Microplastic serves as a potential vector for Cr in an in-vitro human digestive model

[Display omitted] •Microplastics (MPs) released more Cr in the in-vitro digestive model than in fresh water.•Gastric phase aroused the most bioaccessible Cr(VI) and Cr(III).•Cr on degradable MP was more bioaccessible than Cr on nondegradable MPs.•The Cr exposure via MP consumption was estimated for...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 703; p. 134805
Main Authors Liao, Yu-liang, Yang, Jin-yan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Microplastics (MPs) released more Cr in the in-vitro digestive model than in fresh water.•Gastric phase aroused the most bioaccessible Cr(VI) and Cr(III).•Cr on degradable MP was more bioaccessible than Cr on nondegradable MPs.•The Cr exposure via MP consumption was estimated for different human groups.•Cr on degradable MP may pose higher noncarcinogenic risks to human. Microplastics (MPs), polymer particles capable of adsorbing heavy metals from ambient environment, have been found in diverse human food resources. Through the consumption of MPs, heavy metals adsorbed on MPs might be transported into human body. This study aims to explore the behavior of heavy metal-contaminated MPs in human digestive system which is not previously researched. Firstly, a chromium (Cr) adsorption/desorption study was conducted with four commonly used nondegradable MPs [polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS)] as well as one degradable MP (polylactic, PLA). Then, the whole digestive system in-vitro method (WDSM), a systematic model including mouth, gastric, small intestine, and large intestine digestive phases, was conducted on the Cr-loaded MPs. Additionally, the bioaccessibilities and hazard quotients (HQs) of Cr(VI) and Cr(III) were evaluated. Among five MPs, although PLA showed the weakest adsorption capacity for Cr, the Cr(VI) bioaccessibilities for PLA reached the highest values of 19.9%, 15.6% and 3.9% in gastric, small intestinal and large intestinal phases, respectively. The bioaccessibilities of Cr(VI) in gastric phase were significantly higher than those in other phases, while no Cr release from MPs was detected in the mouth phase. In gastric phase, the bioaccessibilities of Cr(VI) were significantly higher than those of Cr(III) in the gastric phase, and both of them approached to a similar level in intestinal phases. In the WDSM, the HQs of Cr(VI) and Cr(III) on MPs were lower than the critical level for both adults and children. Based on the measured bioaccessibilities, the maximum daily total Cr intake for different human groups (female children, male children, female adults and male adults) through MP consumption was estimated from 0.50 to 1.18 μg/day. In general, the five tested MPs were potential to serve as Cr vectors in the WDSM.
AbstractList Microplastics (MPs), polymer particles capable of adsorbing heavy metals from ambient environment, have been found in diverse human food resources. Through the consumption of MPs, heavy metals adsorbed on MPs might be transported into human body. This study aims to explore the behavior of heavy metal-contaminated MPs in human digestive system which is not previously researched. Firstly, a chromium (Cr) adsorption/desorption study was conducted with four commonly used nondegradable MPs [polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS)] as well as one degradable MP (polylactic, PLA). Then, the whole digestive system in-vitro method (WDSM), a systematic model including mouth, gastric, small intestine, and large intestine digestive phases, was conducted on the Cr-loaded MPs. Additionally, the bioaccessibilities and hazard quotients (HQs) of Cr(VI) and Cr(III) were evaluated. Among five MPs, although PLA showed the weakest adsorption capacity for Cr, the Cr(VI) bioaccessibilities for PLA reached the highest values of 19.9%, 15.6% and 3.9% in gastric, small intestinal and large intestinal phases, respectively. The bioaccessibilities of Cr(VI) in gastric phase were significantly higher than those in other phases, while no Cr release from MPs was detected in the mouth phase. In gastric phase, the bioaccessibilities of Cr(VI) were significantly higher than those of Cr(III) in the gastric phase, and both of them approached to a similar level in intestinal phases. In the WDSM, the HQs of Cr(VI) and Cr(III) on MPs were lower than the critical level for both adults and children. Based on the measured bioaccessibilities, the maximum daily total Cr intake for different human groups (female children, male children, female adults and male adults) through MP consumption was estimated from 0.50 to 1.18 μg/day. In general, the five tested MPs were potential to serve as Cr vectors in the WDSM.
[Display omitted] •Microplastics (MPs) released more Cr in the in-vitro digestive model than in fresh water.•Gastric phase aroused the most bioaccessible Cr(VI) and Cr(III).•Cr on degradable MP was more bioaccessible than Cr on nondegradable MPs.•The Cr exposure via MP consumption was estimated for different human groups.•Cr on degradable MP may pose higher noncarcinogenic risks to human. Microplastics (MPs), polymer particles capable of adsorbing heavy metals from ambient environment, have been found in diverse human food resources. Through the consumption of MPs, heavy metals adsorbed on MPs might be transported into human body. This study aims to explore the behavior of heavy metal-contaminated MPs in human digestive system which is not previously researched. Firstly, a chromium (Cr) adsorption/desorption study was conducted with four commonly used nondegradable MPs [polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS)] as well as one degradable MP (polylactic, PLA). Then, the whole digestive system in-vitro method (WDSM), a systematic model including mouth, gastric, small intestine, and large intestine digestive phases, was conducted on the Cr-loaded MPs. Additionally, the bioaccessibilities and hazard quotients (HQs) of Cr(VI) and Cr(III) were evaluated. Among five MPs, although PLA showed the weakest adsorption capacity for Cr, the Cr(VI) bioaccessibilities for PLA reached the highest values of 19.9%, 15.6% and 3.9% in gastric, small intestinal and large intestinal phases, respectively. The bioaccessibilities of Cr(VI) in gastric phase were significantly higher than those in other phases, while no Cr release from MPs was detected in the mouth phase. In gastric phase, the bioaccessibilities of Cr(VI) were significantly higher than those of Cr(III) in the gastric phase, and both of them approached to a similar level in intestinal phases. In the WDSM, the HQs of Cr(VI) and Cr(III) on MPs were lower than the critical level for both adults and children. Based on the measured bioaccessibilities, the maximum daily total Cr intake for different human groups (female children, male children, female adults and male adults) through MP consumption was estimated from 0.50 to 1.18 μg/day. In general, the five tested MPs were potential to serve as Cr vectors in the WDSM.
Microplastics (MPs), polymer particles capable of adsorbing heavy metals from ambient environment, have been found in diverse human food resources. Through the consumption of MPs, heavy metals adsorbed on MPs might be transported into human body. This study aims to explore the behavior of heavy metal-contaminated MPs in human digestive system which is not previously researched. Firstly, a chromium (Cr) adsorption/desorption study was conducted with four commonly used nondegradable MPs [polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS)] as well as one degradable MP (polylactic, PLA). Then, the whole digestive system in-vitro method (WDSM), a systematic model including mouth, gastric, small intestine, and large intestine digestive phases, was conducted on the Cr-loaded MPs. Additionally, the bioaccessibilities and hazard quotients (HQs) of Cr(VI) and Cr(III) were evaluated. Among five MPs, although PLA showed the weakest adsorption capacity for Cr, the Cr(VI) bioaccessibilities for PLA reached the highest values of 19.9%, 15.6% and 3.9% in gastric, small intestinal and large intestinal phases, respectively. The bioaccessibilities of Cr(VI) in gastric phase were significantly higher than those in other phases, while no Cr release from MPs was detected in the mouth phase. In gastric phase, the bioaccessibilities of Cr(VI) were significantly higher than those of Cr(III) in the gastric phase, and both of them approached to a similar level in intestinal phases. In the WDSM, the HQs of Cr(VI) and Cr(III) on MPs were lower than the critical level for both adults and children. Based on the measured bioaccessibilities, the maximum daily total Cr intake for different human groups (female children, male children, female adults and male adults) through MP consumption was estimated from 0.50 to 1.18 μg/day. In general, the five tested MPs were potential to serve as Cr vectors in the WDSM.Microplastics (MPs), polymer particles capable of adsorbing heavy metals from ambient environment, have been found in diverse human food resources. Through the consumption of MPs, heavy metals adsorbed on MPs might be transported into human body. This study aims to explore the behavior of heavy metal-contaminated MPs in human digestive system which is not previously researched. Firstly, a chromium (Cr) adsorption/desorption study was conducted with four commonly used nondegradable MPs [polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS)] as well as one degradable MP (polylactic, PLA). Then, the whole digestive system in-vitro method (WDSM), a systematic model including mouth, gastric, small intestine, and large intestine digestive phases, was conducted on the Cr-loaded MPs. Additionally, the bioaccessibilities and hazard quotients (HQs) of Cr(VI) and Cr(III) were evaluated. Among five MPs, although PLA showed the weakest adsorption capacity for Cr, the Cr(VI) bioaccessibilities for PLA reached the highest values of 19.9%, 15.6% and 3.9% in gastric, small intestinal and large intestinal phases, respectively. The bioaccessibilities of Cr(VI) in gastric phase were significantly higher than those in other phases, while no Cr release from MPs was detected in the mouth phase. In gastric phase, the bioaccessibilities of Cr(VI) were significantly higher than those of Cr(III) in the gastric phase, and both of them approached to a similar level in intestinal phases. In the WDSM, the HQs of Cr(VI) and Cr(III) on MPs were lower than the critical level for both adults and children. Based on the measured bioaccessibilities, the maximum daily total Cr intake for different human groups (female children, male children, female adults and male adults) through MP consumption was estimated from 0.50 to 1.18 μg/day. In general, the five tested MPs were potential to serve as Cr vectors in the WDSM.
ArticleNumber 134805
Author Liao, Yu-liang
Yang, Jin-yan
Author_xml – sequence: 1
  givenname: Yu-liang
  surname: Liao
  fullname: Liao, Yu-liang
  email: Yuliang_Liao@stu.scu.edu.cn
– sequence: 2
  givenname: Jin-yan
  surname: Yang
  fullname: Yang, Jin-yan
  email: yanyang@scu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31733499$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u3CAUhVGVqpmkfYWEZTaeXsA2sMgiGqVtpFTdNGvE4OuWkW0mwFjK2wdrki6ySRE_QjrngM53Rk6mMCEhlwzWDFj7dbdOzueQcZrXHJheM1EraD6QFVNSVwx4e0JWALWqdKvlKTlLaQdlSMU-kVPBpBC11ivy8NO7GPaDTdk7mjDOmKgtk-6X9OztQGd0OUTal7WJ1E_UTmWvZp9joH8PY7l2_g-WhBnpGDocPpOPvR0Sfnk5z8nDt9vfmx_V_a_vd5ub-8rVEnK1BbZ1Aut2y2XPed1a0KqXDW9kp9oWlcKG9z2CYB2IugGnZK9d29VSM86VOCdXx9x9DI-H8gMz-uRwGOyE4ZAMF0pJJYE1_yFlDWgtxCK9eJEetiN2Zh_9aOOTeW2tCK6PglJdShF7U2DY7MOUo_WDYWAWSmZn_lEyCyVzpFT88o3_9Yn3nTdHJ5ZWZ49x0eHksPOxUDJd8O9mPAMikbBn
CitedBy_id crossref_primary_10_1016_j_chemosphere_2020_128968
crossref_primary_10_1016_j_chemosphere_2021_131735
crossref_primary_10_1016_j_scitotenv_2022_154025
crossref_primary_10_1016_j_jhazmat_2020_122795
crossref_primary_10_1016_j_envpol_2023_122754
crossref_primary_10_1021_acs_est_3c02129
crossref_primary_10_1016_j_scitotenv_2022_158111
crossref_primary_10_1016_j_psep_2021_11_026
crossref_primary_10_1016_j_gsd_2024_101267
crossref_primary_10_1016_j_jhazmat_2022_129587
crossref_primary_10_1016_j_scitotenv_2020_142042
crossref_primary_10_1039_D1EM00553G
crossref_primary_10_1007_s00128_021_03226_3
crossref_primary_10_1016_j_snb_2024_135312
crossref_primary_10_1016_j_scitotenv_2021_152099
crossref_primary_10_1016_j_scitotenv_2024_174445
crossref_primary_10_1016_j_ecoenv_2023_114567
crossref_primary_10_1016_j_envint_2022_107711
crossref_primary_10_1016_j_envpol_2023_122621
crossref_primary_10_1016_j_scitotenv_2024_176342
crossref_primary_10_2478_aiht_2024_75_3807
crossref_primary_10_1016_j_marpolbul_2024_117318
crossref_primary_10_1016_j_scitotenv_2023_168946
crossref_primary_10_1080_15320383_2023_2301495
crossref_primary_10_1016_j_pce_2024_103800
crossref_primary_10_1021_acs_analchem_4c00654
crossref_primary_10_1016_j_scitotenv_2023_167857
crossref_primary_10_1088_1748_9326_ac548d
crossref_primary_10_1016_j_chemosphere_2023_138920
crossref_primary_10_1016_j_scitotenv_2020_137762
crossref_primary_10_1016_j_envres_2021_111057
crossref_primary_10_1016_j_jhazmat_2023_130994
crossref_primary_10_1016_j_scitotenv_2022_156068
crossref_primary_10_1039_D1EN01016F
crossref_primary_10_1016_j_jconhyd_2023_104255
crossref_primary_10_1016_j_scitotenv_2022_152980
crossref_primary_10_1016_j_scitotenv_2023_169469
crossref_primary_10_3390_cimb46030168
crossref_primary_10_1007_s00128_021_03339_9
crossref_primary_10_1038_s41598_021_02457_y
crossref_primary_10_3390_pollutants2040034
crossref_primary_10_1016_j_scitotenv_2022_156593
crossref_primary_10_1021_envhealth_4c00148
crossref_primary_10_1007_s11356_022_20983_8
crossref_primary_10_3390_w17010102
crossref_primary_10_5620_eaht_2021004
crossref_primary_10_2174_1573401319666230915164116
crossref_primary_10_3389_fmars_2023_1109691
crossref_primary_10_3390_toxics12120854
crossref_primary_10_1007_s10311_024_01703_9
crossref_primary_10_1007_s10311_025_01823_w
crossref_primary_10_1007_s11783_023_1694_0
crossref_primary_10_1016_j_jhazmat_2021_125632
crossref_primary_10_1016_j_envpol_2023_121158
crossref_primary_10_3390_microplastics3040040
crossref_primary_10_1016_j_envpol_2022_120442
crossref_primary_10_1007_s11356_023_27906_1
crossref_primary_10_1016_j_cej_2023_141838
crossref_primary_10_1016_j_taap_2022_115880
crossref_primary_10_1360_TB_2023_1297
crossref_primary_10_1016_j_jhazmat_2020_123709
crossref_primary_10_1016_j_scitotenv_2023_166745
crossref_primary_10_3390_su12114792
crossref_primary_10_1007_s11356_023_30679_2
crossref_primary_10_1080_10408398_2022_2116559
crossref_primary_10_3389_fenvs_2020_575614
crossref_primary_10_1016_j_jhazmat_2021_127094
crossref_primary_10_1016_j_envpol_2021_118104
crossref_primary_10_1016_j_envres_2024_118928
crossref_primary_10_1016_j_jhazmat_2023_132639
crossref_primary_10_1007_s13762_025_06433_1
crossref_primary_10_1016_j_scitotenv_2024_172975
crossref_primary_10_1111_1541_4337_70042
crossref_primary_10_1016_j_scitotenv_2021_150263
crossref_primary_10_1016_j_ecoenv_2024_117248
crossref_primary_10_1016_j_tiv_2024_105915
crossref_primary_10_1016_j_scitotenv_2020_142518
crossref_primary_10_1039_D4EA00069B
crossref_primary_10_1016_j_envpol_2023_121862
crossref_primary_10_1016_j_chemosphere_2023_141067
crossref_primary_10_1016_j_jhazmat_2021_127529
crossref_primary_10_1016_j_eti_2023_103138
crossref_primary_10_12677_AEP_2023_133059
crossref_primary_10_1016_j_scitotenv_2023_166855
crossref_primary_10_1016_j_watres_2021_117637
crossref_primary_10_1080_09593330_2021_2003436
crossref_primary_10_1186_s40645_020_00405_4
crossref_primary_10_1016_j_scitotenv_2023_167666
crossref_primary_10_1007_s44169_023_00057_7
crossref_primary_10_1080_10934529_2023_2177458
crossref_primary_10_1016_j_envpol_2021_117403
crossref_primary_10_1016_j_scitotenv_2022_157109
crossref_primary_10_1016_j_ecoenv_2022_114260
crossref_primary_10_1016_j_scitotenv_2024_175735
crossref_primary_10_3390_jox14040079
crossref_primary_10_1016_j_jclepro_2021_127816
crossref_primary_10_1016_j_marpolbul_2022_113832
crossref_primary_10_1016_j_marpolbul_2024_116548
crossref_primary_10_1016_j_envpol_2021_117628
crossref_primary_10_1039_D2EA00041E
crossref_primary_10_1016_j_scitotenv_2024_170281
crossref_primary_10_1016_j_chemosphere_2022_134267
crossref_primary_10_1016_j_cej_2021_129261
crossref_primary_10_1016_j_jhazmat_2023_133144
crossref_primary_10_1016_j_resconrec_2024_108070
crossref_primary_10_1016_j_envres_2023_115615
crossref_primary_10_1016_j_eehl_2023_08_002
crossref_primary_10_1016_j_impact_2023_100481
crossref_primary_10_1016_j_ecoenv_2023_115400
crossref_primary_10_1016_j_trac_2023_117392
crossref_primary_10_1080_10937404_2024_2406192
crossref_primary_10_1007_s10661_023_11890_7
crossref_primary_10_1016_j_jhazmat_2023_131330
crossref_primary_10_1016_j_scitotenv_2020_143875
crossref_primary_10_1016_j_chemosphere_2021_131085
crossref_primary_10_1016_j_jhazmat_2022_130483
crossref_primary_10_3389_fmicb_2021_652520
crossref_primary_10_1016_j_seppur_2025_131909
crossref_primary_10_3390_toxics12080594
crossref_primary_10_1007_s11783_024_1779_4
crossref_primary_10_1016_j_jenvman_2023_118971
crossref_primary_10_1007_s11356_021_16448_z
crossref_primary_10_1016_j_envint_2022_107459
crossref_primary_10_1016_j_envres_2024_118960
crossref_primary_10_3390_ijerph18062997
crossref_primary_10_1039_D3EM00354J
crossref_primary_10_1016_j_marenvres_2024_106353
crossref_primary_10_1016_j_jfca_2023_105837
crossref_primary_10_1016_j_scitotenv_2023_165615
crossref_primary_10_1016_j_chemosphere_2022_135697
crossref_primary_10_1016_j_envpol_2020_115098
crossref_primary_10_1039_D1VA00024A
crossref_primary_10_1002_wer_11070
crossref_primary_10_1007_s11356_020_11904_8
crossref_primary_10_1016_j_hazadv_2024_100542
crossref_primary_10_3390_ijerph17041212
crossref_primary_10_1016_j_ecolind_2023_110369
crossref_primary_10_1016_j_marpolbul_2024_116283
Cites_doi 10.1016/j.marpolbul.2010.07.014
10.1021/acs.est.5b01090
10.1016/j.chemosphere.2016.12.074
10.1021/acs.est.7b00423
10.1021/acs.est.8b07140
10.1016/j.cub.2013.10.012
10.1071/EN14143
10.1016/j.cbi.2010.04.018
10.1016/j.marpolbul.2017.10.019
10.1016/S0169-409X(01)00152-1
10.1021/acs.est.7b00635
10.1038/s41598-017-05838-4
10.1016/j.coesh.2017.10.003
10.1007/BF02784589
10.1016/j.envpol.2013.02.031
10.1016/j.marpolbul.2015.08.002
10.1016/j.envpol.2018.05.008
10.1016/j.envpol.2017.04.034
10.1016/j.envpol.2014.06.010
10.1002/jsfa.7725
10.1016/j.ecss.2015.12.003
10.1016/j.marpolbul.2008.05.004
10.1016/j.marpolbul.2011.09.025
10.1080/10643389.2010.534029
10.1016/j.marpolbul.2013.04.021
10.1016/j.envpol.2013.10.007
10.1016/j.scitotenv.2017.11.103
10.1021/es401288x
10.1016/j.scitotenv.2010.09.007
10.1016/j.chemosphere.2018.03.145
10.1016/j.aquatox.2015.04.018
10.1016/j.envpol.2011.08.052
10.1021/acs.est.6b00594
10.1021/es403750a
10.1016/j.envres.2017.08.043
10.1021/acs.est.8b02776
10.1016/j.ibiod.2009.03.003
10.1016/j.chemosphere.2018.10.042
10.1371/journal.pone.0085433
10.1038/srep03263
10.1016/j.envpol.2018.08.032
10.1021/acs.est.9b01517
10.1016/j.geoderma.2018.02.015
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2019.134805
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 31733499
10_1016_j_scitotenv_2019_134805
S0048969719347965
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c470t-b01bc3e46b27f2246a098f75257d866e88e52ffe031d03450c87f9c6d47912283
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Jul 10 18:29:56 EDT 2025
Fri Jul 11 12:21:37 EDT 2025
Wed Feb 19 02:30:27 EST 2025
Tue Jul 01 03:35:14 EDT 2025
Thu Apr 24 23:07:54 EDT 2025
Fri Feb 23 02:48:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords In-vitro digestion model
Degradable microplastic
Chromium adsorption
Human health risk
Microplastic ingestion
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-b01bc3e46b27f2246a098f75257d866e88e52ffe031d03450c87f9c6d47912283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31733499
PQID 2315099335
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2388787015
proquest_miscellaneous_2315099335
pubmed_primary_31733499
crossref_citationtrail_10_1016_j_scitotenv_2019_134805
crossref_primary_10_1016_j_scitotenv_2019_134805
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_134805
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-10
PublicationDateYYYYMMDD 2020-02-10
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-10
  day: 10
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Browne, Niven, Galloway, Rowland, Thompson (b0045) 2013; 23
Bouwmeester, Hollman, Peters (b0035) 2015; 49
Nickens, Patierno, Ceryak (b0145) 2010; 188
Rakhunde, Deshpande, Juneja (b0155) 2012; 42
Holmes, Turner, Thompson (b0110) 2012; 160
ter Halle, Ladirat, Gendre, Goudouneche, Pusineri, Routaboul (b0190) 2016; 50
Lu, Qiao, An, Zhang (b0130) 2018; 202
USEPA, 2002. National Recommended Water Quality Criteria. 822-R-02-047. Office of Science and Technology, Washington, DC.
Rochman, Hoh, Kurobe, Teh (b0170) 2013; 3
Hussain, Jaitley, Florence (b0115) 2001; 50
Younan, Sakita, Albuquerque, Keller, Bremer-Neto (b0250) 2016; 96
Luís, Ferreira, Fonte, Oliveira, Guilhermino (b0135) 2015; 164
Liu, Zhao, Wan (b0125) 2001; 14
Ryan (b0175) 2008; 56
CHNMEE, 2014. Technical Guidelines for Risk Assessment of Contaminated Sites (in Chinese). HJ-25.3–2014. China Environmental Press, Beijing.
Chae, An (b0055) 2018; 240
Brennecke, Duarte, Paiva, Cacador, Canning-Clode (b0040) 2016; 178
Lei, Wu, Lu, Liu, Song, Fu (b0120) 2018; 619–620
CHNMEE, 2013. Exposure Factors Handbook of Chinese Population (Adult) (in Chinese). China Environmental Press, Beijing.
USEPA, 2009. National Primary Drinking Water Regulations. 816-F-09-004. Washington DC.
Wright, Thompson, Galloway (b0245) 2013; 178
Hodson, Duffus-Hodson, Clark, Prendergast-Miller, Thorpe (b0100) 2017; 51
Phuong, Poirier, Lagarde, Kamari, Zalouk-Vergnoux (b0150) 2018; 243
Avery-Gomm, Provencher, Morgan, Bertram (b0025) 2013; 72
Van Cauwenberghe, Janssen (b0215) 2014; 193
White, Clark, Manire, Crawford, Wang, Locklin (b0235) 2018; 52
Turner, Holmes (b0195) 2015; 12
Wang, Peng, Tan, Gao, Zhan, Chen (b0225) 2017; 171
Zettler, Mincer, Amaral-Zettler (b0260) 2013; 47
Schirinzi, Perez-Pomeda, Sanchis, Rossini, Farre, Barcelo (b0180) 2017; 159
Ashton, Holmes, Turner (b0020) 2010; 60
Zhou, Zhang, Fu, Zhou, Dai, Li (b0270) 2018; 322
Andrew, Cave, Joanna, Fordyce, Bewley, Graham (b0005) 2010; 409
Holmes, L.A. 2013. Interactions of Trace Metals with Plastic Production Pellets in the Marine Environment. School of Geography, Earth and Environmental Sciences. PhD. University of Plymouth.
Yu, Yang (b0255) 2019; 215
Gaylor, Harvey, Hale (b0095) 2013; 47
Vedolin, Teophilo, Turra, Figueira (b0220) 2018; 129
CHNMEE, 2002. Standard for the environmental quality of fresh water (in Chinese). GB 3838-2002. China Environmental Press, Beijing.
Zhang, Ma, Zhang, Wang, Wang, Wang (b0265) 2015; 99
Revel, Châtel, Mouneyrac (b0160) 2018; 1
Cole, Lindeque, Halsband, Galloway (b0080) 2011; 62
Senathirajah, K., Palanisami, T., 2019. How much microplastics are we ingesting? Estimation of the mass of microplastics ingested. Report for WWF Singapore.
Wright, Kelly (b0240) 2017; 51
CHNMEE, 2016. Chinese Children's Exposure Factor Handbook (in Chinese). China Environmental Press, Beijing.
Wesch, Elert, Worner, Braun, Klein, Paulus (b0230) 2017; 7
Bakir, Rowland, Thompson (b0030) 2014; 185
Artham, Sudhakar, Venkatesan, Madhavan Nair, Murty, Doble (b0015) 2009; 63
Coffin, Huang, Lee, Schlenk (b0075) 2019; 53
Caboche, J., 2018. Validation d'un test de mesure de bioaccessibilité: Application à quatre éléments traces métalliques dans les sols: As, Cd 2018 Pb et Sb. INPL, Vandoeuvre-les-Nancy.
Rochman, Hentschel, Teh (b0165) 2014; 9
APHA, 1999. Standard Methods for the Examination of Water and Wastewater. Vol 2. American Public Health Association.
Cox, Covernton, Davies, Dower, Juanes, Dudas (b0085) 2019; 53
USEPA, 2013. Mid Atlantic Risk Assessment. Regional Screening Level (RSL) Summary Table. U.S. Environmental Protection Agency, Washington, DC.
Ducros (b0090) 1992; 32
Massos, Turner (b0140) 2017; 227
USEPA, 2019. Regional Screening Levels (RSLs) – Generic Tables. DOE's Oak Ridge National Laboratory, Knoxville.
Ashton (10.1016/j.scitotenv.2019.134805_b0020) 2010; 60
Van Cauwenberghe (10.1016/j.scitotenv.2019.134805_b0215) 2014; 193
Andrew (10.1016/j.scitotenv.2019.134805_b0005) 2010; 409
Rochman (10.1016/j.scitotenv.2019.134805_b0165) 2014; 9
Revel (10.1016/j.scitotenv.2019.134805_b0160) 2018; 1
Bouwmeester (10.1016/j.scitotenv.2019.134805_b0035) 2015; 49
Rakhunde (10.1016/j.scitotenv.2019.134805_b0155) 2012; 42
Wright (10.1016/j.scitotenv.2019.134805_b0245) 2013; 178
Bakir (10.1016/j.scitotenv.2019.134805_b0030) 2014; 185
10.1016/j.scitotenv.2019.134805_b0070
Turner (10.1016/j.scitotenv.2019.134805_b0195) 2015; 12
Yu (10.1016/j.scitotenv.2019.134805_b0255) 2019; 215
ter Halle (10.1016/j.scitotenv.2019.134805_b0190) 2016; 50
Browne (10.1016/j.scitotenv.2019.134805_b0045) 2013; 23
Wright (10.1016/j.scitotenv.2019.134805_b0240) 2017; 51
Avery-Gomm (10.1016/j.scitotenv.2019.134805_b0025) 2013; 72
Holmes (10.1016/j.scitotenv.2019.134805_b0110) 2012; 160
10.1016/j.scitotenv.2019.134805_b0105
Schirinzi (10.1016/j.scitotenv.2019.134805_b0180) 2017; 159
10.1016/j.scitotenv.2019.134805_b0185
Chae (10.1016/j.scitotenv.2019.134805_b0055) 2018; 240
Artham (10.1016/j.scitotenv.2019.134805_b0015) 2009; 63
White (10.1016/j.scitotenv.2019.134805_b0235) 2018; 52
10.1016/j.scitotenv.2019.134805_b0065
Luís (10.1016/j.scitotenv.2019.134805_b0135) 2015; 164
Liu (10.1016/j.scitotenv.2019.134805_b0125) 2001; 14
Brennecke (10.1016/j.scitotenv.2019.134805_b0040) 2016; 178
Wesch (10.1016/j.scitotenv.2019.134805_b0230) 2017; 7
Ducros (10.1016/j.scitotenv.2019.134805_b0090) 1992; 32
10.1016/j.scitotenv.2019.134805_b0060
Lei (10.1016/j.scitotenv.2019.134805_b0120) 2018; 619–620
Wang (10.1016/j.scitotenv.2019.134805_b0225) 2017; 171
Vedolin (10.1016/j.scitotenv.2019.134805_b0220) 2018; 129
Zettler (10.1016/j.scitotenv.2019.134805_b0260) 2013; 47
Phuong (10.1016/j.scitotenv.2019.134805_b0150) 2018; 243
Coffin (10.1016/j.scitotenv.2019.134805_b0075) 2019; 53
10.1016/j.scitotenv.2019.134805_b0050
Rochman (10.1016/j.scitotenv.2019.134805_b0170) 2013; 3
10.1016/j.scitotenv.2019.134805_b0210
Gaylor (10.1016/j.scitotenv.2019.134805_b0095) 2013; 47
10.1016/j.scitotenv.2019.134805_b0010
Younan (10.1016/j.scitotenv.2019.134805_b0250) 2016; 96
Zhou (10.1016/j.scitotenv.2019.134805_b0270) 2018; 322
10.1016/j.scitotenv.2019.134805_bib272
10.1016/j.scitotenv.2019.134805_bib271
Cole (10.1016/j.scitotenv.2019.134805_b0080) 2011; 62
Nickens (10.1016/j.scitotenv.2019.134805_b0145) 2010; 188
10.1016/j.scitotenv.2019.134805_b0205
Cox (10.1016/j.scitotenv.2019.134805_b0085) 2019; 53
10.1016/j.scitotenv.2019.134805_b0200
Hussain (10.1016/j.scitotenv.2019.134805_b0115) 2001; 50
Hodson (10.1016/j.scitotenv.2019.134805_b0100) 2017; 51
Lu (10.1016/j.scitotenv.2019.134805_b0130) 2018; 202
Zhang (10.1016/j.scitotenv.2019.134805_b0265) 2015; 99
Massos (10.1016/j.scitotenv.2019.134805_b0140) 2017; 227
Ryan (10.1016/j.scitotenv.2019.134805_b0175) 2008; 56
References_xml – reference: USEPA, 2019. Regional Screening Levels (RSLs) – Generic Tables. DOE's Oak Ridge National Laboratory, Knoxville.
– volume: 188
  start-page: 276
  year: 2010
  end-page: 288
  ident: b0145
  article-title: Chromium genotoxicity: a double-edged sword
  publication-title: Chem. Biol. Interact.
– volume: 99
  start-page: 28
  year: 2015
  end-page: 34
  ident: b0265
  article-title: Persistent organic pollutants carried on plastic resin pellets from two beaches in China
  publication-title: Mar. Pollut. Bull.
– volume: 3
  start-page: 3263
  year: 2013
  ident: b0170
  article-title: Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress
  publication-title: Sci Rep
– volume: 202
  start-page: 514
  year: 2018
  end-page: 520
  ident: b0130
  article-title: Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio)
  publication-title: Chemosphere
– volume: 1
  start-page: 17
  year: 2018
  end-page: 23
  ident: b0160
  article-title: Micro(nano)plastics: a threat to human health?
  publication-title: Curr. Opin. Environ. Sci. Health
– volume: 51
  start-page: 4714
  year: 2017
  end-page: 4721
  ident: b0100
  article-title: Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates
  publication-title: Environ. Sci. Technol.
– volume: 12
  year: 2015
  ident: b0195
  article-title: Adsorption of trace metals by microplastic pellets in fresh water
  publication-title: Environ. Chem.
– reference: CHNMEE, 2013. Exposure Factors Handbook of Chinese Population (Adult) (in Chinese). China Environmental Press, Beijing.
– volume: 178
  start-page: 483
  year: 2013
  end-page: 492
  ident: b0245
  article-title: The physical impacts of microplastics on marine organisms: a review
  publication-title: Environ. Pollut.
– volume: 42
  start-page: 776
  year: 2012
  end-page: 810
  ident: b0155
  article-title: Chemical speciation of chromium in water: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 49
  start-page: 8932
  year: 2015
  end-page: 8947
  ident: b0035
  article-title: Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology
  publication-title: Environ. Sci. Technol.
– volume: 14
  start-page: 308
  year: 2001
  end-page: 312
  ident: b0125
  article-title: Research progresses on degradation mechanism in vivo and medical applications of polylactic acid
  publication-title: Space Med. Med. Eng.
– volume: 159
  start-page: 579
  year: 2017
  end-page: 587
  ident: b0180
  article-title: Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells
  publication-title: Environ. Res.
– volume: 240
  start-page: 387
  year: 2018
  end-page: 395
  ident: b0055
  article-title: Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review
  publication-title: Environ. Pollut.
– volume: 409
  start-page: 267
  year: 2010
  end-page: 277
  ident: b0005
  article-title: Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment
  publication-title: Sci. Total Environ.
– reference: Caboche, J., 2018. Validation d'un test de mesure de bioaccessibilité: Application à quatre éléments traces métalliques dans les sols: As, Cd 2018 Pb et Sb. INPL, Vandoeuvre-les-Nancy.
– reference: USEPA, 2009. National Primary Drinking Water Regulations. 816-F-09-004. Washington DC.
– volume: 96
  start-page: 3977
  year: 2016
  end-page: 3982
  ident: b0250
  article-title: Chromium(VI) bioremediation by probiotics
  publication-title: J. Sci. Food Agric.
– reference: CHNMEE, 2014. Technical Guidelines for Risk Assessment of Contaminated Sites (in Chinese). HJ-25.3–2014. China Environmental Press, Beijing.
– volume: 56
  start-page: 1406
  year: 2008
  end-page: 1409
  ident: b0175
  article-title: Seabirds indicate changes in the composition of plastic litter in the Atlantic and south-western Indian Oceans
  publication-title: Mar. Pollut. Bull.
– volume: 7
  start-page: 5424
  year: 2017
  ident: b0230
  article-title: Assuring quality in microplastic monitoring: about the value of clean-air devices as essentials for verified data
  publication-title: Sci. Rep.
– volume: 164
  start-page: 163
  year: 2015
  end-page: 174
  ident: b0135
  article-title: Does the presence of microplastics influence the acute toxicity of chromium(VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations
  publication-title: Aquat. Toxicol.
– volume: 53
  start-page: 7068
  year: 2019
  end-page: 7074
  ident: b0085
  article-title: Human consumption of microplastics
  publication-title: Environ. Sci. Technol.
– volume: 60
  start-page: 2050
  year: 2010
  end-page: 2055
  ident: b0020
  article-title: Association of metals with plastic production pellets in the marine environment
  publication-title: Mar. Pollut. Bull.
– reference: CHNMEE, 2016. Chinese Children's Exposure Factor Handbook (in Chinese). China Environmental Press, Beijing.
– volume: 322
  start-page: 201
  year: 2018
  end-page: 208
  ident: b0270
  article-title: The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea
  publication-title: Geoderma
– reference: Holmes, L.A. 2013. Interactions of Trace Metals with Plastic Production Pellets in the Marine Environment. School of Geography, Earth and Environmental Sciences. PhD. University of Plymouth.
– volume: 51
  start-page: 6634
  year: 2017
  end-page: 6647
  ident: b0240
  article-title: Plastic and human health: a micro issue?
  publication-title: Environ. Sci. Technol.
– reference: CHNMEE, 2002. Standard for the environmental quality of fresh water (in Chinese). GB 3838-2002. China Environmental Press, Beijing.
– volume: 9
  year: 2014
  ident: b0165
  article-title: Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments
  publication-title: PLoS ONE
– reference: APHA, 1999. Standard Methods for the Examination of Water and Wastewater. Vol 2. American Public Health Association.
– volume: 193
  start-page: 65
  year: 2014
  end-page: 70
  ident: b0215
  article-title: Microplastics in bivalves cultured for human consumption
  publication-title: Environ. Pollut.
– reference: USEPA, 2002. National Recommended Water Quality Criteria. 822-R-02-047. Office of Science and Technology, Washington, DC.
– volume: 32
  start-page: 65
  year: 1992
  end-page: 77
  ident: b0090
  article-title: Chromium metabolism
  publication-title: Biol. Trace Elem. Res.
– volume: 23
  start-page: 2388
  year: 2013
  end-page: 2392
  ident: b0045
  article-title: Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity
  publication-title: Curr. Biol.
– volume: 171
  start-page: 248
  year: 2017
  end-page: 258
  ident: b0225
  article-title: Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals
  publication-title: Chemosphere
– reference: Senathirajah, K., Palanisami, T., 2019. How much microplastics are we ingesting? Estimation of the mass of microplastics ingested. Report for WWF Singapore.
– volume: 50
  start-page: 107
  year: 2001
  end-page: 142
  ident: b0115
  article-title: Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics ☆
  publication-title: Adv. Drug Deliv. Rev.
– volume: 72
  start-page: 257
  year: 2013
  end-page: 259
  ident: b0025
  article-title: Plastic ingestion in marine-associated bird species from the eastern North Pacific
  publication-title: Mar. Pollut. Bull.
– volume: 227
  start-page: 139
  year: 2017
  end-page: 145
  ident: b0140
  article-title: Cadmium, lead and bromine in beached microplastics
  publication-title: Environ. Pollut.
– volume: 178
  start-page: 189
  year: 2016
  end-page: 195
  ident: b0040
  article-title: Microplastics as vector for heavy metal contamination from the marine environment
  publication-title: Estuar. Coast. Shelf Sci.
– volume: 62
  start-page: 2588
  year: 2011
  end-page: 2597
  ident: b0080
  article-title: Microplastics as contaminants in the marine environment: a review
  publication-title: Mar. Pollut. Bull.
– volume: 185
  start-page: 16
  year: 2014
  end-page: 23
  ident: b0030
  article-title: Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions
  publication-title: Environ. Pollut.
– volume: 619–620
  start-page: 1
  year: 2018
  end-page: 8
  ident: b0120
  article-title: Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans
  publication-title: Sci. Total Environ.
– volume: 47
  start-page: 7137
  year: 2013
  end-page: 7146
  ident: b0260
  article-title: Life in the “plastisphere”: microbial communities on plastic marine debris
  publication-title: Environ. Sci. Technol.
– volume: 243
  start-page: 228
  year: 2018
  end-page: 237
  ident: b0150
  article-title: Microplastic abundance and characteristics in French Atlantic coastal sediments using a new extraction method
  publication-title: Environ. Pollut.
– volume: 160
  start-page: 42
  year: 2012
  end-page: 48
  ident: b0110
  article-title: Adsorption of trace metals to plastic resin pellets in the marine environment
  publication-title: Environ. Pollut.
– volume: 215
  start-page: 294
  year: 2019
  end-page: 304
  ident: b0255
  article-title: Oral bioaccessibility and health risk assessment of vanadium(IV) and vanadium(V) in a vanadium titanomagnetite mining region by a whole digestive system in-vitro method (WDSM)
  publication-title: Chemosphere
– volume: 63
  start-page: 884
  year: 2009
  end-page: 890
  ident: b0015
  article-title: Biofouling and stability of synthetic polymers in sea water
  publication-title: Int. Biodeterior. Biodegrad.
– reference: USEPA, 2013. Mid Atlantic Risk Assessment. Regional Screening Level (RSL) Summary Table. U.S. Environmental Protection Agency, Washington, DC.
– volume: 47
  start-page: 13831
  year: 2013
  end-page: 13839
  ident: b0095
  article-title: Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils
  publication-title: Environ. Sci. Technol.
– volume: 129
  start-page: 487
  year: 2018
  end-page: 493
  ident: b0220
  article-title: Spatial variability in the concentrations of metals in beached microplastics
  publication-title: Mar. Pollut. Bull.
– volume: 53
  start-page: 4588
  year: 2019
  end-page: 4599
  ident: b0075
  article-title: Fish and seabird gut conditions enhance desorption of estrogenic chemicals from commonly-ingested plastic items
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 5668
  year: 2016
  end-page: 5675
  ident: b0190
  article-title: Understanding the fragmentation pattern of marine plastic debris
  publication-title: Environ. Sci. Technol.
– volume: 52
  start-page: 10307
  year: 2018
  end-page: 10316
  ident: b0235
  article-title: Ingested micronizing plastic particle compositions and size distributions within stranded post-hatchling sea turtles
  publication-title: Environ. Sci. Technol.
– ident: 10.1016/j.scitotenv.2019.134805_bib271
– volume: 60
  start-page: 2050
  year: 2010
  ident: 10.1016/j.scitotenv.2019.134805_b0020
  article-title: Association of metals with plastic production pellets in the marine environment
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2010.07.014
– volume: 49
  start-page: 8932
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134805_b0035
  article-title: Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b01090
– volume: 171
  start-page: 248
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134805_b0225
  article-title: Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.12.074
– volume: 51
  start-page: 6634
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134805_b0240
  article-title: Plastic and human health: a micro issue?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00423
– volume: 53
  start-page: 4588
  year: 2019
  ident: 10.1016/j.scitotenv.2019.134805_b0075
  article-title: Fish and seabird gut conditions enhance desorption of estrogenic chemicals from commonly-ingested plastic items
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b07140
– ident: 10.1016/j.scitotenv.2019.134805_b0185
– volume: 23
  start-page: 2388
  year: 2013
  ident: 10.1016/j.scitotenv.2019.134805_b0045
  article-title: Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2013.10.012
– volume: 12
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134805_b0195
  article-title: Adsorption of trace metals by microplastic pellets in fresh water
  publication-title: Environ. Chem.
  doi: 10.1071/EN14143
– volume: 188
  start-page: 276
  year: 2010
  ident: 10.1016/j.scitotenv.2019.134805_b0145
  article-title: Chromium genotoxicity: a double-edged sword
  publication-title: Chem. Biol. Interact.
  doi: 10.1016/j.cbi.2010.04.018
– volume: 129
  start-page: 487
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134805_b0220
  article-title: Spatial variability in the concentrations of metals in beached microplastics
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2017.10.019
– volume: 50
  start-page: 107
  year: 2001
  ident: 10.1016/j.scitotenv.2019.134805_b0115
  article-title: Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics ☆
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/S0169-409X(01)00152-1
– volume: 51
  start-page: 4714
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134805_b0100
  article-title: Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00635
– volume: 7
  start-page: 5424
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134805_b0230
  article-title: Assuring quality in microplastic monitoring: about the value of clean-air devices as essentials for verified data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05838-4
– volume: 1
  start-page: 17
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134805_b0160
  article-title: Micro(nano)plastics: a threat to human health?
  publication-title: Curr. Opin. Environ. Sci. Health
  doi: 10.1016/j.coesh.2017.10.003
– volume: 32
  start-page: 65
  year: 1992
  ident: 10.1016/j.scitotenv.2019.134805_b0090
  article-title: Chromium metabolism
  publication-title: Biol. Trace Elem. Res.
  doi: 10.1007/BF02784589
– volume: 14
  start-page: 308
  year: 2001
  ident: 10.1016/j.scitotenv.2019.134805_b0125
  article-title: Research progresses on degradation mechanism in vivo and medical applications of polylactic acid
  publication-title: Space Med. Med. Eng.
– volume: 178
  start-page: 483
  year: 2013
  ident: 10.1016/j.scitotenv.2019.134805_b0245
  article-title: The physical impacts of microplastics on marine organisms: a review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.02.031
– ident: 10.1016/j.scitotenv.2019.134805_b0050
– volume: 99
  start-page: 28
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134805_b0265
  article-title: Persistent organic pollutants carried on plastic resin pellets from two beaches in China
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2015.08.002
– volume: 240
  start-page: 387
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134805_b0055
  article-title: Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.05.008
– volume: 227
  start-page: 139
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134805_b0140
  article-title: Cadmium, lead and bromine in beached microplastics
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.04.034
– volume: 193
  start-page: 65
  year: 2014
  ident: 10.1016/j.scitotenv.2019.134805_b0215
  article-title: Microplastics in bivalves cultured for human consumption
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2014.06.010
– volume: 96
  start-page: 3977
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134805_b0250
  article-title: Chromium(VI) bioremediation by probiotics
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.7725
– volume: 178
  start-page: 189
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134805_b0040
  article-title: Microplastics as vector for heavy metal contamination from the marine environment
  publication-title: Estuar. Coast. Shelf Sci.
  doi: 10.1016/j.ecss.2015.12.003
– volume: 56
  start-page: 1406
  year: 2008
  ident: 10.1016/j.scitotenv.2019.134805_b0175
  article-title: Seabirds indicate changes in the composition of plastic litter in the Atlantic and south-western Indian Oceans
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2008.05.004
– ident: 10.1016/j.scitotenv.2019.134805_b0060
– volume: 62
  start-page: 2588
  year: 2011
  ident: 10.1016/j.scitotenv.2019.134805_b0080
  article-title: Microplastics as contaminants in the marine environment: a review
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2011.09.025
– volume: 42
  start-page: 776
  year: 2012
  ident: 10.1016/j.scitotenv.2019.134805_b0155
  article-title: Chemical speciation of chromium in water: a review
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2010.534029
– volume: 72
  start-page: 257
  year: 2013
  ident: 10.1016/j.scitotenv.2019.134805_b0025
  article-title: Plastic ingestion in marine-associated bird species from the eastern North Pacific
  publication-title: Mar. Pollut. Bull.
  doi: 10.1016/j.marpolbul.2013.04.021
– volume: 185
  start-page: 16
  year: 2014
  ident: 10.1016/j.scitotenv.2019.134805_b0030
  article-title: Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2013.10.007
– volume: 619–620
  start-page: 1
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134805_b0120
  article-title: Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.11.103
– volume: 47
  start-page: 7137
  year: 2013
  ident: 10.1016/j.scitotenv.2019.134805_b0260
  article-title: Life in the “plastisphere”: microbial communities on plastic marine debris
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401288x
– volume: 409
  start-page: 267
  year: 2010
  ident: 10.1016/j.scitotenv.2019.134805_b0005
  article-title: Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2010.09.007
– volume: 202
  start-page: 514
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134805_b0130
  article-title: Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.03.145
– volume: 164
  start-page: 163
  year: 2015
  ident: 10.1016/j.scitotenv.2019.134805_b0135
  article-title: Does the presence of microplastics influence the acute toxicity of chromium(VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2015.04.018
– ident: 10.1016/j.scitotenv.2019.134805_b0205
– volume: 160
  start-page: 42
  year: 2012
  ident: 10.1016/j.scitotenv.2019.134805_b0110
  article-title: Adsorption of trace metals to plastic resin pellets in the marine environment
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2011.08.052
– volume: 50
  start-page: 5668
  year: 2016
  ident: 10.1016/j.scitotenv.2019.134805_b0190
  article-title: Understanding the fragmentation pattern of marine plastic debris
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00594
– ident: 10.1016/j.scitotenv.2019.134805_b0070
– volume: 47
  start-page: 13831
  year: 2013
  ident: 10.1016/j.scitotenv.2019.134805_b0095
  article-title: Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es403750a
– volume: 159
  start-page: 579
  year: 2017
  ident: 10.1016/j.scitotenv.2019.134805_b0180
  article-title: Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2017.08.043
– volume: 52
  start-page: 10307
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134805_b0235
  article-title: Ingested micronizing plastic particle compositions and size distributions within stranded post-hatchling sea turtles
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02776
– volume: 63
  start-page: 884
  year: 2009
  ident: 10.1016/j.scitotenv.2019.134805_b0015
  article-title: Biofouling and stability of synthetic polymers in sea water
  publication-title: Int. Biodeterior. Biodegrad.
  doi: 10.1016/j.ibiod.2009.03.003
– ident: 10.1016/j.scitotenv.2019.134805_b0065
– ident: 10.1016/j.scitotenv.2019.134805_bib272
– ident: 10.1016/j.scitotenv.2019.134805_b0210
– volume: 215
  start-page: 294
  year: 2019
  ident: 10.1016/j.scitotenv.2019.134805_b0255
  article-title: Oral bioaccessibility and health risk assessment of vanadium(IV) and vanadium(V) in a vanadium titanomagnetite mining region by a whole digestive system in-vitro method (WDSM)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.10.042
– volume: 9
  year: 2014
  ident: 10.1016/j.scitotenv.2019.134805_b0165
  article-title: Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0085433
– ident: 10.1016/j.scitotenv.2019.134805_b0105
– volume: 3
  start-page: 3263
  year: 2013
  ident: 10.1016/j.scitotenv.2019.134805_b0170
  article-title: Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress
  publication-title: Sci Rep
  doi: 10.1038/srep03263
– volume: 243
  start-page: 228
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134805_b0150
  article-title: Microplastic abundance and characteristics in French Atlantic coastal sediments using a new extraction method
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.08.032
– volume: 53
  start-page: 7068
  year: 2019
  ident: 10.1016/j.scitotenv.2019.134805_b0085
  article-title: Human consumption of microplastics
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b01517
– ident: 10.1016/j.scitotenv.2019.134805_b0200
– ident: 10.1016/j.scitotenv.2019.134805_b0010
– volume: 322
  start-page: 201
  year: 2018
  ident: 10.1016/j.scitotenv.2019.134805_b0270
  article-title: The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.02.015
SSID ssj0000781
Score 2.6491246
Snippet [Display omitted] •Microplastics (MPs) released more Cr in the in-vitro digestive model than in fresh water.•Gastric phase aroused the most bioaccessible...
Microplastics (MPs), polymer particles capable of adsorbing heavy metals from ambient environment, have been found in diverse human food resources. Through the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 134805
SubjectTerms Adsorption
Adult
adults
bioavailability
Child
children
Chromium
Chromium adsorption
Degradable microplastic
desorption
females
heavy metals
Human health risk
Humans
in vitro studies
In-vitro digestion model
large intestine
males
Metals, Heavy
Microplastic ingestion
Microplastics
mouth
Plastics
poly(vinyl chloride)
polyethylene
polypropylenes
polystyrenes
small intestine
Water Pollutants, Chemical
Title Microplastic serves as a potential vector for Cr in an in-vitro human digestive model
URI https://dx.doi.org/10.1016/j.scitotenv.2019.134805
https://www.ncbi.nlm.nih.gov/pubmed/31733499
https://www.proquest.com/docview/2315099335
https://www.proquest.com/docview/2388787015
Volume 703
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFH-UjsGglC1bv1dU2NWtbMmS3FsJLdnCeigL603YsgwZwQmJG9hlf3vfs-yUQrceBsYGIwmh9_WT9D4AvjjKuWZcEgmvRSRNmUZoBUWkeezSHKXLu9bb4laNJvLbfXq_BcM-FobcKjvdH3R6q627Pxfdal4splOK8ZUmU5lGCCJ1pijQXEpNXH7-58nNg5LZhFtmFGxs_czHC8dt5ohN1-TjlZ3HQhqqY_eyhfobAm0t0c172O0gJLsKs_wAW74ewNtQVPL3APaun2LXsFknvKsB7IQjOhYijz7C5Ds54y0QPuNAjE5n_Yrl-LAFzRZFf8bW7aE-Q2TLhks2rVle4ztaT5vlnLX1_VjZXlGh0mRtVZ1PMLm5_jEcRV2VhchJzZuo4HHhhJeqSHRF6eVynplKU5bU0ijljfFpUlUepb_kQqbcGV1lTpW46DElz9mD7Xpe-wNgmgJhuciqVAuZ8CKjOkiqQEOJSKE0ySGofmWt61KQUyWMme19zX7ZDUkskcQGkhwC33RchCwcr3e57ElnnzGURVvxeuezntgWxY3uUPLazx9WFuEwQizk5n-2Qc2NejDGNvuBUzazRrgmBO4yj_5nesfwLqFtP9Wl4Sew3Swf_GfERk1x2jL_Kby5-joe3dJ3fPdz_Aii3Q2W
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6lLLBKG22bl33ocJevcqWLMl7K6El_cpTA30TtixDRnFC4gb23-_OslMK3fowMH4wkhA63d3P0t39AL47qrlmXBIJr0UkTZlG6AVFpHns0hy1y7s22mKixlN5eZfebcGoz4WhsMrO9geb3lrr7stJt5oni9mMcnylyVSmEYJInan0FWxTdap0ANunF1fjyaNB1iYQ50nUbezwJMwLh27mCE_XFOaV_YiFNERl97yT-hsIbZ3R-R7sdiiSnYaJ7sOWr4ewE3glfw_h4OwxfQ2bdfq7GsLbcErHQvLRO5jeUDzeAhE0DsTogNavWI4PW9BsUfvv2bo912cIbtloyWY1y2t8R-tZs5yzluKPle0tFdpN1hLrvIfp-dntaBx1RAuRk5o3UcHjwgkvVZHoiirM5TwzlaZCqaVRyhvj06SqPBqAkguZcmd0lTlV4rrHVD_nAAb1vPYfgWnKheUiq1ItZMKLjKiQVIG-EsFCaZJDUP3KWtdVIScyjHvbh5v9shuRWBKJDSI5BL7puAiFOF7u8rMXnX2ypyy6i5c7H_fCtqhxdI2S137-sLKIiBFl4Yb-Zxs03mgKY2zzIeyUzawRsQmBP5qf_md63-D1-Pbm2l5fTK6O4E1CpwBEU8M_w6BZPvgvCJWa4munCn8AZRIOpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplastic+serves+as+a+potential+vector+for+Cr+in+an+in-vitro+human+digestive+model&rft.jtitle=The+Science+of+the+total+environment&rft.au=Liao%2C+Yu-liang&rft.au=Yang%2C+Jin-yan&rft.date=2020-02-10&rft.issn=0048-9697&rft.volume=703&rft.spage=134805&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.134805&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2019_134805
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon