Microplastic serves as a potential vector for Cr in an in-vitro human digestive model
[Display omitted] •Microplastics (MPs) released more Cr in the in-vitro digestive model than in fresh water.•Gastric phase aroused the most bioaccessible Cr(VI) and Cr(III).•Cr on degradable MP was more bioaccessible than Cr on nondegradable MPs.•The Cr exposure via MP consumption was estimated for...
Saved in:
Published in | The Science of the total environment Vol. 703; p. 134805 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Microplastics (MPs) released more Cr in the in-vitro digestive model than in fresh water.•Gastric phase aroused the most bioaccessible Cr(VI) and Cr(III).•Cr on degradable MP was more bioaccessible than Cr on nondegradable MPs.•The Cr exposure via MP consumption was estimated for different human groups.•Cr on degradable MP may pose higher noncarcinogenic risks to human.
Microplastics (MPs), polymer particles capable of adsorbing heavy metals from ambient environment, have been found in diverse human food resources. Through the consumption of MPs, heavy metals adsorbed on MPs might be transported into human body. This study aims to explore the behavior of heavy metal-contaminated MPs in human digestive system which is not previously researched. Firstly, a chromium (Cr) adsorption/desorption study was conducted with four commonly used nondegradable MPs [polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS)] as well as one degradable MP (polylactic, PLA). Then, the whole digestive system in-vitro method (WDSM), a systematic model including mouth, gastric, small intestine, and large intestine digestive phases, was conducted on the Cr-loaded MPs. Additionally, the bioaccessibilities and hazard quotients (HQs) of Cr(VI) and Cr(III) were evaluated. Among five MPs, although PLA showed the weakest adsorption capacity for Cr, the Cr(VI) bioaccessibilities for PLA reached the highest values of 19.9%, 15.6% and 3.9% in gastric, small intestinal and large intestinal phases, respectively. The bioaccessibilities of Cr(VI) in gastric phase were significantly higher than those in other phases, while no Cr release from MPs was detected in the mouth phase. In gastric phase, the bioaccessibilities of Cr(VI) were significantly higher than those of Cr(III) in the gastric phase, and both of them approached to a similar level in intestinal phases. In the WDSM, the HQs of Cr(VI) and Cr(III) on MPs were lower than the critical level for both adults and children. Based on the measured bioaccessibilities, the maximum daily total Cr intake for different human groups (female children, male children, female adults and male adults) through MP consumption was estimated from 0.50 to 1.18 μg/day. In general, the five tested MPs were potential to serve as Cr vectors in the WDSM. |
---|---|
AbstractList | Microplastics (MPs), polymer particles capable of adsorbing heavy metals from ambient environment, have been found in diverse human food resources. Through the consumption of MPs, heavy metals adsorbed on MPs might be transported into human body. This study aims to explore the behavior of heavy metal-contaminated MPs in human digestive system which is not previously researched. Firstly, a chromium (Cr) adsorption/desorption study was conducted with four commonly used nondegradable MPs [polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS)] as well as one degradable MP (polylactic, PLA). Then, the whole digestive system in-vitro method (WDSM), a systematic model including mouth, gastric, small intestine, and large intestine digestive phases, was conducted on the Cr-loaded MPs. Additionally, the bioaccessibilities and hazard quotients (HQs) of Cr(VI) and Cr(III) were evaluated. Among five MPs, although PLA showed the weakest adsorption capacity for Cr, the Cr(VI) bioaccessibilities for PLA reached the highest values of 19.9%, 15.6% and 3.9% in gastric, small intestinal and large intestinal phases, respectively. The bioaccessibilities of Cr(VI) in gastric phase were significantly higher than those in other phases, while no Cr release from MPs was detected in the mouth phase. In gastric phase, the bioaccessibilities of Cr(VI) were significantly higher than those of Cr(III) in the gastric phase, and both of them approached to a similar level in intestinal phases. In the WDSM, the HQs of Cr(VI) and Cr(III) on MPs were lower than the critical level for both adults and children. Based on the measured bioaccessibilities, the maximum daily total Cr intake for different human groups (female children, male children, female adults and male adults) through MP consumption was estimated from 0.50 to 1.18 μg/day. In general, the five tested MPs were potential to serve as Cr vectors in the WDSM. [Display omitted] •Microplastics (MPs) released more Cr in the in-vitro digestive model than in fresh water.•Gastric phase aroused the most bioaccessible Cr(VI) and Cr(III).•Cr on degradable MP was more bioaccessible than Cr on nondegradable MPs.•The Cr exposure via MP consumption was estimated for different human groups.•Cr on degradable MP may pose higher noncarcinogenic risks to human. Microplastics (MPs), polymer particles capable of adsorbing heavy metals from ambient environment, have been found in diverse human food resources. Through the consumption of MPs, heavy metals adsorbed on MPs might be transported into human body. This study aims to explore the behavior of heavy metal-contaminated MPs in human digestive system which is not previously researched. Firstly, a chromium (Cr) adsorption/desorption study was conducted with four commonly used nondegradable MPs [polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS)] as well as one degradable MP (polylactic, PLA). Then, the whole digestive system in-vitro method (WDSM), a systematic model including mouth, gastric, small intestine, and large intestine digestive phases, was conducted on the Cr-loaded MPs. Additionally, the bioaccessibilities and hazard quotients (HQs) of Cr(VI) and Cr(III) were evaluated. Among five MPs, although PLA showed the weakest adsorption capacity for Cr, the Cr(VI) bioaccessibilities for PLA reached the highest values of 19.9%, 15.6% and 3.9% in gastric, small intestinal and large intestinal phases, respectively. The bioaccessibilities of Cr(VI) in gastric phase were significantly higher than those in other phases, while no Cr release from MPs was detected in the mouth phase. In gastric phase, the bioaccessibilities of Cr(VI) were significantly higher than those of Cr(III) in the gastric phase, and both of them approached to a similar level in intestinal phases. In the WDSM, the HQs of Cr(VI) and Cr(III) on MPs were lower than the critical level for both adults and children. Based on the measured bioaccessibilities, the maximum daily total Cr intake for different human groups (female children, male children, female adults and male adults) through MP consumption was estimated from 0.50 to 1.18 μg/day. In general, the five tested MPs were potential to serve as Cr vectors in the WDSM. Microplastics (MPs), polymer particles capable of adsorbing heavy metals from ambient environment, have been found in diverse human food resources. Through the consumption of MPs, heavy metals adsorbed on MPs might be transported into human body. This study aims to explore the behavior of heavy metal-contaminated MPs in human digestive system which is not previously researched. Firstly, a chromium (Cr) adsorption/desorption study was conducted with four commonly used nondegradable MPs [polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS)] as well as one degradable MP (polylactic, PLA). Then, the whole digestive system in-vitro method (WDSM), a systematic model including mouth, gastric, small intestine, and large intestine digestive phases, was conducted on the Cr-loaded MPs. Additionally, the bioaccessibilities and hazard quotients (HQs) of Cr(VI) and Cr(III) were evaluated. Among five MPs, although PLA showed the weakest adsorption capacity for Cr, the Cr(VI) bioaccessibilities for PLA reached the highest values of 19.9%, 15.6% and 3.9% in gastric, small intestinal and large intestinal phases, respectively. The bioaccessibilities of Cr(VI) in gastric phase were significantly higher than those in other phases, while no Cr release from MPs was detected in the mouth phase. In gastric phase, the bioaccessibilities of Cr(VI) were significantly higher than those of Cr(III) in the gastric phase, and both of them approached to a similar level in intestinal phases. In the WDSM, the HQs of Cr(VI) and Cr(III) on MPs were lower than the critical level for both adults and children. Based on the measured bioaccessibilities, the maximum daily total Cr intake for different human groups (female children, male children, female adults and male adults) through MP consumption was estimated from 0.50 to 1.18 μg/day. In general, the five tested MPs were potential to serve as Cr vectors in the WDSM.Microplastics (MPs), polymer particles capable of adsorbing heavy metals from ambient environment, have been found in diverse human food resources. Through the consumption of MPs, heavy metals adsorbed on MPs might be transported into human body. This study aims to explore the behavior of heavy metal-contaminated MPs in human digestive system which is not previously researched. Firstly, a chromium (Cr) adsorption/desorption study was conducted with four commonly used nondegradable MPs [polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS)] as well as one degradable MP (polylactic, PLA). Then, the whole digestive system in-vitro method (WDSM), a systematic model including mouth, gastric, small intestine, and large intestine digestive phases, was conducted on the Cr-loaded MPs. Additionally, the bioaccessibilities and hazard quotients (HQs) of Cr(VI) and Cr(III) were evaluated. Among five MPs, although PLA showed the weakest adsorption capacity for Cr, the Cr(VI) bioaccessibilities for PLA reached the highest values of 19.9%, 15.6% and 3.9% in gastric, small intestinal and large intestinal phases, respectively. The bioaccessibilities of Cr(VI) in gastric phase were significantly higher than those in other phases, while no Cr release from MPs was detected in the mouth phase. In gastric phase, the bioaccessibilities of Cr(VI) were significantly higher than those of Cr(III) in the gastric phase, and both of them approached to a similar level in intestinal phases. In the WDSM, the HQs of Cr(VI) and Cr(III) on MPs were lower than the critical level for both adults and children. Based on the measured bioaccessibilities, the maximum daily total Cr intake for different human groups (female children, male children, female adults and male adults) through MP consumption was estimated from 0.50 to 1.18 μg/day. In general, the five tested MPs were potential to serve as Cr vectors in the WDSM. |
ArticleNumber | 134805 |
Author | Liao, Yu-liang Yang, Jin-yan |
Author_xml | – sequence: 1 givenname: Yu-liang surname: Liao fullname: Liao, Yu-liang email: Yuliang_Liao@stu.scu.edu.cn – sequence: 2 givenname: Jin-yan surname: Yang fullname: Yang, Jin-yan email: yanyang@scu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31733499$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u3CAUhVGVqpmkfYWEZTaeXsA2sMgiGqVtpFTdNGvE4OuWkW0mwFjK2wdrki6ySRE_QjrngM53Rk6mMCEhlwzWDFj7dbdOzueQcZrXHJheM1EraD6QFVNSVwx4e0JWALWqdKvlKTlLaQdlSMU-kVPBpBC11ivy8NO7GPaDTdk7mjDOmKgtk-6X9OztQGd0OUTal7WJ1E_UTmWvZp9joH8PY7l2_g-WhBnpGDocPpOPvR0Sfnk5z8nDt9vfmx_V_a_vd5ub-8rVEnK1BbZ1Aut2y2XPed1a0KqXDW9kp9oWlcKG9z2CYB2IugGnZK9d29VSM86VOCdXx9x9DI-H8gMz-uRwGOyE4ZAMF0pJJYE1_yFlDWgtxCK9eJEetiN2Zh_9aOOTeW2tCK6PglJdShF7U2DY7MOUo_WDYWAWSmZn_lEyCyVzpFT88o3_9Yn3nTdHJ5ZWZ49x0eHksPOxUDJd8O9mPAMikbBn |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2020_128968 crossref_primary_10_1016_j_chemosphere_2021_131735 crossref_primary_10_1016_j_scitotenv_2022_154025 crossref_primary_10_1016_j_jhazmat_2020_122795 crossref_primary_10_1016_j_envpol_2023_122754 crossref_primary_10_1021_acs_est_3c02129 crossref_primary_10_1016_j_scitotenv_2022_158111 crossref_primary_10_1016_j_psep_2021_11_026 crossref_primary_10_1016_j_gsd_2024_101267 crossref_primary_10_1016_j_jhazmat_2022_129587 crossref_primary_10_1016_j_scitotenv_2020_142042 crossref_primary_10_1039_D1EM00553G crossref_primary_10_1007_s00128_021_03226_3 crossref_primary_10_1016_j_snb_2024_135312 crossref_primary_10_1016_j_scitotenv_2021_152099 crossref_primary_10_1016_j_scitotenv_2024_174445 crossref_primary_10_1016_j_ecoenv_2023_114567 crossref_primary_10_1016_j_envint_2022_107711 crossref_primary_10_1016_j_envpol_2023_122621 crossref_primary_10_1016_j_scitotenv_2024_176342 crossref_primary_10_2478_aiht_2024_75_3807 crossref_primary_10_1016_j_marpolbul_2024_117318 crossref_primary_10_1016_j_scitotenv_2023_168946 crossref_primary_10_1080_15320383_2023_2301495 crossref_primary_10_1016_j_pce_2024_103800 crossref_primary_10_1021_acs_analchem_4c00654 crossref_primary_10_1016_j_scitotenv_2023_167857 crossref_primary_10_1088_1748_9326_ac548d crossref_primary_10_1016_j_chemosphere_2023_138920 crossref_primary_10_1016_j_scitotenv_2020_137762 crossref_primary_10_1016_j_envres_2021_111057 crossref_primary_10_1016_j_jhazmat_2023_130994 crossref_primary_10_1016_j_scitotenv_2022_156068 crossref_primary_10_1039_D1EN01016F crossref_primary_10_1016_j_jconhyd_2023_104255 crossref_primary_10_1016_j_scitotenv_2022_152980 crossref_primary_10_1016_j_scitotenv_2023_169469 crossref_primary_10_3390_cimb46030168 crossref_primary_10_1007_s00128_021_03339_9 crossref_primary_10_1038_s41598_021_02457_y crossref_primary_10_3390_pollutants2040034 crossref_primary_10_1016_j_scitotenv_2022_156593 crossref_primary_10_1021_envhealth_4c00148 crossref_primary_10_1007_s11356_022_20983_8 crossref_primary_10_3390_w17010102 crossref_primary_10_5620_eaht_2021004 crossref_primary_10_2174_1573401319666230915164116 crossref_primary_10_3389_fmars_2023_1109691 crossref_primary_10_3390_toxics12120854 crossref_primary_10_1007_s10311_024_01703_9 crossref_primary_10_1007_s10311_025_01823_w crossref_primary_10_1007_s11783_023_1694_0 crossref_primary_10_1016_j_jhazmat_2021_125632 crossref_primary_10_1016_j_envpol_2023_121158 crossref_primary_10_3390_microplastics3040040 crossref_primary_10_1016_j_envpol_2022_120442 crossref_primary_10_1007_s11356_023_27906_1 crossref_primary_10_1016_j_cej_2023_141838 crossref_primary_10_1016_j_taap_2022_115880 crossref_primary_10_1360_TB_2023_1297 crossref_primary_10_1016_j_jhazmat_2020_123709 crossref_primary_10_1016_j_scitotenv_2023_166745 crossref_primary_10_3390_su12114792 crossref_primary_10_1007_s11356_023_30679_2 crossref_primary_10_1080_10408398_2022_2116559 crossref_primary_10_3389_fenvs_2020_575614 crossref_primary_10_1016_j_jhazmat_2021_127094 crossref_primary_10_1016_j_envpol_2021_118104 crossref_primary_10_1016_j_envres_2024_118928 crossref_primary_10_1016_j_jhazmat_2023_132639 crossref_primary_10_1007_s13762_025_06433_1 crossref_primary_10_1016_j_scitotenv_2024_172975 crossref_primary_10_1111_1541_4337_70042 crossref_primary_10_1016_j_scitotenv_2021_150263 crossref_primary_10_1016_j_ecoenv_2024_117248 crossref_primary_10_1016_j_tiv_2024_105915 crossref_primary_10_1016_j_scitotenv_2020_142518 crossref_primary_10_1039_D4EA00069B crossref_primary_10_1016_j_envpol_2023_121862 crossref_primary_10_1016_j_chemosphere_2023_141067 crossref_primary_10_1016_j_jhazmat_2021_127529 crossref_primary_10_1016_j_eti_2023_103138 crossref_primary_10_12677_AEP_2023_133059 crossref_primary_10_1016_j_scitotenv_2023_166855 crossref_primary_10_1016_j_watres_2021_117637 crossref_primary_10_1080_09593330_2021_2003436 crossref_primary_10_1186_s40645_020_00405_4 crossref_primary_10_1016_j_scitotenv_2023_167666 crossref_primary_10_1007_s44169_023_00057_7 crossref_primary_10_1080_10934529_2023_2177458 crossref_primary_10_1016_j_envpol_2021_117403 crossref_primary_10_1016_j_scitotenv_2022_157109 crossref_primary_10_1016_j_ecoenv_2022_114260 crossref_primary_10_1016_j_scitotenv_2024_175735 crossref_primary_10_3390_jox14040079 crossref_primary_10_1016_j_jclepro_2021_127816 crossref_primary_10_1016_j_marpolbul_2022_113832 crossref_primary_10_1016_j_marpolbul_2024_116548 crossref_primary_10_1016_j_envpol_2021_117628 crossref_primary_10_1039_D2EA00041E crossref_primary_10_1016_j_scitotenv_2024_170281 crossref_primary_10_1016_j_chemosphere_2022_134267 crossref_primary_10_1016_j_cej_2021_129261 crossref_primary_10_1016_j_jhazmat_2023_133144 crossref_primary_10_1016_j_resconrec_2024_108070 crossref_primary_10_1016_j_envres_2023_115615 crossref_primary_10_1016_j_eehl_2023_08_002 crossref_primary_10_1016_j_impact_2023_100481 crossref_primary_10_1016_j_ecoenv_2023_115400 crossref_primary_10_1016_j_trac_2023_117392 crossref_primary_10_1080_10937404_2024_2406192 crossref_primary_10_1007_s10661_023_11890_7 crossref_primary_10_1016_j_jhazmat_2023_131330 crossref_primary_10_1016_j_scitotenv_2020_143875 crossref_primary_10_1016_j_chemosphere_2021_131085 crossref_primary_10_1016_j_jhazmat_2022_130483 crossref_primary_10_3389_fmicb_2021_652520 crossref_primary_10_1016_j_seppur_2025_131909 crossref_primary_10_3390_toxics12080594 crossref_primary_10_1007_s11783_024_1779_4 crossref_primary_10_1016_j_jenvman_2023_118971 crossref_primary_10_1007_s11356_021_16448_z crossref_primary_10_1016_j_envint_2022_107459 crossref_primary_10_1016_j_envres_2024_118960 crossref_primary_10_3390_ijerph18062997 crossref_primary_10_1039_D3EM00354J crossref_primary_10_1016_j_marenvres_2024_106353 crossref_primary_10_1016_j_jfca_2023_105837 crossref_primary_10_1016_j_scitotenv_2023_165615 crossref_primary_10_1016_j_chemosphere_2022_135697 crossref_primary_10_1016_j_envpol_2020_115098 crossref_primary_10_1039_D1VA00024A crossref_primary_10_1002_wer_11070 crossref_primary_10_1007_s11356_020_11904_8 crossref_primary_10_1016_j_hazadv_2024_100542 crossref_primary_10_3390_ijerph17041212 crossref_primary_10_1016_j_ecolind_2023_110369 crossref_primary_10_1016_j_marpolbul_2024_116283 |
Cites_doi | 10.1016/j.marpolbul.2010.07.014 10.1021/acs.est.5b01090 10.1016/j.chemosphere.2016.12.074 10.1021/acs.est.7b00423 10.1021/acs.est.8b07140 10.1016/j.cub.2013.10.012 10.1071/EN14143 10.1016/j.cbi.2010.04.018 10.1016/j.marpolbul.2017.10.019 10.1016/S0169-409X(01)00152-1 10.1021/acs.est.7b00635 10.1038/s41598-017-05838-4 10.1016/j.coesh.2017.10.003 10.1007/BF02784589 10.1016/j.envpol.2013.02.031 10.1016/j.marpolbul.2015.08.002 10.1016/j.envpol.2018.05.008 10.1016/j.envpol.2017.04.034 10.1016/j.envpol.2014.06.010 10.1002/jsfa.7725 10.1016/j.ecss.2015.12.003 10.1016/j.marpolbul.2008.05.004 10.1016/j.marpolbul.2011.09.025 10.1080/10643389.2010.534029 10.1016/j.marpolbul.2013.04.021 10.1016/j.envpol.2013.10.007 10.1016/j.scitotenv.2017.11.103 10.1021/es401288x 10.1016/j.scitotenv.2010.09.007 10.1016/j.chemosphere.2018.03.145 10.1016/j.aquatox.2015.04.018 10.1016/j.envpol.2011.08.052 10.1021/acs.est.6b00594 10.1021/es403750a 10.1016/j.envres.2017.08.043 10.1021/acs.est.8b02776 10.1016/j.ibiod.2009.03.003 10.1016/j.chemosphere.2018.10.042 10.1371/journal.pone.0085433 10.1038/srep03263 10.1016/j.envpol.2018.08.032 10.1021/acs.est.9b01517 10.1016/j.geoderma.2018.02.015 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2019.134805 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 31733499 10_1016_j_scitotenv_2019_134805 S0048969719347965 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-b01bc3e46b27f2246a098f75257d866e88e52ffe031d03450c87f9c6d47912283 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Thu Jul 10 18:29:56 EDT 2025 Fri Jul 11 12:21:37 EDT 2025 Wed Feb 19 02:30:27 EST 2025 Tue Jul 01 03:35:14 EDT 2025 Thu Apr 24 23:07:54 EDT 2025 Fri Feb 23 02:48:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | In-vitro digestion model Degradable microplastic Chromium adsorption Human health risk Microplastic ingestion |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-b01bc3e46b27f2246a098f75257d866e88e52ffe031d03450c87f9c6d47912283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 31733499 |
PQID | 2315099335 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2388787015 proquest_miscellaneous_2315099335 pubmed_primary_31733499 crossref_citationtrail_10_1016_j_scitotenv_2019_134805 crossref_primary_10_1016_j_scitotenv_2019_134805 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_134805 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-10 |
PublicationDateYYYYMMDD | 2020-02-10 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Browne, Niven, Galloway, Rowland, Thompson (b0045) 2013; 23 Bouwmeester, Hollman, Peters (b0035) 2015; 49 Nickens, Patierno, Ceryak (b0145) 2010; 188 Rakhunde, Deshpande, Juneja (b0155) 2012; 42 Holmes, Turner, Thompson (b0110) 2012; 160 ter Halle, Ladirat, Gendre, Goudouneche, Pusineri, Routaboul (b0190) 2016; 50 Lu, Qiao, An, Zhang (b0130) 2018; 202 USEPA, 2002. National Recommended Water Quality Criteria. 822-R-02-047. Office of Science and Technology, Washington, DC. Rochman, Hoh, Kurobe, Teh (b0170) 2013; 3 Hussain, Jaitley, Florence (b0115) 2001; 50 Younan, Sakita, Albuquerque, Keller, Bremer-Neto (b0250) 2016; 96 Luís, Ferreira, Fonte, Oliveira, Guilhermino (b0135) 2015; 164 Liu, Zhao, Wan (b0125) 2001; 14 Ryan (b0175) 2008; 56 CHNMEE, 2014. Technical Guidelines for Risk Assessment of Contaminated Sites (in Chinese). HJ-25.3–2014. China Environmental Press, Beijing. Chae, An (b0055) 2018; 240 Brennecke, Duarte, Paiva, Cacador, Canning-Clode (b0040) 2016; 178 Lei, Wu, Lu, Liu, Song, Fu (b0120) 2018; 619–620 CHNMEE, 2013. Exposure Factors Handbook of Chinese Population (Adult) (in Chinese). China Environmental Press, Beijing. USEPA, 2009. National Primary Drinking Water Regulations. 816-F-09-004. Washington DC. Wright, Thompson, Galloway (b0245) 2013; 178 Hodson, Duffus-Hodson, Clark, Prendergast-Miller, Thorpe (b0100) 2017; 51 Phuong, Poirier, Lagarde, Kamari, Zalouk-Vergnoux (b0150) 2018; 243 Avery-Gomm, Provencher, Morgan, Bertram (b0025) 2013; 72 Van Cauwenberghe, Janssen (b0215) 2014; 193 White, Clark, Manire, Crawford, Wang, Locklin (b0235) 2018; 52 Turner, Holmes (b0195) 2015; 12 Wang, Peng, Tan, Gao, Zhan, Chen (b0225) 2017; 171 Zettler, Mincer, Amaral-Zettler (b0260) 2013; 47 Schirinzi, Perez-Pomeda, Sanchis, Rossini, Farre, Barcelo (b0180) 2017; 159 Ashton, Holmes, Turner (b0020) 2010; 60 Zhou, Zhang, Fu, Zhou, Dai, Li (b0270) 2018; 322 Andrew, Cave, Joanna, Fordyce, Bewley, Graham (b0005) 2010; 409 Holmes, L.A. 2013. Interactions of Trace Metals with Plastic Production Pellets in the Marine Environment. School of Geography, Earth and Environmental Sciences. PhD. University of Plymouth. Yu, Yang (b0255) 2019; 215 Gaylor, Harvey, Hale (b0095) 2013; 47 Vedolin, Teophilo, Turra, Figueira (b0220) 2018; 129 CHNMEE, 2002. Standard for the environmental quality of fresh water (in Chinese). GB 3838-2002. China Environmental Press, Beijing. Zhang, Ma, Zhang, Wang, Wang, Wang (b0265) 2015; 99 Revel, Châtel, Mouneyrac (b0160) 2018; 1 Cole, Lindeque, Halsband, Galloway (b0080) 2011; 62 Senathirajah, K., Palanisami, T., 2019. How much microplastics are we ingesting? Estimation of the mass of microplastics ingested. Report for WWF Singapore. Wright, Kelly (b0240) 2017; 51 CHNMEE, 2016. Chinese Children's Exposure Factor Handbook (in Chinese). China Environmental Press, Beijing. Wesch, Elert, Worner, Braun, Klein, Paulus (b0230) 2017; 7 Bakir, Rowland, Thompson (b0030) 2014; 185 Artham, Sudhakar, Venkatesan, Madhavan Nair, Murty, Doble (b0015) 2009; 63 Coffin, Huang, Lee, Schlenk (b0075) 2019; 53 Caboche, J., 2018. Validation d'un test de mesure de bioaccessibilité: Application à quatre éléments traces métalliques dans les sols: As, Cd 2018 Pb et Sb. INPL, Vandoeuvre-les-Nancy. Rochman, Hentschel, Teh (b0165) 2014; 9 APHA, 1999. Standard Methods for the Examination of Water and Wastewater. Vol 2. American Public Health Association. Cox, Covernton, Davies, Dower, Juanes, Dudas (b0085) 2019; 53 USEPA, 2013. Mid Atlantic Risk Assessment. Regional Screening Level (RSL) Summary Table. U.S. Environmental Protection Agency, Washington, DC. Ducros (b0090) 1992; 32 Massos, Turner (b0140) 2017; 227 USEPA, 2019. Regional Screening Levels (RSLs) – Generic Tables. DOE's Oak Ridge National Laboratory, Knoxville. Ashton (10.1016/j.scitotenv.2019.134805_b0020) 2010; 60 Van Cauwenberghe (10.1016/j.scitotenv.2019.134805_b0215) 2014; 193 Andrew (10.1016/j.scitotenv.2019.134805_b0005) 2010; 409 Rochman (10.1016/j.scitotenv.2019.134805_b0165) 2014; 9 Revel (10.1016/j.scitotenv.2019.134805_b0160) 2018; 1 Bouwmeester (10.1016/j.scitotenv.2019.134805_b0035) 2015; 49 Rakhunde (10.1016/j.scitotenv.2019.134805_b0155) 2012; 42 Wright (10.1016/j.scitotenv.2019.134805_b0245) 2013; 178 Bakir (10.1016/j.scitotenv.2019.134805_b0030) 2014; 185 10.1016/j.scitotenv.2019.134805_b0070 Turner (10.1016/j.scitotenv.2019.134805_b0195) 2015; 12 Yu (10.1016/j.scitotenv.2019.134805_b0255) 2019; 215 ter Halle (10.1016/j.scitotenv.2019.134805_b0190) 2016; 50 Browne (10.1016/j.scitotenv.2019.134805_b0045) 2013; 23 Wright (10.1016/j.scitotenv.2019.134805_b0240) 2017; 51 Avery-Gomm (10.1016/j.scitotenv.2019.134805_b0025) 2013; 72 Holmes (10.1016/j.scitotenv.2019.134805_b0110) 2012; 160 10.1016/j.scitotenv.2019.134805_b0105 Schirinzi (10.1016/j.scitotenv.2019.134805_b0180) 2017; 159 10.1016/j.scitotenv.2019.134805_b0185 Chae (10.1016/j.scitotenv.2019.134805_b0055) 2018; 240 Artham (10.1016/j.scitotenv.2019.134805_b0015) 2009; 63 White (10.1016/j.scitotenv.2019.134805_b0235) 2018; 52 10.1016/j.scitotenv.2019.134805_b0065 Luís (10.1016/j.scitotenv.2019.134805_b0135) 2015; 164 Liu (10.1016/j.scitotenv.2019.134805_b0125) 2001; 14 Brennecke (10.1016/j.scitotenv.2019.134805_b0040) 2016; 178 Wesch (10.1016/j.scitotenv.2019.134805_b0230) 2017; 7 Ducros (10.1016/j.scitotenv.2019.134805_b0090) 1992; 32 10.1016/j.scitotenv.2019.134805_b0060 Lei (10.1016/j.scitotenv.2019.134805_b0120) 2018; 619–620 Wang (10.1016/j.scitotenv.2019.134805_b0225) 2017; 171 Vedolin (10.1016/j.scitotenv.2019.134805_b0220) 2018; 129 Zettler (10.1016/j.scitotenv.2019.134805_b0260) 2013; 47 Phuong (10.1016/j.scitotenv.2019.134805_b0150) 2018; 243 Coffin (10.1016/j.scitotenv.2019.134805_b0075) 2019; 53 10.1016/j.scitotenv.2019.134805_b0050 Rochman (10.1016/j.scitotenv.2019.134805_b0170) 2013; 3 10.1016/j.scitotenv.2019.134805_b0210 Gaylor (10.1016/j.scitotenv.2019.134805_b0095) 2013; 47 10.1016/j.scitotenv.2019.134805_b0010 Younan (10.1016/j.scitotenv.2019.134805_b0250) 2016; 96 Zhou (10.1016/j.scitotenv.2019.134805_b0270) 2018; 322 10.1016/j.scitotenv.2019.134805_bib272 10.1016/j.scitotenv.2019.134805_bib271 Cole (10.1016/j.scitotenv.2019.134805_b0080) 2011; 62 Nickens (10.1016/j.scitotenv.2019.134805_b0145) 2010; 188 10.1016/j.scitotenv.2019.134805_b0205 Cox (10.1016/j.scitotenv.2019.134805_b0085) 2019; 53 10.1016/j.scitotenv.2019.134805_b0200 Hussain (10.1016/j.scitotenv.2019.134805_b0115) 2001; 50 Hodson (10.1016/j.scitotenv.2019.134805_b0100) 2017; 51 Lu (10.1016/j.scitotenv.2019.134805_b0130) 2018; 202 Zhang (10.1016/j.scitotenv.2019.134805_b0265) 2015; 99 Massos (10.1016/j.scitotenv.2019.134805_b0140) 2017; 227 Ryan (10.1016/j.scitotenv.2019.134805_b0175) 2008; 56 |
References_xml | – reference: USEPA, 2019. Regional Screening Levels (RSLs) – Generic Tables. DOE's Oak Ridge National Laboratory, Knoxville. – volume: 188 start-page: 276 year: 2010 end-page: 288 ident: b0145 article-title: Chromium genotoxicity: a double-edged sword publication-title: Chem. Biol. Interact. – volume: 99 start-page: 28 year: 2015 end-page: 34 ident: b0265 article-title: Persistent organic pollutants carried on plastic resin pellets from two beaches in China publication-title: Mar. Pollut. Bull. – volume: 3 start-page: 3263 year: 2013 ident: b0170 article-title: Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress publication-title: Sci Rep – volume: 202 start-page: 514 year: 2018 end-page: 520 ident: b0130 article-title: Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio) publication-title: Chemosphere – volume: 1 start-page: 17 year: 2018 end-page: 23 ident: b0160 article-title: Micro(nano)plastics: a threat to human health? publication-title: Curr. Opin. Environ. Sci. Health – volume: 51 start-page: 4714 year: 2017 end-page: 4721 ident: b0100 article-title: Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates publication-title: Environ. Sci. Technol. – volume: 12 year: 2015 ident: b0195 article-title: Adsorption of trace metals by microplastic pellets in fresh water publication-title: Environ. Chem. – reference: CHNMEE, 2013. Exposure Factors Handbook of Chinese Population (Adult) (in Chinese). China Environmental Press, Beijing. – volume: 178 start-page: 483 year: 2013 end-page: 492 ident: b0245 article-title: The physical impacts of microplastics on marine organisms: a review publication-title: Environ. Pollut. – volume: 42 start-page: 776 year: 2012 end-page: 810 ident: b0155 article-title: Chemical speciation of chromium in water: a review publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 49 start-page: 8932 year: 2015 end-page: 8947 ident: b0035 article-title: Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology publication-title: Environ. Sci. Technol. – volume: 14 start-page: 308 year: 2001 end-page: 312 ident: b0125 article-title: Research progresses on degradation mechanism in vivo and medical applications of polylactic acid publication-title: Space Med. Med. Eng. – volume: 159 start-page: 579 year: 2017 end-page: 587 ident: b0180 article-title: Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells publication-title: Environ. Res. – volume: 240 start-page: 387 year: 2018 end-page: 395 ident: b0055 article-title: Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review publication-title: Environ. Pollut. – volume: 409 start-page: 267 year: 2010 end-page: 277 ident: b0005 article-title: Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment publication-title: Sci. Total Environ. – reference: Caboche, J., 2018. Validation d'un test de mesure de bioaccessibilité: Application à quatre éléments traces métalliques dans les sols: As, Cd 2018 Pb et Sb. INPL, Vandoeuvre-les-Nancy. – reference: USEPA, 2009. National Primary Drinking Water Regulations. 816-F-09-004. Washington DC. – volume: 96 start-page: 3977 year: 2016 end-page: 3982 ident: b0250 article-title: Chromium(VI) bioremediation by probiotics publication-title: J. Sci. Food Agric. – reference: CHNMEE, 2014. Technical Guidelines for Risk Assessment of Contaminated Sites (in Chinese). HJ-25.3–2014. China Environmental Press, Beijing. – volume: 56 start-page: 1406 year: 2008 end-page: 1409 ident: b0175 article-title: Seabirds indicate changes in the composition of plastic litter in the Atlantic and south-western Indian Oceans publication-title: Mar. Pollut. Bull. – volume: 7 start-page: 5424 year: 2017 ident: b0230 article-title: Assuring quality in microplastic monitoring: about the value of clean-air devices as essentials for verified data publication-title: Sci. Rep. – volume: 164 start-page: 163 year: 2015 end-page: 174 ident: b0135 article-title: Does the presence of microplastics influence the acute toxicity of chromium(VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations publication-title: Aquat. Toxicol. – volume: 53 start-page: 7068 year: 2019 end-page: 7074 ident: b0085 article-title: Human consumption of microplastics publication-title: Environ. Sci. Technol. – volume: 60 start-page: 2050 year: 2010 end-page: 2055 ident: b0020 article-title: Association of metals with plastic production pellets in the marine environment publication-title: Mar. Pollut. Bull. – reference: CHNMEE, 2016. Chinese Children's Exposure Factor Handbook (in Chinese). China Environmental Press, Beijing. – volume: 322 start-page: 201 year: 2018 end-page: 208 ident: b0270 article-title: The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea publication-title: Geoderma – reference: Holmes, L.A. 2013. Interactions of Trace Metals with Plastic Production Pellets in the Marine Environment. School of Geography, Earth and Environmental Sciences. PhD. University of Plymouth. – volume: 51 start-page: 6634 year: 2017 end-page: 6647 ident: b0240 article-title: Plastic and human health: a micro issue? publication-title: Environ. Sci. Technol. – reference: CHNMEE, 2002. Standard for the environmental quality of fresh water (in Chinese). GB 3838-2002. China Environmental Press, Beijing. – volume: 9 year: 2014 ident: b0165 article-title: Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments publication-title: PLoS ONE – reference: APHA, 1999. Standard Methods for the Examination of Water and Wastewater. Vol 2. American Public Health Association. – volume: 193 start-page: 65 year: 2014 end-page: 70 ident: b0215 article-title: Microplastics in bivalves cultured for human consumption publication-title: Environ. Pollut. – reference: USEPA, 2002. National Recommended Water Quality Criteria. 822-R-02-047. Office of Science and Technology, Washington, DC. – volume: 32 start-page: 65 year: 1992 end-page: 77 ident: b0090 article-title: Chromium metabolism publication-title: Biol. Trace Elem. Res. – volume: 23 start-page: 2388 year: 2013 end-page: 2392 ident: b0045 article-title: Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity publication-title: Curr. Biol. – volume: 171 start-page: 248 year: 2017 end-page: 258 ident: b0225 article-title: Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals publication-title: Chemosphere – reference: Senathirajah, K., Palanisami, T., 2019. How much microplastics are we ingesting? Estimation of the mass of microplastics ingested. Report for WWF Singapore. – volume: 50 start-page: 107 year: 2001 end-page: 142 ident: b0115 article-title: Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics ☆ publication-title: Adv. Drug Deliv. Rev. – volume: 72 start-page: 257 year: 2013 end-page: 259 ident: b0025 article-title: Plastic ingestion in marine-associated bird species from the eastern North Pacific publication-title: Mar. Pollut. Bull. – volume: 227 start-page: 139 year: 2017 end-page: 145 ident: b0140 article-title: Cadmium, lead and bromine in beached microplastics publication-title: Environ. Pollut. – volume: 178 start-page: 189 year: 2016 end-page: 195 ident: b0040 article-title: Microplastics as vector for heavy metal contamination from the marine environment publication-title: Estuar. Coast. Shelf Sci. – volume: 62 start-page: 2588 year: 2011 end-page: 2597 ident: b0080 article-title: Microplastics as contaminants in the marine environment: a review publication-title: Mar. Pollut. Bull. – volume: 185 start-page: 16 year: 2014 end-page: 23 ident: b0030 article-title: Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions publication-title: Environ. Pollut. – volume: 619–620 start-page: 1 year: 2018 end-page: 8 ident: b0120 article-title: Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans publication-title: Sci. Total Environ. – volume: 47 start-page: 7137 year: 2013 end-page: 7146 ident: b0260 article-title: Life in the “plastisphere”: microbial communities on plastic marine debris publication-title: Environ. Sci. Technol. – volume: 243 start-page: 228 year: 2018 end-page: 237 ident: b0150 article-title: Microplastic abundance and characteristics in French Atlantic coastal sediments using a new extraction method publication-title: Environ. Pollut. – volume: 160 start-page: 42 year: 2012 end-page: 48 ident: b0110 article-title: Adsorption of trace metals to plastic resin pellets in the marine environment publication-title: Environ. Pollut. – volume: 215 start-page: 294 year: 2019 end-page: 304 ident: b0255 article-title: Oral bioaccessibility and health risk assessment of vanadium(IV) and vanadium(V) in a vanadium titanomagnetite mining region by a whole digestive system in-vitro method (WDSM) publication-title: Chemosphere – volume: 63 start-page: 884 year: 2009 end-page: 890 ident: b0015 article-title: Biofouling and stability of synthetic polymers in sea water publication-title: Int. Biodeterior. Biodegrad. – reference: USEPA, 2013. Mid Atlantic Risk Assessment. Regional Screening Level (RSL) Summary Table. U.S. Environmental Protection Agency, Washington, DC. – volume: 47 start-page: 13831 year: 2013 end-page: 13839 ident: b0095 article-title: Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils publication-title: Environ. Sci. Technol. – volume: 129 start-page: 487 year: 2018 end-page: 493 ident: b0220 article-title: Spatial variability in the concentrations of metals in beached microplastics publication-title: Mar. Pollut. Bull. – volume: 53 start-page: 4588 year: 2019 end-page: 4599 ident: b0075 article-title: Fish and seabird gut conditions enhance desorption of estrogenic chemicals from commonly-ingested plastic items publication-title: Environ. Sci. Technol. – volume: 50 start-page: 5668 year: 2016 end-page: 5675 ident: b0190 article-title: Understanding the fragmentation pattern of marine plastic debris publication-title: Environ. Sci. Technol. – volume: 52 start-page: 10307 year: 2018 end-page: 10316 ident: b0235 article-title: Ingested micronizing plastic particle compositions and size distributions within stranded post-hatchling sea turtles publication-title: Environ. Sci. Technol. – ident: 10.1016/j.scitotenv.2019.134805_bib271 – volume: 60 start-page: 2050 year: 2010 ident: 10.1016/j.scitotenv.2019.134805_b0020 article-title: Association of metals with plastic production pellets in the marine environment publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2010.07.014 – volume: 49 start-page: 8932 year: 2015 ident: 10.1016/j.scitotenv.2019.134805_b0035 article-title: Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01090 – volume: 171 start-page: 248 year: 2017 ident: 10.1016/j.scitotenv.2019.134805_b0225 article-title: Microplastics in the surface sediments from the Beijiang River littoral zone: composition, abundance, surface textures and interaction with heavy metals publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.12.074 – volume: 51 start-page: 6634 year: 2017 ident: 10.1016/j.scitotenv.2019.134805_b0240 article-title: Plastic and human health: a micro issue? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00423 – volume: 53 start-page: 4588 year: 2019 ident: 10.1016/j.scitotenv.2019.134805_b0075 article-title: Fish and seabird gut conditions enhance desorption of estrogenic chemicals from commonly-ingested plastic items publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b07140 – ident: 10.1016/j.scitotenv.2019.134805_b0185 – volume: 23 start-page: 2388 year: 2013 ident: 10.1016/j.scitotenv.2019.134805_b0045 article-title: Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity publication-title: Curr. Biol. doi: 10.1016/j.cub.2013.10.012 – volume: 12 year: 2015 ident: 10.1016/j.scitotenv.2019.134805_b0195 article-title: Adsorption of trace metals by microplastic pellets in fresh water publication-title: Environ. Chem. doi: 10.1071/EN14143 – volume: 188 start-page: 276 year: 2010 ident: 10.1016/j.scitotenv.2019.134805_b0145 article-title: Chromium genotoxicity: a double-edged sword publication-title: Chem. Biol. Interact. doi: 10.1016/j.cbi.2010.04.018 – volume: 129 start-page: 487 year: 2018 ident: 10.1016/j.scitotenv.2019.134805_b0220 article-title: Spatial variability in the concentrations of metals in beached microplastics publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2017.10.019 – volume: 50 start-page: 107 year: 2001 ident: 10.1016/j.scitotenv.2019.134805_b0115 article-title: Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics ☆ publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/S0169-409X(01)00152-1 – volume: 51 start-page: 4714 year: 2017 ident: 10.1016/j.scitotenv.2019.134805_b0100 article-title: Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00635 – volume: 7 start-page: 5424 year: 2017 ident: 10.1016/j.scitotenv.2019.134805_b0230 article-title: Assuring quality in microplastic monitoring: about the value of clean-air devices as essentials for verified data publication-title: Sci. Rep. doi: 10.1038/s41598-017-05838-4 – volume: 1 start-page: 17 year: 2018 ident: 10.1016/j.scitotenv.2019.134805_b0160 article-title: Micro(nano)plastics: a threat to human health? publication-title: Curr. Opin. Environ. Sci. Health doi: 10.1016/j.coesh.2017.10.003 – volume: 32 start-page: 65 year: 1992 ident: 10.1016/j.scitotenv.2019.134805_b0090 article-title: Chromium metabolism publication-title: Biol. Trace Elem. Res. doi: 10.1007/BF02784589 – volume: 14 start-page: 308 year: 2001 ident: 10.1016/j.scitotenv.2019.134805_b0125 article-title: Research progresses on degradation mechanism in vivo and medical applications of polylactic acid publication-title: Space Med. Med. Eng. – volume: 178 start-page: 483 year: 2013 ident: 10.1016/j.scitotenv.2019.134805_b0245 article-title: The physical impacts of microplastics on marine organisms: a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.02.031 – ident: 10.1016/j.scitotenv.2019.134805_b0050 – volume: 99 start-page: 28 year: 2015 ident: 10.1016/j.scitotenv.2019.134805_b0265 article-title: Persistent organic pollutants carried on plastic resin pellets from two beaches in China publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2015.08.002 – volume: 240 start-page: 387 year: 2018 ident: 10.1016/j.scitotenv.2019.134805_b0055 article-title: Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.05.008 – volume: 227 start-page: 139 year: 2017 ident: 10.1016/j.scitotenv.2019.134805_b0140 article-title: Cadmium, lead and bromine in beached microplastics publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.04.034 – volume: 193 start-page: 65 year: 2014 ident: 10.1016/j.scitotenv.2019.134805_b0215 article-title: Microplastics in bivalves cultured for human consumption publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2014.06.010 – volume: 96 start-page: 3977 year: 2016 ident: 10.1016/j.scitotenv.2019.134805_b0250 article-title: Chromium(VI) bioremediation by probiotics publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.7725 – volume: 178 start-page: 189 year: 2016 ident: 10.1016/j.scitotenv.2019.134805_b0040 article-title: Microplastics as vector for heavy metal contamination from the marine environment publication-title: Estuar. Coast. Shelf Sci. doi: 10.1016/j.ecss.2015.12.003 – volume: 56 start-page: 1406 year: 2008 ident: 10.1016/j.scitotenv.2019.134805_b0175 article-title: Seabirds indicate changes in the composition of plastic litter in the Atlantic and south-western Indian Oceans publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2008.05.004 – ident: 10.1016/j.scitotenv.2019.134805_b0060 – volume: 62 start-page: 2588 year: 2011 ident: 10.1016/j.scitotenv.2019.134805_b0080 article-title: Microplastics as contaminants in the marine environment: a review publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2011.09.025 – volume: 42 start-page: 776 year: 2012 ident: 10.1016/j.scitotenv.2019.134805_b0155 article-title: Chemical speciation of chromium in water: a review publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2010.534029 – volume: 72 start-page: 257 year: 2013 ident: 10.1016/j.scitotenv.2019.134805_b0025 article-title: Plastic ingestion in marine-associated bird species from the eastern North Pacific publication-title: Mar. Pollut. Bull. doi: 10.1016/j.marpolbul.2013.04.021 – volume: 185 start-page: 16 year: 2014 ident: 10.1016/j.scitotenv.2019.134805_b0030 article-title: Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.10.007 – volume: 619–620 start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2019.134805_b0120 article-title: Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.103 – volume: 47 start-page: 7137 year: 2013 ident: 10.1016/j.scitotenv.2019.134805_b0260 article-title: Life in the “plastisphere”: microbial communities on plastic marine debris publication-title: Environ. Sci. Technol. doi: 10.1021/es401288x – volume: 409 start-page: 267 year: 2010 ident: 10.1016/j.scitotenv.2019.134805_b0005 article-title: Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2010.09.007 – volume: 202 start-page: 514 year: 2018 ident: 10.1016/j.scitotenv.2019.134805_b0130 article-title: Influence of microplastics on the accumulation and chronic toxic effects of cadmium in zebrafish (Danio rerio) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.03.145 – volume: 164 start-page: 163 year: 2015 ident: 10.1016/j.scitotenv.2019.134805_b0135 article-title: Does the presence of microplastics influence the acute toxicity of chromium(VI) to early juveniles of the common goby (Pomatoschistus microps)? A study with juveniles from two wild estuarine populations publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2015.04.018 – ident: 10.1016/j.scitotenv.2019.134805_b0205 – volume: 160 start-page: 42 year: 2012 ident: 10.1016/j.scitotenv.2019.134805_b0110 article-title: Adsorption of trace metals to plastic resin pellets in the marine environment publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2011.08.052 – volume: 50 start-page: 5668 year: 2016 ident: 10.1016/j.scitotenv.2019.134805_b0190 article-title: Understanding the fragmentation pattern of marine plastic debris publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00594 – ident: 10.1016/j.scitotenv.2019.134805_b0070 – volume: 47 start-page: 13831 year: 2013 ident: 10.1016/j.scitotenv.2019.134805_b0095 article-title: Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils publication-title: Environ. Sci. Technol. doi: 10.1021/es403750a – volume: 159 start-page: 579 year: 2017 ident: 10.1016/j.scitotenv.2019.134805_b0180 article-title: Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells publication-title: Environ. Res. doi: 10.1016/j.envres.2017.08.043 – volume: 52 start-page: 10307 year: 2018 ident: 10.1016/j.scitotenv.2019.134805_b0235 article-title: Ingested micronizing plastic particle compositions and size distributions within stranded post-hatchling sea turtles publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02776 – volume: 63 start-page: 884 year: 2009 ident: 10.1016/j.scitotenv.2019.134805_b0015 article-title: Biofouling and stability of synthetic polymers in sea water publication-title: Int. Biodeterior. Biodegrad. doi: 10.1016/j.ibiod.2009.03.003 – ident: 10.1016/j.scitotenv.2019.134805_b0065 – ident: 10.1016/j.scitotenv.2019.134805_bib272 – ident: 10.1016/j.scitotenv.2019.134805_b0210 – volume: 215 start-page: 294 year: 2019 ident: 10.1016/j.scitotenv.2019.134805_b0255 article-title: Oral bioaccessibility and health risk assessment of vanadium(IV) and vanadium(V) in a vanadium titanomagnetite mining region by a whole digestive system in-vitro method (WDSM) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.10.042 – volume: 9 year: 2014 ident: 10.1016/j.scitotenv.2019.134805_b0165 article-title: Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments publication-title: PLoS ONE doi: 10.1371/journal.pone.0085433 – ident: 10.1016/j.scitotenv.2019.134805_b0105 – volume: 3 start-page: 3263 year: 2013 ident: 10.1016/j.scitotenv.2019.134805_b0170 article-title: Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress publication-title: Sci Rep doi: 10.1038/srep03263 – volume: 243 start-page: 228 year: 2018 ident: 10.1016/j.scitotenv.2019.134805_b0150 article-title: Microplastic abundance and characteristics in French Atlantic coastal sediments using a new extraction method publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.08.032 – volume: 53 start-page: 7068 year: 2019 ident: 10.1016/j.scitotenv.2019.134805_b0085 article-title: Human consumption of microplastics publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01517 – ident: 10.1016/j.scitotenv.2019.134805_b0200 – ident: 10.1016/j.scitotenv.2019.134805_b0010 – volume: 322 start-page: 201 year: 2018 ident: 10.1016/j.scitotenv.2019.134805_b0270 article-title: The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea publication-title: Geoderma doi: 10.1016/j.geoderma.2018.02.015 |
SSID | ssj0000781 |
Score | 2.6491246 |
Snippet | [Display omitted]
•Microplastics (MPs) released more Cr in the in-vitro digestive model than in fresh water.•Gastric phase aroused the most bioaccessible... Microplastics (MPs), polymer particles capable of adsorbing heavy metals from ambient environment, have been found in diverse human food resources. Through the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 134805 |
SubjectTerms | Adsorption Adult adults bioavailability Child children Chromium Chromium adsorption Degradable microplastic desorption females heavy metals Human health risk Humans in vitro studies In-vitro digestion model large intestine males Metals, Heavy Microplastic ingestion Microplastics mouth Plastics poly(vinyl chloride) polyethylene polypropylenes polystyrenes small intestine Water Pollutants, Chemical |
Title | Microplastic serves as a potential vector for Cr in an in-vitro human digestive model |
URI | https://dx.doi.org/10.1016/j.scitotenv.2019.134805 https://www.ncbi.nlm.nih.gov/pubmed/31733499 https://www.proquest.com/docview/2315099335 https://www.proquest.com/docview/2388787015 |
Volume | 703 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9swFH-UjsGglC1bv1dU2NWtbMmS3FsJLdnCeigL603YsgwZwQmJG9hlf3vfs-yUQrceBsYGIwmh9_WT9D4AvjjKuWZcEgmvRSRNmUZoBUWkeezSHKXLu9bb4laNJvLbfXq_BcM-FobcKjvdH3R6q627Pxfdal4splOK8ZUmU5lGCCJ1pijQXEpNXH7-58nNg5LZhFtmFGxs_czHC8dt5ohN1-TjlZ3HQhqqY_eyhfobAm0t0c172O0gJLsKs_wAW74ewNtQVPL3APaun2LXsFknvKsB7IQjOhYijz7C5Ds54y0QPuNAjE5n_Yrl-LAFzRZFf8bW7aE-Q2TLhks2rVle4ztaT5vlnLX1_VjZXlGh0mRtVZ1PMLm5_jEcRV2VhchJzZuo4HHhhJeqSHRF6eVynplKU5bU0ijljfFpUlUepb_kQqbcGV1lTpW46DElz9mD7Xpe-wNgmgJhuciqVAuZ8CKjOkiqQEOJSKE0ySGofmWt61KQUyWMme19zX7ZDUkskcQGkhwC33RchCwcr3e57ElnnzGURVvxeuezntgWxY3uUPLazx9WFuEwQizk5n-2Qc2NejDGNvuBUzazRrgmBO4yj_5nesfwLqFtP9Wl4Sew3Swf_GfERk1x2jL_Kby5-joe3dJ3fPdz_Aii3Q2W |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6lLLBKG22bl33ocJevcqWLMl7K6El_cpTA30TtixDRnFC4gb23-_OslMK3fowMH4wkhA63d3P0t39AL47qrlmXBIJr0UkTZlG6AVFpHns0hy1y7s22mKixlN5eZfebcGoz4WhsMrO9geb3lrr7stJt5oni9mMcnylyVSmEYJInan0FWxTdap0ANunF1fjyaNB1iYQ50nUbezwJMwLh27mCE_XFOaV_YiFNERl97yT-hsIbZ3R-R7sdiiSnYaJ7sOWr4ewE3glfw_h4OwxfQ2bdfq7GsLbcErHQvLRO5jeUDzeAhE0DsTogNavWI4PW9BsUfvv2bo912cIbtloyWY1y2t8R-tZs5yzluKPle0tFdpN1hLrvIfp-dntaBx1RAuRk5o3UcHjwgkvVZHoiirM5TwzlaZCqaVRyhvj06SqPBqAkguZcmd0lTlV4rrHVD_nAAb1vPYfgWnKheUiq1ItZMKLjKiQVIG-EsFCaZJDUP3KWtdVIScyjHvbh5v9shuRWBKJDSI5BL7puAiFOF7u8rMXnX2ypyy6i5c7H_fCtqhxdI2S137-sLKIiBFl4Yb-Zxs03mgKY2zzIeyUzawRsQmBP5qf_md63-D1-Pbm2l5fTK6O4E1CpwBEU8M_w6BZPvgvCJWa4munCn8AZRIOpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplastic+serves+as+a+potential+vector+for+Cr+in+an+in-vitro+human+digestive+model&rft.jtitle=The+Science+of+the+total+environment&rft.au=Liao%2C+Yu-liang&rft.au=Yang%2C+Jin-yan&rft.date=2020-02-10&rft.issn=0048-9697&rft.volume=703&rft.spage=134805&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.134805&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2019_134805 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |