An Efficient CNN Model for COVID-19 Disease Detection Based on X-Ray Image Classification
Artificial intelligence (AI) techniques in general and convolutional neural networks (CNNs) in particular have attained successful results in medical image analysis and classification. A deep CNN architecture has been proposed in this paper for the diagnosis of COVID-19 based on the chest X-ray imag...
Saved in:
Published in | Complexity (New York, N.Y.) Vol. 2021; no. 1 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Hindawi
2021
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Artificial intelligence (AI) techniques in general and convolutional neural networks (CNNs) in particular have attained successful results in medical image analysis and classification. A deep CNN architecture has been proposed in this paper for the diagnosis of COVID-19 based on the chest X-ray image classification. Due to the nonavailability of sufficient-size and good-quality chest X-ray image dataset, an effective and accurate CNN classification was a challenge. To deal with these complexities such as the availability of a very-small-sized and imbalanced dataset with image-quality issues, the dataset has been preprocessed in different phases using different techniques to achieve an effective training dataset for the proposed CNN model to attain its best performance. The preprocessing stages of the datasets performed in this study include dataset balancing, medical experts’ image analysis, and data augmentation. The experimental results have shown the overall accuracy as high as 99.5% which demonstrates the good capability of the proposed CNN model in the current application domain. The CNN model has been tested in two scenarios. In the first scenario, the model has been tested using the 100 X-ray images of the original processed dataset which achieved an accuracy of 100%. In the second scenario, the model has been tested using an independent dataset of COVID-19 X-ray images. The performance in this test scenario was as high as 99.5%. To further prove that the proposed model outperforms other models, a comparative analysis has been done with some of the machine learning algorithms. The proposed model has outperformed all the models generally and specifically when the model testing was done using an independent testing set. |
---|---|
AbstractList | Artificial intelligence (AI) techniques in general and convolutional neural networks (CNNs) in particular have attained successful results in medical image analysis and classification. A deep CNN architecture has been proposed in this paper for the diagnosis of COVID-19 based on the chest X-ray image classification. Due to the nonavailability of sufficient-size and good-quality chest X-ray image dataset, an effective and accurate CNN classification was a challenge. To deal with these complexities such as the availability of a very-small-sized and imbalanced dataset with image-quality issues, the dataset has been preprocessed in different phases using different techniques to achieve an effective training dataset for the proposed CNN model to attain its best performance. The preprocessing stages of the datasets performed in this study include dataset balancing, medical experts' image analysis, and data augmentation. The experimental results have shown the overall accuracy as high as 99.5% which demonstrates the good capability of the proposed CNN model in the current application domain. The CNN model has been tested in two scenarios. In the first scenario, the model has been tested using the 100 X-ray images of the original processed dataset which achieved an accuracy of 100%. In the second scenario, the model has been tested using an independent dataset of COVID-19 X-ray images. The performance in this test scenario was as high as 99.5%. To further prove that the proposed model outperforms other models, a comparative analysis has been done with some of the machine learning algorithms. The proposed model has outperformed all the models generally and specifically when the model testing was done using an independent testing set. |
Audience | Academic |
Author | Alsuwailem, Hessa Alhossan, Abdulaziz Reshi, Aijaz Ahmad Alrabiah, Ziyad Rustam, Furqan Choi, Gyu Sang Mehmood, Arif Ahmad, Ajaz |
Author_xml | – sequence: 1 givenname: Aijaz Ahmad orcidid: 0000-0002-0795-2835 surname: Reshi fullname: Reshi, Aijaz Ahmad organization: Department of Computer ScienceCollege of Computer Science and EngineeringTaibah UniversityAl Madinah Al MunawarahSaudi Arabiataibahu.edu.sa – sequence: 2 givenname: Furqan orcidid: 0000-0001-8403-1047 surname: Rustam fullname: Rustam, Furqan organization: Department of Computer ScienceKhwaja Fareed University of Engineering and Information TechnologyRahim Yar Khan 64200Pakistan – sequence: 3 givenname: Arif orcidid: 0000-0001-5822-4005 surname: Mehmood fullname: Mehmood, Arif organization: Department of Computer Science & ITThe Islamia University of BahawalpurBahawalpurPunjab 63100Pakistaniub.edu.pk – sequence: 4 givenname: Abdulaziz surname: Alhossan fullname: Alhossan, Abdulaziz organization: Department of Clinical PharmacyCollege of PharmacyKing Saud UniversityRiyadh 11451Saudi Arabiaksu.edu.sa – sequence: 5 givenname: Ziyad surname: Alrabiah fullname: Alrabiah, Ziyad organization: Department of Clinical PharmacyCollege of PharmacyKing Saud UniversityRiyadh 11451Saudi Arabiaksu.edu.sa – sequence: 6 givenname: Ajaz orcidid: 0000-0001-6295-8685 surname: Ahmad fullname: Ahmad, Ajaz organization: Department of Clinical PharmacyCollege of PharmacyKing Saud UniversityRiyadh 11451Saudi Arabiaksu.edu.sa – sequence: 7 givenname: Hessa surname: Alsuwailem fullname: Alsuwailem, Hessa organization: Department of Clinical PharmacyCollege of PharmacyKing Saud UniversityRiyadh 11451Saudi Arabiaksu.edu.sa – sequence: 8 givenname: Gyu Sang orcidid: 0000-0002-0854-768X surname: Choi fullname: Choi, Gyu Sang organization: Department of Information & Communication EngineeringYeungnam UniversityGyeongbuk 38541Republic of Koreayu.ac.kr |
BookMark | eNp9kV1rFDEUhoNUsK3e-QMCXuq0-c7M5Tpb7UJtQVT0KpzJx5pldtImU6T_3my3RRSVXOScw_O-HM57hA6mNHmEXlJyQqmUp4wweqoUo4roJ-iQkq5riGTqYFdr1TDd6mfoqJQNIaRTXB-ib4sJn4UQbfTTjPvLS_whOT_ikDLur76slg3t8DIWD8XjpZ-9nWOa8NvaOlyLr81HuMOrLaw97kcoJVYv2DHP0dMAY_EvHv5j9Pnd2af-vLm4er_qFxeNFZrMDbSgrVBtqJ0WWoaOMq6UBgieMDnY1rkBgAg5cD10QRMmlKdScBEsbz0_Rqu9r0uwMdc5biHfmQTR3A9SXhvIc7SjN8750DLOAw0gmGCtFZYNpOPMEUvpUL1e7b2uc7q59WU2m3Sbp7q-YZILwSTl_Be1hmoap5DmDHYbizWLllOt68llpU7-QtXn_DbaGlyIdf6bgO0FNqdSsg_Gxvn-lFUYR0OJ2aVsdimbh5Sr6M0foscL_AN_vce_x8nBj_h_-ic5kbEH |
CitedBy_id | crossref_primary_10_3390_diagnostics13010076 crossref_primary_10_1063_5_0059829 crossref_primary_10_1007_s11042_024_19036_8 crossref_primary_10_1371_journal_pone_0305483 crossref_primary_10_1155_2022_4578838 crossref_primary_10_1002_ima_22697 crossref_primary_10_3390_app13148227 crossref_primary_10_3390_s21186221 crossref_primary_10_3390_diagnostics13111886 crossref_primary_10_1177_00202940221101667 crossref_primary_10_1109_ACCESS_2024_3365544 crossref_primary_10_1063_5_0076314 crossref_primary_10_1109_ACCESS_2021_3123782 crossref_primary_10_1007_s11042_022_14232_w crossref_primary_10_1038_s41598_024_51317_y crossref_primary_10_3390_biomedicines11123284 crossref_primary_10_1007_s00500_023_08561_7 crossref_primary_10_1111_coin_12568 crossref_primary_10_31083_j_fbl2709276 crossref_primary_10_1007_s11277_022_09864_y crossref_primary_10_1016_j_asoc_2022_109319 crossref_primary_10_1155_2022_5318447 crossref_primary_10_1007_s10462_024_10814_2 crossref_primary_10_1109_ACCESS_2024_3375878 crossref_primary_10_3390_s21206853 crossref_primary_10_3390_s22249576 crossref_primary_10_1007_s11548_024_03309_6 crossref_primary_10_1155_2022_6216273 crossref_primary_10_1038_s41598_022_04835_6 crossref_primary_10_3390_s23041927 crossref_primary_10_32604_cmc_2022_023878 crossref_primary_10_1016_j_sjbs_2021_09_021 crossref_primary_10_3390_s21248336 crossref_primary_10_1016_j_jpdc_2022_10_001 crossref_primary_10_3390_math11173793 crossref_primary_10_3390_biomimetics8070552 crossref_primary_10_1002_ima_22839 crossref_primary_10_1007_s11042_023_15576_7 crossref_primary_10_1155_2022_6786203 crossref_primary_10_1007_s00521_023_08644_4 crossref_primary_10_3389_frai_2023_1235204 crossref_primary_10_3390_s22051983 crossref_primary_10_1007_s11277_023_10336_0 crossref_primary_10_1371_journal_pone_0317450 crossref_primary_10_1002_spe_3247 crossref_primary_10_7717_peerj_cs_1250 crossref_primary_10_1155_2023_1102715 crossref_primary_10_3390_electronics12071725 crossref_primary_10_48084_etasr_6127 crossref_primary_10_3390_s21238045 crossref_primary_10_37990_medr_1130194 crossref_primary_10_1186_s12880_022_00876_5 crossref_primary_10_3390_jmse13030424 crossref_primary_10_2174_0118750362303182240516043224 crossref_primary_10_1007_s00034_023_02564_3 crossref_primary_10_7763_IJCTE_2023_V15_1341 crossref_primary_10_37394_23209_2023_20_16 crossref_primary_10_3390_healthcare10112230 crossref_primary_10_3390_technologies11050134 crossref_primary_10_1088_1742_6596_2071_1_012003 crossref_primary_10_1007_s10791_024_09490_1 crossref_primary_10_1007_s11042_023_15488_6 crossref_primary_10_38124_ijisrt_IJISRT24SEP0229 crossref_primary_10_3233_JIFS_230183 crossref_primary_10_1080_03772063_2024_2409677 |
Cites_doi | 10.1007/s13246-020-00865-4 10.4018/ijrsda.2017070105 10.1109/access.2020.2994810 10.1109/RBME.2020.2990959 10.1016/j.irbm.2020.07.001 10.1186/s40537-019-0197-0 10.1109/CHASE.2017.59 10.1016/s1532-0464(03)00034-0 10.1109/access.2020.3041822 10.1016/j.eswa.2014.09.020 10.1109/ACCESS.2021.3056285 10.1080/0952813x.2019.1572657 10.1016/j.ascom.2020.100404 10.1109/ACCESS.2020.2997311 10.1016/j.compmedimag.2007.02.003 10.1016/j.zemedi.2018.11.002 10.1148/radiology.177.3.2244001 10.1038/s41598-020-76550-z 10.1016/j.ijleo.2021.166267 10.1109/ICARCV.2014.7064414 10.1016/j.media.2020.101794 10.1007/978-1-4842-3564-5_6 10.1016/s0031-3203(03)00038-4 10.1038/nature21056 10.1101/2020.03.30.20047456 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Aijaz Ahmad Reshi et al. COPYRIGHT 2021 John Wiley & Sons, Inc. Copyright © 2021 Aijaz Ahmad Reshi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
Copyright_xml | – notice: Copyright © 2021 Aijaz Ahmad Reshi et al. – notice: COPYRIGHT 2021 John Wiley & Sons, Inc. – notice: Copyright © 2021 Aijaz Ahmad Reshi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
DBID | RHU RHW RHX AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1155/2021/6621607 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central - New (Subscription) Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Research Library Prep |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-0526 |
Editor | Madureira Bueno, Átila |
Editor_xml | – sequence: 1 givenname: Átila surname: Madureira Bueno fullname: Madureira Bueno, Átila |
ExternalDocumentID | oai_doaj_org_article_ddef8233f1fa42428c4c2b0932d0c11b A831775265 10_1155_2021_6621607 |
GrantInformation_xml | – fundername: King Saud University grantid: RG-1441-455 |
GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3V. 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAFWJ AAJEY AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACSCC ADBBV ADIZJ AENEX AFBPY AFKRA AFPKN AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ATUGU AZBYB AZQEC AZVAB BAFTC BCNDV BENPR BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DPXWK DR2 DU5 DWQXO EBD EBS F00 F01 F04 F5P G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X HBH HCIFZ HHY HZ~ IAO ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LP6 LP7 M2O MK4 N04 N05 N9A NF~ NNB O66 O9- OIG OK1 P2P P2W P2X P4D P62 PQQKQ PROAC Q.N Q11 QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WIH WQJ WRC XBAML XG1 XPP XSW XV2 ~IA ~WT .Y3 24P 31~ 3R3 5VS AAEVG AAHHS AANHP AAYXX ACBWZ ACCFJ ACCMX ACRPL ACXQS ACYXJ ADNMO ADZOD AEEZP AEIMD AEQDE AFZJQ AGQPQ AIWBW AJBDE AMVHM ASPBG AVWKF AZFZN BDRZF BFHJK CITATION DCZOG EJD FEDTE H13 HF~ HVGLF ICD LH4 LW6 PHGZM PHGZT ROL WYUIH PMFND 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c470t-a8a7c468f4707475f9123667aafe025bc8ddbaa045b37b9f70246e15434fc38e3 |
IEDL.DBID | DOA |
ISSN | 1076-2787 |
IngestDate | Wed Aug 27 01:31:11 EDT 2025 Fri Jul 25 21:01:35 EDT 2025 Tue Jun 17 21:57:17 EDT 2025 Tue Jun 10 20:58:08 EDT 2025 Tue Jul 01 02:08:19 EDT 2025 Thu Apr 24 23:00:02 EDT 2025 Sun Jun 02 19:17:31 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-a8a7c468f4707475f9123667aafe025bc8ddbaa045b37b9f70246e15434fc38e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6295-8685 0000-0002-0795-2835 0000-0002-0854-768X 0000-0001-8403-1047 0000-0001-5822-4005 |
OpenAccessLink | https://doaj.org/article/ddef8233f1fa42428c4c2b0932d0c11b |
PQID | 2534425133 |
PQPubID | 2029978 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ddef8233f1fa42428c4c2b0932d0c11b proquest_journals_2534425133 gale_infotracmisc_A831775265 gale_infotracacademiconefile_A831775265 crossref_citationtrail_10_1155_2021_6621607 crossref_primary_10_1155_2021_6621607 hindawi_primary_10_1155_2021_6621607 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Complexity (New York, N.Y.) |
PublicationYear | 2021 |
Publisher | Hindawi John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
References | Ho D. (e_1_2_11_24_2) 2019 e_1_2_11_31_2 e_1_2_11_30_2 e_1_2_11_13_2 e_1_2_11_35_2 e_1_2_11_12_2 e_1_2_11_34_2 Cucinotta D. (e_1_2_11_1_2) 2020; 91 e_1_2_11_11_2 e_1_2_11_33_2 e_1_2_11_10_2 e_1_2_11_6_2 e_1_2_11_28_2 e_1_2_11_5_2 e_1_2_11_27_2 e_1_2_11_4_2 e_1_2_11_3_2 e_1_2_11_25_2 e_1_2_11_2_2 e_1_2_11_29_2 Ramteke R. (e_1_2_11_32_2) 2012; 2 e_1_2_11_20_2 e_1_2_11_9_2 e_1_2_11_23_2 e_1_2_11_8_2 e_1_2_11_22_2 e_1_2_11_7_2 e_1_2_11_21_2 e_1_2_11_17_2 e_1_2_11_16_2 Liaw A. (e_1_2_11_26_2) 2002; 2 e_1_2_11_15_2 e_1_2_11_14_2 e_1_2_11_36_2 e_1_2_11_19_2 e_1_2_11_18_2 |
References_xml | – ident: e_1_2_11_20_2 doi: 10.1007/s13246-020-00865-4 – ident: e_1_2_11_25_2 doi: 10.4018/ijrsda.2017070105 – ident: e_1_2_11_11_2 doi: 10.1109/access.2020.2994810 – ident: e_1_2_11_18_2 doi: 10.1109/RBME.2020.2990959 – ident: e_1_2_11_35_2 doi: 10.1016/j.irbm.2020.07.001 – ident: e_1_2_11_23_2 doi: 10.1186/s40537-019-0197-0 – ident: e_1_2_11_17_2 doi: 10.1109/CHASE.2017.59 – ident: e_1_2_11_6_2 – ident: e_1_2_11_31_2 doi: 10.1016/s1532-0464(03)00034-0 – ident: e_1_2_11_27_2 doi: 10.1109/access.2020.3041822 – volume-title: 1000x Faster Data Augmentation, Berkeley Artificial Intelligence Research year: 2019 ident: e_1_2_11_24_2 – ident: e_1_2_11_9_2 – ident: e_1_2_11_4_2 – ident: e_1_2_11_12_2 doi: 10.1016/j.eswa.2014.09.020 – ident: e_1_2_11_36_2 doi: 10.1109/ACCESS.2021.3056285 – ident: e_1_2_11_13_2 doi: 10.1080/0952813x.2019.1572657 – ident: e_1_2_11_29_2 doi: 10.1016/j.ascom.2020.100404 – ident: e_1_2_11_2_2 doi: 10.1109/ACCESS.2020.2997311 – ident: e_1_2_11_33_2 – ident: e_1_2_11_3_2 – ident: e_1_2_11_22_2 – ident: e_1_2_11_15_2 doi: 10.1016/j.compmedimag.2007.02.003 – ident: e_1_2_11_7_2 doi: 10.1016/j.zemedi.2018.11.002 – ident: e_1_2_11_14_2 doi: 10.1148/radiology.177.3.2244001 – ident: e_1_2_11_19_2 doi: 10.1038/s41598-020-76550-z – ident: e_1_2_11_8_2 doi: 10.1016/j.ijleo.2021.166267 – ident: e_1_2_11_10_2 doi: 10.1109/ICARCV.2014.7064414 – ident: e_1_2_11_34_2 doi: 10.1016/j.media.2020.101794 – ident: e_1_2_11_28_2 doi: 10.1007/978-1-4842-3564-5_6 – ident: e_1_2_11_30_2 doi: 10.1016/s0031-3203(03)00038-4 – ident: e_1_2_11_16_2 doi: 10.1038/nature21056 – volume: 2 start-page: 18 year: 2002 ident: e_1_2_11_26_2 article-title: Classification and regression by random forest publication-title: R News – ident: e_1_2_11_21_2 doi: 10.1101/2020.03.30.20047456 – volume: 91 start-page: 157 year: 2020 ident: e_1_2_11_1_2 article-title: WHO declares COVID-19 a pandemic publication-title: Acta Biomedica: Atenei Parmensis – volume: 2 year: 2012 ident: e_1_2_11_32_2 article-title: Automatic medical image classification and abnormality detection using k-nearest neighbour publication-title: International Journal of Advanced Computer Research – ident: e_1_2_11_5_2 |
SSID | ssj0009637 |
Score | 2.5326705 |
Snippet | Artificial intelligence (AI) techniques in general and convolutional neural networks (CNNs) in particular have attained successful results in medical image... |
SourceID | doaj proquest gale crossref hindawi |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accuracy Algorithms Artificial intelligence Artificial neural networks Chest Classification Computational linguistics Coronaviruses COVID-19 Data mining Datasets Deep learning Design Diseases Image analysis Image classification Image quality Language processing Lung diseases Lungs Machine learning Medical diagnosis Medical imaging Medical research Model testing Natural language interfaces Neural networks Pandemics Pneumonia Radiation Severe acute respiratory syndrome coronavirus 2 X-rays |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9sQdAHaavi6bXkoaIiwd1kk919vN61XIWeIFbOp5BkEyrUVbwT8b93Jpe7chbRt83u7JLNfOfjNwDHtYxWVaXjIRQFR49XcOu85TaKogvOB9XR1MDFTE8vq7dzNc8gSYvbS_jo7Sg9L99oLQgKbQd2UMAoKZ_Ob7B1dYLGxERGc4ECuN7f_se7W54nAfRvzPDdK0qAf36-ZZCTlznbgwc5PGSjFT_34U7oD-D-xQZbdXEA-1kdF-xlxox-9RA-jXp2mtAg0Imw8WzGqMjZNcOQlI3ffTyf8LJlk9ViDJuEZdqA1bMTbHYML-b8vf3Fzr-gdWGpTibtIEpMewSXZ6cfxlOeqyZwX9XFktvG1r7STcQW5goqtgSwomtrY8AAx_mm65y1GMo5Wbs21uildSjpiGn0sgnyMez2X_vwBJiQzsfCCmeDqKJAXW-1a2sRtFdO6XYAr9cjanyGFKfKFtcmpRZKGRp_k8d_AM831N9WUBp_oTsh5mxoCAA73UChMFmfDFrl2AgpYxlthWFG4ysvXIHRaFf4snQDeEGsNaSm2CVv82kD_DECvDKjBgOnmmoDDGC4RYnq5bceH2fh-Eenh2vJMdkKLIxQskKbWEr59P--8gzuUXM1xTOE3eX3H-EQg56lO0oi_xvCk_NB priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central - New (Subscription) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1baxQxFA66RbAPxVbFtavkoaIioTOZSSbzJHsrrdBVipX1KSSZxBba2dpdEf-952SzWxZR3yaTMGSSk-9cknyHkIOqCEaUuWXeZxkDjZcxY51hJvCs8dZ50WBo4HQij8_LD1MxTQG3eTpWucLECNTNzGGM_JCLogT5Apfq_c13hlmjcHc1pdC4T7YAgpXqkK3BePLp7I52V0bWTPBxJOMgm6uj70Kg158fSsmRYW1DKUXu_jVCP7hA3_jn5R9YHRXQ0SOykyxH2l9O9S6559s9sn26pl2d75HdtFLn9E2ik377mHztt3QciSJAv9DhZEIx_9kVBWuVDj9-ORmxvKaj5T4NHflFPJvV0gEUGwoPU3ZmftGTawAeGlNo4uGiOJ9PyPnR-PPwmKWECsyVVbZgRpnKlVIFKIEbIUKN3CuyMiZ4sH2sU01jjQErzxaVrUMFClz6HG-fBlcoXzwlnXbW-meE8sK6kBlujedl4AADtbR1xb10wgpZd8m71Yhql9jGMenFlY5ehxAax1-n8e-SV-vWN0uWjb-0G-DkrNsgN3Z8Mbv9ptNS0wDYQfGiCHkwJVggypWO2wwM1SZzeW675DVOrcYVDF1yJl1EgB9DLizdV2BTVZg2oEt6Gy1h5bmN6oMkHP_pdG8lOToBxFzfifPzf1fvk4f4sWXUp0c6i9sf_gXYQQv7Mgn7bw_-_uA priority: 102 providerName: ProQuest |
Title | An Efficient CNN Model for COVID-19 Disease Detection Based on X-Ray Image Classification |
URI | https://dx.doi.org/10.1155/2021/6621607 https://www.proquest.com/docview/2534425133 https://doaj.org/article/ddef8233f1fa42428c4c2b0932d0c11b |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-6IuhB3FXZ0XHIYUVFwrZJk7bH-XRW2FEGV8ZTSNIEhbW7OCPif-97aWZwENmLl9K0gSYv7zN9-T1CTkoRjCxyy7zPMgYWL2PGOsNM4FnjrfOywa2B84WaXxTvVnL1R6kvzAnr4IE7wp2C-IWKCxHyYAqwJ5UrHLcQh_Mmc3luUfuCzdsGU1u4XRXRMiG2UYwDT25T3qXEaD8_VYojstqeMYqY_TvNfPcLxsQ_v_6lo6PhmT0kD5LHSIfdSA_JLd8ekfvnO7jV9RE5TBK6pq8SjPTrR-TzsKXTCBABdoWOFwuKdc8uKXipdPz-09mE5TWddP9n6MRvYk5WS0fQbCjcrNjS_KJn30Dh0Fg6E5OK4jo-Jhez6cfxnKVCCswVZbZhpjKlK1QVoAXhgww1Yq6o0pjgweexrmoaawx4d1aUtg4lGG7lczx1GpyovHhCDtqr1h8TyoV1ITPcGs-LwEH8a2XrknvlpJWq7pE3W4pql1DGsdjFpY7RhpQa6a8T_Xvkxa73dYeu8Y9-I1ycXR_ExI4PgFN04hR9E6f0yEtcWo2SC0NyJh1AgIkhBpYeVuBLlVguoEf6ez1B4tze65PEHDcMur_lHJ0Uw1pzKQpQk7kQT__HnJ6Re_jJbk-oTw4233_45-AlbeyA3K5mbwfkzmi6-LAcRPGA63K--g1hPwn8 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGEAIeEBsgCgX8sAkQspY4sZM8INS1Ky1bi4Q2VJ6M7dgb0mjHWjTtn-Jv5M5JOlUIeNpbflhRYt_d951jf0fIVpZ4LdLYMOeiiAHiRUwbq5n2PCqdsU6UODUwGsvBUfphIiZr5FezFwaXVTYxMQTqcmZxjnyHiyQF-4KU6t3ZD4ZVo_DvalNCozKLfXd5ASnb_O2wB-O7zXl_77A7YHVVAWbTLFownevMpjL3cAZcWvgCBUhkprV3QACMzcvSaA1UxySZKXwGKCZdjFswvU1yl8Bzb5CbaQJIjjvT---vRH5l0OiEjEoyDp7QLLQXAucY4h0pOeq5rUBgqBSwxINbJ5iJX3z7AxkC3PXvk3s1T6WdyrA2yJqbbpK7o6XI63yTbNRxYU5f1eLVrx-QL50p3QuyFIBmtDseU6y2dkqBG9Pux8_DHosL2qv-CtGeW4SVYFO6C6clhYMJ-6Qv6fA7hDkaCnbiUqZgPQ_J0bV09COyPp1N3WNCeWKsjzQ32vHUcwg6hTRFxp20wghZtMibpkeVrbXNscTGqQo5jhAK-1_V_d8i28vWZ5Wmx1_a7eLgLNugEne4MDs_VrVjK4AHn_Mk8bHXKfCd3KaWmwhocRnZODYt8hKHVmG8gFeyut72AB-GyluqkwODy7BIQYu0V1qCn9uV21u1cfznpduN5ag6HM3VlfM8-fftF-T24HB0oA6G4_2n5A4-uJpvapP1xflP9wwY2MI8D2ZPydfr9rPfUZg53w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+CNN+Model+for+COVID-19+Disease+Detection+Based+on+X-Ray+Image+Classification&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Aijaz+Ahmad+Reshi&rft.au=Furqan+Rustam&rft.au=Arif+Mehmood&rft.au=Abdulaziz+Alhossan&rft.date=2021&rft.pub=Wiley&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F6621607&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ddef8233f1fa42428c4c2b0932d0c11b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |