hIyKoebNXcHk8vDhKg2YjQ2AYD-dBZkSiDYIiK2IRGitjSXOOEZ85P8ieIbiQjGkq-zTJwtxoi_klz23Yd9Qlmkbb0Cmr0u0AybIMoUYcUYsgwvaN5pHgTmBQDaPMxnEPklYEyjTjyv3WjGvV1qX9UGvZKS87VcuuB-GacFJP7HiY5EsrY3VH-RTGlYeJP7VaodA0_f8WFEq1mCkEq6s-Yhr-6wx6eb9WQvbgda1Sa64R2gnMfeSb_2HvIzxJL87P1NnJ6PQtbFF_XeA78uN30JlPF-49Yqp59qGxmT9_vR33
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hepatotoxicity+of+decabromodiphenyl+ethane+%28DBDPE%29+and+decabromodiphenyl+ether+%28BDE-209%29+in+28-day+exposed+Sprague-Dawley+rats&rft.jtitle=The+Science+of+the+total+environment&rft.au=Sun%2C+Yanmin&rft.au=Wang%2C+Yuwei&rft.au=Liang%2C+Baolu&rft.au=Chen%2C+Tian&rft.date=2020-02-25&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=705&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.135783&rft.externalDocID=S004896971935778X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon