Robustness to secondary extinctions: Comparing trait-based sequential deletions in static and dynamic food webs

The loss of species from ecological communities can unleash a cascade of secondary extinctions, the risk and extent of which are likely to depend on the traits of the species that are lost from the community. To identify species traits that have the greatest impact on food web robustness to species...

Full description

Saved in:
Bibliographic Details
Published inBasic and applied ecology Vol. 12; no. 7; pp. 571 - 580
Main Authors Curtsdotter, Alva, Binzer, Amrei, Brose, Ulrich, de Castro, Francisco, Ebenman, Bo, Eklöf, Anna, Riede, Jens O., Thierry, Aaron, Rall, Björn C.
Format Journal Article
LanguageEnglish
Published Elsevier GmbH 01.11.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The loss of species from ecological communities can unleash a cascade of secondary extinctions, the risk and extent of which are likely to depend on the traits of the species that are lost from the community. To identify species traits that have the greatest impact on food web robustness to species loss we here subject allometrically scaled, dynamical food web models to several deletion sequences based on species’ connectivity, generality, vulnerability or body mass. Further, to evaluate the relative importance of dynamical to topological effects we compare robustness between dynamical and purely topological models. This comparison reveals that the topological approach overestimates robustness in general and for certain sequences in particular. Top-down directed sequences have no or very low impact on robustness in topological analyses, while the dynamical analysis reveals that they may be as important as high-impact bottom-up directed sequences. Moreover, there are no deletion sequences that result, on average, in no or very few secondary extinctions in the dynamical approach. Instead, the least detrimental sequence in the dynamical approach yields an average robustness similar to the most detrimental (non-basal) deletion sequence in the topological approach. Hence, a topological analysis may lead to erroneous conclusions concerning both the relative and the absolute importance of different species traits for robustness. The dynamical sequential deletion analysis shows that food webs are least robust to the loss of species that have many trophic links or that occupy low trophic levels. In contrast to previous studies we can infer, albeit indirectly, that secondary extinctions were triggered by both bottom-up and top-down cascades. Der Verlust von Arten in ökologischen Gemeinschaften kann eine Kaskade von sekundären Aussterbeereignissen nach sich ziehen. Das Risiko für das Auftreten und Ausmaß solcher Kaskaden hängt möglicherweise von den Eigenschaften der ausgestorbenen Art ab. Um die Eigenschaften mit dem größten Einfluss auf die Robustheit von Nahrungsnetzen zu identifizieren, nutzen wir allometrisch skalierte, dynamische Nahrungsnetzmodelle und entfernen Arten in verschiedenen, auf der Konnektivität, Generalität oder Vulnerabilität der Art beruhenden Sequenzen. Des Weiteren vergleichen wir Ergebnisse topologischer und dynamischer Modelle, um die verschiedenen Effekte von Topologie und Dynamik auf die Nahrungsnetzrobustheit einschätzen zu können. Dieser Vergleich ergab, dass der topologische Ansatz die Robustheit von Nahrungsnetzen generell und besonders in einigen Sequenzen überschätzt. Im topologischen Modell haben “top-down” Sequenzen keine oder nur sehr wenige Auswirkungen auf die Robustheit der Netze, im dynamischen Modell hingegen können sie einen ebenso großen Effekt haben wie “bottom-up” Sequenzen. Außerdem gibt es im dynamischen Ansatz keine Aussterbe-Sequenzen, die fast oder gar keine sekundären Aussterbeereignisse auslösen. Stattdessen zeigt die am wenigsten schädliche Sequenz im dynamischen Ansatz eine ähnliche Robustheit wie die schädlichste (nicht basale) Sequenz im topologischen Ansatz. Demzufolge kann ein rein topologischer Ansatz zu falschen Rückschlüssen führen, was sowohl die relative als auch die absolute Bedeutung verschiedener Arteigenschaften auf die Robustheit von Nahrungsnetzen angeht. Der dynamische Ansatz zeigt, dass Nahrungsnetze auf das Aussterben von Arten mit vielen trophischen Interaktionen oder niedrigem trophischem Level am wenigsten robust reagieren. Im Gegensatz zu früheren Studien können wir, wenn auch nur indirekt, zeigen, dass sekundäre Aussterbeereignisse sowohl von “top-down” als auch von “bottom-up” Kaskaden ausgelöst werden.
AbstractList The loss of species from ecological communities can unleash a cascade of secondary extinctions, the risk and extent of which are likely to depend on the traits of the species that are lost from the community. To identify species traits that have the greatest impact on food web robustness to species loss we here subject allometrically scaled, dynamical food web models to several deletion sequences based on species’ connectivity, generality, vulnerability or body mass. Further, to evaluate the relative importance of dynamical to topological effects we compare robustness between dynamical and purely topological models. This comparison reveals that the topological approach overestimates robustness in general and for certain sequences in particular. Top-down directed sequences have no or very low impact on robustness in topological analyses, while the dynamical analysis reveals that they may be as important as high-impact bottom-up directed sequences. Moreover, there are no deletion sequences that result, on average, in no or very few secondary extinctions in the dynamical approach. Instead, the least detrimental sequence in the dynamical approach yields an average robustness similar to the most detrimental (non-basal) deletion sequence in the topological approach. Hence, a topological analysis may lead to erroneous conclusions concerning both the relative and the absolute importance of different species traits for robustness. The dynamical sequential deletion analysis shows that food webs are least robust to the loss of species that have many trophic links or that occupy low trophic levels. In contrast to previous studies we can infer, albeit indirectly, that secondary extinctions were triggered by both bottom-up and top-down cascades.
The loss of species from ecological communities can unleash a cascade of secondary extinctions, the risk and extent of which are likely to depend on the traits of the species that are lost from the community. To identify species traits that have the greatest impact on food web robustness to species loss we here subject allometrically scaled, dynamical food web models to several deletion sequences based on species’ connectivity, generality, vulnerability or body mass. Further, to evaluate the relative importance of dynamical to topological effects we compare robustness between dynamical and purely topological models. This comparison reveals that the topological approach overestimates robustness in general and for certain sequences in particular. Top-down directed sequences have no or very low impact on robustness in topological analyses, while the dynamical analysis reveals that they may be as important as high-impact bottom-up directed sequences. Moreover, there are no deletion sequences that result, on average, in no or very few secondary extinctions in the dynamical approach. Instead, the least detrimental sequence in the dynamical approach yields an average robustness similar to the most detrimental (non-basal) deletion sequence in the topological approach. Hence, a topological analysis may lead to erroneous conclusions concerning both the relative and the absolute importance of different species traits for robustness. The dynamical sequential deletion analysis shows that food webs are least robust to the loss of species that have many trophic links or that occupy low trophic levels. In contrast to previous studies we can infer, albeit indirectly, that secondary extinctions were triggered by both bottom-up and top-down cascades. Der Verlust von Arten in ökologischen Gemeinschaften kann eine Kaskade von sekundären Aussterbeereignissen nach sich ziehen. Das Risiko für das Auftreten und Ausmaß solcher Kaskaden hängt möglicherweise von den Eigenschaften der ausgestorbenen Art ab. Um die Eigenschaften mit dem größten Einfluss auf die Robustheit von Nahrungsnetzen zu identifizieren, nutzen wir allometrisch skalierte, dynamische Nahrungsnetzmodelle und entfernen Arten in verschiedenen, auf der Konnektivität, Generalität oder Vulnerabilität der Art beruhenden Sequenzen. Des Weiteren vergleichen wir Ergebnisse topologischer und dynamischer Modelle, um die verschiedenen Effekte von Topologie und Dynamik auf die Nahrungsnetzrobustheit einschätzen zu können. Dieser Vergleich ergab, dass der topologische Ansatz die Robustheit von Nahrungsnetzen generell und besonders in einigen Sequenzen überschätzt. Im topologischen Modell haben “top-down” Sequenzen keine oder nur sehr wenige Auswirkungen auf die Robustheit der Netze, im dynamischen Modell hingegen können sie einen ebenso großen Effekt haben wie “bottom-up” Sequenzen. Außerdem gibt es im dynamischen Ansatz keine Aussterbe-Sequenzen, die fast oder gar keine sekundären Aussterbeereignisse auslösen. Stattdessen zeigt die am wenigsten schädliche Sequenz im dynamischen Ansatz eine ähnliche Robustheit wie die schädlichste (nicht basale) Sequenz im topologischen Ansatz. Demzufolge kann ein rein topologischer Ansatz zu falschen Rückschlüssen führen, was sowohl die relative als auch die absolute Bedeutung verschiedener Arteigenschaften auf die Robustheit von Nahrungsnetzen angeht. Der dynamische Ansatz zeigt, dass Nahrungsnetze auf das Aussterben von Arten mit vielen trophischen Interaktionen oder niedrigem trophischem Level am wenigsten robust reagieren. Im Gegensatz zu früheren Studien können wir, wenn auch nur indirekt, zeigen, dass sekundäre Aussterbeereignisse sowohl von “top-down” als auch von “bottom-up” Kaskaden ausgelöst werden.
The loss of species from ecological communities can unleash a cascade of secondary extinctions, the risk and extent of which are likely to depend on the traits of the species that are lost from the community. To identify species traits that have the greatest impact on food web robustness to species loss we here subject allometrically scaled, dynamical food web models to several deletion sequences based on species' connectivity, generality, vulnerability or body mass. Further, to evaluate the relative importance of dynamical to topological effects we compare robustness between dynamical and purely topological models. This comparison reveals that the topological approach overestimates robustness in general and for certain sequences in particular. Top-down directed sequences have no or very low impact on robustness in topological analyses, while the dynamical analysis reveals that they may be as important as high-impact bottom-up directed sequences. Moreover, there are no deletion sequences that result, on average, in no or very few secondary extinctions in the dynamical approach. Instead, the least detrimental sequence in the dynamical approach yields an average robustness similar to the most detrimental (non-basal) deletion sequence in the topological approach. Hence, a topological analysis may lead to erroneous conclusions concerning both the relative and the absolute importance of different species traits for robustness. The dynamical sequential deletion analysis shows that food webs are least robust to the loss of species that have many trophic links or that occupy low trophic levels. In contrast to previous studies we can infer, albeit indirectly, that secondary extinctions were triggered by both bottom-up and top-down cascades.Original Abstract: Der Verlust von Arten in okologischen Gemeinschaften kann eine Kaskade von sekundaeren Aussterbeereignissen nach sich ziehen. Das Risiko fuer das Auftreten und Ausmas solcher Kaskaden haengt moglicherweise von den Eigenschaften der ausgestorbenen Art ab. Um die Eigenschaften mit dem grosten Einfluss auf die Robustheit von Nahrungsnetzen zu identifizieren, nutzen wir allometrisch skalierte, dynamische Nahrungsnetzmodelle und entfernen Arten in verschiedenen, auf der Konnektivitaet, Generalitaet oder Vulnerabilitaet der Art beruhenden Sequenzen. Des Weiteren vergleichen wir Ergebnisse topologischer und dynamischer Modelle, um die verschiedenen Effekte von Topologie und Dynamik auf die Nahrungsnetzrobustheit einschaetzen zu konnen. Dieser Vergleich ergab, dass der topologische Ansatz die Robustheit von Nahrungsnetzen generell und besonders in einigen Sequenzen ueberschaetzt. Im topologischen Modell haben "top-down" Sequenzen keine oder nur sehr wenige Auswirkungen auf die Robustheit der Netze, im dynamischen Modell hingegen konnen sie einen ebenso grosen Effekt haben wie "bottom-up" Sequenzen. Auserdem gibt es im dynamischen Ansatz keine Aussterbe-Sequenzen, die fast oder gar keine sekundaeren Aussterbeereignisse auslosen. Stattdessen zeigt die am wenigsten schaedliche Sequenz im dynamischen Ansatz eine aehnliche Robustheit wie die schaedlichste (nicht basale) Sequenz im topologischen Ansatz. Demzufolge kann ein rein topologischer Ansatz zu falschen Rueckschluessen fuehren, was sowohl die relative als auch die absolute Bedeutung verschiedener Arteigenschaften auf die Robustheit von Nahrungsnetzen angeht. Der dynamische Ansatz zeigt, dass Nahrungsnetze auf das Aussterben von Arten mit vielen trophischen Interaktionen oder niedrigem trophischem Level am wenigsten robust reagieren. Im Gegensatz zu frueheren Studien konnen wir, wenn auch nur indirekt, zeigen, dass sekundaere Aussterbeereignisse sowohl von "top-down" als auch von "bottom-up" Kaskaden ausgelost werden.
Author Brose, Ulrich
Eklöf, Anna
de Castro, Francisco
Binzer, Amrei
Ebenman, Bo
Thierry, Aaron
Rall, Björn C.
Riede, Jens O.
Curtsdotter, Alva
Author_xml – sequence: 1
  givenname: Alva
  surname: Curtsdotter
  fullname: Curtsdotter, Alva
  email: alva.curtsdotter@liu.se
  organization: Department of Physics, Chemistry and Biology, Linköping University, Sweden
– sequence: 2
  givenname: Amrei
  surname: Binzer
  fullname: Binzer, Amrei
  organization: J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August University, Göttingen, Germany
– sequence: 3
  givenname: Ulrich
  surname: Brose
  fullname: Brose, Ulrich
  organization: J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August University, Göttingen, Germany
– sequence: 4
  givenname: Francisco
  surname: de Castro
  fullname: de Castro, Francisco
  organization: Department of Ecology and Ecological Modelling, University of Potsdam, Germany
– sequence: 5
  givenname: Bo
  surname: Ebenman
  fullname: Ebenman, Bo
  organization: Department of Physics, Chemistry and Biology, Linköping University, Sweden
– sequence: 6
  givenname: Anna
  surname: Eklöf
  fullname: Eklöf, Anna
  organization: Department of Ecology and Evolution, University of Chicago, United States
– sequence: 7
  givenname: Jens O.
  surname: Riede
  fullname: Riede, Jens O.
  organization: J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August University, Göttingen, Germany
– sequence: 8
  givenname: Aaron
  surname: Thierry
  fullname: Thierry, Aaron
  organization: Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
– sequence: 9
  givenname: Björn C.
  surname: Rall
  fullname: Rall, Björn C.
  organization: J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August University, Göttingen, Germany
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-73611$$DView record from Swedish Publication Index
BookMark eNp9kT2P1DAQhlMcEvfBH6DBHRRsGCdeJ0Y0pwUOpJOQgKO1JvZk5VXWXmznjvv3OCyioNhqpnje-Xjfi-rMB09V9ZxDzYHLN7t6QKS6Ac5rUDVAf1adc9GqFe8Uf1pdpLQD4ALa_rwKX8Mwp-wpJZYDS2SCtxgfGf3Kzpvsgk9v2SbsDxid37Ic0eXVgIlsgX_O5LPDiVma6A_LnGcpY3aGobfMPnrcl34MwbIHGtJV9WTEKdGzv_Wyuvv44fvm0-r2y83nzfXtyogOygIjRSMkylGh4L2UlgDBNLYT3Rp7IUbR0ICNsH1pcKRR2QEFAKpGdZLay-r1cW56oMM86EN0-_KWDuj0e_fjWoe41ZObdddKzgv-8ogfYihPpaz3LhmaJvQU5qQV51xCB20hX50kuZTtupdrLgvaHFETQ0qRxn9XcNBLVHqnl6j0EpUGpUtURdT_JzJu8TP4xfrptPTFUTpi0LiNLum7b82SNBSJgqYQ744EFevvHUWdjCNvyLpIJmsb3KkFvwF-k76R
CitedBy_id crossref_primary_10_1098_rstb_2023_0181
crossref_primary_10_1111_2041_210X_12062
crossref_primary_10_1111_ele_13995
crossref_primary_10_1002_ecs2_1518
crossref_primary_10_1002_env_2709
crossref_primary_10_1111_ecog_01937
crossref_primary_10_1016_j_jtbi_2022_111027
crossref_primary_10_1016_j_fooweb_2018_e00093
crossref_primary_10_1016_j_scitotenv_2023_161910
crossref_primary_10_1038_srep13185
crossref_primary_10_1111_ele_14321
crossref_primary_10_1111_1365_2656_13547
crossref_primary_10_1111_1365_2435_12839
crossref_primary_10_1111_2041_210X_14126
crossref_primary_10_1111_maec_12407
crossref_primary_10_1016_j_ecolmodel_2012_11_024
crossref_primary_10_1098_rsbl_2012_0572
crossref_primary_10_1111_1365_2435_13642
crossref_primary_10_1111_oik_09214
crossref_primary_10_1016_j_tree_2022_06_004
crossref_primary_10_1016_j_tree_2016_02_006
crossref_primary_10_1038_ncomms10245
crossref_primary_10_1002_ece3_10930
crossref_primary_10_1111_ele_14533
crossref_primary_10_1007_s10021_021_00665_1
crossref_primary_10_3354_meps14062
crossref_primary_10_1111_oik_00865
crossref_primary_10_1111_brv_12250
crossref_primary_10_1016_j_physa_2014_06_079
crossref_primary_10_1098_rspb_2015_1126
crossref_primary_10_1088_1742_6596_1334_1_012004
crossref_primary_10_1098_rspb_2019_1177
crossref_primary_10_1016_j_ecolind_2016_03_045
crossref_primary_10_1111_1365_2656_12626
crossref_primary_10_1016_j_ecolmodel_2022_110150
crossref_primary_10_1016_j_baae_2011_09_005
crossref_primary_10_1111_ele_12638
crossref_primary_10_1016_j_baae_2011_09_006
crossref_primary_10_1111_ele_13607
crossref_primary_10_1111_gcb_17422
crossref_primary_10_1016_j_baae_2011_09_002
crossref_primary_10_1038_srep35904
crossref_primary_10_1016_j_mbs_2016_12_006
crossref_primary_10_1007_s12080_012_0166_0
crossref_primary_10_1371_journal_pone_0285575
crossref_primary_10_1016_j_biocon_2025_111050
crossref_primary_10_1016_j_ecolmodel_2012_12_011
crossref_primary_10_1038_s41467_021_21824_x
crossref_primary_10_1016_j_ecocom_2014_09_004
crossref_primary_10_1016_j_ecolmodel_2019_108876
crossref_primary_10_1017_S0376892918000334
crossref_primary_10_1111_oik_09436
crossref_primary_10_1111_oik_01279
crossref_primary_10_1016_j_tree_2018_07_003
crossref_primary_10_1111_j_1755_263X_2012_00262_x
crossref_primary_10_1016_j_ecolmodel_2016_02_009
crossref_primary_10_1038_s41598_021_81392_4
crossref_primary_10_1890_14_1526_1
crossref_primary_10_1111_oik_08541
crossref_primary_10_1016_j_ecolmodel_2017_03_020
crossref_primary_10_1098_rstb_2012_0232
crossref_primary_10_1016_j_ecolind_2019_105877
crossref_primary_10_1016_j_tree_2017_12_007
crossref_primary_10_1016_j_ecoser_2012_07_002
crossref_primary_10_1109_MCAS_2023_3236659
crossref_primary_10_1111_ele_12096
crossref_primary_10_1016_j_fooweb_2015_07_002
crossref_primary_10_1016_j_ecocom_2024_101091
crossref_primary_10_1016_j_fooweb_2020_e00166
crossref_primary_10_7717_peerj_5531
crossref_primary_10_1016_j_gecco_2022_e02048
crossref_primary_10_1111_oik_01588
crossref_primary_10_1016_j_jtbi_2013_04_033
Cites_doi 10.1111/j.1600-0706.2010.18862.x
10.1140/epjb/e2004-00122-1
10.1111/j.1365-2656.2011.01805.x
10.1890/03-8018
10.1111/j.2006.0030-1299.15007.x
10.1016/j.jtbi.2004.05.009
10.1098/rspb.2008.0718
10.1111/j.2007.0030-1299.15491.x
10.1038/nature06359
10.1890/04-1590
10.1111/j.1600-0706.2010.18860.x
10.1111/j.1461-0248.2010.01485.x
10.1126/science.1116030
10.1111/j.1365-2656.2010.01787.x
10.1086/285580
10.1111/j.1365-2656.2006.01041.x
10.1098/rspb.2006.3711
10.1111/j.1461-0248.2006.00978.x
10.1038/nature09678
10.1098/rspb.2001.1767
10.1038/ncomms1163
10.1890/06-0971
10.1016/j.baae.2011.09.002
10.1111/j.1365-2656.2009.01622.x
10.1073/pnas.0806823106
10.2307/3544422
10.1016/j.baae.2011.09.006
10.1038/35004572
10.1038/nature01795
10.1046/j.1461-0248.2003.00494.x
10.1086/587068
10.1111/j.1461-0248.2010.01568.x
10.1098/rstb.2008.0219
10.1038/27427
10.1016/j.baae.2011.09.005
10.1038/nature02515
10.1086/282400
10.1111/j.1461-0248.2010.01558.x
10.1016/j.jtbi.2005.06.006
10.1111/j.1600-0706.2010.18864.x
10.1046/j.1461-0248.2002.00354.x
10.1046/j.1461-0248.2000.00130.x
10.1111/j.1461-0248.2006.01010.x
ContentType Journal Article
Copyright 2011 Gesellschaft für Ökologie
Copyright_xml – notice: 2011 Gesellschaft für Ökologie
DBID FBQ
AAYXX
CITATION
7S9
L.6
7SN
C1K
ABXSW
ADTPV
AOWAS
D8T
DG8
ZZAVC
DOI 10.1016/j.baae.2011.09.008
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
Ecology Abstracts
Environmental Sciences and Pollution Management
SWEPUB Linköpings universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Linköpings universitet
SwePub Articles full text
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
Ecology Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
AGRICOLA


Ecology Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EndPage 580
ExternalDocumentID oai_DiVA_org_liu_73611
10_1016_j_baae_2011_09_008
US201400101902
S1439179111001216
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFYP
ABGRD
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
CAG
CBWCG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SSA
SSJ
SSZ
T5K
Y6R
~G-
~KM
ABPIF
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
7S9
L.6
7SN
C1K
ABXSW
ADTPV
AOWAS
D8T
DG8
EFKBS
ZZAVC
ID FETCH-LOGICAL-c470t-bc64246a6f9a41866de0a0c2d7475a844f42eba24d842eafef9dba400a92976e3
IEDL.DBID .~1
ISSN 1439-1791
1618-0089
IngestDate Thu Aug 21 06:29:40 EDT 2025
Fri Jul 11 12:38:29 EDT 2025
Fri Jul 11 16:20:13 EDT 2025
Tue Jul 01 01:53:53 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
Tue Nov 07 23:23:55 EST 2023
Fri Feb 23 02:37:01 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Bottom-up effect
Generality
Keystone species
Stability
Top-down effect
Extinction cascades
Body size
Vulnerability
Species loss
Trophic interactions
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-bc64246a6f9a41866de0a0c2d7475a844f42eba24d842eafef9dba400a92976e3
Notes http://dx.doi.org/10.1016/j.baae.2011.09.008
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-73611
PQID 1663586516
PQPubID 24069
PageCount 10
ParticipantIDs swepub_primary_oai_DiVA_org_liu_73611
proquest_miscellaneous_911160703
proquest_miscellaneous_1663586516
crossref_primary_10_1016_j_baae_2011_09_008
crossref_citationtrail_10_1016_j_baae_2011_09_008
fao_agris_US201400101902
elsevier_sciencedirect_doi_10_1016_j_baae_2011_09_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-11-00
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-11-00
PublicationDecade 2010
PublicationTitle Basic and applied ecology
PublicationYear 2011
Publisher Elsevier GmbH
Publisher_xml – name: Elsevier GmbH
References Dunne, Williams (bib0075) 2009; 364
McCann, Hastings, Huxel (bib0125) 1998; 395
Rall, Guill, Brose (bib0150) 2008; 117
Ives, Cardinale (bib0110) 2004; 429
Berlow, Dunne, Martinez, Stark, Williams, Brose (bib0025) 2009; 106
Cardillo, Mace, Jones, Bielby, Bininda-Emonds, Sechrest (bib0055) 2005; 309
Johnson, Isaac, Fisher (bib0115) 2007; 274
de Visser, Freymann, Olff (bib0060) 2011; 80
Riede, Brose, Ebenman, Jacob, Thompson, Townsend (bib0160) 2011; 14
Binzer, Brose, Curtsdotter, Eklöf, Rall, Riede, de Castro (bib0030) 2011; 12
Dunne, Williams, Martinez (bib0080) 2002; 5
Berg, Christianou, Jonsson, Ebenman (bib0020) 2011; 120
Petchey, Eklöf, Borrvall, Ebenman (bib0140) 2008; 171
Vucic-Pestic, Rall, Kalinkat, Brose (bib0215) 2010; 79
Williams, Martinez (bib0225) 2004; 38
Ebenman, Law, Borrvall (bib0090) 2004; 85
Otto, Rall, Brose (bib0130) 2007; 450
Paine (bib0135) 1966; 100
Pimm (bib0145) 1980; 35
Digel, Riede, Brose (bib0065) 2011; 120
van Veen, van Holland, Godfray (bib0205) 2005; 86
Borrvall, Ebenman, Jonsson (bib0035) 2000; 3
Eklöf, Ebenman (bib0095) 2006; 75
Allesina, Bodini (bib0005) 2004; 230
Duffy (bib0070) 2003; 6
Rall, Kalinkat, Ott, Vucic-Pestic, Brose (bib0155) 2011; 120
Rudolf, Lafferty (bib0170) 2011; 14
Brose, Williams, Martinez (bib0050) 2006; 9
Sahasrabudhe, Motter (bib0175) 2011; 2
Brose (bib0045) 2008; 275
Staniczenko, Lewis, Jones, Reed-Tsochas (bib0190) 2010; 13
Thierry, Beckerman, Warren, Williams, Cole, Petchey (bib0200) 2011; 12
Vandermeer (bib0210) 2006; 238
Riede, Brose, de Castro, Rall, Binzer, Curtsdotter, Eklöf (bib0165) 2011; 12
Allesina, Pascual (bib0010) 2009
Estes, Palmisano (bib0105) 1974; 185
Srinivasan, Dunne, Harte, Martinez (bib0185) 2007; 88
Thebault, Huber, Loreau (bib0195) 2007; 116
Brook, Sodhl, Ng (bib0040) 2003; 424
Lande (bib0120) 1993; 142
Ebenman (bib0085) 2011; 80
Elmhagen, Rushton (bib0100) 2007; 10
Solé, Montoya (bib0180) 2001; 268
Williams, Martinez (bib0220) 2000; 404
Barnosky, Matzke, Tomiya, Wogan, Swartz, Quental (bib0015) 2011; 471
Riede (10.1016/j.baae.2011.09.008_bib0165) 2011; 12
Johnson (10.1016/j.baae.2011.09.008_bib0115) 2007; 274
Duffy (10.1016/j.baae.2011.09.008_bib0070) 2003; 6
Petchey (10.1016/j.baae.2011.09.008_bib0140) 2008; 171
van Veen (10.1016/j.baae.2011.09.008_bib0205) 2005; 86
Solé (10.1016/j.baae.2011.09.008_bib0180) 2001; 268
Ives (10.1016/j.baae.2011.09.008_bib0110) 2004; 429
Riede (10.1016/j.baae.2011.09.008_bib0160) 2011; 14
Ebenman (10.1016/j.baae.2011.09.008_bib0090) 2004; 85
de Visser (10.1016/j.baae.2011.09.008_bib0060) 2011; 80
Eklöf (10.1016/j.baae.2011.09.008_bib0095) 2006; 75
McCann (10.1016/j.baae.2011.09.008_bib0125) 1998; 395
Rall (10.1016/j.baae.2011.09.008_bib0155) 2011; 120
Sahasrabudhe (10.1016/j.baae.2011.09.008_bib0175) 2011; 2
Elmhagen (10.1016/j.baae.2011.09.008_bib0100) 2007; 10
Brook (10.1016/j.baae.2011.09.008_bib0040) 2003; 424
Berg (10.1016/j.baae.2011.09.008_bib0020) 2011; 120
Dunne (10.1016/j.baae.2011.09.008_bib0080) 2002; 5
Rall (10.1016/j.baae.2011.09.008_bib0150) 2008; 117
Cardillo (10.1016/j.baae.2011.09.008_bib0055) 2005; 309
Rudolf (10.1016/j.baae.2011.09.008_bib0170) 2011; 14
Ebenman (10.1016/j.baae.2011.09.008_bib0085) 2011; 80
Allesina (10.1016/j.baae.2011.09.008_bib0005) 2004; 230
Barnosky (10.1016/j.baae.2011.09.008_bib0015) 2011; 471
Brose (10.1016/j.baae.2011.09.008_bib0045) 2008; 275
Lande (10.1016/j.baae.2011.09.008_bib0120) 1993; 142
Staniczenko (10.1016/j.baae.2011.09.008_bib0190) 2010; 13
Thebault (10.1016/j.baae.2011.09.008_bib0195) 2007; 116
Pimm (10.1016/j.baae.2011.09.008_bib0145) 1980; 35
Borrvall (10.1016/j.baae.2011.09.008_bib0035) 2000; 3
Paine (10.1016/j.baae.2011.09.008_bib0135) 1966; 100
Vucic-Pestic (10.1016/j.baae.2011.09.008_bib0215) 2010; 79
Otto (10.1016/j.baae.2011.09.008_bib0130) 2007; 450
Brose (10.1016/j.baae.2011.09.008_bib0050) 2006; 9
Binzer (10.1016/j.baae.2011.09.008_bib0030) 2011; 12
Digel (10.1016/j.baae.2011.09.008_bib0065) 2011; 120
Srinivasan (10.1016/j.baae.2011.09.008_bib0185) 2007; 88
Vandermeer (10.1016/j.baae.2011.09.008_bib0210) 2006; 238
Allesina (10.1016/j.baae.2011.09.008_bib0010) 2009
Williams (10.1016/j.baae.2011.09.008_bib0220) 2000; 404
Dunne (10.1016/j.baae.2011.09.008_bib0075) 2009; 364
Estes (10.1016/j.baae.2011.09.008_bib0105) 1974; 185
Williams (10.1016/j.baae.2011.09.008_bib0225) 2004; 38
Berlow (10.1016/j.baae.2011.09.008_bib0025) 2009; 106
Thierry (10.1016/j.baae.2011.09.008_bib0200) 2011; 12
References_xml – volume: 12
  year: 2011
  ident: bib0030
  article-title: The susceptibility of species to primary extinctions in model communities
  publication-title: Basic and Applied Ecology
– volume: 10
  start-page: 197
  year: 2007
  end-page: 206
  ident: bib0100
  article-title: Trophic control of mesopredators in terrestrial ecosystems: Top-down or bottom-up?
  publication-title: Ecology Letters
– volume: 79
  start-page: 249
  year: 2010
  end-page: 256
  ident: bib0215
  article-title: Allometric functional response model: Body masses constrain interaction strengths
  publication-title: Journal of Animal Ecology
– volume: 14
  start-page: 169
  year: 2011
  end-page: 178
  ident: bib0160
  article-title: Stepping in Elton's footprints: A general scaling model for body masses and trophic levels across ecosystems
  publication-title: Ecology Letters
– volume: 230
  start-page: 351
  year: 2004
  end-page: 358
  ident: bib0005
  article-title: Who dominates whom in the ecosystem? Energy flow bottlenecks and cascading extinctions
  publication-title: Journal of Theoretical Biology
– volume: 275
  start-page: 2507
  year: 2008
  end-page: 2514
  ident: bib0045
  article-title: Complex food webs prevent competitive exclusion among producer species
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 364
  start-page: 1711
  year: 2009
  end-page: 1723
  ident: bib0075
  article-title: Cascading extinctions and community collapse in model food webs
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 100
  start-page: 65
  year: 1966
  end-page: 75
  ident: bib0135
  article-title: Food web complexity and species diversity
  publication-title: The American Naturalist
– volume: 14
  start-page: 75
  year: 2011
  end-page: 79
  ident: bib0170
  article-title: Stage structure alters how complexity affects stability of ecological networks
  publication-title: Ecology Letters
– volume: 395
  start-page: 794
  year: 1998
  end-page: 798
  ident: bib0125
  article-title: Weak trophic interactions and the balance of nature
  publication-title: Nature
– volume: 171
  start-page: 568
  year: 2008
  end-page: 579
  ident: bib0140
  article-title: Trophically unique species are vulnerable to cascading extinction
  publication-title: The American Naturalist
– volume: 120
  start-page: 503
  year: 2011
  end-page: 509
  ident: bib0065
  article-title: Body sizes, cumulative and allometric degree distributions across natural food webs
  publication-title: Oikos
– volume: 471
  start-page: 51
  year: 2011
  end-page: 57
  ident: bib0015
  article-title: Has the earth‘s sixth mass extinction already arrived?
  publication-title: Nature
– volume: 268
  start-page: 2039
  year: 2001
  end-page: 2045
  ident: bib0180
  article-title: Complexity and fragility in ecological networks
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 3
  start-page: 131
  year: 2000
  end-page: 136
  ident: bib0035
  article-title: Biodiversity lessens the risk of cascading extinction in model food webs
  publication-title: Ecology Letters
– volume: 75
  start-page: 239
  year: 2006
  end-page: 246
  ident: bib0095
  article-title: Species loss and secondary extinctions in simple and complex model communities
  publication-title: Journal of Animal Ecology
– volume: 117
  start-page: 202
  year: 2008
  end-page: 213
  ident: bib0150
  article-title: Food-web connectance and predator interference dampen the paradox of enrichment
  publication-title: Oikos
– start-page: 5
  year: 2009
  ident: bib0010
  article-title: Googling food webs: Can an eigenvector measure species’ importance for coextinctions?
  publication-title: PLOS Computational Biology
– volume: 5
  start-page: 558
  year: 2002
  end-page: 567
  ident: bib0080
  article-title: Network structure and biodiversity loss in food webs: Robustness increases with connectance
  publication-title: Ecology Letters
– volume: 309
  start-page: 1239
  year: 2005
  end-page: 1241
  ident: bib0055
  article-title: Multiple causes of high extinction risk in large mammal species
  publication-title: Science
– volume: 85
  start-page: 2591
  year: 2004
  end-page: 2600
  ident: bib0090
  article-title: Community viability analysis: The response of ecological communities to species loss
  publication-title: Ecology
– volume: 185
  start-page: 1058
  year: 1974
  end-page: 1060
  ident: bib0105
  article-title: Sea otters: Their role in structuring nearshore communities
  publication-title: Science, New Series
– volume: 116
  start-page: 163
  year: 2007
  end-page: 173
  ident: bib0195
  article-title: Cascading extinctions and ecosystem functioning: Contrasting effects of diversity depending on food web structure
  publication-title: Oikos
– volume: 106
  start-page: 187
  year: 2009
  end-page: 191
  ident: bib0025
  article-title: Simple prediction of interaction strengths in complex food webs
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 38
  start-page: 297
  year: 2004
  end-page: 303
  ident: bib0225
  article-title: Stabilization of chaotic and non-permanent food-web dynamics
  publication-title: European Physical Journal B
– volume: 142
  start-page: 911
  year: 1993
  ident: bib0120
  article-title: Risks of population extinction from demographic and environmental stochasticity and random catastrophes
  publication-title: The American Naturalist
– volume: 80
  start-page: 484
  year: 2011
  end-page: 494
  ident: bib0060
  article-title: The Serengeti food web: Empirical quantification and analysis of topological changes under increasing human impact
  publication-title: Journal of Animal Ecology
– volume: 35
  start-page: 139
  year: 1980
  end-page: 149
  ident: bib0145
  article-title: Food web design and the effect of species deletion
  publication-title: Oikos
– volume: 12
  year: 2011
  ident: bib0200
  article-title: Adaptive foraging and the rewiring of size structured food webs following extinctions
  publication-title: Basic and Applied Ecology
– volume: 12
  year: 2011
  ident: bib0165
  article-title: Food web characteristics and robustness to secondary extinctions
  publication-title: Basic and Applied Ecology
– volume: 404
  start-page: 180
  year: 2000
  end-page: 183
  ident: bib0220
  article-title: Simple rules yield complex food webs
  publication-title: Nature
– volume: 86
  start-page: 3182
  year: 2005
  end-page: 3189
  ident: bib0205
  article-title: Stable coexistence in insect communities due to density- and trait-mediated indirect effects
  publication-title: Ecology
– volume: 450
  start-page: 1226
  year: 2007
  end-page: 1227
  ident: bib0130
  article-title: Allometric degree distributions facilitate food-web stability
  publication-title: Nature
– volume: 9
  start-page: 1228
  year: 2006
  end-page: 1236
  ident: bib0050
  article-title: Allometric scaling enhances stability in complex food webs
  publication-title: Ecology Letters
– volume: 6
  start-page: 680
  year: 2003
  end-page: 687
  ident: bib0070
  article-title: Biodiversity loss, trophic skew and ecosystem functioning
  publication-title: Ecology Letters
– volume: 274
  start-page: 341
  year: 2007
  end-page: 346
  ident: bib0115
  article-title: Rarity of a top predator triggers continent-wide collapse of mammal prey: Dingoes and marsupials in Australia
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 120
  start-page: 483
  year: 2011
  end-page: 492
  ident: bib0155
  article-title: Taxonomic versus allometric constraints on non-linear interaction strengths
  publication-title: Oikos
– volume: 80
  start-page: 307
  year: 2011
  end-page: 309
  ident: bib0085
  article-title: Response of ecosystems to realistic extinction sequences
  publication-title: Journal of Animal Ecology
– volume: 429
  start-page: 174
  year: 2004
  end-page: 177
  ident: bib0110
  article-title: Food-web interactions govern the resistance of communities after non-random extinctions
  publication-title: Nature
– volume: 238
  start-page: 497
  year: 2006
  end-page: 504
  ident: bib0210
  article-title: Omnivory and the stability of food webs
  publication-title: Journal of Theoretical Biology
– volume: 120
  start-page: 510
  year: 2011
  end-page: 519
  ident: bib0020
  article-title: Using sensitivity analysis to identify keystone species and keystone links in size-based food webs
  publication-title: Oikos
– volume: 2
  start-page: 170
  year: 2011
  ident: bib0175
  article-title: Rescuing ecosystems from extinction cascades through compensatory perturbations
  publication-title: Nature Communications
– volume: 88
  start-page: 671
  year: 2007
  end-page: 682
  ident: bib0185
  article-title: Response of complex food webs to realistic extinction sequences
  publication-title: Ecology
– volume: 13
  start-page: 891
  year: 2010
  end-page: 899
  ident: bib0190
  article-title: Structural dynamics and robustness of food webs
  publication-title: Ecology Letters
– volume: 424
  start-page: 420
  year: 2003
  end-page: 423
  ident: bib0040
  article-title: Catastrophic extinctions follow deforestation in Singapore
  publication-title: Nature
– volume: 120
  start-page: 503
  year: 2011
  ident: 10.1016/j.baae.2011.09.008_bib0065
  article-title: Body sizes, cumulative and allometric degree distributions across natural food webs
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2010.18862.x
– volume: 38
  start-page: 297
  year: 2004
  ident: 10.1016/j.baae.2011.09.008_bib0225
  article-title: Stabilization of chaotic and non-permanent food-web dynamics
  publication-title: European Physical Journal B
  doi: 10.1140/epjb/e2004-00122-1
– volume: 80
  start-page: 307
  year: 2011
  ident: 10.1016/j.baae.2011.09.008_bib0085
  article-title: Response of ecosystems to realistic extinction sequences
  publication-title: Journal of Animal Ecology
  doi: 10.1111/j.1365-2656.2011.01805.x
– volume: 85
  start-page: 2591
  year: 2004
  ident: 10.1016/j.baae.2011.09.008_bib0090
  article-title: Community viability analysis: The response of ecological communities to species loss
  publication-title: Ecology
  doi: 10.1890/03-8018
– volume: 116
  start-page: 163
  year: 2007
  ident: 10.1016/j.baae.2011.09.008_bib0195
  article-title: Cascading extinctions and ecosystem functioning: Contrasting effects of diversity depending on food web structure
  publication-title: Oikos
  doi: 10.1111/j.2006.0030-1299.15007.x
– volume: 230
  start-page: 351
  year: 2004
  ident: 10.1016/j.baae.2011.09.008_bib0005
  article-title: Who dominates whom in the ecosystem? Energy flow bottlenecks and cascading extinctions
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2004.05.009
– volume: 275
  start-page: 2507
  year: 2008
  ident: 10.1016/j.baae.2011.09.008_bib0045
  article-title: Complex food webs prevent competitive exclusion among producer species
  publication-title: Proceedings of the Royal Society B: Biological Sciences
  doi: 10.1098/rspb.2008.0718
– volume: 117
  start-page: 202
  year: 2008
  ident: 10.1016/j.baae.2011.09.008_bib0150
  article-title: Food-web connectance and predator interference dampen the paradox of enrichment
  publication-title: Oikos
  doi: 10.1111/j.2007.0030-1299.15491.x
– volume: 450
  start-page: 1226
  year: 2007
  ident: 10.1016/j.baae.2011.09.008_bib0130
  article-title: Allometric degree distributions facilitate food-web stability
  publication-title: Nature
  doi: 10.1038/nature06359
– volume: 86
  start-page: 3182
  year: 2005
  ident: 10.1016/j.baae.2011.09.008_bib0205
  article-title: Stable coexistence in insect communities due to density- and trait-mediated indirect effects
  publication-title: Ecology
  doi: 10.1890/04-1590
– volume: 120
  start-page: 483
  year: 2011
  ident: 10.1016/j.baae.2011.09.008_bib0155
  article-title: Taxonomic versus allometric constraints on non-linear interaction strengths
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2010.18860.x
– volume: 185
  start-page: 1058
  year: 1974
  ident: 10.1016/j.baae.2011.09.008_bib0105
  article-title: Sea otters: Their role in structuring nearshore communities
  publication-title: Science, New Series
– volume: 13
  start-page: 891
  year: 2010
  ident: 10.1016/j.baae.2011.09.008_bib0190
  article-title: Structural dynamics and robustness of food webs
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2010.01485.x
– volume: 309
  start-page: 1239
  year: 2005
  ident: 10.1016/j.baae.2011.09.008_bib0055
  article-title: Multiple causes of high extinction risk in large mammal species
  publication-title: Science
  doi: 10.1126/science.1116030
– volume: 80
  start-page: 484
  year: 2011
  ident: 10.1016/j.baae.2011.09.008_bib0060
  article-title: The Serengeti food web: Empirical quantification and analysis of topological changes under increasing human impact
  publication-title: Journal of Animal Ecology
  doi: 10.1111/j.1365-2656.2010.01787.x
– volume: 142
  start-page: 911
  year: 1993
  ident: 10.1016/j.baae.2011.09.008_bib0120
  article-title: Risks of population extinction from demographic and environmental stochasticity and random catastrophes
  publication-title: The American Naturalist
  doi: 10.1086/285580
– volume: 75
  start-page: 239
  year: 2006
  ident: 10.1016/j.baae.2011.09.008_bib0095
  article-title: Species loss and secondary extinctions in simple and complex model communities
  publication-title: Journal of Animal Ecology
  doi: 10.1111/j.1365-2656.2006.01041.x
– volume: 274
  start-page: 341
  year: 2007
  ident: 10.1016/j.baae.2011.09.008_bib0115
  article-title: Rarity of a top predator triggers continent-wide collapse of mammal prey: Dingoes and marsupials in Australia
  publication-title: Proceedings of the Royal Society B: Biological Sciences
  doi: 10.1098/rspb.2006.3711
– volume: 9
  start-page: 1228
  year: 2006
  ident: 10.1016/j.baae.2011.09.008_bib0050
  article-title: Allometric scaling enhances stability in complex food webs
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2006.00978.x
– volume: 471
  start-page: 51
  year: 2011
  ident: 10.1016/j.baae.2011.09.008_bib0015
  article-title: Has the earth‘s sixth mass extinction already arrived?
  publication-title: Nature
  doi: 10.1038/nature09678
– volume: 268
  start-page: 2039
  year: 2001
  ident: 10.1016/j.baae.2011.09.008_bib0180
  article-title: Complexity and fragility in ecological networks
  publication-title: Proceedings of the Royal Society B: Biological Sciences
  doi: 10.1098/rspb.2001.1767
– volume: 2
  start-page: 170
  year: 2011
  ident: 10.1016/j.baae.2011.09.008_bib0175
  article-title: Rescuing ecosystems from extinction cascades through compensatory perturbations
  publication-title: Nature Communications
  doi: 10.1038/ncomms1163
– volume: 88
  start-page: 671
  year: 2007
  ident: 10.1016/j.baae.2011.09.008_bib0185
  article-title: Response of complex food webs to realistic extinction sequences
  publication-title: Ecology
  doi: 10.1890/06-0971
– volume: 12
  issue: 7
  year: 2011
  ident: 10.1016/j.baae.2011.09.008_bib0030
  article-title: The susceptibility of species to primary extinctions in model communities
  publication-title: Basic and Applied Ecology
  doi: 10.1016/j.baae.2011.09.002
– volume: 79
  start-page: 249
  year: 2010
  ident: 10.1016/j.baae.2011.09.008_bib0215
  article-title: Allometric functional response model: Body masses constrain interaction strengths
  publication-title: Journal of Animal Ecology
  doi: 10.1111/j.1365-2656.2009.01622.x
– volume: 106
  start-page: 187
  year: 2009
  ident: 10.1016/j.baae.2011.09.008_bib0025
  article-title: Simple prediction of interaction strengths in complex food webs
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.0806823106
– volume: 35
  start-page: 139
  year: 1980
  ident: 10.1016/j.baae.2011.09.008_bib0145
  article-title: Food web design and the effect of species deletion
  publication-title: Oikos
  doi: 10.2307/3544422
– volume: 12
  issue: 7
  year: 2011
  ident: 10.1016/j.baae.2011.09.008_bib0165
  article-title: Food web characteristics and robustness to secondary extinctions
  publication-title: Basic and Applied Ecology
  doi: 10.1016/j.baae.2011.09.006
– volume: 404
  start-page: 180
  year: 2000
  ident: 10.1016/j.baae.2011.09.008_bib0220
  article-title: Simple rules yield complex food webs
  publication-title: Nature
  doi: 10.1038/35004572
– volume: 424
  start-page: 420
  year: 2003
  ident: 10.1016/j.baae.2011.09.008_bib0040
  article-title: Catastrophic extinctions follow deforestation in Singapore
  publication-title: Nature
  doi: 10.1038/nature01795
– volume: 6
  start-page: 680
  year: 2003
  ident: 10.1016/j.baae.2011.09.008_bib0070
  article-title: Biodiversity loss, trophic skew and ecosystem functioning
  publication-title: Ecology Letters
  doi: 10.1046/j.1461-0248.2003.00494.x
– volume: 171
  start-page: 568
  year: 2008
  ident: 10.1016/j.baae.2011.09.008_bib0140
  article-title: Trophically unique species are vulnerable to cascading extinction
  publication-title: The American Naturalist
  doi: 10.1086/587068
– volume: 14
  start-page: 169
  year: 2011
  ident: 10.1016/j.baae.2011.09.008_bib0160
  article-title: Stepping in Elton's footprints: A general scaling model for body masses and trophic levels across ecosystems
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2010.01568.x
– volume: 364
  start-page: 1711
  year: 2009
  ident: 10.1016/j.baae.2011.09.008_bib0075
  article-title: Cascading extinctions and community collapse in model food webs
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.2008.0219
– volume: 395
  start-page: 794
  year: 1998
  ident: 10.1016/j.baae.2011.09.008_bib0125
  article-title: Weak trophic interactions and the balance of nature
  publication-title: Nature
  doi: 10.1038/27427
– volume: 12
  issue: 7
  year: 2011
  ident: 10.1016/j.baae.2011.09.008_bib0200
  article-title: Adaptive foraging and the rewiring of size structured food webs following extinctions
  publication-title: Basic and Applied Ecology
  doi: 10.1016/j.baae.2011.09.005
– volume: 429
  start-page: 174
  year: 2004
  ident: 10.1016/j.baae.2011.09.008_bib0110
  article-title: Food-web interactions govern the resistance of communities after non-random extinctions
  publication-title: Nature
  doi: 10.1038/nature02515
– volume: 100
  start-page: 65
  year: 1966
  ident: 10.1016/j.baae.2011.09.008_bib0135
  article-title: Food web complexity and species diversity
  publication-title: The American Naturalist
  doi: 10.1086/282400
– volume: 14
  start-page: 75
  year: 2011
  ident: 10.1016/j.baae.2011.09.008_bib0170
  article-title: Stage structure alters how complexity affects stability of ecological networks
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2010.01558.x
– volume: 238
  start-page: 497
  year: 2006
  ident: 10.1016/j.baae.2011.09.008_bib0210
  article-title: Omnivory and the stability of food webs
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2005.06.006
– start-page: 5
  year: 2009
  ident: 10.1016/j.baae.2011.09.008_bib0010
  article-title: Googling food webs: Can an eigenvector measure species’ importance for coextinctions?
  publication-title: PLOS Computational Biology
– volume: 120
  start-page: 510
  year: 2011
  ident: 10.1016/j.baae.2011.09.008_bib0020
  article-title: Using sensitivity analysis to identify keystone species and keystone links in size-based food webs
  publication-title: Oikos
  doi: 10.1111/j.1600-0706.2010.18864.x
– volume: 5
  start-page: 558
  year: 2002
  ident: 10.1016/j.baae.2011.09.008_bib0080
  article-title: Network structure and biodiversity loss in food webs: Robustness increases with connectance
  publication-title: Ecology Letters
  doi: 10.1046/j.1461-0248.2002.00354.x
– volume: 3
  start-page: 131
  year: 2000
  ident: 10.1016/j.baae.2011.09.008_bib0035
  article-title: Biodiversity lessens the risk of cascading extinction in model food webs
  publication-title: Ecology Letters
  doi: 10.1046/j.1461-0248.2000.00130.x
– volume: 10
  start-page: 197
  year: 2007
  ident: 10.1016/j.baae.2011.09.008_bib0100
  article-title: Trophic control of mesopredators in terrestrial ecosystems: Top-down or bottom-up?
  publication-title: Ecology Letters
  doi: 10.1111/j.1461-0248.2006.01010.x
SSID ssj0014038
ssib008506344
Score 2.2485738
Snippet The loss of species from ecological communities can unleash a cascade of secondary extinctions, the risk and extent of which are likely to depend on the traits...
SourceID swepub
proquest
crossref
fao
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 571
SubjectTerms Body size
Bottom-up effect
Extinction cascades
food webs
Generality
Keystone species
risk
Species loss
Stability
Top-down effect
topology
Trophic interactions
Vulnerability
Title Robustness to secondary extinctions: Comparing trait-based sequential deletions in static and dynamic food webs
URI https://dx.doi.org/10.1016/j.baae.2011.09.008
https://www.proquest.com/docview/1663586516
https://www.proquest.com/docview/911160703
https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-73611
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKERIXxKtqoFRGghMKm4fjbLitlq0WkHqgLOrNGr9WqVZJtckeeuG3dyaPhR7aAzcrsqPYM_5mHM98w9gHkFokOeAhB1II6f42hEImobbgIukh1n20xblcrsT3y-zygM3HXBgKqxywv8f0Dq2HJ5NhNSfXZTm5iClpNKfN2hGTEe22EDlp-ec_-zAPoqPr0uGwc0fFOSTO9DFeGsANNJ5EWzm9zzg98lDfdUH_pRXtTNHZc_Zs8CH5rP_MF-zAVS_Zk76q5A22FmZoHS3-prHhgGEfN69Y_bPWu6YlmONtzRs6FVvY3nCE6rLqUh2aL3ze1yis1pwKSbQhWTzL--BrBIYNpyI6XV9eVpxSk0rDobLc9mXuua9ryxGnm9dsdbb4NV-GQ-mF0Ig8whcaPJcICdIXIIgTz7oIIpNYPH1kMBXCi8RpSISdYgO884XVgHgA6G7l0qVH7LCqK3fMuI9igy9KtUlBmNTozBvQReSt8Wg3XcDicc2VGXjJaVYbNQagXSmSkyI5qahQKKeAfdqPue5ZOR7snY2iVHd0S6HZeHDcMcpdwRrhVq0uElImouQroiRg70dlULgf6ZIFKlfvGhWTCzeVWSwDxu_pQzorCWsD9rFXpP0siO37a_l7purtWm3KncpTGcdv_nMGb9nT7h94lzt5wg7b7c69Qyeq1afdLjllj2fffizPbwEbKxw1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYSB0W7FH0FUZ8s0E6FYD0oyupmuA6cJvXQxEU24vgyVBhSYMlD_n15EuU2QzJ0IwRSEHnH747i3XeEfAIuWZKDO-RACiHe34ZQ8CSUGkzELcSyj7ZY8sWKfb_Org_IbMiFwbBKj_09pndo7Z-M_WqOb8pyfBlj0miOm7UjJuOH5AjZqbIROZqenS-W-8sEFnUFrbF_x8bpc2f6MC8JYDyTJzJXTu6zT4cW6rte6L_Mop01On1Gnno3kk77L31ODkz1gjzqC0veutZc-dbx_G8mmxvgt3LzktQ_a7lrWkQ62ta0wYOxhu0tdWhdVl22Q_OVzvoyhdWaYi2JNkSjp2kff-2wYUOxjk7Xl5YVxeykUlGoNNV9pXtq61pTB9XNK7I6nV_NFqGvvhAqlkfuhcodTRgHbgtgSIunTQSRSrQ7gGQwYcyyxEhImJ64BlhjCy3BQQI4jyvnJj0mo6quzAmhNoqVe1EqVQpMpUpmVoEsIquVdabTBCQe1lwoT02Os9qIIQbtt0A5CZSTiArh5BSQL_sxNz0xx4O9s0GU4o56CWc5Hhx34uQuYO0QV6wuE1QmZOUroiQgHwdlEG5L4j0LVKbeNSJGL27Cs5gHhN7TB9WWI9wG5HOvSPtZIOH3t_LXVNTbtdiUO5GnPI5f_-cMPpDHi6sfF-LibHn-hjzpfol3qZRvyajd7sw751O18r3fM38AxWIe5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robustness+to+secondary+extinctions%3A+Comparing+trait-based+sequential+deletions+in+static+and+dynamic+food+webs&rft.jtitle=Basic+and+applied+ecology&rft.au=Curtsdotter%2C+Alva&rft.au=Binzer%2C+Amrei&rft.au=Brose%2C+Ulrich&rft.au=de+Castro%2C+Francisco&rft.date=2011-11-01&rft.issn=1439-1791&rft.volume=12&rft.issue=7&rft.spage=571&rft.epage=580&rft_id=info:doi/10.1016%2Fj.baae.2011.09.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_baae_2011_09_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-1791&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-1791&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-1791&client=summon