Robustness to secondary extinctions: Comparing trait-based sequential deletions in static and dynamic food webs
The loss of species from ecological communities can unleash a cascade of secondary extinctions, the risk and extent of which are likely to depend on the traits of the species that are lost from the community. To identify species traits that have the greatest impact on food web robustness to species...
Saved in:
Published in | Basic and applied ecology Vol. 12; no. 7; pp. 571 - 580 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier GmbH
01.11.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The loss of species from ecological communities can unleash a cascade of secondary extinctions, the risk and extent of which are likely to depend on the traits of the species that are lost from the community. To identify species traits that have the greatest impact on food web robustness to species loss we here subject allometrically scaled, dynamical food web models to several deletion sequences based on species’ connectivity, generality, vulnerability or body mass. Further, to evaluate the relative importance of dynamical to topological effects we compare robustness between dynamical and purely topological models. This comparison reveals that the topological approach overestimates robustness in general and for certain sequences in particular. Top-down directed sequences have no or very low impact on robustness in topological analyses, while the dynamical analysis reveals that they may be as important as high-impact bottom-up directed sequences. Moreover, there are no deletion sequences that result, on average, in no or very few secondary extinctions in the dynamical approach. Instead, the
least detrimental sequence in the dynamical approach yields an average robustness similar to the
most detrimental (non-basal) deletion sequence in the topological approach. Hence, a topological analysis may lead to erroneous conclusions concerning both the relative and the absolute importance of different species traits for robustness. The dynamical sequential deletion analysis shows that food webs are least robust to the loss of species that have many trophic links or that occupy low trophic levels. In contrast to previous studies we can infer, albeit indirectly, that secondary extinctions were triggered by both bottom-up and top-down cascades.
Der Verlust von Arten in ökologischen Gemeinschaften kann eine Kaskade von sekundären Aussterbeereignissen nach sich ziehen. Das Risiko für das Auftreten und Ausmaß solcher Kaskaden hängt möglicherweise von den Eigenschaften der ausgestorbenen Art ab. Um die Eigenschaften mit dem größten Einfluss auf die Robustheit von Nahrungsnetzen zu identifizieren, nutzen wir allometrisch skalierte, dynamische Nahrungsnetzmodelle und entfernen Arten in verschiedenen, auf der Konnektivität, Generalität oder Vulnerabilität der Art beruhenden Sequenzen. Des Weiteren vergleichen wir Ergebnisse topologischer und dynamischer Modelle, um die verschiedenen Effekte von Topologie und Dynamik auf die Nahrungsnetzrobustheit einschätzen zu können. Dieser Vergleich ergab, dass der topologische Ansatz die Robustheit von Nahrungsnetzen generell und besonders in einigen Sequenzen überschätzt. Im topologischen Modell haben “top-down” Sequenzen keine oder nur sehr wenige Auswirkungen auf die Robustheit der Netze, im dynamischen Modell hingegen können sie einen ebenso großen Effekt haben wie “bottom-up” Sequenzen. Außerdem gibt es im dynamischen Ansatz keine Aussterbe-Sequenzen, die fast oder gar keine sekundären Aussterbeereignisse auslösen. Stattdessen zeigt die am wenigsten schädliche Sequenz im dynamischen Ansatz eine ähnliche Robustheit wie die schädlichste (nicht basale) Sequenz im topologischen Ansatz. Demzufolge kann ein rein topologischer Ansatz zu falschen Rückschlüssen führen, was sowohl die relative als auch die absolute Bedeutung verschiedener Arteigenschaften auf die Robustheit von Nahrungsnetzen angeht. Der dynamische Ansatz zeigt, dass Nahrungsnetze auf das Aussterben von Arten mit vielen trophischen Interaktionen oder niedrigem trophischem Level am wenigsten robust reagieren. Im Gegensatz zu früheren Studien können wir, wenn auch nur indirekt, zeigen, dass sekundäre Aussterbeereignisse sowohl von “top-down” als auch von “bottom-up” Kaskaden ausgelöst werden. |
---|---|
AbstractList | The loss of species from ecological communities can unleash a cascade of secondary extinctions, the risk and extent of which are likely to depend on the traits of the species that are lost from the community. To identify species traits that have the greatest impact on food web robustness to species loss we here subject allometrically scaled, dynamical food web models to several deletion sequences based on species’ connectivity, generality, vulnerability or body mass. Further, to evaluate the relative importance of dynamical to topological effects we compare robustness between dynamical and purely topological models. This comparison reveals that the topological approach overestimates robustness in general and for certain sequences in particular. Top-down directed sequences have no or very low impact on robustness in topological analyses, while the dynamical analysis reveals that they may be as important as high-impact bottom-up directed sequences. Moreover, there are no deletion sequences that result, on average, in no or very few secondary extinctions in the dynamical approach. Instead, the least detrimental sequence in the dynamical approach yields an average robustness similar to the most detrimental (non-basal) deletion sequence in the topological approach. Hence, a topological analysis may lead to erroneous conclusions concerning both the relative and the absolute importance of different species traits for robustness. The dynamical sequential deletion analysis shows that food webs are least robust to the loss of species that have many trophic links or that occupy low trophic levels. In contrast to previous studies we can infer, albeit indirectly, that secondary extinctions were triggered by both bottom-up and top-down cascades. The loss of species from ecological communities can unleash a cascade of secondary extinctions, the risk and extent of which are likely to depend on the traits of the species that are lost from the community. To identify species traits that have the greatest impact on food web robustness to species loss we here subject allometrically scaled, dynamical food web models to several deletion sequences based on species’ connectivity, generality, vulnerability or body mass. Further, to evaluate the relative importance of dynamical to topological effects we compare robustness between dynamical and purely topological models. This comparison reveals that the topological approach overestimates robustness in general and for certain sequences in particular. Top-down directed sequences have no or very low impact on robustness in topological analyses, while the dynamical analysis reveals that they may be as important as high-impact bottom-up directed sequences. Moreover, there are no deletion sequences that result, on average, in no or very few secondary extinctions in the dynamical approach. Instead, the least detrimental sequence in the dynamical approach yields an average robustness similar to the most detrimental (non-basal) deletion sequence in the topological approach. Hence, a topological analysis may lead to erroneous conclusions concerning both the relative and the absolute importance of different species traits for robustness. The dynamical sequential deletion analysis shows that food webs are least robust to the loss of species that have many trophic links or that occupy low trophic levels. In contrast to previous studies we can infer, albeit indirectly, that secondary extinctions were triggered by both bottom-up and top-down cascades. Der Verlust von Arten in ökologischen Gemeinschaften kann eine Kaskade von sekundären Aussterbeereignissen nach sich ziehen. Das Risiko für das Auftreten und Ausmaß solcher Kaskaden hängt möglicherweise von den Eigenschaften der ausgestorbenen Art ab. Um die Eigenschaften mit dem größten Einfluss auf die Robustheit von Nahrungsnetzen zu identifizieren, nutzen wir allometrisch skalierte, dynamische Nahrungsnetzmodelle und entfernen Arten in verschiedenen, auf der Konnektivität, Generalität oder Vulnerabilität der Art beruhenden Sequenzen. Des Weiteren vergleichen wir Ergebnisse topologischer und dynamischer Modelle, um die verschiedenen Effekte von Topologie und Dynamik auf die Nahrungsnetzrobustheit einschätzen zu können. Dieser Vergleich ergab, dass der topologische Ansatz die Robustheit von Nahrungsnetzen generell und besonders in einigen Sequenzen überschätzt. Im topologischen Modell haben “top-down” Sequenzen keine oder nur sehr wenige Auswirkungen auf die Robustheit der Netze, im dynamischen Modell hingegen können sie einen ebenso großen Effekt haben wie “bottom-up” Sequenzen. Außerdem gibt es im dynamischen Ansatz keine Aussterbe-Sequenzen, die fast oder gar keine sekundären Aussterbeereignisse auslösen. Stattdessen zeigt die am wenigsten schädliche Sequenz im dynamischen Ansatz eine ähnliche Robustheit wie die schädlichste (nicht basale) Sequenz im topologischen Ansatz. Demzufolge kann ein rein topologischer Ansatz zu falschen Rückschlüssen führen, was sowohl die relative als auch die absolute Bedeutung verschiedener Arteigenschaften auf die Robustheit von Nahrungsnetzen angeht. Der dynamische Ansatz zeigt, dass Nahrungsnetze auf das Aussterben von Arten mit vielen trophischen Interaktionen oder niedrigem trophischem Level am wenigsten robust reagieren. Im Gegensatz zu früheren Studien können wir, wenn auch nur indirekt, zeigen, dass sekundäre Aussterbeereignisse sowohl von “top-down” als auch von “bottom-up” Kaskaden ausgelöst werden. The loss of species from ecological communities can unleash a cascade of secondary extinctions, the risk and extent of which are likely to depend on the traits of the species that are lost from the community. To identify species traits that have the greatest impact on food web robustness to species loss we here subject allometrically scaled, dynamical food web models to several deletion sequences based on species' connectivity, generality, vulnerability or body mass. Further, to evaluate the relative importance of dynamical to topological effects we compare robustness between dynamical and purely topological models. This comparison reveals that the topological approach overestimates robustness in general and for certain sequences in particular. Top-down directed sequences have no or very low impact on robustness in topological analyses, while the dynamical analysis reveals that they may be as important as high-impact bottom-up directed sequences. Moreover, there are no deletion sequences that result, on average, in no or very few secondary extinctions in the dynamical approach. Instead, the least detrimental sequence in the dynamical approach yields an average robustness similar to the most detrimental (non-basal) deletion sequence in the topological approach. Hence, a topological analysis may lead to erroneous conclusions concerning both the relative and the absolute importance of different species traits for robustness. The dynamical sequential deletion analysis shows that food webs are least robust to the loss of species that have many trophic links or that occupy low trophic levels. In contrast to previous studies we can infer, albeit indirectly, that secondary extinctions were triggered by both bottom-up and top-down cascades.Original Abstract: Der Verlust von Arten in okologischen Gemeinschaften kann eine Kaskade von sekundaeren Aussterbeereignissen nach sich ziehen. Das Risiko fuer das Auftreten und Ausmas solcher Kaskaden haengt moglicherweise von den Eigenschaften der ausgestorbenen Art ab. Um die Eigenschaften mit dem grosten Einfluss auf die Robustheit von Nahrungsnetzen zu identifizieren, nutzen wir allometrisch skalierte, dynamische Nahrungsnetzmodelle und entfernen Arten in verschiedenen, auf der Konnektivitaet, Generalitaet oder Vulnerabilitaet der Art beruhenden Sequenzen. Des Weiteren vergleichen wir Ergebnisse topologischer und dynamischer Modelle, um die verschiedenen Effekte von Topologie und Dynamik auf die Nahrungsnetzrobustheit einschaetzen zu konnen. Dieser Vergleich ergab, dass der topologische Ansatz die Robustheit von Nahrungsnetzen generell und besonders in einigen Sequenzen ueberschaetzt. Im topologischen Modell haben "top-down" Sequenzen keine oder nur sehr wenige Auswirkungen auf die Robustheit der Netze, im dynamischen Modell hingegen konnen sie einen ebenso grosen Effekt haben wie "bottom-up" Sequenzen. Auserdem gibt es im dynamischen Ansatz keine Aussterbe-Sequenzen, die fast oder gar keine sekundaeren Aussterbeereignisse auslosen. Stattdessen zeigt die am wenigsten schaedliche Sequenz im dynamischen Ansatz eine aehnliche Robustheit wie die schaedlichste (nicht basale) Sequenz im topologischen Ansatz. Demzufolge kann ein rein topologischer Ansatz zu falschen Rueckschluessen fuehren, was sowohl die relative als auch die absolute Bedeutung verschiedener Arteigenschaften auf die Robustheit von Nahrungsnetzen angeht. Der dynamische Ansatz zeigt, dass Nahrungsnetze auf das Aussterben von Arten mit vielen trophischen Interaktionen oder niedrigem trophischem Level am wenigsten robust reagieren. Im Gegensatz zu frueheren Studien konnen wir, wenn auch nur indirekt, zeigen, dass sekundaere Aussterbeereignisse sowohl von "top-down" als auch von "bottom-up" Kaskaden ausgelost werden. |
Author | Brose, Ulrich Eklöf, Anna de Castro, Francisco Binzer, Amrei Ebenman, Bo Thierry, Aaron Rall, Björn C. Riede, Jens O. Curtsdotter, Alva |
Author_xml | – sequence: 1 givenname: Alva surname: Curtsdotter fullname: Curtsdotter, Alva email: alva.curtsdotter@liu.se organization: Department of Physics, Chemistry and Biology, Linköping University, Sweden – sequence: 2 givenname: Amrei surname: Binzer fullname: Binzer, Amrei organization: J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August University, Göttingen, Germany – sequence: 3 givenname: Ulrich surname: Brose fullname: Brose, Ulrich organization: J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August University, Göttingen, Germany – sequence: 4 givenname: Francisco surname: de Castro fullname: de Castro, Francisco organization: Department of Ecology and Ecological Modelling, University of Potsdam, Germany – sequence: 5 givenname: Bo surname: Ebenman fullname: Ebenman, Bo organization: Department of Physics, Chemistry and Biology, Linköping University, Sweden – sequence: 6 givenname: Anna surname: Eklöf fullname: Eklöf, Anna organization: Department of Ecology and Evolution, University of Chicago, United States – sequence: 7 givenname: Jens O. surname: Riede fullname: Riede, Jens O. organization: J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August University, Göttingen, Germany – sequence: 8 givenname: Aaron surname: Thierry fullname: Thierry, Aaron organization: Department of Animal and Plant Sciences, University of Sheffield, United Kingdom – sequence: 9 givenname: Björn C. surname: Rall fullname: Rall, Björn C. organization: J.F. Blumenbach Institute of Zoology and Anthropology, Georg-August University, Göttingen, Germany |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-73611$$DView record from Swedish Publication Index |
BookMark | eNp9kT2P1DAQhlMcEvfBH6DBHRRsGCdeJ0Y0pwUOpJOQgKO1JvZk5VXWXmznjvv3OCyioNhqpnje-Xjfi-rMB09V9ZxDzYHLN7t6QKS6Ac5rUDVAf1adc9GqFe8Uf1pdpLQD4ALa_rwKX8Mwp-wpJZYDS2SCtxgfGf3Kzpvsgk9v2SbsDxid37Ic0eXVgIlsgX_O5LPDiVma6A_LnGcpY3aGobfMPnrcl34MwbIHGtJV9WTEKdGzv_Wyuvv44fvm0-r2y83nzfXtyogOygIjRSMkylGh4L2UlgDBNLYT3Rp7IUbR0ICNsH1pcKRR2QEFAKpGdZLay-r1cW56oMM86EN0-_KWDuj0e_fjWoe41ZObdddKzgv-8ogfYihPpaz3LhmaJvQU5qQV51xCB20hX50kuZTtupdrLgvaHFETQ0qRxn9XcNBLVHqnl6j0EpUGpUtURdT_JzJu8TP4xfrptPTFUTpi0LiNLum7b82SNBSJgqYQ744EFevvHUWdjCNvyLpIJmsb3KkFvwF-k76R |
CitedBy_id | crossref_primary_10_1098_rstb_2023_0181 crossref_primary_10_1111_2041_210X_12062 crossref_primary_10_1111_ele_13995 crossref_primary_10_1002_ecs2_1518 crossref_primary_10_1002_env_2709 crossref_primary_10_1111_ecog_01937 crossref_primary_10_1016_j_jtbi_2022_111027 crossref_primary_10_1016_j_fooweb_2018_e00093 crossref_primary_10_1016_j_scitotenv_2023_161910 crossref_primary_10_1038_srep13185 crossref_primary_10_1111_ele_14321 crossref_primary_10_1111_1365_2656_13547 crossref_primary_10_1111_1365_2435_12839 crossref_primary_10_1111_2041_210X_14126 crossref_primary_10_1111_maec_12407 crossref_primary_10_1016_j_ecolmodel_2012_11_024 crossref_primary_10_1098_rsbl_2012_0572 crossref_primary_10_1111_1365_2435_13642 crossref_primary_10_1111_oik_09214 crossref_primary_10_1016_j_tree_2022_06_004 crossref_primary_10_1016_j_tree_2016_02_006 crossref_primary_10_1038_ncomms10245 crossref_primary_10_1002_ece3_10930 crossref_primary_10_1111_ele_14533 crossref_primary_10_1007_s10021_021_00665_1 crossref_primary_10_3354_meps14062 crossref_primary_10_1111_oik_00865 crossref_primary_10_1111_brv_12250 crossref_primary_10_1016_j_physa_2014_06_079 crossref_primary_10_1098_rspb_2015_1126 crossref_primary_10_1088_1742_6596_1334_1_012004 crossref_primary_10_1098_rspb_2019_1177 crossref_primary_10_1016_j_ecolind_2016_03_045 crossref_primary_10_1111_1365_2656_12626 crossref_primary_10_1016_j_ecolmodel_2022_110150 crossref_primary_10_1016_j_baae_2011_09_005 crossref_primary_10_1111_ele_12638 crossref_primary_10_1016_j_baae_2011_09_006 crossref_primary_10_1111_ele_13607 crossref_primary_10_1111_gcb_17422 crossref_primary_10_1016_j_baae_2011_09_002 crossref_primary_10_1038_srep35904 crossref_primary_10_1016_j_mbs_2016_12_006 crossref_primary_10_1007_s12080_012_0166_0 crossref_primary_10_1371_journal_pone_0285575 crossref_primary_10_1016_j_biocon_2025_111050 crossref_primary_10_1016_j_ecolmodel_2012_12_011 crossref_primary_10_1038_s41467_021_21824_x crossref_primary_10_1016_j_ecocom_2014_09_004 crossref_primary_10_1016_j_ecolmodel_2019_108876 crossref_primary_10_1017_S0376892918000334 crossref_primary_10_1111_oik_09436 crossref_primary_10_1111_oik_01279 crossref_primary_10_1016_j_tree_2018_07_003 crossref_primary_10_1111_j_1755_263X_2012_00262_x crossref_primary_10_1016_j_ecolmodel_2016_02_009 crossref_primary_10_1038_s41598_021_81392_4 crossref_primary_10_1890_14_1526_1 crossref_primary_10_1111_oik_08541 crossref_primary_10_1016_j_ecolmodel_2017_03_020 crossref_primary_10_1098_rstb_2012_0232 crossref_primary_10_1016_j_ecolind_2019_105877 crossref_primary_10_1016_j_tree_2017_12_007 crossref_primary_10_1016_j_ecoser_2012_07_002 crossref_primary_10_1109_MCAS_2023_3236659 crossref_primary_10_1111_ele_12096 crossref_primary_10_1016_j_fooweb_2015_07_002 crossref_primary_10_1016_j_ecocom_2024_101091 crossref_primary_10_1016_j_fooweb_2020_e00166 crossref_primary_10_7717_peerj_5531 crossref_primary_10_1016_j_gecco_2022_e02048 crossref_primary_10_1111_oik_01588 crossref_primary_10_1016_j_jtbi_2013_04_033 |
Cites_doi | 10.1111/j.1600-0706.2010.18862.x 10.1140/epjb/e2004-00122-1 10.1111/j.1365-2656.2011.01805.x 10.1890/03-8018 10.1111/j.2006.0030-1299.15007.x 10.1016/j.jtbi.2004.05.009 10.1098/rspb.2008.0718 10.1111/j.2007.0030-1299.15491.x 10.1038/nature06359 10.1890/04-1590 10.1111/j.1600-0706.2010.18860.x 10.1111/j.1461-0248.2010.01485.x 10.1126/science.1116030 10.1111/j.1365-2656.2010.01787.x 10.1086/285580 10.1111/j.1365-2656.2006.01041.x 10.1098/rspb.2006.3711 10.1111/j.1461-0248.2006.00978.x 10.1038/nature09678 10.1098/rspb.2001.1767 10.1038/ncomms1163 10.1890/06-0971 10.1016/j.baae.2011.09.002 10.1111/j.1365-2656.2009.01622.x 10.1073/pnas.0806823106 10.2307/3544422 10.1016/j.baae.2011.09.006 10.1038/35004572 10.1038/nature01795 10.1046/j.1461-0248.2003.00494.x 10.1086/587068 10.1111/j.1461-0248.2010.01568.x 10.1098/rstb.2008.0219 10.1038/27427 10.1016/j.baae.2011.09.005 10.1038/nature02515 10.1086/282400 10.1111/j.1461-0248.2010.01558.x 10.1016/j.jtbi.2005.06.006 10.1111/j.1600-0706.2010.18864.x 10.1046/j.1461-0248.2002.00354.x 10.1046/j.1461-0248.2000.00130.x 10.1111/j.1461-0248.2006.01010.x |
ContentType | Journal Article |
Copyright | 2011 Gesellschaft für Ökologie |
Copyright_xml | – notice: 2011 Gesellschaft für Ökologie |
DBID | FBQ AAYXX CITATION 7S9 L.6 7SN C1K ABXSW ADTPV AOWAS D8T DG8 ZZAVC |
DOI | 10.1016/j.baae.2011.09.008 |
DatabaseName | AGRIS CrossRef AGRICOLA AGRICOLA - Academic Ecology Abstracts Environmental Sciences and Pollution Management SWEPUB Linköpings universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Linköpings universitet SwePub Articles full text |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Ecology Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | AGRICOLA Ecology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EndPage | 580 |
ExternalDocumentID | oai_DiVA_org_liu_73611 10_1016_j_baae_2011_09_008 US201400101902 S1439179111001216 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFYP ABGRD ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CAG CBWCG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FGOYB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HZ~ IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SSA SSJ SSZ T5K Y6R ~G- ~KM ABPIF FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH 7S9 L.6 7SN C1K ABXSW ADTPV AOWAS D8T DG8 EFKBS ZZAVC |
ID | FETCH-LOGICAL-c470t-bc64246a6f9a41866de0a0c2d7475a844f42eba24d842eafef9dba400a92976e3 |
IEDL.DBID | .~1 |
ISSN | 1439-1791 1618-0089 |
IngestDate | Thu Aug 21 06:29:40 EDT 2025 Fri Jul 11 12:38:29 EDT 2025 Fri Jul 11 16:20:13 EDT 2025 Tue Jul 01 01:53:53 EDT 2025 Thu Apr 24 23:02:27 EDT 2025 Tue Nov 07 23:23:55 EST 2023 Fri Feb 23 02:37:01 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Bottom-up effect Generality Keystone species Stability Top-down effect Extinction cascades Body size Vulnerability Species loss Trophic interactions |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-bc64246a6f9a41866de0a0c2d7475a844f42eba24d842eafef9dba400a92976e3 |
Notes | http://dx.doi.org/10.1016/j.baae.2011.09.008 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-73611 |
PQID | 1663586516 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_DiVA_org_liu_73611 proquest_miscellaneous_911160703 proquest_miscellaneous_1663586516 crossref_primary_10_1016_j_baae_2011_09_008 crossref_citationtrail_10_1016_j_baae_2011_09_008 fao_agris_US201400101902 elsevier_sciencedirect_doi_10_1016_j_baae_2011_09_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-11-00 |
PublicationDateYYYYMMDD | 2011-11-01 |
PublicationDate_xml | – month: 11 year: 2011 text: 2011-11-00 |
PublicationDecade | 2010 |
PublicationTitle | Basic and applied ecology |
PublicationYear | 2011 |
Publisher | Elsevier GmbH |
Publisher_xml | – name: Elsevier GmbH |
References | Dunne, Williams (bib0075) 2009; 364 McCann, Hastings, Huxel (bib0125) 1998; 395 Rall, Guill, Brose (bib0150) 2008; 117 Ives, Cardinale (bib0110) 2004; 429 Berlow, Dunne, Martinez, Stark, Williams, Brose (bib0025) 2009; 106 Cardillo, Mace, Jones, Bielby, Bininda-Emonds, Sechrest (bib0055) 2005; 309 Johnson, Isaac, Fisher (bib0115) 2007; 274 de Visser, Freymann, Olff (bib0060) 2011; 80 Riede, Brose, Ebenman, Jacob, Thompson, Townsend (bib0160) 2011; 14 Binzer, Brose, Curtsdotter, Eklöf, Rall, Riede, de Castro (bib0030) 2011; 12 Dunne, Williams, Martinez (bib0080) 2002; 5 Berg, Christianou, Jonsson, Ebenman (bib0020) 2011; 120 Petchey, Eklöf, Borrvall, Ebenman (bib0140) 2008; 171 Vucic-Pestic, Rall, Kalinkat, Brose (bib0215) 2010; 79 Williams, Martinez (bib0225) 2004; 38 Ebenman, Law, Borrvall (bib0090) 2004; 85 Otto, Rall, Brose (bib0130) 2007; 450 Paine (bib0135) 1966; 100 Pimm (bib0145) 1980; 35 Digel, Riede, Brose (bib0065) 2011; 120 van Veen, van Holland, Godfray (bib0205) 2005; 86 Borrvall, Ebenman, Jonsson (bib0035) 2000; 3 Eklöf, Ebenman (bib0095) 2006; 75 Allesina, Bodini (bib0005) 2004; 230 Duffy (bib0070) 2003; 6 Rall, Kalinkat, Ott, Vucic-Pestic, Brose (bib0155) 2011; 120 Rudolf, Lafferty (bib0170) 2011; 14 Brose, Williams, Martinez (bib0050) 2006; 9 Sahasrabudhe, Motter (bib0175) 2011; 2 Brose (bib0045) 2008; 275 Staniczenko, Lewis, Jones, Reed-Tsochas (bib0190) 2010; 13 Thierry, Beckerman, Warren, Williams, Cole, Petchey (bib0200) 2011; 12 Vandermeer (bib0210) 2006; 238 Riede, Brose, de Castro, Rall, Binzer, Curtsdotter, Eklöf (bib0165) 2011; 12 Allesina, Pascual (bib0010) 2009 Estes, Palmisano (bib0105) 1974; 185 Srinivasan, Dunne, Harte, Martinez (bib0185) 2007; 88 Thebault, Huber, Loreau (bib0195) 2007; 116 Brook, Sodhl, Ng (bib0040) 2003; 424 Lande (bib0120) 1993; 142 Ebenman (bib0085) 2011; 80 Elmhagen, Rushton (bib0100) 2007; 10 Solé, Montoya (bib0180) 2001; 268 Williams, Martinez (bib0220) 2000; 404 Barnosky, Matzke, Tomiya, Wogan, Swartz, Quental (bib0015) 2011; 471 Riede (10.1016/j.baae.2011.09.008_bib0165) 2011; 12 Johnson (10.1016/j.baae.2011.09.008_bib0115) 2007; 274 Duffy (10.1016/j.baae.2011.09.008_bib0070) 2003; 6 Petchey (10.1016/j.baae.2011.09.008_bib0140) 2008; 171 van Veen (10.1016/j.baae.2011.09.008_bib0205) 2005; 86 Solé (10.1016/j.baae.2011.09.008_bib0180) 2001; 268 Ives (10.1016/j.baae.2011.09.008_bib0110) 2004; 429 Riede (10.1016/j.baae.2011.09.008_bib0160) 2011; 14 Ebenman (10.1016/j.baae.2011.09.008_bib0090) 2004; 85 de Visser (10.1016/j.baae.2011.09.008_bib0060) 2011; 80 Eklöf (10.1016/j.baae.2011.09.008_bib0095) 2006; 75 McCann (10.1016/j.baae.2011.09.008_bib0125) 1998; 395 Rall (10.1016/j.baae.2011.09.008_bib0155) 2011; 120 Sahasrabudhe (10.1016/j.baae.2011.09.008_bib0175) 2011; 2 Elmhagen (10.1016/j.baae.2011.09.008_bib0100) 2007; 10 Brook (10.1016/j.baae.2011.09.008_bib0040) 2003; 424 Berg (10.1016/j.baae.2011.09.008_bib0020) 2011; 120 Dunne (10.1016/j.baae.2011.09.008_bib0080) 2002; 5 Rall (10.1016/j.baae.2011.09.008_bib0150) 2008; 117 Cardillo (10.1016/j.baae.2011.09.008_bib0055) 2005; 309 Rudolf (10.1016/j.baae.2011.09.008_bib0170) 2011; 14 Ebenman (10.1016/j.baae.2011.09.008_bib0085) 2011; 80 Allesina (10.1016/j.baae.2011.09.008_bib0005) 2004; 230 Barnosky (10.1016/j.baae.2011.09.008_bib0015) 2011; 471 Brose (10.1016/j.baae.2011.09.008_bib0045) 2008; 275 Lande (10.1016/j.baae.2011.09.008_bib0120) 1993; 142 Staniczenko (10.1016/j.baae.2011.09.008_bib0190) 2010; 13 Thebault (10.1016/j.baae.2011.09.008_bib0195) 2007; 116 Pimm (10.1016/j.baae.2011.09.008_bib0145) 1980; 35 Borrvall (10.1016/j.baae.2011.09.008_bib0035) 2000; 3 Paine (10.1016/j.baae.2011.09.008_bib0135) 1966; 100 Vucic-Pestic (10.1016/j.baae.2011.09.008_bib0215) 2010; 79 Otto (10.1016/j.baae.2011.09.008_bib0130) 2007; 450 Brose (10.1016/j.baae.2011.09.008_bib0050) 2006; 9 Binzer (10.1016/j.baae.2011.09.008_bib0030) 2011; 12 Digel (10.1016/j.baae.2011.09.008_bib0065) 2011; 120 Srinivasan (10.1016/j.baae.2011.09.008_bib0185) 2007; 88 Vandermeer (10.1016/j.baae.2011.09.008_bib0210) 2006; 238 Allesina (10.1016/j.baae.2011.09.008_bib0010) 2009 Williams (10.1016/j.baae.2011.09.008_bib0220) 2000; 404 Dunne (10.1016/j.baae.2011.09.008_bib0075) 2009; 364 Estes (10.1016/j.baae.2011.09.008_bib0105) 1974; 185 Williams (10.1016/j.baae.2011.09.008_bib0225) 2004; 38 Berlow (10.1016/j.baae.2011.09.008_bib0025) 2009; 106 Thierry (10.1016/j.baae.2011.09.008_bib0200) 2011; 12 |
References_xml | – volume: 12 year: 2011 ident: bib0030 article-title: The susceptibility of species to primary extinctions in model communities publication-title: Basic and Applied Ecology – volume: 10 start-page: 197 year: 2007 end-page: 206 ident: bib0100 article-title: Trophic control of mesopredators in terrestrial ecosystems: Top-down or bottom-up? publication-title: Ecology Letters – volume: 79 start-page: 249 year: 2010 end-page: 256 ident: bib0215 article-title: Allometric functional response model: Body masses constrain interaction strengths publication-title: Journal of Animal Ecology – volume: 14 start-page: 169 year: 2011 end-page: 178 ident: bib0160 article-title: Stepping in Elton's footprints: A general scaling model for body masses and trophic levels across ecosystems publication-title: Ecology Letters – volume: 230 start-page: 351 year: 2004 end-page: 358 ident: bib0005 article-title: Who dominates whom in the ecosystem? Energy flow bottlenecks and cascading extinctions publication-title: Journal of Theoretical Biology – volume: 275 start-page: 2507 year: 2008 end-page: 2514 ident: bib0045 article-title: Complex food webs prevent competitive exclusion among producer species publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 364 start-page: 1711 year: 2009 end-page: 1723 ident: bib0075 article-title: Cascading extinctions and community collapse in model food webs publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 100 start-page: 65 year: 1966 end-page: 75 ident: bib0135 article-title: Food web complexity and species diversity publication-title: The American Naturalist – volume: 14 start-page: 75 year: 2011 end-page: 79 ident: bib0170 article-title: Stage structure alters how complexity affects stability of ecological networks publication-title: Ecology Letters – volume: 395 start-page: 794 year: 1998 end-page: 798 ident: bib0125 article-title: Weak trophic interactions and the balance of nature publication-title: Nature – volume: 171 start-page: 568 year: 2008 end-page: 579 ident: bib0140 article-title: Trophically unique species are vulnerable to cascading extinction publication-title: The American Naturalist – volume: 120 start-page: 503 year: 2011 end-page: 509 ident: bib0065 article-title: Body sizes, cumulative and allometric degree distributions across natural food webs publication-title: Oikos – volume: 471 start-page: 51 year: 2011 end-page: 57 ident: bib0015 article-title: Has the earth‘s sixth mass extinction already arrived? publication-title: Nature – volume: 268 start-page: 2039 year: 2001 end-page: 2045 ident: bib0180 article-title: Complexity and fragility in ecological networks publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 3 start-page: 131 year: 2000 end-page: 136 ident: bib0035 article-title: Biodiversity lessens the risk of cascading extinction in model food webs publication-title: Ecology Letters – volume: 75 start-page: 239 year: 2006 end-page: 246 ident: bib0095 article-title: Species loss and secondary extinctions in simple and complex model communities publication-title: Journal of Animal Ecology – volume: 117 start-page: 202 year: 2008 end-page: 213 ident: bib0150 article-title: Food-web connectance and predator interference dampen the paradox of enrichment publication-title: Oikos – start-page: 5 year: 2009 ident: bib0010 article-title: Googling food webs: Can an eigenvector measure species’ importance for coextinctions? publication-title: PLOS Computational Biology – volume: 5 start-page: 558 year: 2002 end-page: 567 ident: bib0080 article-title: Network structure and biodiversity loss in food webs: Robustness increases with connectance publication-title: Ecology Letters – volume: 309 start-page: 1239 year: 2005 end-page: 1241 ident: bib0055 article-title: Multiple causes of high extinction risk in large mammal species publication-title: Science – volume: 85 start-page: 2591 year: 2004 end-page: 2600 ident: bib0090 article-title: Community viability analysis: The response of ecological communities to species loss publication-title: Ecology – volume: 185 start-page: 1058 year: 1974 end-page: 1060 ident: bib0105 article-title: Sea otters: Their role in structuring nearshore communities publication-title: Science, New Series – volume: 116 start-page: 163 year: 2007 end-page: 173 ident: bib0195 article-title: Cascading extinctions and ecosystem functioning: Contrasting effects of diversity depending on food web structure publication-title: Oikos – volume: 106 start-page: 187 year: 2009 end-page: 191 ident: bib0025 article-title: Simple prediction of interaction strengths in complex food webs publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 38 start-page: 297 year: 2004 end-page: 303 ident: bib0225 article-title: Stabilization of chaotic and non-permanent food-web dynamics publication-title: European Physical Journal B – volume: 142 start-page: 911 year: 1993 ident: bib0120 article-title: Risks of population extinction from demographic and environmental stochasticity and random catastrophes publication-title: The American Naturalist – volume: 80 start-page: 484 year: 2011 end-page: 494 ident: bib0060 article-title: The Serengeti food web: Empirical quantification and analysis of topological changes under increasing human impact publication-title: Journal of Animal Ecology – volume: 35 start-page: 139 year: 1980 end-page: 149 ident: bib0145 article-title: Food web design and the effect of species deletion publication-title: Oikos – volume: 12 year: 2011 ident: bib0200 article-title: Adaptive foraging and the rewiring of size structured food webs following extinctions publication-title: Basic and Applied Ecology – volume: 12 year: 2011 ident: bib0165 article-title: Food web characteristics and robustness to secondary extinctions publication-title: Basic and Applied Ecology – volume: 404 start-page: 180 year: 2000 end-page: 183 ident: bib0220 article-title: Simple rules yield complex food webs publication-title: Nature – volume: 86 start-page: 3182 year: 2005 end-page: 3189 ident: bib0205 article-title: Stable coexistence in insect communities due to density- and trait-mediated indirect effects publication-title: Ecology – volume: 450 start-page: 1226 year: 2007 end-page: 1227 ident: bib0130 article-title: Allometric degree distributions facilitate food-web stability publication-title: Nature – volume: 9 start-page: 1228 year: 2006 end-page: 1236 ident: bib0050 article-title: Allometric scaling enhances stability in complex food webs publication-title: Ecology Letters – volume: 6 start-page: 680 year: 2003 end-page: 687 ident: bib0070 article-title: Biodiversity loss, trophic skew and ecosystem functioning publication-title: Ecology Letters – volume: 274 start-page: 341 year: 2007 end-page: 346 ident: bib0115 article-title: Rarity of a top predator triggers continent-wide collapse of mammal prey: Dingoes and marsupials in Australia publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 120 start-page: 483 year: 2011 end-page: 492 ident: bib0155 article-title: Taxonomic versus allometric constraints on non-linear interaction strengths publication-title: Oikos – volume: 80 start-page: 307 year: 2011 end-page: 309 ident: bib0085 article-title: Response of ecosystems to realistic extinction sequences publication-title: Journal of Animal Ecology – volume: 429 start-page: 174 year: 2004 end-page: 177 ident: bib0110 article-title: Food-web interactions govern the resistance of communities after non-random extinctions publication-title: Nature – volume: 238 start-page: 497 year: 2006 end-page: 504 ident: bib0210 article-title: Omnivory and the stability of food webs publication-title: Journal of Theoretical Biology – volume: 120 start-page: 510 year: 2011 end-page: 519 ident: bib0020 article-title: Using sensitivity analysis to identify keystone species and keystone links in size-based food webs publication-title: Oikos – volume: 2 start-page: 170 year: 2011 ident: bib0175 article-title: Rescuing ecosystems from extinction cascades through compensatory perturbations publication-title: Nature Communications – volume: 88 start-page: 671 year: 2007 end-page: 682 ident: bib0185 article-title: Response of complex food webs to realistic extinction sequences publication-title: Ecology – volume: 13 start-page: 891 year: 2010 end-page: 899 ident: bib0190 article-title: Structural dynamics and robustness of food webs publication-title: Ecology Letters – volume: 424 start-page: 420 year: 2003 end-page: 423 ident: bib0040 article-title: Catastrophic extinctions follow deforestation in Singapore publication-title: Nature – volume: 120 start-page: 503 year: 2011 ident: 10.1016/j.baae.2011.09.008_bib0065 article-title: Body sizes, cumulative and allometric degree distributions across natural food webs publication-title: Oikos doi: 10.1111/j.1600-0706.2010.18862.x – volume: 38 start-page: 297 year: 2004 ident: 10.1016/j.baae.2011.09.008_bib0225 article-title: Stabilization of chaotic and non-permanent food-web dynamics publication-title: European Physical Journal B doi: 10.1140/epjb/e2004-00122-1 – volume: 80 start-page: 307 year: 2011 ident: 10.1016/j.baae.2011.09.008_bib0085 article-title: Response of ecosystems to realistic extinction sequences publication-title: Journal of Animal Ecology doi: 10.1111/j.1365-2656.2011.01805.x – volume: 85 start-page: 2591 year: 2004 ident: 10.1016/j.baae.2011.09.008_bib0090 article-title: Community viability analysis: The response of ecological communities to species loss publication-title: Ecology doi: 10.1890/03-8018 – volume: 116 start-page: 163 year: 2007 ident: 10.1016/j.baae.2011.09.008_bib0195 article-title: Cascading extinctions and ecosystem functioning: Contrasting effects of diversity depending on food web structure publication-title: Oikos doi: 10.1111/j.2006.0030-1299.15007.x – volume: 230 start-page: 351 year: 2004 ident: 10.1016/j.baae.2011.09.008_bib0005 article-title: Who dominates whom in the ecosystem? Energy flow bottlenecks and cascading extinctions publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2004.05.009 – volume: 275 start-page: 2507 year: 2008 ident: 10.1016/j.baae.2011.09.008_bib0045 article-title: Complex food webs prevent competitive exclusion among producer species publication-title: Proceedings of the Royal Society B: Biological Sciences doi: 10.1098/rspb.2008.0718 – volume: 117 start-page: 202 year: 2008 ident: 10.1016/j.baae.2011.09.008_bib0150 article-title: Food-web connectance and predator interference dampen the paradox of enrichment publication-title: Oikos doi: 10.1111/j.2007.0030-1299.15491.x – volume: 450 start-page: 1226 year: 2007 ident: 10.1016/j.baae.2011.09.008_bib0130 article-title: Allometric degree distributions facilitate food-web stability publication-title: Nature doi: 10.1038/nature06359 – volume: 86 start-page: 3182 year: 2005 ident: 10.1016/j.baae.2011.09.008_bib0205 article-title: Stable coexistence in insect communities due to density- and trait-mediated indirect effects publication-title: Ecology doi: 10.1890/04-1590 – volume: 120 start-page: 483 year: 2011 ident: 10.1016/j.baae.2011.09.008_bib0155 article-title: Taxonomic versus allometric constraints on non-linear interaction strengths publication-title: Oikos doi: 10.1111/j.1600-0706.2010.18860.x – volume: 185 start-page: 1058 year: 1974 ident: 10.1016/j.baae.2011.09.008_bib0105 article-title: Sea otters: Their role in structuring nearshore communities publication-title: Science, New Series – volume: 13 start-page: 891 year: 2010 ident: 10.1016/j.baae.2011.09.008_bib0190 article-title: Structural dynamics and robustness of food webs publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2010.01485.x – volume: 309 start-page: 1239 year: 2005 ident: 10.1016/j.baae.2011.09.008_bib0055 article-title: Multiple causes of high extinction risk in large mammal species publication-title: Science doi: 10.1126/science.1116030 – volume: 80 start-page: 484 year: 2011 ident: 10.1016/j.baae.2011.09.008_bib0060 article-title: The Serengeti food web: Empirical quantification and analysis of topological changes under increasing human impact publication-title: Journal of Animal Ecology doi: 10.1111/j.1365-2656.2010.01787.x – volume: 142 start-page: 911 year: 1993 ident: 10.1016/j.baae.2011.09.008_bib0120 article-title: Risks of population extinction from demographic and environmental stochasticity and random catastrophes publication-title: The American Naturalist doi: 10.1086/285580 – volume: 75 start-page: 239 year: 2006 ident: 10.1016/j.baae.2011.09.008_bib0095 article-title: Species loss and secondary extinctions in simple and complex model communities publication-title: Journal of Animal Ecology doi: 10.1111/j.1365-2656.2006.01041.x – volume: 274 start-page: 341 year: 2007 ident: 10.1016/j.baae.2011.09.008_bib0115 article-title: Rarity of a top predator triggers continent-wide collapse of mammal prey: Dingoes and marsupials in Australia publication-title: Proceedings of the Royal Society B: Biological Sciences doi: 10.1098/rspb.2006.3711 – volume: 9 start-page: 1228 year: 2006 ident: 10.1016/j.baae.2011.09.008_bib0050 article-title: Allometric scaling enhances stability in complex food webs publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2006.00978.x – volume: 471 start-page: 51 year: 2011 ident: 10.1016/j.baae.2011.09.008_bib0015 article-title: Has the earth‘s sixth mass extinction already arrived? publication-title: Nature doi: 10.1038/nature09678 – volume: 268 start-page: 2039 year: 2001 ident: 10.1016/j.baae.2011.09.008_bib0180 article-title: Complexity and fragility in ecological networks publication-title: Proceedings of the Royal Society B: Biological Sciences doi: 10.1098/rspb.2001.1767 – volume: 2 start-page: 170 year: 2011 ident: 10.1016/j.baae.2011.09.008_bib0175 article-title: Rescuing ecosystems from extinction cascades through compensatory perturbations publication-title: Nature Communications doi: 10.1038/ncomms1163 – volume: 88 start-page: 671 year: 2007 ident: 10.1016/j.baae.2011.09.008_bib0185 article-title: Response of complex food webs to realistic extinction sequences publication-title: Ecology doi: 10.1890/06-0971 – volume: 12 issue: 7 year: 2011 ident: 10.1016/j.baae.2011.09.008_bib0030 article-title: The susceptibility of species to primary extinctions in model communities publication-title: Basic and Applied Ecology doi: 10.1016/j.baae.2011.09.002 – volume: 79 start-page: 249 year: 2010 ident: 10.1016/j.baae.2011.09.008_bib0215 article-title: Allometric functional response model: Body masses constrain interaction strengths publication-title: Journal of Animal Ecology doi: 10.1111/j.1365-2656.2009.01622.x – volume: 106 start-page: 187 year: 2009 ident: 10.1016/j.baae.2011.09.008_bib0025 article-title: Simple prediction of interaction strengths in complex food webs publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.0806823106 – volume: 35 start-page: 139 year: 1980 ident: 10.1016/j.baae.2011.09.008_bib0145 article-title: Food web design and the effect of species deletion publication-title: Oikos doi: 10.2307/3544422 – volume: 12 issue: 7 year: 2011 ident: 10.1016/j.baae.2011.09.008_bib0165 article-title: Food web characteristics and robustness to secondary extinctions publication-title: Basic and Applied Ecology doi: 10.1016/j.baae.2011.09.006 – volume: 404 start-page: 180 year: 2000 ident: 10.1016/j.baae.2011.09.008_bib0220 article-title: Simple rules yield complex food webs publication-title: Nature doi: 10.1038/35004572 – volume: 424 start-page: 420 year: 2003 ident: 10.1016/j.baae.2011.09.008_bib0040 article-title: Catastrophic extinctions follow deforestation in Singapore publication-title: Nature doi: 10.1038/nature01795 – volume: 6 start-page: 680 year: 2003 ident: 10.1016/j.baae.2011.09.008_bib0070 article-title: Biodiversity loss, trophic skew and ecosystem functioning publication-title: Ecology Letters doi: 10.1046/j.1461-0248.2003.00494.x – volume: 171 start-page: 568 year: 2008 ident: 10.1016/j.baae.2011.09.008_bib0140 article-title: Trophically unique species are vulnerable to cascading extinction publication-title: The American Naturalist doi: 10.1086/587068 – volume: 14 start-page: 169 year: 2011 ident: 10.1016/j.baae.2011.09.008_bib0160 article-title: Stepping in Elton's footprints: A general scaling model for body masses and trophic levels across ecosystems publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2010.01568.x – volume: 364 start-page: 1711 year: 2009 ident: 10.1016/j.baae.2011.09.008_bib0075 article-title: Cascading extinctions and community collapse in model food webs publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.2008.0219 – volume: 395 start-page: 794 year: 1998 ident: 10.1016/j.baae.2011.09.008_bib0125 article-title: Weak trophic interactions and the balance of nature publication-title: Nature doi: 10.1038/27427 – volume: 12 issue: 7 year: 2011 ident: 10.1016/j.baae.2011.09.008_bib0200 article-title: Adaptive foraging and the rewiring of size structured food webs following extinctions publication-title: Basic and Applied Ecology doi: 10.1016/j.baae.2011.09.005 – volume: 429 start-page: 174 year: 2004 ident: 10.1016/j.baae.2011.09.008_bib0110 article-title: Food-web interactions govern the resistance of communities after non-random extinctions publication-title: Nature doi: 10.1038/nature02515 – volume: 100 start-page: 65 year: 1966 ident: 10.1016/j.baae.2011.09.008_bib0135 article-title: Food web complexity and species diversity publication-title: The American Naturalist doi: 10.1086/282400 – volume: 14 start-page: 75 year: 2011 ident: 10.1016/j.baae.2011.09.008_bib0170 article-title: Stage structure alters how complexity affects stability of ecological networks publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2010.01558.x – volume: 238 start-page: 497 year: 2006 ident: 10.1016/j.baae.2011.09.008_bib0210 article-title: Omnivory and the stability of food webs publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2005.06.006 – start-page: 5 year: 2009 ident: 10.1016/j.baae.2011.09.008_bib0010 article-title: Googling food webs: Can an eigenvector measure species’ importance for coextinctions? publication-title: PLOS Computational Biology – volume: 120 start-page: 510 year: 2011 ident: 10.1016/j.baae.2011.09.008_bib0020 article-title: Using sensitivity analysis to identify keystone species and keystone links in size-based food webs publication-title: Oikos doi: 10.1111/j.1600-0706.2010.18864.x – volume: 5 start-page: 558 year: 2002 ident: 10.1016/j.baae.2011.09.008_bib0080 article-title: Network structure and biodiversity loss in food webs: Robustness increases with connectance publication-title: Ecology Letters doi: 10.1046/j.1461-0248.2002.00354.x – volume: 3 start-page: 131 year: 2000 ident: 10.1016/j.baae.2011.09.008_bib0035 article-title: Biodiversity lessens the risk of cascading extinction in model food webs publication-title: Ecology Letters doi: 10.1046/j.1461-0248.2000.00130.x – volume: 10 start-page: 197 year: 2007 ident: 10.1016/j.baae.2011.09.008_bib0100 article-title: Trophic control of mesopredators in terrestrial ecosystems: Top-down or bottom-up? publication-title: Ecology Letters doi: 10.1111/j.1461-0248.2006.01010.x |
SSID | ssj0014038 ssib008506344 |
Score | 2.2485738 |
Snippet | The loss of species from ecological communities can unleash a cascade of secondary extinctions, the risk and extent of which are likely to depend on the traits... |
SourceID | swepub proquest crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 571 |
SubjectTerms | Body size Bottom-up effect Extinction cascades food webs Generality Keystone species risk Species loss Stability Top-down effect topology Trophic interactions Vulnerability |
Title | Robustness to secondary extinctions: Comparing trait-based sequential deletions in static and dynamic food webs |
URI | https://dx.doi.org/10.1016/j.baae.2011.09.008 https://www.proquest.com/docview/1663586516 https://www.proquest.com/docview/911160703 https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-73611 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKERIXxKtqoFRGghMKm4fjbLitlq0WkHqgLOrNGr9WqVZJtckeeuG3dyaPhR7aAzcrsqPYM_5mHM98w9gHkFokOeAhB1II6f42hEImobbgIukh1n20xblcrsT3y-zygM3HXBgKqxywv8f0Dq2HJ5NhNSfXZTm5iClpNKfN2hGTEe22EDlp-ec_-zAPoqPr0uGwc0fFOSTO9DFeGsANNJ5EWzm9zzg98lDfdUH_pRXtTNHZc_Zs8CH5rP_MF-zAVS_Zk76q5A22FmZoHS3-prHhgGEfN69Y_bPWu6YlmONtzRs6FVvY3nCE6rLqUh2aL3ze1yis1pwKSbQhWTzL--BrBIYNpyI6XV9eVpxSk0rDobLc9mXuua9ryxGnm9dsdbb4NV-GQ-mF0Ig8whcaPJcICdIXIIgTz7oIIpNYPH1kMBXCi8RpSISdYgO884XVgHgA6G7l0qVH7LCqK3fMuI9igy9KtUlBmNTozBvQReSt8Wg3XcDicc2VGXjJaVYbNQagXSmSkyI5qahQKKeAfdqPue5ZOR7snY2iVHd0S6HZeHDcMcpdwRrhVq0uElImouQroiRg70dlULgf6ZIFKlfvGhWTCzeVWSwDxu_pQzorCWsD9rFXpP0siO37a_l7purtWm3KncpTGcdv_nMGb9nT7h94lzt5wg7b7c69Qyeq1afdLjllj2fffizPbwEbKxw1 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYSB0W7FH0FUZ8s0E6FYD0oyupmuA6cJvXQxEU24vgyVBhSYMlD_n15EuU2QzJ0IwRSEHnH747i3XeEfAIuWZKDO-RACiHe34ZQ8CSUGkzELcSyj7ZY8sWKfb_Org_IbMiFwbBKj_09pndo7Z-M_WqOb8pyfBlj0miOm7UjJuOH5AjZqbIROZqenS-W-8sEFnUFrbF_x8bpc2f6MC8JYDyTJzJXTu6zT4cW6rte6L_Mop01On1Gnno3kk77L31ODkz1gjzqC0veutZc-dbx_G8mmxvgt3LzktQ_a7lrWkQ62ta0wYOxhu0tdWhdVl22Q_OVzvoyhdWaYi2JNkSjp2kff-2wYUOxjk7Xl5YVxeykUlGoNNV9pXtq61pTB9XNK7I6nV_NFqGvvhAqlkfuhcodTRgHbgtgSIunTQSRSrQ7gGQwYcyyxEhImJ64BlhjCy3BQQI4jyvnJj0mo6quzAmhNoqVe1EqVQpMpUpmVoEsIquVdabTBCQe1lwoT02Os9qIIQbtt0A5CZSTiArh5BSQL_sxNz0xx4O9s0GU4o56CWc5Hhx34uQuYO0QV6wuE1QmZOUroiQgHwdlEG5L4j0LVKbeNSJGL27Cs5gHhN7TB9WWI9wG5HOvSPtZIOH3t_LXVNTbtdiUO5GnPI5f_-cMPpDHi6sfF-LibHn-hjzpfol3qZRvyajd7sw751O18r3fM38AxWIe5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robustness+to+secondary+extinctions%3A+Comparing+trait-based+sequential+deletions+in+static+and+dynamic+food+webs&rft.jtitle=Basic+and+applied+ecology&rft.au=Curtsdotter%2C+Alva&rft.au=Binzer%2C+Amrei&rft.au=Brose%2C+Ulrich&rft.au=de+Castro%2C+Francisco&rft.date=2011-11-01&rft.issn=1439-1791&rft.volume=12&rft.issue=7&rft.spage=571&rft.epage=580&rft_id=info:doi/10.1016%2Fj.baae.2011.09.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_baae_2011_09_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-1791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-1791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-1791&client=summon |