A close-up view of the wood cell wall ultrastructure and its mechanics at different cutting angles by atomic force microscopy
The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy...
Saved in:
Published in | Planta Vol. 247; no. 5; pp. 1123 - 1132 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Science + Business Media
01.05.2018
Springer Berlin Heidelberg Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S₂ layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation. |
---|---|
AbstractList | Main conclusion
AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S
2
layer changes from a network structure to a concentric lamellar texture depending on the cutting angle.
The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S
2
layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation. MAIN CONCLUSION: AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S₂ layer changes from a network structure to a concentric lamellar texture depending on the cutting angle. The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S₂ layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation. AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S2 layer changes from a network structure to a concentric lamellar texture depending on the cutting angle. The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S2 layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation.MAIN CONCLUSIONAFM measurements on spruce sample cross-sections reveal that the structural appearance of the S2 layer changes from a network structure to a concentric lamellar texture depending on the cutting angle. The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S2 layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation. AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S layer changes from a network structure to a concentric lamellar texture depending on the cutting angle. The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation. Main conclusionAFM measurements on spruce sample cross-sections reveal that the structural appearance of the S2 layer changes from a network structure to a concentric lamellar texture depending on the cutting angle.The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S2 layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation. The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S₂ layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation. |
Author | Burgert, Ingo Rüggeberg, Markus Casdorff, Kirstin Keplinger, Tobias |
Author_xml | – sequence: 1 givenname: Kirstin surname: Casdorff fullname: Casdorff, Kirstin – sequence: 2 givenname: Tobias surname: Keplinger fullname: Keplinger, Tobias – sequence: 3 givenname: Markus surname: Rüggeberg fullname: Rüggeberg, Markus – sequence: 4 givenname: Ingo surname: Burgert fullname: Burgert, Ingo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29380141$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URKeFB2ABssSGTeD4NomXVcVNqsQG1pHt2FOPEnuwHUaz4N1xSKlQF2VjH-t8v8_lv0BnIQaL0EsC7whA-z4DcCoaIF1DOwGNfII2hDPaUODdGdoA1BgkE-foIuc9QE227TN0TiXr6oNs0K8rbMaYbTMf8E9vjzg6XG4tPsY4YGPHER9VPeaxJJVLmk2Zk8UqDNiXjCdrblXwJmNV8OCds8mGgs1cig-7iu1Gm7E-1XScvMEuJmNxjVLMJh5Oz9FTp8ZsX9zdl-j7xw_frj83N18_fbm-umkMb6E0WjAzbLXY8sFQ7YBYrR0xmrJOOcEE21rNwJCWCMqN7BwTmlBqDCeKDZyzS_R2_feQ4o_Z5tJPPi_TqWDjnHsK23bZoGT_RYmUDEBwIiv65gG6j3MKdZA_lCBSyKX26ztq1pMd-kPyk0qn_q8HFSArsGwlJ-vuEQL94nO_-txXn_uly34p3T7QGF9U8TFUn_z4qJKuylyrhJ1N_zT9iOjVKtrnEtN9f7xr6VaSlv0GlsnFVA |
CitedBy_id | crossref_primary_10_1007_s00226_022_01417_7 crossref_primary_10_1038_s41578_020_0195_z crossref_primary_10_1007_s10570_020_03265_9 crossref_primary_10_1007_s10570_021_04342_3 crossref_primary_10_1007_s10570_022_04994_9 crossref_primary_10_1021_acsami_4c22384 crossref_primary_10_1038_s41427_021_00342_8 crossref_primary_10_1080_17480272_2024_2407981 crossref_primary_10_1016_j_carbpol_2021_117682 crossref_primary_10_1021_acs_biomac_4c01278 crossref_primary_10_32604_jrm_2021_015973 crossref_primary_10_1016_j_colsurfa_2020_125871 crossref_primary_10_24072_pcjournal_138 crossref_primary_10_1016_j_indcrop_2021_113368 crossref_primary_10_1016_j_mtbio_2023_100772 |
Cites_doi | 10.1007/BF00831344 10.1016/j.compositesa.2015.03.026 10.1104/pp.010423 10.1163/22941932-90000280 10.1186/s13007-017-0211-5 10.1016/j.compositesa.2007.01.007 10.1007/BF02628234 10.1016/j.indcrop.2016.12.020 10.1055/s-2002-32341 10.1016/S0006-3495(94)81007-0 10.1016/j.micron.2013.02.003 10.1007/s00425-014-2107-1 10.1039/b411986j 10.1016/j.compositesa.2011.09.020 10.1016/j.jsb.2013.07.001 10.1163/22941932-90000381 10.1007/s00226-006-0121-6 10.1515/HF.2003.099 10.1016/j.colsurfa.2014.05.055 10.1016/j.jsb.2006.06.007 10.1038/s41598-016-0028-x 10.1016/j.crvi.2004.08.001 10.1063/1.1150021 10.1098/rsos.160248 10.1080/01418619908210415 10.1007/s00468-005-0428-1 10.1007/s10853-009-3665-7 10.1515/HF.2001.062 10.1007/BF02619097 10.1007/s001070050334 10.1007/BF00351930 10.1093/jxb/ert255 10.1016/S0032-3861(99)00890-3 10.1016/0021-9797(75)90018-1 10.1039/c3tb20120a 10.1007/s00339-004-2864-y 10.1515/hfsg.1964.18.5.146 10.1557/jmr.2009.0076 10.1007/s00226-012-0515-6 10.1007/BF00705928 10.1515/hfsg.1998.52.2.117 10.1186/1746-4811-10-1 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2018 Planta is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Planta is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7TM 7X2 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 7S9 L.6 |
DOI | 10.1007/s00425-018-2850-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Agricultural Science Collection ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE Agricultural Science Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Agriculture Ecology Forestry |
EISSN | 1432-2048 |
EndPage | 1132 |
ExternalDocumentID | 29380141 10_1007_s00425_018_2850_9 48726917 |
Genre | Journal Article |
GroupedDBID | -~C .86 06C 06D 0R~ 0VY 123 199 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~F 2~H 30V 36B 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 7X7 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAGAY AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ABXSQ ACAOD ACDTI ACGFS ACHIC ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACPRK ACSTC ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHPBZ AHSBF AHWEU AHYZX AIAKS AICQM AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CCPQU CS3 CSCUP D1J DATOO DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECGQY EDH EIOEI EJD EMB EMOBN EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IPSME ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JENOY JLS JPM JST JZLTJ KDC KOV KPH LAS LK8 LLZTM M0K M1P M4Y M7P MA- MQGED N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P PF- PHGZM PHGZT PQQKQ PROAC PSQYO PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RRX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~EX -4W -56 -5G -BR -EM -Y2 1SB 28- 2P1 2VQ 3SX 3V. 53G 5QI 88A AANXM AARHV AAYTO ABQSL ABULA ACBXY ADINQ ADULT ADYPR AEBTG AEFIE AFEXP AFFNX AFGCZ AGGDS AJBLW BBWZM CAG COF EN4 FA8 GQ6 JAAYA JBMMH JHFFW JKQEH JLXEF JSODD KOW M0L MVM N2Q NDZJH O9- OHT P0- R4E RIG RNI RZK S1Z S26 S28 SBY SCLPG T16 WK6 XJT Z7U Z7V Z7W Z7Y Z81 Z83 Z8O Z8P Z8Q Z8S Z8U Z8W ZCG AAYXX ADHKG AGQPQ CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TM 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-b53cd6b564dc2bf01ebbf1cb238af53536eb30c171524c98f35b122cc41a3d443 |
IEDL.DBID | U2A |
ISSN | 0032-0935 1432-2048 |
IngestDate | Fri Jul 11 06:44:49 EDT 2025 Thu Jul 10 19:33:57 EDT 2025 Wed Aug 13 04:03:34 EDT 2025 Wed Feb 19 02:26:19 EST 2025 Thu Apr 24 23:01:53 EDT 2025 Tue Jul 01 02:50:27 EDT 2025 Fri Feb 21 02:33:42 EST 2025 Thu Jun 19 21:34:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Spruce AFM Microfibril angle Quantitative imaging mode Indentation modulus Concentric lamellar structure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-b53cd6b564dc2bf01ebbf1cb238af53536eb30c171524c98f35b122cc41a3d443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0431-9313 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s00425-018-2850-9.pdf |
PMID | 29380141 |
PQID | 1993519594 |
PQPubID | 54047 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2067285093 proquest_miscellaneous_1993005419 proquest_journals_1993519594 pubmed_primary_29380141 crossref_primary_10_1007_s00425_018_2850_9 crossref_citationtrail_10_1007_s00425_018_2850_9 springer_journals_10_1007_s00425_018_2850_9 jstor_primary_48726917 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180501 20180500 2018-5-00 2018-May |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 5 year: 2018 text: 20180501 day: 1 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | An International Journal of Plant Biology |
PublicationTitle | Planta |
PublicationTitleAbbrev | Planta |
PublicationTitleAlternate | Planta |
PublicationYear | 2018 |
Publisher | Springer Science + Business Media Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Science + Business Media – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Kerstens, Decraemer, Verbelen (CR28) 2001; 127 Burgert, Frühmann, Keckes, Fratzl, Stanzl-Tschegg (CR8) 2003; 57 Rettler, Hoeppener, Sigusch, Schubert (CR34) 2013; 1 Kerr, Goring (CR27) 1975; 9 Terashima, Awano, Takabe, Yoshida (CR43) 2004; 327 Donaldson (CR12) 2001; 22 Fahlén, Salmén (CR16) 2002; 4 Jin, Kasal (CR25) 2016; 3 Eder, Arnould, Dunlop, Hornatowska, Salmén (CR15) 2013; 47 Arnould, Arinero (CR1) 2015; 74 Burgert, Dunlop (CR6) 2011 Frybort, Obersriebnig, Muller, Gindl-Altmutter, Konnerth (CR19) 2014; 457 Reiterer, Lichtenegger, Tschegg, Fratzl (CR33) 1999; 79 Rüggeberg, Saxe, Metzger, Sundberg, Fratzl, Burgert (CR37) 2013; 183 Radotic, Simic-Krstic, Jeremic, Trifunovic (CR32) 1994; 66 Ruel, Barnould, Goring (CR36) 1978; 12 Burgert, Keplinger (CR7) 2013; 64 Arnould, Siniscalco, Bourmaud, Le Duigou, Baley (CR2) 2017; 97 Derjaguin, Muller, Toporov (CR11) 1975; 53 Wimmer, Lucas, Tsui, Oliver (CR45) 1997; 31 Zimmermann, Thommen, Reimann, Hug (CR47) 2006; 156 Schwarze, Engels (CR39) 1998; 52 Fratzl, Burgert, Gupta (CR18) 2004; 6 Sader, Chon, Mulvaney (CR38) 1999; 70 Hodzic, Stachurski, Kim (CR22) 2000; 41 Donaldson, Xu (CR14) 2005; 19 Tsukruk, Singamani (CR44) 2012 Casdorff, Keplinger, Burgert (CR9) 2017; 13 Fengel, Wegener (CR17) 1984 Singh, Daniel (CR42) 2001; 55 Jäger, Hofstetter, Buksnowitz, Gindl-Altmutter, Konnerth (CR23) 2011; 42 CR26 Barber, Meylan (CR3) 1964; 18 Donaldson (CR13) 2007; 41 Reza, Ruokolainen, Vuorinen (CR35) 2014; 240 Sell, Zimmermann (CR41) 1998; 56 Gindl, Gupta, Schöberl, Lichtenegger, Fratzl (CR21) 2004; 79 Zimmermann, Eckstein (CR46) 1994; 52 Brändström (CR5) 2001; 22 Jakes, Frihart, Beecher, Moon, Resto, Melgarejo, Suárez, Baumgart, Elmustafa, Stone (CR24) 2011; 24 Gibson, Ashby (CR20) 2001 Bergander, Brändström, Daniel, Salmén (CR4) 2002; 48 Sell, Zimmermann (CR40) 1993; 51 Chopinet, Formosa, Rols, Duval, Dague (CR10) 2013; 48 Konnerth, Gierlinger, Keckes, Gindl (CR29) 2009; 44 Muraille, Aguié-Béghin, Chabbert, Molinari (CR31) 2017; 7 Lee, Wang, Pharr, Xu (CR30) 2007; 38 D Fengel (2850_CR17) 1984 X Jin (2850_CR25) 2016; 3 E Rettler (2850_CR34) 2013; 1 S-H Lee (2850_CR30) 2007; 38 L Chopinet (2850_CR10) 2013; 48 S Kerstens (2850_CR28) 2001; 127 R Wimmer (2850_CR45) 1997; 31 M Reza (2850_CR35) 2014; 240 N Terashima (2850_CR43) 2004; 327 L Muraille (2850_CR31) 2017; 7 L Donaldson (2850_CR13) 2007; 41 P Fratzl (2850_CR18) 2004; 6 O Arnould (2850_CR1) 2015; 74 J Fahlén (2850_CR16) 2002; 4 O Arnould (2850_CR2) 2017; 97 T Zimmermann (2850_CR47) 2006; 156 M Eder (2850_CR15) 2013; 47 S Frybort (2850_CR19) 2014; 457 K Radotic (2850_CR32) 1994; 66 LA Donaldson (2850_CR12) 2001; 22 2850_CR26 I Burgert (2850_CR7) 2013; 64 JE Sader (2850_CR38) 1999; 70 I Burgert (2850_CR8) 2003; 57 A Hodzic (2850_CR22) 2000; 41 AJ Kerr (2850_CR27) 1975; 9 LJ Gibson (2850_CR20) 2001 J Konnerth (2850_CR29) 2009; 44 J Sell (2850_CR40) 1993; 51 AP Singh (2850_CR42) 2001; 55 K Casdorff (2850_CR9) 2017; 13 M Rüggeberg (2850_CR37) 2013; 183 NF Barber (2850_CR3) 1964; 18 W Gindl (2850_CR21) 2004; 79 LA Donaldson (2850_CR14) 2005; 19 BV Derjaguin (2850_CR11) 1975; 53 K Ruel (2850_CR36) 1978; 12 A Bergander (2850_CR4) 2002; 48 JE Jakes (2850_CR24) 2011; 24 FWMR Schwarze (2850_CR39) 1998; 52 VV Tsukruk (2850_CR44) 2012 J Brändström (2850_CR5) 2001; 22 I Burgert (2850_CR6) 2011 J Sell (2850_CR41) 1998; 56 A Reiterer (2850_CR33) 1999; 79 T Zimmermann (2850_CR46) 1994; 52 A Jäger (2850_CR23) 2011; 42 |
References_xml | – volume: 48 start-page: 255 year: 2002 end-page: 263 ident: CR4 article-title: Fibril angle variability in earlywood of Norway spruce using soft rot cavities and polarization confocal microscopy publication-title: J Wood Sci doi: 10.1007/BF00831344 – volume: 74 start-page: 69 year: 2015 end-page: 76 ident: CR1 article-title: Towards a better understanding of wood cell wall characterisation with contact resonance atomic force microscopy publication-title: Compos Part A Appl S doi: 10.1016/j.compositesa.2015.03.026 – volume: 127 start-page: 381 issue: 2 year: 2001 end-page: 385 ident: CR28 article-title: Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials publication-title: Plant Physiol doi: 10.1104/pp.010423 – volume: 22 start-page: 213 issue: 3 year: 2001 end-page: 233 ident: CR12 article-title: A three-dimensional computer model of the tracheid cell wall as a tool for interpretation of wood cell wall ultrastructure publication-title: IAWA J doi: 10.1163/22941932-90000280 – volume: 13 start-page: 60 issue: 1 year: 2017 ident: CR9 article-title: Nano-mechanical characterization of the wood cell wall by AFM studies: comparison between AC- and QI™ mode publication-title: Plant Methods doi: 10.1186/s13007-017-0211-5 – volume: 38 start-page: 1517 issue: 6 year: 2007 end-page: 1524 ident: CR30 article-title: Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis publication-title: Compos Part A Appl S doi: 10.1016/j.compositesa.2007.01.007 – volume: 51 start-page: 384 year: 1993 ident: CR40 article-title: Radial fibril agglomerations of the S2 on transverse-fracture surfaced of tracheids of tension-loaded spruce and white fir publication-title: Holz Roh Werkst doi: 10.1007/BF02628234 – volume: 97 start-page: 224 year: 2017 end-page: 228 ident: CR2 article-title: Better insight into the nano-mechanical properties of flax fibre cell walls publication-title: Ind Crop Prod doi: 10.1016/j.indcrop.2016.12.020 – start-page: 27 year: 2011 end-page: 52 ident: CR6 publication-title: Micromechanics of cell walls – year: 1984 ident: CR17 publication-title: Wood chemistry, ultrastructure, reactions – volume: 4 start-page: 339 year: 2002 end-page: 345 ident: CR16 article-title: On the lamellar structure of the tracheid cell wall publication-title: Plant Biol doi: 10.1055/s-2002-32341 – volume: 66 start-page: 1763 year: 1994 end-page: 1767 ident: CR32 article-title: A study of lignin formation at the molecular level by scanning tunneling microscopy publication-title: Biophys J doi: 10.1016/S0006-3495(94)81007-0 – volume: 48 start-page: 26 year: 2013 end-page: 33 ident: CR10 article-title: Imaging living cells surface and quantifying its properties at high resolution using AFM in QI™ mode publication-title: Micron doi: 10.1016/j.micron.2013.02.003 – volume: 240 start-page: 565 issue: 3 year: 2014 end-page: 573 ident: CR35 article-title: Out-of-plane orientation of cellulose elementary fibrils on spruce tracheid wall based on imaging with high-resolution transmission electron microscopy publication-title: Planta doi: 10.1007/s00425-014-2107-1 – volume: 6 start-page: 5575 issue: 24 year: 2004 end-page: 5579 ident: CR18 article-title: On the role of interface polymers for the mechanics of natural polymeric composites publication-title: Phys Chem Chem Phys doi: 10.1039/b411986j – volume: 42 start-page: 2101 issue: 12 year: 2011 end-page: 2109 ident: CR23 article-title: Identification of stiffness tensor components of wood cell walls by means of nanoindentation publication-title: Compos Part A Appl S doi: 10.1016/j.compositesa.2011.09.020 – volume: 183 start-page: 419 issue: 3 year: 2013 end-page: 428 ident: CR37 article-title: Enhanced cellulose orientation analysis in complex model plant tissues publication-title: J Struct Biol doi: 10.1016/j.jsb.2013.07.001 – volume: 22 start-page: 333 issue: 4 year: 2001 end-page: 353 ident: CR5 article-title: Micro- and ultrastructural aspects of norway spruce tracheids: a review publication-title: IAWA J doi: 10.1163/22941932-90000381 – volume: 41 start-page: 443 issue: 5 year: 2007 end-page: 460 ident: CR13 article-title: Cellulose microfibril aggregates and their size variation with cell wall type publication-title: Wood Sci Technol doi: 10.1007/s00226-006-0121-6 – volume: 57 start-page: 661 year: 2003 end-page: 664 ident: CR8 article-title: Microtensile testing of wood fibers combined with video extensometry for efficient strain detection publication-title: Holzforschung doi: 10.1515/HF.2003.099 – volume: 457 start-page: 82 year: 2014 end-page: 87 ident: CR19 article-title: Variability in surface polarity of wood by means of AFM adhesion force mapping publication-title: Colloid Surface A doi: 10.1016/j.colsurfa.2014.05.055 – volume: 156 start-page: 363 issue: 2 year: 2006 end-page: 369 ident: CR47 article-title: Ultrastructural appearance of embedded and polished wood cell walls as revealed by atomic force microscopy publication-title: J Struct Biol doi: 10.1016/j.jsb.2006.06.007 – volume: 7 start-page: 1 year: 2017 end-page: 11 ident: CR31 article-title: Bioinspired lignocellulosic films to understand the mechanical properties of lignified plant cell walls at nanoscale publication-title: Sci Rep-U doi: 10.1038/s41598-016-0028-x – volume: 327 start-page: 903 issue: 9–10 year: 2004 end-page: 910 ident: CR43 article-title: Formation of macromolecular lignin in ginkgo xylem cell walls as observed by field emission scanning electron microscopy publication-title: C R Biol doi: 10.1016/j.crvi.2004.08.001 – volume: 70 start-page: 3967 issue: 10 year: 1999 end-page: 3969 ident: CR38 article-title: Calibration of rectangular atomic force microscope cantilevers publication-title: Rev Sci Instrum doi: 10.1063/1.1150021 – volume: 3 start-page: 160248 issue: 10 year: 2016 ident: CR25 article-title: Adhesion force mapping on wood by atomic force microscopy: influence of surface roughness and tip geometry publication-title: Roy Soc Open Sci doi: 10.1098/rsos.160248 – volume: 79 start-page: 2173 issue: 9 year: 1999 end-page: 2184 ident: CR33 article-title: Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls publication-title: Philos Mag A doi: 10.1080/01418619908210415 – volume: 19 start-page: 644 issue: 6 year: 2005 end-page: 653 ident: CR14 article-title: Microfibril orientation across the secondary cell wall of Radiata pine tracheids publication-title: Trees-Struct Funct doi: 10.1007/s00468-005-0428-1 – year: 2012 ident: CR44 publication-title: Scanning probe microscopy of soft matter: fundamentals and practice – volume: 44 start-page: 4399 issue: 16 year: 2009 end-page: 4406 ident: CR29 article-title: Actual versus apparent within cell wall variability of nanoindentation results from wood cell walls related to cellulose microfibril angle publication-title: J Mater Sci doi: 10.1007/s10853-009-3665-7 – volume: 55 start-page: 373 year: 2001 end-page: 378 ident: CR42 article-title: The S2 layer in the tracheid wall of Picea abies wood: inhomogeneity in lignin distribution and cell wall microstructure publication-title: Holzforschung doi: 10.1515/HF.2001.062 – volume: 52 start-page: 223 year: 1994 end-page: 229 ident: CR46 article-title: Rasterelektronenmikroskopische Untersuchung an Zugbruchflächen von Fichtenholz publication-title: Holz Roh Werkst doi: 10.1007/BF02619097 – volume: 56 start-page: 365 year: 1998 end-page: 366 ident: CR41 article-title: The fine structure of the cell wall of hardwoods on transverse-fracture surfaces publication-title: Holz Roh Werkst doi: 10.1007/s001070050334 – volume: 9 start-page: 563 year: 1975 end-page: 573 ident: CR27 article-title: The ultrastructural arrangement of the wood cell wall publication-title: Cell Chem Technol – volume: 12 start-page: 287 year: 1978 end-page: 291 ident: CR36 article-title: Lamellation in the S2 layer of softwood tracheids as demonstrated by scanning transmission electron microscopy publication-title: Wood Sci Technol doi: 10.1007/BF00351930 – volume: 64 start-page: 4635 issue: 15 year: 2013 end-page: 4649 ident: CR7 article-title: Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis publication-title: J Exp Bot doi: 10.1093/jxb/ert255 – volume: 41 start-page: 6895 year: 2000 end-page: 6905 ident: CR22 article-title: Nano-indentation of polymer-glass interfaces Part 1. Experimental and mechanical analysis publication-title: Polymer doi: 10.1016/S0032-3861(99)00890-3 – volume: 53 start-page: 314 year: 1975 end-page: 326 ident: CR11 article-title: Effect of contact deformations on adhesion of particles publication-title: J Colloid Interf Sci doi: 10.1016/0021-9797(75)90018-1 – volume: 1 start-page: 2789 issue: 22 year: 2013 end-page: 2806 ident: CR34 article-title: Mapping the mechanical properties of biomaterials on different length scales: depth-sensing indentation and AFM based nanoindentation publication-title: J Mater Chem B doi: 10.1039/c3tb20120a – volume: 79 start-page: 2069 issue: 8 year: 2004 end-page: 2073 ident: CR21 article-title: Mechanical properties of spruce wood cell walls by nanoindentation publication-title: Appl Phys A doi: 10.1007/s00339-004-2864-y – volume: 18 start-page: 146 year: 1964 end-page: 156 ident: CR3 article-title: The anisotropic shrinkage of wood. A theoretical model publication-title: Holzforschung doi: 10.1515/hfsg.1964.18.5.146 – volume: 24 start-page: 1016 issue: 03 year: 2011 end-page: 1031 ident: CR24 article-title: Nanoindentation near the edge publication-title: J Mater Res doi: 10.1557/jmr.2009.0076 – volume: 47 start-page: 163 issue: 1 year: 2013 end-page: 182 ident: CR15 article-title: Experimental micromechanical characterisation of wood cell walls publication-title: Wood Sci Technol doi: 10.1007/s00226-012-0515-6 – volume: 31 start-page: 131 year: 1997 end-page: 141 ident: CR45 article-title: Longitudinal hardness and Young’s modulus of spruce tracheid secondary walls using nanoindentation technique publication-title: Wood Sci Technol doi: 10.1007/BF00705928 – year: 2001 ident: CR20 publication-title: Cellular solids. Structure and properties – ident: CR26 – volume: 52 start-page: 117 year: 1998 end-page: 123 ident: CR39 article-title: Cavity formation and the exposure of peculiar structures in the secondary wall (S2) of tracheids and fibres by wood degrading Basidiomycetes publication-title: Holzforschung doi: 10.1515/hfsg.1998.52.2.117 – volume: 53 start-page: 314 year: 1975 ident: 2850_CR11 publication-title: J Colloid Interf Sci doi: 10.1016/0021-9797(75)90018-1 – volume: 327 start-page: 903 issue: 9–10 year: 2004 ident: 2850_CR43 publication-title: C R Biol doi: 10.1016/j.crvi.2004.08.001 – volume: 79 start-page: 2069 issue: 8 year: 2004 ident: 2850_CR21 publication-title: Appl Phys A doi: 10.1007/s00339-004-2864-y – volume: 48 start-page: 255 year: 2002 ident: 2850_CR4 publication-title: J Wood Sci doi: 10.1007/BF00831344 – volume: 19 start-page: 644 issue: 6 year: 2005 ident: 2850_CR14 publication-title: Trees-Struct Funct doi: 10.1007/s00468-005-0428-1 – volume: 74 start-page: 69 year: 2015 ident: 2850_CR1 publication-title: Compos Part A Appl S doi: 10.1016/j.compositesa.2015.03.026 – start-page: 27 volume-title: Micromechanics of cell walls year: 2011 ident: 2850_CR6 – volume: 57 start-page: 661 year: 2003 ident: 2850_CR8 publication-title: Holzforschung doi: 10.1515/HF.2003.099 – volume: 41 start-page: 6895 year: 2000 ident: 2850_CR22 publication-title: Polymer doi: 10.1016/S0032-3861(99)00890-3 – volume: 79 start-page: 2173 issue: 9 year: 1999 ident: 2850_CR33 publication-title: Philos Mag A doi: 10.1080/01418619908210415 – volume: 51 start-page: 384 year: 1993 ident: 2850_CR40 publication-title: Holz Roh Werkst doi: 10.1007/BF02628234 – volume-title: Scanning probe microscopy of soft matter: fundamentals and practice year: 2012 ident: 2850_CR44 – volume: 156 start-page: 363 issue: 2 year: 2006 ident: 2850_CR47 publication-title: J Struct Biol doi: 10.1016/j.jsb.2006.06.007 – volume: 70 start-page: 3967 issue: 10 year: 1999 ident: 2850_CR38 publication-title: Rev Sci Instrum doi: 10.1063/1.1150021 – volume: 48 start-page: 26 year: 2013 ident: 2850_CR10 publication-title: Micron doi: 10.1016/j.micron.2013.02.003 – volume: 55 start-page: 373 year: 2001 ident: 2850_CR42 publication-title: Holzforschung doi: 10.1515/HF.2001.062 – volume: 1 start-page: 2789 issue: 22 year: 2013 ident: 2850_CR34 publication-title: J Mater Chem B doi: 10.1039/c3tb20120a – volume: 38 start-page: 1517 issue: 6 year: 2007 ident: 2850_CR30 publication-title: Compos Part A Appl S doi: 10.1016/j.compositesa.2007.01.007 – volume: 42 start-page: 2101 issue: 12 year: 2011 ident: 2850_CR23 publication-title: Compos Part A Appl S doi: 10.1016/j.compositesa.2011.09.020 – volume: 7 start-page: 1 year: 2017 ident: 2850_CR31 publication-title: Sci Rep-U doi: 10.1038/s41598-016-0028-x – volume: 31 start-page: 131 year: 1997 ident: 2850_CR45 publication-title: Wood Sci Technol doi: 10.1007/BF00705928 – volume: 18 start-page: 146 year: 1964 ident: 2850_CR3 publication-title: Holzforschung doi: 10.1515/hfsg.1964.18.5.146 – volume: 24 start-page: 1016 issue: 03 year: 2011 ident: 2850_CR24 publication-title: J Mater Res doi: 10.1557/jmr.2009.0076 – volume: 47 start-page: 163 issue: 1 year: 2013 ident: 2850_CR15 publication-title: Wood Sci Technol doi: 10.1007/s00226-012-0515-6 – volume-title: Cellular solids. Structure and properties year: 2001 ident: 2850_CR20 – volume: 66 start-page: 1763 year: 1994 ident: 2850_CR32 publication-title: Biophys J doi: 10.1016/S0006-3495(94)81007-0 – volume: 97 start-page: 224 year: 2017 ident: 2850_CR2 publication-title: Ind Crop Prod doi: 10.1016/j.indcrop.2016.12.020 – volume: 56 start-page: 365 year: 1998 ident: 2850_CR41 publication-title: Holz Roh Werkst doi: 10.1007/s001070050334 – volume: 127 start-page: 381 issue: 2 year: 2001 ident: 2850_CR28 publication-title: Plant Physiol doi: 10.1104/pp.010423 – volume: 52 start-page: 223 year: 1994 ident: 2850_CR46 publication-title: Holz Roh Werkst doi: 10.1007/BF02619097 – volume: 457 start-page: 82 year: 2014 ident: 2850_CR19 publication-title: Colloid Surface A doi: 10.1016/j.colsurfa.2014.05.055 – volume: 22 start-page: 213 issue: 3 year: 2001 ident: 2850_CR12 publication-title: IAWA J doi: 10.1163/22941932-90000280 – ident: 2850_CR26 doi: 10.1186/1746-4811-10-1 – volume: 13 start-page: 60 issue: 1 year: 2017 ident: 2850_CR9 publication-title: Plant Methods doi: 10.1186/s13007-017-0211-5 – volume: 183 start-page: 419 issue: 3 year: 2013 ident: 2850_CR37 publication-title: J Struct Biol doi: 10.1016/j.jsb.2013.07.001 – volume: 12 start-page: 287 year: 1978 ident: 2850_CR36 publication-title: Wood Sci Technol doi: 10.1007/BF00351930 – volume: 6 start-page: 5575 issue: 24 year: 2004 ident: 2850_CR18 publication-title: Phys Chem Chem Phys doi: 10.1039/b411986j – volume: 64 start-page: 4635 issue: 15 year: 2013 ident: 2850_CR7 publication-title: J Exp Bot doi: 10.1093/jxb/ert255 – volume: 41 start-page: 443 issue: 5 year: 2007 ident: 2850_CR13 publication-title: Wood Sci Technol doi: 10.1007/s00226-006-0121-6 – volume: 240 start-page: 565 issue: 3 year: 2014 ident: 2850_CR35 publication-title: Planta doi: 10.1007/s00425-014-2107-1 – volume-title: Wood chemistry, ultrastructure, reactions year: 1984 ident: 2850_CR17 – volume: 9 start-page: 563 year: 1975 ident: 2850_CR27 publication-title: Cell Chem Technol – volume: 44 start-page: 4399 issue: 16 year: 2009 ident: 2850_CR29 publication-title: J Mater Sci doi: 10.1007/s10853-009-3665-7 – volume: 52 start-page: 117 year: 1998 ident: 2850_CR39 publication-title: Holzforschung doi: 10.1515/hfsg.1998.52.2.117 – volume: 3 start-page: 160248 issue: 10 year: 2016 ident: 2850_CR25 publication-title: Roy Soc Open Sci doi: 10.1098/rsos.160248 – volume: 22 start-page: 333 issue: 4 year: 2001 ident: 2850_CR5 publication-title: IAWA J doi: 10.1163/22941932-90000381 – volume: 4 start-page: 339 year: 2002 ident: 2850_CR16 publication-title: Plant Biol doi: 10.1055/s-2002-32341 |
SSID | ssj0014377 |
Score | 2.3336143 |
Snippet | The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in... Main conclusion AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S 2 layer changes from a network structure to a... AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S layer changes from a network structure to a concentric lamellar... Main conclusionAFM measurements on spruce sample cross-sections reveal that the structural appearance of the S2 layer changes from a network structure to a... AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S2 layer changes from a network structure to a concentric... MAIN CONCLUSION: AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S₂ layer changes from a network structure to a... |
SourceID | proquest pubmed crossref springer jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1123 |
SubjectTerms | Agriculture Assembly Atomic force microscopy Atomic structure Biomedical and Life Sciences Cell Wall - ultrastructure Cell walls Cellulose Cross-sections cutting Cutting parameters Ecology Forestry image analysis Indentation Lamellar structure Life Sciences Macromolecules Mechanical properties mechanics Microscopy Microscopy, Atomic Force - methods Nanoindentation ORIGINAL ARTICLE Picea Picea - ultrastructure Plant Sciences Texture Ultrastructure wood Wood - cytology Wood - ultrastructure X-Ray Diffraction |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gcOCC-BoUBjISJ1BE89n2hAZimpDgxKR3q5I0RZPe2sfaCr0D_zt2vwDBdumlbpvUbm3Hv_zM2KtCWuOkD5yKMFx7Y3juc8Mr9A11rmtdBdo7_PmLPT3TnzZmMy-4dTOscvknjj_qqg20Rv6WgGYjE4p-t_vOqWsUVVfnFho32S2iLiNIV7ZZEy4MBbKJM1NJTgW_paqZTiSikmBraCe5SXnxl1-aoIn_Czr_KZiOfujkHrs7B5BwPGn8PrsRmwfs9vsWg7z9Q_bzGMK27SIfdkATgrYGDPGAkDVAi_Tww-Fh2PaXbqKOHS4juKaC876Di0j7gM9DB66HpXVKD2EYwdEo9m0bO_B7PE2bmQED3hDhgjB9tLtl_4idnXz8-uGUzx0WeNBZ2nNvVKisNxZVIn2diuh9LYJHP-5qo4yymGunQWTo5XUo8loZL6QMQQunKq3VITto2iY-YZBbLzIlnFUh6ipP84oKdNYZzK_wzkXC0uX9lmGmH6cuGNtyJU4eVVKiSkpSSYmXvF4v2U3cG9cJH45KWyUxE5MWk9GEHS1aLOfvsyt_W1PCXq6n8csiTbgmtsMkQxGtKK6WIfJ7en6hEvZ4spB1ABhIETWPSNibxWT-GMBV83h6_XCfsTuSjHaEXB6xA7SU-BzDot6_GG3_F_MEBpo priority: 102 providerName: ProQuest |
Title | A close-up view of the wood cell wall ultrastructure and its mechanics at different cutting angles by atomic force microscopy |
URI | https://www.jstor.org/stable/48726917 https://link.springer.com/article/10.1007/s00425-018-2850-9 https://www.ncbi.nlm.nih.gov/pubmed/29380141 https://www.proquest.com/docview/1993519594 https://www.proquest.com/docview/1993005419 https://www.proquest.com/docview/2067285093 |
Volume | 247 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9sq6IPomer0Xqs4JOykGR38_GYytWiWEQ8OJ9CdrMphWtSmhzlHvq_O7P5QLEVfLkcZLLJ8ZvNzNzM_AbgXRpGqgi14ZSE4VIrxROdKF6ibagSWcnSUO_w19PoZCk_r9Rq6ONux2r3MSXp3tRTs5vTLwx9EdlE-TzdgT1FoTsq8TLMptSBFHFPlClCTlm-MZV52xJ_GKO-HvE2T_OvLKkzPsdP4cngNbKsh_kZ3LP1DB5nZ1cDc4adwf2jBv287QweLBwRNX57SHM3aZjbc7jJmFk3reWbS0bJANZUDF0_RhU3jP68Z9cFfuBiV0VPKYuLsqIu2XnXsgtL_cHnpmVFx8aRKh0zG1c0jWJna9syvcXT1OTM0BE2ll1QrR91vWz3YXm8-PHxhA-TF7iRsd9xrYQpI60ihCrUlR9YravAaLTvRaWEEhHG4L4JYrT-0qRJJZQOwtAYGRSilFIcwG7d1PYlsCTSQSyCIhLGyjLxk5ISd1GhMO7ClVMP_BGC3Ay05DQdY51PhMoOtRxRywm1HC95P11y2XNy_Ev4wOE6SWKEFkYYpHpwOAKdD_u2zamc0fHtSA_eTqdxxxESRW2bTS9Dnm6Q3i1DpPh0_1R48KJXoukB0MEiyp7Agw-jVv32AHf9jlf_Jf0aHoWk5q4y8xB2UXHsG_SeOj2HnXgVz2Ev-_TzywKPR4vTb9_nbg_9AtjqEiI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKFoleEK9CoMAgwQU0IplHNjkg1EKrLW1XCLVSb2lmMkGVtsm2yaraA3-J34idFyBob73kEk8yGXvGdmx_Bngdi1CnwlhOQRiujNY8MpHmGeqGPFK5yizVDh9Mw8mR-nKsj1fgZ18LQ2mV_ZnYHNRZaekf-XtKNGuQUNTH-TmnrlEUXe1baLRiseeWl-iyVR92PyN_3wixs334acK7rgLcqrFfc6OlzUKjQ5yGMLkfOGPywBrUXWmupZYh-pe-Dcao2ZSNo1xqEwhhrQpSmSkl8bm3YFVJdGVGsLq1Pf36bYhbKDluUTql4BRi7OOofgtbKihRDiUz0j6P_9KEbTLk_8zcf0K0jebbuQd3O5OVbbYydh9WXPEAbm-VaFYuH8KPTWZnZeX4Ys5oCVmZMzQqGeXyMAoLsMsUL4tZfZG2YLWLC8fSImOndcXOHFUen9qKpTXrm7XUzC6adGwk-z5zFTNLvE3l0wxNbOvYGWURUj3N8hEc3cjqr8OoKAv3BFgUmmAsgzSU1qks8qOMQoJhqtGjwyfHHvj9-ia2AzynvhuzZIBqbliSIEsSYkmCQ94OQ-Yt2sd1xOsN0wZK9P1EiO6vBxs9F5PuRKiS3_LrwavhNu5l4kRauHLR0pANHcRX0xDcPr0_lh48biVkmACabgQGFHjwrheZPyZw1Xc8vX66L-HO5PBgP9nfne49gzVBAtwkfG7ACKXGPUejrDYvup3A4OSmN98vKthFDw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtVAzCoFIS6IrZBSYJDgAho1mSXLAaFCeWopVByo9G4hM5mgSq_Ja5Ooegd-jK_DzgYI2lsvucSTOGN7bMcbwItEhDoTxnIKwnBltOaxiTXPUTcUsSpUbql2-PNhuHekPs71fA1-jrUwlFY5nondQZ1Xlv6Rb1OiWdcJRW0XQ1rEl93Z2-UppwlSFGkdx2n0LHLgVufovtVv9neR1i-FmH34-n6PDxMGuFWR33Cjpc1Do0NESZjCD5wxRWAN6rGs0FLLEH1N3wYRajllk7iQ2gRCWKuCTOZKSXzuNbgeIWYkY9F8cvbQDIn6fp1ScAo2jhFVv29gKihlDnk01j5P_tKJfVrk_wzef4K1nQ6c3YHbg_HKdnpuuwtrrrwHN95VaGCu7sOPHWYXVe14u2S0mawqGJqXjLJ6GAUI2HmGl3bRnGV929r2zLGszNlxU7MTRzXIx7ZmWcPGsS0Ns22XmI1g3xeuZmaFt6mQmqGxbR07oXxCqqxZPYCjK9n7DVgvq9I9AhaHJohkkIXSOpXHfpxTcDDMNPp2-OTEA3_c39QOrc9pAscinZo2dyRJkSQpkSTFJa-mJcu-78dlwBsd0SZI9AJFiI6wB1sjFdPhbKjT35zswfPpNko1USIrXdX2MGRNB8nFMNR4n96fSA8e9hwyIYBGHLUFCjx4PbLMHwhc9B2bl6P7DG6iyKWf9g8PHsMtQfzbZX5uwToyjXuC1lljnnZiwODbVcvdL-qkR98 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+close-up+view+of+the+wood+cell+wall+ultrastructure+and+its+mechanics+at+different+cutting+angles+by+atomic+force+microscopy&rft.jtitle=Planta&rft.au=Casdorff%2C+Kirstin&rft.au=Keplinger%2C+Tobias&rft.au=R%C3%BCggeberg%2C+Markus&rft.au=Burgert%2C+Ingo&rft.date=2018-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0032-0935&rft.eissn=1432-2048&rft.volume=247&rft.issue=5&rft.spage=1123&rft.epage=1132&rft_id=info:doi/10.1007%2Fs00425-018-2850-9&rft.externalDocID=10_1007_s00425_018_2850_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0935&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0935&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0935&client=summon |