A close-up view of the wood cell wall ultrastructure and its mechanics at different cutting angles by atomic force microscopy

The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy...

Full description

Saved in:
Bibliographic Details
Published inPlanta Vol. 247; no. 5; pp. 1123 - 1132
Main Authors Casdorff, Kirstin, Keplinger, Tobias, Rüggeberg, Markus, Burgert, Ingo
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Science + Business Media 01.05.2018
Springer Berlin Heidelberg
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S₂ layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation.
AbstractList Main conclusion AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S 2 layer changes from a network structure to a concentric lamellar texture depending on the cutting angle. The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S 2 layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation.
MAIN CONCLUSION: AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S₂ layer changes from a network structure to a concentric lamellar texture depending on the cutting angle. The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S₂ layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation.
AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S2 layer changes from a network structure to a concentric lamellar texture depending on the cutting angle. The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S2 layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation.MAIN CONCLUSIONAFM measurements on spruce sample cross-sections reveal that the structural appearance of the S2 layer changes from a network structure to a concentric lamellar texture depending on the cutting angle. The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S2 layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation.
AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S layer changes from a network structure to a concentric lamellar texture depending on the cutting angle. The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation.
Main conclusionAFM measurements on spruce sample cross-sections reveal that the structural appearance of the S2 layer changes from a network structure to a concentric lamellar texture depending on the cutting angle.The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S2 layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation.
The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in contradicting models on the spatial arrangement and orientation of the wood macromolecules. Here, we use multichannel atomic force microscopy by means of quantitative imaging, to gain new insights into the macromolecular assembly. Cross-sections of spruce wood, which had been cut at different angles ranging from 0° to 30° were investigated. Strikingly, depending on the cutting angle, the structural appearance of the S₂ layer changed from a network-like structure to a distinct concentric lamellar texture. This makes us conclude that the often visualized lamellar organization of the secondary cell wall is not the consequence of a continuous inherent ring pattern, but rather a result of the specific surface cross-section appearance of cellulose aggregates at larger cutting angles. By analyzing the recorded force distance curves in every pixel, a nano-mechanical characterization of the secondary cell wall was conducted. Substantially lower indentation modulus values were obtained compared to nanoindentation values reported in the literature. This is potentially due to a smaller interaction volume of the probe with a by far less deep indentation.
Author Burgert, Ingo
Rüggeberg, Markus
Casdorff, Kirstin
Keplinger, Tobias
Author_xml – sequence: 1
  givenname: Kirstin
  surname: Casdorff
  fullname: Casdorff, Kirstin
– sequence: 2
  givenname: Tobias
  surname: Keplinger
  fullname: Keplinger, Tobias
– sequence: 3
  givenname: Markus
  surname: Rüggeberg
  fullname: Rüggeberg, Markus
– sequence: 4
  givenname: Ingo
  surname: Burgert
  fullname: Burgert, Ingo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29380141$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URKeFB2ABssSGTeD4NomXVcVNqsQG1pHt2FOPEnuwHUaz4N1xSKlQF2VjH-t8v8_lv0BnIQaL0EsC7whA-z4DcCoaIF1DOwGNfII2hDPaUODdGdoA1BgkE-foIuc9QE227TN0TiXr6oNs0K8rbMaYbTMf8E9vjzg6XG4tPsY4YGPHER9VPeaxJJVLmk2Zk8UqDNiXjCdrblXwJmNV8OCds8mGgs1cig-7iu1Gm7E-1XScvMEuJmNxjVLMJh5Oz9FTp8ZsX9zdl-j7xw_frj83N18_fbm-umkMb6E0WjAzbLXY8sFQ7YBYrR0xmrJOOcEE21rNwJCWCMqN7BwTmlBqDCeKDZyzS_R2_feQ4o_Z5tJPPi_TqWDjnHsK23bZoGT_RYmUDEBwIiv65gG6j3MKdZA_lCBSyKX26ztq1pMd-kPyk0qn_q8HFSArsGwlJ-vuEQL94nO_-txXn_uly34p3T7QGF9U8TFUn_z4qJKuylyrhJ1N_zT9iOjVKtrnEtN9f7xr6VaSlv0GlsnFVA
CitedBy_id crossref_primary_10_1007_s00226_022_01417_7
crossref_primary_10_1038_s41578_020_0195_z
crossref_primary_10_1007_s10570_020_03265_9
crossref_primary_10_1007_s10570_021_04342_3
crossref_primary_10_1007_s10570_022_04994_9
crossref_primary_10_1021_acsami_4c22384
crossref_primary_10_1038_s41427_021_00342_8
crossref_primary_10_1080_17480272_2024_2407981
crossref_primary_10_1016_j_carbpol_2021_117682
crossref_primary_10_1021_acs_biomac_4c01278
crossref_primary_10_32604_jrm_2021_015973
crossref_primary_10_1016_j_colsurfa_2020_125871
crossref_primary_10_24072_pcjournal_138
crossref_primary_10_1016_j_indcrop_2021_113368
crossref_primary_10_1016_j_mtbio_2023_100772
Cites_doi 10.1007/BF00831344
10.1016/j.compositesa.2015.03.026
10.1104/pp.010423
10.1163/22941932-90000280
10.1186/s13007-017-0211-5
10.1016/j.compositesa.2007.01.007
10.1007/BF02628234
10.1016/j.indcrop.2016.12.020
10.1055/s-2002-32341
10.1016/S0006-3495(94)81007-0
10.1016/j.micron.2013.02.003
10.1007/s00425-014-2107-1
10.1039/b411986j
10.1016/j.compositesa.2011.09.020
10.1016/j.jsb.2013.07.001
10.1163/22941932-90000381
10.1007/s00226-006-0121-6
10.1515/HF.2003.099
10.1016/j.colsurfa.2014.05.055
10.1016/j.jsb.2006.06.007
10.1038/s41598-016-0028-x
10.1016/j.crvi.2004.08.001
10.1063/1.1150021
10.1098/rsos.160248
10.1080/01418619908210415
10.1007/s00468-005-0428-1
10.1007/s10853-009-3665-7
10.1515/HF.2001.062
10.1007/BF02619097
10.1007/s001070050334
10.1007/BF00351930
10.1093/jxb/ert255
10.1016/S0032-3861(99)00890-3
10.1016/0021-9797(75)90018-1
10.1039/c3tb20120a
10.1007/s00339-004-2864-y
10.1515/hfsg.1964.18.5.146
10.1557/jmr.2009.0076
10.1007/s00226-012-0515-6
10.1007/BF00705928
10.1515/hfsg.1998.52.2.117
10.1186/1746-4811-10-1
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2018
Planta is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Planta is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7TM
7X2
7X7
7XB
88A
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
7X8
7S9
L.6
DOI 10.1007/s00425-018-2850-9
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nucleic Acids Abstracts
Agricultural Science Collection
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
Agricultural Science Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
Agriculture
Ecology
Forestry
EISSN 1432-2048
EndPage 1132
ExternalDocumentID 29380141
10_1007_s00425_018_2850_9
48726917
Genre Journal Article
GroupedDBID -~C
.86
06C
06D
0R~
0VY
123
199
203
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~F
2~H
30V
36B
4.4
406
408
409
40D
40E
5VS
67N
67Z
6NX
78A
7X2
7X7
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAGAY
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXTN
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBHK
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACDTI
ACGFS
ACHIC
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEEJZ
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUPB
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AICQM
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
APEBS
AQVQM
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CCPQU
CS3
CSCUP
D1J
DATOO
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
EMB
EMOBN
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IPSME
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JENOY
JLS
JPM
JST
JZLTJ
KDC
KOV
KPH
LAS
LK8
LLZTM
M0K
M1P
M4Y
M7P
MA-
MQGED
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
PF-
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QF4
QM4
QN7
QO4
QOK
QOR
QOS
R89
R9I
RHV
RNS
ROL
RPX
RRX
RSV
S16
S27
S3A
S3B
SA0
SAP
SBL
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~EX
-4W
-56
-5G
-BR
-EM
-Y2
1SB
28-
2P1
2VQ
3SX
3V.
53G
5QI
88A
AANXM
AARHV
AAYTO
ABQSL
ABULA
ACBXY
ADINQ
ADULT
ADYPR
AEBTG
AEFIE
AFEXP
AFFNX
AFGCZ
AGGDS
AJBLW
BBWZM
CAG
COF
EN4
FA8
GQ6
JAAYA
JBMMH
JHFFW
JKQEH
JLXEF
JSODD
KOW
M0L
MVM
N2Q
NDZJH
O9-
OHT
P0-
R4E
RIG
RNI
RZK
S1Z
S26
S28
SBY
SCLPG
T16
WK6
XJT
Z7U
Z7V
Z7W
Z7Y
Z81
Z83
Z8O
Z8P
Z8Q
Z8S
Z8U
Z8W
ZCG
AAYXX
ADHKG
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TM
7XB
8FD
8FK
ABRTQ
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c470t-b53cd6b564dc2bf01ebbf1cb238af53536eb30c171524c98f35b122cc41a3d443
IEDL.DBID U2A
ISSN 0032-0935
1432-2048
IngestDate Fri Jul 11 06:44:49 EDT 2025
Thu Jul 10 19:33:57 EDT 2025
Wed Aug 13 04:03:34 EDT 2025
Wed Feb 19 02:26:19 EST 2025
Thu Apr 24 23:01:53 EDT 2025
Tue Jul 01 02:50:27 EDT 2025
Fri Feb 21 02:33:42 EST 2025
Thu Jun 19 21:34:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Spruce
AFM
Microfibril angle
Quantitative imaging mode
Indentation modulus
Concentric lamellar structure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-b53cd6b564dc2bf01ebbf1cb238af53536eb30c171524c98f35b122cc41a3d443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0431-9313
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s00425-018-2850-9.pdf
PMID 29380141
PQID 1993519594
PQPubID 54047
PageCount 10
ParticipantIDs proquest_miscellaneous_2067285093
proquest_miscellaneous_1993005419
proquest_journals_1993519594
pubmed_primary_29380141
crossref_primary_10_1007_s00425_018_2850_9
crossref_citationtrail_10_1007_s00425_018_2850_9
springer_journals_10_1007_s00425_018_2850_9
jstor_primary_48726917
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180501
20180500
2018-5-00
2018-May
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 5
  year: 2018
  text: 20180501
  day: 1
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationSubtitle An International Journal of Plant Biology
PublicationTitle Planta
PublicationTitleAbbrev Planta
PublicationTitleAlternate Planta
PublicationYear 2018
Publisher Springer Science + Business Media
Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Science + Business Media
– name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Kerstens, Decraemer, Verbelen (CR28) 2001; 127
Burgert, Frühmann, Keckes, Fratzl, Stanzl-Tschegg (CR8) 2003; 57
Rettler, Hoeppener, Sigusch, Schubert (CR34) 2013; 1
Kerr, Goring (CR27) 1975; 9
Terashima, Awano, Takabe, Yoshida (CR43) 2004; 327
Donaldson (CR12) 2001; 22
Fahlén, Salmén (CR16) 2002; 4
Jin, Kasal (CR25) 2016; 3
Eder, Arnould, Dunlop, Hornatowska, Salmén (CR15) 2013; 47
Arnould, Arinero (CR1) 2015; 74
Burgert, Dunlop (CR6) 2011
Frybort, Obersriebnig, Muller, Gindl-Altmutter, Konnerth (CR19) 2014; 457
Reiterer, Lichtenegger, Tschegg, Fratzl (CR33) 1999; 79
Rüggeberg, Saxe, Metzger, Sundberg, Fratzl, Burgert (CR37) 2013; 183
Radotic, Simic-Krstic, Jeremic, Trifunovic (CR32) 1994; 66
Ruel, Barnould, Goring (CR36) 1978; 12
Burgert, Keplinger (CR7) 2013; 64
Arnould, Siniscalco, Bourmaud, Le Duigou, Baley (CR2) 2017; 97
Derjaguin, Muller, Toporov (CR11) 1975; 53
Wimmer, Lucas, Tsui, Oliver (CR45) 1997; 31
Zimmermann, Thommen, Reimann, Hug (CR47) 2006; 156
Schwarze, Engels (CR39) 1998; 52
Fratzl, Burgert, Gupta (CR18) 2004; 6
Sader, Chon, Mulvaney (CR38) 1999; 70
Hodzic, Stachurski, Kim (CR22) 2000; 41
Donaldson, Xu (CR14) 2005; 19
Tsukruk, Singamani (CR44) 2012
Casdorff, Keplinger, Burgert (CR9) 2017; 13
Fengel, Wegener (CR17) 1984
Singh, Daniel (CR42) 2001; 55
Jäger, Hofstetter, Buksnowitz, Gindl-Altmutter, Konnerth (CR23) 2011; 42
CR26
Barber, Meylan (CR3) 1964; 18
Donaldson (CR13) 2007; 41
Reza, Ruokolainen, Vuorinen (CR35) 2014; 240
Sell, Zimmermann (CR41) 1998; 56
Gindl, Gupta, Schöberl, Lichtenegger, Fratzl (CR21) 2004; 79
Zimmermann, Eckstein (CR46) 1994; 52
Brändström (CR5) 2001; 22
Jakes, Frihart, Beecher, Moon, Resto, Melgarejo, Suárez, Baumgart, Elmustafa, Stone (CR24) 2011; 24
Gibson, Ashby (CR20) 2001
Bergander, Brändström, Daniel, Salmén (CR4) 2002; 48
Sell, Zimmermann (CR40) 1993; 51
Chopinet, Formosa, Rols, Duval, Dague (CR10) 2013; 48
Konnerth, Gierlinger, Keckes, Gindl (CR29) 2009; 44
Muraille, Aguié-Béghin, Chabbert, Molinari (CR31) 2017; 7
Lee, Wang, Pharr, Xu (CR30) 2007; 38
D Fengel (2850_CR17) 1984
X Jin (2850_CR25) 2016; 3
E Rettler (2850_CR34) 2013; 1
S-H Lee (2850_CR30) 2007; 38
L Chopinet (2850_CR10) 2013; 48
S Kerstens (2850_CR28) 2001; 127
R Wimmer (2850_CR45) 1997; 31
M Reza (2850_CR35) 2014; 240
N Terashima (2850_CR43) 2004; 327
L Muraille (2850_CR31) 2017; 7
L Donaldson (2850_CR13) 2007; 41
P Fratzl (2850_CR18) 2004; 6
O Arnould (2850_CR1) 2015; 74
J Fahlén (2850_CR16) 2002; 4
O Arnould (2850_CR2) 2017; 97
T Zimmermann (2850_CR47) 2006; 156
M Eder (2850_CR15) 2013; 47
S Frybort (2850_CR19) 2014; 457
K Radotic (2850_CR32) 1994; 66
LA Donaldson (2850_CR12) 2001; 22
2850_CR26
I Burgert (2850_CR7) 2013; 64
JE Sader (2850_CR38) 1999; 70
I Burgert (2850_CR8) 2003; 57
A Hodzic (2850_CR22) 2000; 41
AJ Kerr (2850_CR27) 1975; 9
LJ Gibson (2850_CR20) 2001
J Konnerth (2850_CR29) 2009; 44
J Sell (2850_CR40) 1993; 51
AP Singh (2850_CR42) 2001; 55
K Casdorff (2850_CR9) 2017; 13
M Rüggeberg (2850_CR37) 2013; 183
NF Barber (2850_CR3) 1964; 18
W Gindl (2850_CR21) 2004; 79
LA Donaldson (2850_CR14) 2005; 19
BV Derjaguin (2850_CR11) 1975; 53
K Ruel (2850_CR36) 1978; 12
A Bergander (2850_CR4) 2002; 48
JE Jakes (2850_CR24) 2011; 24
FWMR Schwarze (2850_CR39) 1998; 52
VV Tsukruk (2850_CR44) 2012
J Brändström (2850_CR5) 2001; 22
I Burgert (2850_CR6) 2011
J Sell (2850_CR41) 1998; 56
A Reiterer (2850_CR33) 1999; 79
T Zimmermann (2850_CR46) 1994; 52
A Jäger (2850_CR23) 2011; 42
References_xml – volume: 48
  start-page: 255
  year: 2002
  end-page: 263
  ident: CR4
  article-title: Fibril angle variability in earlywood of Norway spruce using soft rot cavities and polarization confocal microscopy
  publication-title: J Wood Sci
  doi: 10.1007/BF00831344
– volume: 74
  start-page: 69
  year: 2015
  end-page: 76
  ident: CR1
  article-title: Towards a better understanding of wood cell wall characterisation with contact resonance atomic force microscopy
  publication-title: Compos Part A Appl S
  doi: 10.1016/j.compositesa.2015.03.026
– volume: 127
  start-page: 381
  issue: 2
  year: 2001
  end-page: 385
  ident: CR28
  article-title: Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials
  publication-title: Plant Physiol
  doi: 10.1104/pp.010423
– volume: 22
  start-page: 213
  issue: 3
  year: 2001
  end-page: 233
  ident: CR12
  article-title: A three-dimensional computer model of the tracheid cell wall as a tool for interpretation of wood cell wall ultrastructure
  publication-title: IAWA J
  doi: 10.1163/22941932-90000280
– volume: 13
  start-page: 60
  issue: 1
  year: 2017
  ident: CR9
  article-title: Nano-mechanical characterization of the wood cell wall by AFM studies: comparison between AC- and QI™ mode
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0211-5
– volume: 38
  start-page: 1517
  issue: 6
  year: 2007
  end-page: 1524
  ident: CR30
  article-title: Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis
  publication-title: Compos Part A Appl S
  doi: 10.1016/j.compositesa.2007.01.007
– volume: 51
  start-page: 384
  year: 1993
  ident: CR40
  article-title: Radial fibril agglomerations of the S2 on transverse-fracture surfaced of tracheids of tension-loaded spruce and white fir
  publication-title: Holz Roh Werkst
  doi: 10.1007/BF02628234
– volume: 97
  start-page: 224
  year: 2017
  end-page: 228
  ident: CR2
  article-title: Better insight into the nano-mechanical properties of flax fibre cell walls
  publication-title: Ind Crop Prod
  doi: 10.1016/j.indcrop.2016.12.020
– start-page: 27
  year: 2011
  end-page: 52
  ident: CR6
  publication-title: Micromechanics of cell walls
– year: 1984
  ident: CR17
  publication-title: Wood chemistry, ultrastructure, reactions
– volume: 4
  start-page: 339
  year: 2002
  end-page: 345
  ident: CR16
  article-title: On the lamellar structure of the tracheid cell wall
  publication-title: Plant Biol
  doi: 10.1055/s-2002-32341
– volume: 66
  start-page: 1763
  year: 1994
  end-page: 1767
  ident: CR32
  article-title: A study of lignin formation at the molecular level by scanning tunneling microscopy
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(94)81007-0
– volume: 48
  start-page: 26
  year: 2013
  end-page: 33
  ident: CR10
  article-title: Imaging living cells surface and quantifying its properties at high resolution using AFM in QI™ mode
  publication-title: Micron
  doi: 10.1016/j.micron.2013.02.003
– volume: 240
  start-page: 565
  issue: 3
  year: 2014
  end-page: 573
  ident: CR35
  article-title: Out-of-plane orientation of cellulose elementary fibrils on spruce tracheid wall based on imaging with high-resolution transmission electron microscopy
  publication-title: Planta
  doi: 10.1007/s00425-014-2107-1
– volume: 6
  start-page: 5575
  issue: 24
  year: 2004
  end-page: 5579
  ident: CR18
  article-title: On the role of interface polymers for the mechanics of natural polymeric composites
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b411986j
– volume: 42
  start-page: 2101
  issue: 12
  year: 2011
  end-page: 2109
  ident: CR23
  article-title: Identification of stiffness tensor components of wood cell walls by means of nanoindentation
  publication-title: Compos Part A Appl S
  doi: 10.1016/j.compositesa.2011.09.020
– volume: 183
  start-page: 419
  issue: 3
  year: 2013
  end-page: 428
  ident: CR37
  article-title: Enhanced cellulose orientation analysis in complex model plant tissues
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2013.07.001
– volume: 22
  start-page: 333
  issue: 4
  year: 2001
  end-page: 353
  ident: CR5
  article-title: Micro- and ultrastructural aspects of norway spruce tracheids: a review
  publication-title: IAWA J
  doi: 10.1163/22941932-90000381
– volume: 41
  start-page: 443
  issue: 5
  year: 2007
  end-page: 460
  ident: CR13
  article-title: Cellulose microfibril aggregates and their size variation with cell wall type
  publication-title: Wood Sci Technol
  doi: 10.1007/s00226-006-0121-6
– volume: 57
  start-page: 661
  year: 2003
  end-page: 664
  ident: CR8
  article-title: Microtensile testing of wood fibers combined with video extensometry for efficient strain detection
  publication-title: Holzforschung
  doi: 10.1515/HF.2003.099
– volume: 457
  start-page: 82
  year: 2014
  end-page: 87
  ident: CR19
  article-title: Variability in surface polarity of wood by means of AFM adhesion force mapping
  publication-title: Colloid Surface A
  doi: 10.1016/j.colsurfa.2014.05.055
– volume: 156
  start-page: 363
  issue: 2
  year: 2006
  end-page: 369
  ident: CR47
  article-title: Ultrastructural appearance of embedded and polished wood cell walls as revealed by atomic force microscopy
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2006.06.007
– volume: 7
  start-page: 1
  year: 2017
  end-page: 11
  ident: CR31
  article-title: Bioinspired lignocellulosic films to understand the mechanical properties of lignified plant cell walls at nanoscale
  publication-title: Sci Rep-U
  doi: 10.1038/s41598-016-0028-x
– volume: 327
  start-page: 903
  issue: 9–10
  year: 2004
  end-page: 910
  ident: CR43
  article-title: Formation of macromolecular lignin in ginkgo xylem cell walls as observed by field emission scanning electron microscopy
  publication-title: C R Biol
  doi: 10.1016/j.crvi.2004.08.001
– volume: 70
  start-page: 3967
  issue: 10
  year: 1999
  end-page: 3969
  ident: CR38
  article-title: Calibration of rectangular atomic force microscope cantilevers
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.1150021
– volume: 3
  start-page: 160248
  issue: 10
  year: 2016
  ident: CR25
  article-title: Adhesion force mapping on wood by atomic force microscopy: influence of surface roughness and tip geometry
  publication-title: Roy Soc Open Sci
  doi: 10.1098/rsos.160248
– volume: 79
  start-page: 2173
  issue: 9
  year: 1999
  end-page: 2184
  ident: CR33
  article-title: Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell walls
  publication-title: Philos Mag A
  doi: 10.1080/01418619908210415
– volume: 19
  start-page: 644
  issue: 6
  year: 2005
  end-page: 653
  ident: CR14
  article-title: Microfibril orientation across the secondary cell wall of Radiata pine tracheids
  publication-title: Trees-Struct Funct
  doi: 10.1007/s00468-005-0428-1
– year: 2012
  ident: CR44
  publication-title: Scanning probe microscopy of soft matter: fundamentals and practice
– volume: 44
  start-page: 4399
  issue: 16
  year: 2009
  end-page: 4406
  ident: CR29
  article-title: Actual versus apparent within cell wall variability of nanoindentation results from wood cell walls related to cellulose microfibril angle
  publication-title: J Mater Sci
  doi: 10.1007/s10853-009-3665-7
– volume: 55
  start-page: 373
  year: 2001
  end-page: 378
  ident: CR42
  article-title: The S2 layer in the tracheid wall of Picea abies wood: inhomogeneity in lignin distribution and cell wall microstructure
  publication-title: Holzforschung
  doi: 10.1515/HF.2001.062
– volume: 52
  start-page: 223
  year: 1994
  end-page: 229
  ident: CR46
  article-title: Rasterelektronenmikroskopische Untersuchung an Zugbruchflächen von Fichtenholz
  publication-title: Holz Roh Werkst
  doi: 10.1007/BF02619097
– volume: 56
  start-page: 365
  year: 1998
  end-page: 366
  ident: CR41
  article-title: The fine structure of the cell wall of hardwoods on transverse-fracture surfaces
  publication-title: Holz Roh Werkst
  doi: 10.1007/s001070050334
– volume: 9
  start-page: 563
  year: 1975
  end-page: 573
  ident: CR27
  article-title: The ultrastructural arrangement of the wood cell wall
  publication-title: Cell Chem Technol
– volume: 12
  start-page: 287
  year: 1978
  end-page: 291
  ident: CR36
  article-title: Lamellation in the S2 layer of softwood tracheids as demonstrated by scanning transmission electron microscopy
  publication-title: Wood Sci Technol
  doi: 10.1007/BF00351930
– volume: 64
  start-page: 4635
  issue: 15
  year: 2013
  end-page: 4649
  ident: CR7
  article-title: Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert255
– volume: 41
  start-page: 6895
  year: 2000
  end-page: 6905
  ident: CR22
  article-title: Nano-indentation of polymer-glass interfaces Part 1. Experimental and mechanical analysis
  publication-title: Polymer
  doi: 10.1016/S0032-3861(99)00890-3
– volume: 53
  start-page: 314
  year: 1975
  end-page: 326
  ident: CR11
  article-title: Effect of contact deformations on adhesion of particles
  publication-title: J Colloid Interf Sci
  doi: 10.1016/0021-9797(75)90018-1
– volume: 1
  start-page: 2789
  issue: 22
  year: 2013
  end-page: 2806
  ident: CR34
  article-title: Mapping the mechanical properties of biomaterials on different length scales: depth-sensing indentation and AFM based nanoindentation
  publication-title: J Mater Chem B
  doi: 10.1039/c3tb20120a
– volume: 79
  start-page: 2069
  issue: 8
  year: 2004
  end-page: 2073
  ident: CR21
  article-title: Mechanical properties of spruce wood cell walls by nanoindentation
  publication-title: Appl Phys A
  doi: 10.1007/s00339-004-2864-y
– volume: 18
  start-page: 146
  year: 1964
  end-page: 156
  ident: CR3
  article-title: The anisotropic shrinkage of wood. A theoretical model
  publication-title: Holzforschung
  doi: 10.1515/hfsg.1964.18.5.146
– volume: 24
  start-page: 1016
  issue: 03
  year: 2011
  end-page: 1031
  ident: CR24
  article-title: Nanoindentation near the edge
  publication-title: J Mater Res
  doi: 10.1557/jmr.2009.0076
– volume: 47
  start-page: 163
  issue: 1
  year: 2013
  end-page: 182
  ident: CR15
  article-title: Experimental micromechanical characterisation of wood cell walls
  publication-title: Wood Sci Technol
  doi: 10.1007/s00226-012-0515-6
– volume: 31
  start-page: 131
  year: 1997
  end-page: 141
  ident: CR45
  article-title: Longitudinal hardness and Young’s modulus of spruce tracheid secondary walls using nanoindentation technique
  publication-title: Wood Sci Technol
  doi: 10.1007/BF00705928
– year: 2001
  ident: CR20
  publication-title: Cellular solids. Structure and properties
– ident: CR26
– volume: 52
  start-page: 117
  year: 1998
  end-page: 123
  ident: CR39
  article-title: Cavity formation and the exposure of peculiar structures in the secondary wall (S2) of tracheids and fibres by wood degrading Basidiomycetes
  publication-title: Holzforschung
  doi: 10.1515/hfsg.1998.52.2.117
– volume: 53
  start-page: 314
  year: 1975
  ident: 2850_CR11
  publication-title: J Colloid Interf Sci
  doi: 10.1016/0021-9797(75)90018-1
– volume: 327
  start-page: 903
  issue: 9–10
  year: 2004
  ident: 2850_CR43
  publication-title: C R Biol
  doi: 10.1016/j.crvi.2004.08.001
– volume: 79
  start-page: 2069
  issue: 8
  year: 2004
  ident: 2850_CR21
  publication-title: Appl Phys A
  doi: 10.1007/s00339-004-2864-y
– volume: 48
  start-page: 255
  year: 2002
  ident: 2850_CR4
  publication-title: J Wood Sci
  doi: 10.1007/BF00831344
– volume: 19
  start-page: 644
  issue: 6
  year: 2005
  ident: 2850_CR14
  publication-title: Trees-Struct Funct
  doi: 10.1007/s00468-005-0428-1
– volume: 74
  start-page: 69
  year: 2015
  ident: 2850_CR1
  publication-title: Compos Part A Appl S
  doi: 10.1016/j.compositesa.2015.03.026
– start-page: 27
  volume-title: Micromechanics of cell walls
  year: 2011
  ident: 2850_CR6
– volume: 57
  start-page: 661
  year: 2003
  ident: 2850_CR8
  publication-title: Holzforschung
  doi: 10.1515/HF.2003.099
– volume: 41
  start-page: 6895
  year: 2000
  ident: 2850_CR22
  publication-title: Polymer
  doi: 10.1016/S0032-3861(99)00890-3
– volume: 79
  start-page: 2173
  issue: 9
  year: 1999
  ident: 2850_CR33
  publication-title: Philos Mag A
  doi: 10.1080/01418619908210415
– volume: 51
  start-page: 384
  year: 1993
  ident: 2850_CR40
  publication-title: Holz Roh Werkst
  doi: 10.1007/BF02628234
– volume-title: Scanning probe microscopy of soft matter: fundamentals and practice
  year: 2012
  ident: 2850_CR44
– volume: 156
  start-page: 363
  issue: 2
  year: 2006
  ident: 2850_CR47
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2006.06.007
– volume: 70
  start-page: 3967
  issue: 10
  year: 1999
  ident: 2850_CR38
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.1150021
– volume: 48
  start-page: 26
  year: 2013
  ident: 2850_CR10
  publication-title: Micron
  doi: 10.1016/j.micron.2013.02.003
– volume: 55
  start-page: 373
  year: 2001
  ident: 2850_CR42
  publication-title: Holzforschung
  doi: 10.1515/HF.2001.062
– volume: 1
  start-page: 2789
  issue: 22
  year: 2013
  ident: 2850_CR34
  publication-title: J Mater Chem B
  doi: 10.1039/c3tb20120a
– volume: 38
  start-page: 1517
  issue: 6
  year: 2007
  ident: 2850_CR30
  publication-title: Compos Part A Appl S
  doi: 10.1016/j.compositesa.2007.01.007
– volume: 42
  start-page: 2101
  issue: 12
  year: 2011
  ident: 2850_CR23
  publication-title: Compos Part A Appl S
  doi: 10.1016/j.compositesa.2011.09.020
– volume: 7
  start-page: 1
  year: 2017
  ident: 2850_CR31
  publication-title: Sci Rep-U
  doi: 10.1038/s41598-016-0028-x
– volume: 31
  start-page: 131
  year: 1997
  ident: 2850_CR45
  publication-title: Wood Sci Technol
  doi: 10.1007/BF00705928
– volume: 18
  start-page: 146
  year: 1964
  ident: 2850_CR3
  publication-title: Holzforschung
  doi: 10.1515/hfsg.1964.18.5.146
– volume: 24
  start-page: 1016
  issue: 03
  year: 2011
  ident: 2850_CR24
  publication-title: J Mater Res
  doi: 10.1557/jmr.2009.0076
– volume: 47
  start-page: 163
  issue: 1
  year: 2013
  ident: 2850_CR15
  publication-title: Wood Sci Technol
  doi: 10.1007/s00226-012-0515-6
– volume-title: Cellular solids. Structure and properties
  year: 2001
  ident: 2850_CR20
– volume: 66
  start-page: 1763
  year: 1994
  ident: 2850_CR32
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(94)81007-0
– volume: 97
  start-page: 224
  year: 2017
  ident: 2850_CR2
  publication-title: Ind Crop Prod
  doi: 10.1016/j.indcrop.2016.12.020
– volume: 56
  start-page: 365
  year: 1998
  ident: 2850_CR41
  publication-title: Holz Roh Werkst
  doi: 10.1007/s001070050334
– volume: 127
  start-page: 381
  issue: 2
  year: 2001
  ident: 2850_CR28
  publication-title: Plant Physiol
  doi: 10.1104/pp.010423
– volume: 52
  start-page: 223
  year: 1994
  ident: 2850_CR46
  publication-title: Holz Roh Werkst
  doi: 10.1007/BF02619097
– volume: 457
  start-page: 82
  year: 2014
  ident: 2850_CR19
  publication-title: Colloid Surface A
  doi: 10.1016/j.colsurfa.2014.05.055
– volume: 22
  start-page: 213
  issue: 3
  year: 2001
  ident: 2850_CR12
  publication-title: IAWA J
  doi: 10.1163/22941932-90000280
– ident: 2850_CR26
  doi: 10.1186/1746-4811-10-1
– volume: 13
  start-page: 60
  issue: 1
  year: 2017
  ident: 2850_CR9
  publication-title: Plant Methods
  doi: 10.1186/s13007-017-0211-5
– volume: 183
  start-page: 419
  issue: 3
  year: 2013
  ident: 2850_CR37
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2013.07.001
– volume: 12
  start-page: 287
  year: 1978
  ident: 2850_CR36
  publication-title: Wood Sci Technol
  doi: 10.1007/BF00351930
– volume: 6
  start-page: 5575
  issue: 24
  year: 2004
  ident: 2850_CR18
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/b411986j
– volume: 64
  start-page: 4635
  issue: 15
  year: 2013
  ident: 2850_CR7
  publication-title: J Exp Bot
  doi: 10.1093/jxb/ert255
– volume: 41
  start-page: 443
  issue: 5
  year: 2007
  ident: 2850_CR13
  publication-title: Wood Sci Technol
  doi: 10.1007/s00226-006-0121-6
– volume: 240
  start-page: 565
  issue: 3
  year: 2014
  ident: 2850_CR35
  publication-title: Planta
  doi: 10.1007/s00425-014-2107-1
– volume-title: Wood chemistry, ultrastructure, reactions
  year: 1984
  ident: 2850_CR17
– volume: 9
  start-page: 563
  year: 1975
  ident: 2850_CR27
  publication-title: Cell Chem Technol
– volume: 44
  start-page: 4399
  issue: 16
  year: 2009
  ident: 2850_CR29
  publication-title: J Mater Sci
  doi: 10.1007/s10853-009-3665-7
– volume: 52
  start-page: 117
  year: 1998
  ident: 2850_CR39
  publication-title: Holzforschung
  doi: 10.1515/hfsg.1998.52.2.117
– volume: 3
  start-page: 160248
  issue: 10
  year: 2016
  ident: 2850_CR25
  publication-title: Roy Soc Open Sci
  doi: 10.1098/rsos.160248
– volume: 22
  start-page: 333
  issue: 4
  year: 2001
  ident: 2850_CR5
  publication-title: IAWA J
  doi: 10.1163/22941932-90000381
– volume: 4
  start-page: 339
  year: 2002
  ident: 2850_CR16
  publication-title: Plant Biol
  doi: 10.1055/s-2002-32341
SSID ssj0014377
Score 2.3336143
Snippet The structural assembly of wood constituents within the secondary cell wall has been subject of numerous studies over the last decades, which has resulted in...
Main conclusion AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S 2 layer changes from a network structure to a...
AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S layer changes from a network structure to a concentric lamellar...
Main conclusionAFM measurements on spruce sample cross-sections reveal that the structural appearance of the S2 layer changes from a network structure to a...
AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S2 layer changes from a network structure to a concentric...
MAIN CONCLUSION: AFM measurements on spruce sample cross-sections reveal that the structural appearance of the S₂ layer changes from a network structure to a...
SourceID proquest
pubmed
crossref
springer
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1123
SubjectTerms Agriculture
Assembly
Atomic force microscopy
Atomic structure
Biomedical and Life Sciences
Cell Wall - ultrastructure
Cell walls
Cellulose
Cross-sections
cutting
Cutting parameters
Ecology
Forestry
image analysis
Indentation
Lamellar structure
Life Sciences
Macromolecules
Mechanical properties
mechanics
Microscopy
Microscopy, Atomic Force - methods
Nanoindentation
ORIGINAL ARTICLE
Picea
Picea - ultrastructure
Plant Sciences
Texture
Ultrastructure
wood
Wood - cytology
Wood - ultrastructure
X-Ray Diffraction
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gcOCC-BoUBjISJ1BE89n2hAZimpDgxKR3q5I0RZPe2sfaCr0D_zt2vwDBdumlbpvUbm3Hv_zM2KtCWuOkD5yKMFx7Y3juc8Mr9A11rmtdBdo7_PmLPT3TnzZmMy-4dTOscvknjj_qqg20Rv6WgGYjE4p-t_vOqWsUVVfnFho32S2iLiNIV7ZZEy4MBbKJM1NJTgW_paqZTiSikmBraCe5SXnxl1-aoIn_Czr_KZiOfujkHrs7B5BwPGn8PrsRmwfs9vsWg7z9Q_bzGMK27SIfdkATgrYGDPGAkDVAi_Tww-Fh2PaXbqKOHS4juKaC876Di0j7gM9DB66HpXVKD2EYwdEo9m0bO_B7PE2bmQED3hDhgjB9tLtl_4idnXz8-uGUzx0WeNBZ2nNvVKisNxZVIn2diuh9LYJHP-5qo4yymGunQWTo5XUo8loZL6QMQQunKq3VITto2iY-YZBbLzIlnFUh6ipP84oKdNYZzK_wzkXC0uX9lmGmH6cuGNtyJU4eVVKiSkpSSYmXvF4v2U3cG9cJH45KWyUxE5MWk9GEHS1aLOfvsyt_W1PCXq6n8csiTbgmtsMkQxGtKK6WIfJ7en6hEvZ4spB1ABhIETWPSNibxWT-GMBV83h6_XCfsTuSjHaEXB6xA7SU-BzDot6_GG3_F_MEBpo
  priority: 102
  providerName: ProQuest
Title A close-up view of the wood cell wall ultrastructure and its mechanics at different cutting angles by atomic force microscopy
URI https://www.jstor.org/stable/48726917
https://link.springer.com/article/10.1007/s00425-018-2850-9
https://www.ncbi.nlm.nih.gov/pubmed/29380141
https://www.proquest.com/docview/1993519594
https://www.proquest.com/docview/1993005419
https://www.proquest.com/docview/2067285093
Volume 247
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9sq6IPomer0Xqs4JOykGR38_GYytWiWEQ8OJ9CdrMphWtSmhzlHvq_O7P5QLEVfLkcZLLJ8ZvNzNzM_AbgXRpGqgi14ZSE4VIrxROdKF6ibagSWcnSUO_w19PoZCk_r9Rq6ONux2r3MSXp3tRTs5vTLwx9EdlE-TzdgT1FoTsq8TLMptSBFHFPlClCTlm-MZV52xJ_GKO-HvE2T_OvLKkzPsdP4cngNbKsh_kZ3LP1DB5nZ1cDc4adwf2jBv287QweLBwRNX57SHM3aZjbc7jJmFk3reWbS0bJANZUDF0_RhU3jP68Z9cFfuBiV0VPKYuLsqIu2XnXsgtL_cHnpmVFx8aRKh0zG1c0jWJna9syvcXT1OTM0BE2ll1QrR91vWz3YXm8-PHxhA-TF7iRsd9xrYQpI60ihCrUlR9YravAaLTvRaWEEhHG4L4JYrT-0qRJJZQOwtAYGRSilFIcwG7d1PYlsCTSQSyCIhLGyjLxk5ISd1GhMO7ClVMP_BGC3Ay05DQdY51PhMoOtRxRywm1HC95P11y2XNy_Ev4wOE6SWKEFkYYpHpwOAKdD_u2zamc0fHtSA_eTqdxxxESRW2bTS9Dnm6Q3i1DpPh0_1R48KJXoukB0MEiyp7Agw-jVv32AHf9jlf_Jf0aHoWk5q4y8xB2UXHsG_SeOj2HnXgVz2Ev-_TzywKPR4vTb9_nbg_9AtjqEiI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbKFoleEK9CoMAgwQU0IplHNjkg1EKrLW1XCLVSb2lmMkGVtsm2yaraA3-J34idFyBob73kEk8yGXvGdmx_Bngdi1CnwlhOQRiujNY8MpHmGeqGPFK5yizVDh9Mw8mR-nKsj1fgZ18LQ2mV_ZnYHNRZaekf-XtKNGuQUNTH-TmnrlEUXe1baLRiseeWl-iyVR92PyN_3wixs334acK7rgLcqrFfc6OlzUKjQ5yGMLkfOGPywBrUXWmupZYh-pe-Dcao2ZSNo1xqEwhhrQpSmSkl8bm3YFVJdGVGsLq1Pf36bYhbKDluUTql4BRi7OOofgtbKihRDiUz0j6P_9KEbTLk_8zcf0K0jebbuQd3O5OVbbYydh9WXPEAbm-VaFYuH8KPTWZnZeX4Ys5oCVmZMzQqGeXyMAoLsMsUL4tZfZG2YLWLC8fSImOndcXOHFUen9qKpTXrm7XUzC6adGwk-z5zFTNLvE3l0wxNbOvYGWURUj3N8hEc3cjqr8OoKAv3BFgUmmAsgzSU1qks8qOMQoJhqtGjwyfHHvj9-ia2AzynvhuzZIBqbliSIEsSYkmCQ94OQ-Yt2sd1xOsN0wZK9P1EiO6vBxs9F5PuRKiS3_LrwavhNu5l4kRauHLR0pANHcRX0xDcPr0_lh48biVkmACabgQGFHjwrheZPyZw1Xc8vX66L-HO5PBgP9nfne49gzVBAtwkfG7ACKXGPUejrDYvup3A4OSmN98vKthFDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtVAzCoFIS6IrZBSYJDgAho1mSXLAaFCeWopVByo9G4hM5mgSq_Ja5Ooegd-jK_DzgYI2lsvucSTOGN7bMcbwItEhDoTxnIKwnBltOaxiTXPUTcUsSpUbql2-PNhuHekPs71fA1-jrUwlFY5nondQZ1Xlv6Rb1OiWdcJRW0XQ1rEl93Z2-UppwlSFGkdx2n0LHLgVufovtVv9neR1i-FmH34-n6PDxMGuFWR33Cjpc1Do0NESZjCD5wxRWAN6rGs0FLLEH1N3wYRajllk7iQ2gRCWKuCTOZKSXzuNbgeIWYkY9F8cvbQDIn6fp1ScAo2jhFVv29gKihlDnk01j5P_tKJfVrk_wzef4K1nQ6c3YHbg_HKdnpuuwtrrrwHN95VaGCu7sOPHWYXVe14u2S0mawqGJqXjLJ6GAUI2HmGl3bRnGV929r2zLGszNlxU7MTRzXIx7ZmWcPGsS0Ns22XmI1g3xeuZmaFt6mQmqGxbR07oXxCqqxZPYCjK9n7DVgvq9I9AhaHJohkkIXSOpXHfpxTcDDMNPp2-OTEA3_c39QOrc9pAscinZo2dyRJkSQpkSTFJa-mJcu-78dlwBsd0SZI9AJFiI6wB1sjFdPhbKjT35zswfPpNko1USIrXdX2MGRNB8nFMNR4n96fSA8e9hwyIYBGHLUFCjx4PbLMHwhc9B2bl6P7DG6iyKWf9g8PHsMtQfzbZX5uwToyjXuC1lljnnZiwODbVcvdL-qkR98
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+close-up+view+of+the+wood+cell+wall+ultrastructure+and+its+mechanics+at+different+cutting+angles+by+atomic+force+microscopy&rft.jtitle=Planta&rft.au=Casdorff%2C+Kirstin&rft.au=Keplinger%2C+Tobias&rft.au=R%C3%BCggeberg%2C+Markus&rft.au=Burgert%2C+Ingo&rft.date=2018-05-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0032-0935&rft.eissn=1432-2048&rft.volume=247&rft.issue=5&rft.spage=1123&rft.epage=1132&rft_id=info:doi/10.1007%2Fs00425-018-2850-9&rft.externalDocID=10_1007_s00425_018_2850_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-0935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-0935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-0935&client=summon