Enhanced droplet spreading due to thermal fluctuations

The lubrication equation that governs the dynamics of thin liquid films can be augmented to account for stochastic stresses associated with the thermal fluctuations of the fluid. It has been suggested that under certain conditions the spreading rate of a liquid drop on a surface will be increased by...

Full description

Saved in:
Bibliographic Details
Published inJournal of physics. Condensed matter Vol. 21; no. 46; pp. 464128 - 464128 (6)
Main Authors Willis, A M, Freund, J B
Format Journal Article
LanguageEnglish
Published England IOP Publishing 18.11.2009
Online AccessGet full text

Cover

Loading…
Abstract The lubrication equation that governs the dynamics of thin liquid films can be augmented to account for stochastic stresses associated with the thermal fluctuations of the fluid. It has been suggested that under certain conditions the spreading rate of a liquid drop on a surface will be increased by these stochastic stresses. Here, an atomistic simulation of a spreading drop is designed to examine such a regime and provide a quantitative assessment of the stochastic lubrication equation for spreading. It is found that the atomistic drop does indeed spread faster than the standard lubrication equations would suggest and that the stochastic lubrication equation of Grün et al (2006 J. Stat. Phys. 122 1261-91) predicts the spread rate.
AbstractList The lubrication equation that governs the dynamics of thin liquid films can be augmented to account for stochastic stresses associated with the thermal fluctuations of the fluid. It has been suggested that under certain conditions the spreading rate of a liquid drop on a surface will be increased by these stochastic stresses. Here, an atomistic simulation of a spreading drop is designed to examine such a regime and provide a quantitative assessment of the stochastic lubrication equation for spreading. It is found that the atomistic drop does indeed spread faster than the standard lubrication equations would suggest and that the stochastic lubrication equation of Grün et al (2006 J. Stat. Phys. 122 1261-91) predicts the spread rate.
The lubrication equation that governs the dynamics of thin liquid films can be augmented to account for stochastic stresses associated with the thermal fluctuations of the fluid. It has been suggested that under certain conditions the spreading rate of a liquid drop on a surface will be increased by these stochastic stresses. Here, an atomistic simulation of a spreading drop is designed to examine such a regime and provide a quantitative assessment of the stochastic lubrication equation for spreading. It is found that the atomistic drop does indeed spread faster than the standard lubrication equations would suggest and that the stochastic lubrication equation of Grun et al (2006 J. Stat. Phys. 122 1261-91) predicts the spread rate.
Author Freund, J B
Willis, A M
Author_xml – sequence: 1
  fullname: Willis, A M
– sequence: 2
  fullname: Freund, J B
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21715892$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1LxDAQhoOsuB_6F5bePNXNNGk-jrKsH7DgRcFbSJvUrbRNTdqD_96WrntRUBgYGJ53ZniWaNa4xiK0BnwDWIgNlimJhRR0k8CGsqEoJOIMLYAwiBkVrzO0OEFztAzhHWNMBaEXaJ4Ah1TIZIHYrjnoJrcmMt61le2i0HqrTdm8Raa3Ueei7mB9rauoqPq863VXuiZcovNCV8FeHfsKvdztnrcP8f7p_nF7u49zynEXZxoTIzXOWCF4qrHmmMthaC0zROu8kDRJdUZTWgx_C8J5LsBITIEYEAzICl1Pe1vvPnobOlWXIbdVpRvr-qAEp1RQkco_SU4JIYCTkWQTmXsXgreFan1Za_-pAKtRrhq9qdGbSkBRpia5Q3B9PNFntTWn2LfNAYAJKF37_6Xxz8zvrGpNQb4Aut2R6g
CitedBy_id crossref_primary_10_1103_PhysRevE_90_033001
crossref_primary_10_1103_PhysRevFluids_8_L092001
crossref_primary_10_1142_S0129183113400196
crossref_primary_10_1088_0953_8984_22_32_325101
crossref_primary_10_1063_1_3326077
crossref_primary_10_1103_PhysRevE_84_046709
crossref_primary_10_1038_s41467_022_35047_1
Cites_doi 10.1103/PhysRevLett.95.107801
10.7312/schr90162
10.1017/S0022112003006839
10.1103/PhysRevE.68.061603
10.1063/1.480192
10.1006/jcis.2002.8631
10.1103/PhysRevLett.98.227801
10.1038/300427a0
10.1088/0022-3727/12/9/009
10.1126/science.289.5482.1165
10.1103/PhysRevLett.83.564
10.1126/science.1097116
10.1021/ma002075t
10.1103/PhysRevLett.95.244505
10.1122/1.550409
10.1007/s10955-006-9028-8
10.1063/1.439486
10.1016/j.tsf.2006.12.001
10.1063/1.1843871
10.1103/PhysRevLett.97.244502
10.1103/PhysRevLett.94.157802
10.1021/je60028a020
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7U5
8FD
L7M
7X8
DOI 10.1088/0953-8984/21/46/464128
DatabaseName PubMed
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1361-648X
EndPage 464128 (6)
ExternalDocumentID 10_1088_0953_8984_21_46_464128
21715892
Genre Journal Article
GroupedDBID -
02
02O
1JI
1PV
1WK
4.4
53G
5B3
5GY
5PX
5VS
5ZH
5ZI
7.M
7.Q
8RP
9BW
AAGCD
AAGID
AAJIO
AALHV
ABHWH
ABQJV
ACGFS
ACNCT
AEFHF
AFFNX
AFYNE
AHSEE
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CJUJL
CS3
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
FEDTE
HAK
HVGLF
IHE
IOP
IZVLO
KNG
KOT
LAP
M45
MGA
N5L
N9A
NT-
NT.
P2P
Q02
RIN
RNS
RO9
ROL
RPA
RW3
S3P
SY9
TN5
UNR
UQL
W28
WH7
X
XFK
XPP
ZMT
---
-~X
AAJKP
AATNI
ABLJU
ABVAM
ACAFW
ACHIP
AERVB
AKPSB
AOAED
CRLBU
IJHAN
JCGBZ
NPM
PJBAE
YQT
~02
AAYXX
CITATION
7U5
8FD
L7M
7X8
ID FETCH-LOGICAL-c470t-ba03d9a0b6f875a0a7079ba0ee6d3aacf9425ab454f1368377c81d90413d18613
IEDL.DBID IOP
ISSN 0953-8984
IngestDate Thu Oct 24 22:46:32 EDT 2024
Fri Oct 25 06:03:44 EDT 2024
Thu Sep 26 17:50:13 EDT 2024
Sat Sep 28 07:48:41 EDT 2024
Tue Nov 10 14:18:11 EST 2020
Mon May 13 14:46:02 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-ba03d9a0b6f875a0a7079ba0ee6d3aacf9425ab454f1368377c81d90413d18613
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink http://jbfreund.mechse.illinois.edu/Papers/willis-freund-jpcm-2009.pdf
PMID 21715892
PQID 743331029
PQPubID 23500
PageCount 1
ParticipantIDs pubmed_primary_21715892
iop_primary_10_1088_0953_8984_21_46_464128
proquest_miscellaneous_874484859
crossref_primary_10_1088_0953_8984_21_46_464128
proquest_miscellaneous_743331029
PublicationCentury 2000
PublicationDate 2009-11-18
PublicationDateYYYYMMDD 2009-11-18
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-18
  day: 18
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of physics. Condensed matter
PublicationTitleAlternate J Phys Condens Matter
PublicationYear 2009
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 11
22
12
23
13
24
14
15
Tanner L H (20) 1979; 12
16
Schrage R W (18) 1953
19
Rapaport D C (17) 1997
Frenkel D (5) 1996
1
2
3
4
6
7
8
9
10
21
References_xml – ident: 10
  doi: 10.1103/PhysRevLett.95.107801
– year: 1953
  ident: 18
  publication-title: A Theoretical Study of Interface Mass Transfer
  doi: 10.7312/schr90162
  contributor:
    fullname: Schrage R W
– year: 1996
  ident: 5
  publication-title: Understanding Molecular Simulation
  contributor:
    fullname: Frenkel D
– ident: 8
  doi: 10.1017/S0022112003006839
– ident: 9
  doi: 10.1103/PhysRevE.68.061603
– ident: 21
  doi: 10.1063/1.480192
– year: 1997
  ident: 17
  publication-title: Molecular Dynamics Simulation
  contributor:
    fullname: Rapaport D C
– ident: 2
  doi: 10.1006/jcis.2002.8631
– ident: 13
  doi: 10.1103/PhysRevLett.98.227801
– ident: 12
  doi: 10.1038/300427a0
– volume: 12
  start-page: 1473
  issn: 0022-3727
  year: 1979
  ident: 20
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/12/9/009
  contributor:
    fullname: Tanner L H
– ident: 16
  doi: 10.1126/science.289.5482.1165
– ident: 24
  doi: 10.1103/PhysRevLett.83.564
– ident: 1
  doi: 10.1126/science.1097116
– ident: 23
  doi: 10.1021/ma002075t
– ident: 4
  doi: 10.1103/PhysRevLett.95.244505
– ident: 15
  doi: 10.1122/1.550409
– ident: 7
  doi: 10.1007/s10955-006-9028-8
– ident: 3
  doi: 10.1063/1.439486
– ident: 14
  doi: 10.1016/j.tsf.2006.12.001
– ident: 6
  doi: 10.1063/1.1843871
– ident: 11
  doi: 10.1103/PhysRevLett.97.244502
– ident: 19
  doi: 10.1103/PhysRevLett.94.157802
– ident: 22
  doi: 10.1021/je60028a020
SSID ssj0004834
Score 2.0468783
Snippet The lubrication equation that governs the dynamics of thin liquid films can be augmented to account for stochastic stresses associated with the thermal...
SourceID proquest
crossref
pubmed
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 464128
Title Enhanced droplet spreading due to thermal fluctuations
URI http://iopscience.iop.org/0953-8984/21/46/464128
https://www.ncbi.nlm.nih.gov/pubmed/21715892
https://search.proquest.com/docview/743331029
https://search.proquest.com/docview/874484859
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66IHjx_Vhf9CAehO72kaaTo4gigi9Q8BaSNEFRu8tue_HXO0m3q6KiQg-lTJN0Okm-YeabELIfx5xrbm1oTJ6ENAMZSjA6BCoTZXWWU-mIwheX7OyOnt9n9zOkPQTxcTCcrPw9vPWRfFcQLQQOtJ_Efcrworim4qLrOMCOsXd1_U6EBB9Gnr7SUoLRy_u-mU-70Sx2-TPQ9BvO6SK5aWk7TZ7JU6-uVE-_fq3i-OdvWSILE_QZHDXmskxmTLlC5nwWqB6vEnZSPviMgKAYucTyKhgPR02WfVDUJqgGgcOLL9iEfa4d9cRb7Rq5Oz25PT4LJwcrhJrmURUqGaUFl5FiFt0VGUlXJg8fGsOKVEptOc5kqWhGbZwydGFzjbCWR7jhFTEgAFgnnXJQmk0SQKZ0SsFqrhGbUINCKpF5qjQwAwy6pN8qWAyb-hnCx70BhNOGcNoQSSwoE402uuQA1TUV_l5IDAvbJYcfBX9rNWj_q8AJ5KIisjSDeiwQQqWIcRP-s4g7IgAoZCiy0ZjEtFf06OIMeLL1n8Fsk3kflHLZhLBDOtWoNruIbSq15-35Dbsa6Ig
link.rule.ids 315,783,787,1560,27936,27937,53918
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB6SLSm99JG06fYVH0IOAa9fsjw6lnaXpGnTHBLITUiyRKGNd9m1L_n1Gcm72wdZSin4YMxIlj_r8Yn5ZgRwmGVCGOFcbG2Vx6xEFSu0Jkamcu1MWTHlA4W_nPOTK_bpurzegvE6FmY6W079I7rtEwX3EC4FcZj4DGkxCmRJniWM08Vokk1mtduGB2UhMq_sOv168TM8EoNzeV1uFSi8sa7f1qhtasdm-hmWocmTXi6yCNkLvfrk-6hr9cjc_pHb8b-_8Ck8XhLV6H1f6Bls2WYXdoJg1Cz2gI-bb0E8ENVzr0Fvo8Vs3gvyo7qzUTuNPLW8oSrcj85HqYQO_hyuJuPLDyfx8gyG2LAqbWOt0qIWKtXc0c5Gpcpn1KOH1vK6UMo4QYNeaVYylxWcdruVIQYsUlob6wyJK7yAQTNt7EuIsNSmYOiMMERjmCUjnauq0Aa5RY5DSFaoy1mfakMGFzmi9IhIj4jMM8m47BEZwhFBuDa-30gSbEM4_tXwb7VGq58taax5B4pq7LRbSGJbBdHhXGw28acJIMOSTPb7frJ-K23-shJF_upfGnMADy8-TuTn0_Oz1_AouLK8BhHfwKCdd_YtMaJWvwv9_Q7T_fh7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+droplet+spreading+due+to+thermal+fluctuations&rft.jtitle=Journal+of+physics.+Condensed+matter&rft.au=Willis%2C+A+M&rft.au=Freund%2C+J+B&rft.date=2009-11-18&rft.pub=IOP+Publishing&rft.issn=0953-8984&rft.eissn=1361-648X&rft.volume=21&rft.spage=464128&rft_id=info:doi/10.1088%2F0953-8984%2F21%2F46%2F464128&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0953_8984_21_46_464128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-8984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-8984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-8984&client=summon