An Efficient CNN Model for COVID-19 Disease Detection Based on X-Ray Image Classification

Artificial intelligence (AI) techniques in general and convolutional neural networks (CNNs) in particular have attained successful results in medical image analysis and classification. A deep CNN architecture has been proposed in this paper for the diagnosis of COVID-19 based on the chest X-ray imag...

Full description

Saved in:
Bibliographic Details
Published inComplexity (New York, N.Y.) Vol. 2021; no. 1
Main Authors Reshi, Aijaz Ahmad, Rustam, Furqan, Mehmood, Arif, Alhossan, Abdulaziz, Alrabiah, Ziyad, Ahmad, Ajaz, Alsuwailem, Hessa, Choi, Gyu Sang
Format Journal Article
LanguageEnglish
Published Hoboken Hindawi 2021
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI) techniques in general and convolutional neural networks (CNNs) in particular have attained successful results in medical image analysis and classification. A deep CNN architecture has been proposed in this paper for the diagnosis of COVID-19 based on the chest X-ray image classification. Due to the nonavailability of sufficient-size and good-quality chest X-ray image dataset, an effective and accurate CNN classification was a challenge. To deal with these complexities such as the availability of a very-small-sized and imbalanced dataset with image-quality issues, the dataset has been preprocessed in different phases using different techniques to achieve an effective training dataset for the proposed CNN model to attain its best performance. The preprocessing stages of the datasets performed in this study include dataset balancing, medical experts’ image analysis, and data augmentation. The experimental results have shown the overall accuracy as high as 99.5% which demonstrates the good capability of the proposed CNN model in the current application domain. The CNN model has been tested in two scenarios. In the first scenario, the model has been tested using the 100 X-ray images of the original processed dataset which achieved an accuracy of 100%. In the second scenario, the model has been tested using an independent dataset of COVID-19 X-ray images. The performance in this test scenario was as high as 99.5%. To further prove that the proposed model outperforms other models, a comparative analysis has been done with some of the machine learning algorithms. The proposed model has outperformed all the models generally and specifically when the model testing was done using an independent testing set.
AbstractList Artificial intelligence (AI) techniques in general and convolutional neural networks (CNNs) in particular have attained successful results in medical image analysis and classification. A deep CNN architecture has been proposed in this paper for the diagnosis of COVID-19 based on the chest X-ray image classification. Due to the nonavailability of sufficient-size and good-quality chest X-ray image dataset, an effective and accurate CNN classification was a challenge. To deal with these complexities such as the availability of a very-small-sized and imbalanced dataset with image-quality issues, the dataset has been preprocessed in different phases using different techniques to achieve an effective training dataset for the proposed CNN model to attain its best performance. The preprocessing stages of the datasets performed in this study include dataset balancing, medical experts' image analysis, and data augmentation. The experimental results have shown the overall accuracy as high as 99.5% which demonstrates the good capability of the proposed CNN model in the current application domain. The CNN model has been tested in two scenarios. In the first scenario, the model has been tested using the 100 X-ray images of the original processed dataset which achieved an accuracy of 100%. In the second scenario, the model has been tested using an independent dataset of COVID-19 X-ray images. The performance in this test scenario was as high as 99.5%. To further prove that the proposed model outperforms other models, a comparative analysis has been done with some of the machine learning algorithms. The proposed model has outperformed all the models generally and specifically when the model testing was done using an independent testing set.
Audience Academic
Author Alsuwailem, Hessa
Alhossan, Abdulaziz
Reshi, Aijaz Ahmad
Alrabiah, Ziyad
Rustam, Furqan
Choi, Gyu Sang
Mehmood, Arif
Ahmad, Ajaz
Author_xml – sequence: 1
  givenname: Aijaz Ahmad
  orcidid: 0000-0002-0795-2835
  surname: Reshi
  fullname: Reshi, Aijaz Ahmad
  organization: Department of Computer ScienceCollege of Computer Science and EngineeringTaibah UniversityAl Madinah Al MunawarahSaudi Arabiataibahu.edu.sa
– sequence: 2
  givenname: Furqan
  orcidid: 0000-0001-8403-1047
  surname: Rustam
  fullname: Rustam, Furqan
  organization: Department of Computer ScienceKhwaja Fareed University of Engineering and Information TechnologyRahim Yar Khan 64200Pakistan
– sequence: 3
  givenname: Arif
  orcidid: 0000-0001-5822-4005
  surname: Mehmood
  fullname: Mehmood, Arif
  organization: Department of Computer Science & ITThe Islamia University of BahawalpurBahawalpurPunjab 63100Pakistaniub.edu.pk
– sequence: 4
  givenname: Abdulaziz
  surname: Alhossan
  fullname: Alhossan, Abdulaziz
  organization: Department of Clinical PharmacyCollege of PharmacyKing Saud UniversityRiyadh 11451Saudi Arabiaksu.edu.sa
– sequence: 5
  givenname: Ziyad
  surname: Alrabiah
  fullname: Alrabiah, Ziyad
  organization: Department of Clinical PharmacyCollege of PharmacyKing Saud UniversityRiyadh 11451Saudi Arabiaksu.edu.sa
– sequence: 6
  givenname: Ajaz
  orcidid: 0000-0001-6295-8685
  surname: Ahmad
  fullname: Ahmad, Ajaz
  organization: Department of Clinical PharmacyCollege of PharmacyKing Saud UniversityRiyadh 11451Saudi Arabiaksu.edu.sa
– sequence: 7
  givenname: Hessa
  surname: Alsuwailem
  fullname: Alsuwailem, Hessa
  organization: Department of Clinical PharmacyCollege of PharmacyKing Saud UniversityRiyadh 11451Saudi Arabiaksu.edu.sa
– sequence: 8
  givenname: Gyu Sang
  orcidid: 0000-0002-0854-768X
  surname: Choi
  fullname: Choi, Gyu Sang
  organization: Department of Information & Communication EngineeringYeungnam UniversityGyeongbuk 38541Republic of Koreayu.ac.kr
BookMark eNp9kV1rFDEUhoNUsK3e-QMCXuq0-c7M5Tpb7UJtQVT0KpzJx5pldtImU6T_3my3RRSVXOScw_O-HM57hA6mNHmEXlJyQqmUp4wweqoUo4roJ-iQkq5riGTqYFdr1TDd6mfoqJQNIaRTXB-ib4sJn4UQbfTTjPvLS_whOT_ikDLur76slg3t8DIWD8XjpZ-9nWOa8NvaOlyLr81HuMOrLaw97kcoJVYv2DHP0dMAY_EvHv5j9Pnd2af-vLm4er_qFxeNFZrMDbSgrVBtqJ0WWoaOMq6UBgieMDnY1rkBgAg5cD10QRMmlKdScBEsbz0_Rqu9r0uwMdc5biHfmQTR3A9SXhvIc7SjN8750DLOAw0gmGCtFZYNpOPMEUvpUL1e7b2uc7q59WU2m3Sbp7q-YZILwSTl_Be1hmoap5DmDHYbizWLllOt68llpU7-QtXn_DbaGlyIdf6bgO0FNqdSsg_Gxvn-lFUYR0OJ2aVsdimbh5Sr6M0foscL_AN_vce_x8nBj_h_-ic5kbEH
CitedBy_id crossref_primary_10_3390_diagnostics13010076
crossref_primary_10_1063_5_0059829
crossref_primary_10_1007_s11042_024_19036_8
crossref_primary_10_1371_journal_pone_0305483
crossref_primary_10_1155_2022_4578838
crossref_primary_10_1002_ima_22697
crossref_primary_10_3390_app13148227
crossref_primary_10_3390_s21186221
crossref_primary_10_3390_diagnostics13111886
crossref_primary_10_1177_00202940221101667
crossref_primary_10_1109_ACCESS_2024_3365544
crossref_primary_10_1063_5_0076314
crossref_primary_10_1109_ACCESS_2021_3123782
crossref_primary_10_1007_s11042_022_14232_w
crossref_primary_10_1038_s41598_024_51317_y
crossref_primary_10_3390_biomedicines11123284
crossref_primary_10_1007_s00500_023_08561_7
crossref_primary_10_1111_coin_12568
crossref_primary_10_31083_j_fbl2709276
crossref_primary_10_1007_s11277_022_09864_y
crossref_primary_10_1016_j_asoc_2022_109319
crossref_primary_10_1155_2022_5318447
crossref_primary_10_1007_s10462_024_10814_2
crossref_primary_10_1109_ACCESS_2024_3375878
crossref_primary_10_3390_s21206853
crossref_primary_10_3390_s22249576
crossref_primary_10_1007_s11548_024_03309_6
crossref_primary_10_1155_2022_6216273
crossref_primary_10_1038_s41598_022_04835_6
crossref_primary_10_3390_s23041927
crossref_primary_10_32604_cmc_2022_023878
crossref_primary_10_1016_j_sjbs_2021_09_021
crossref_primary_10_3390_s21248336
crossref_primary_10_1016_j_jpdc_2022_10_001
crossref_primary_10_3390_math11173793
crossref_primary_10_3390_biomimetics8070552
crossref_primary_10_1002_ima_22839
crossref_primary_10_1007_s11042_023_15576_7
crossref_primary_10_1155_2022_6786203
crossref_primary_10_1007_s00521_023_08644_4
crossref_primary_10_3389_frai_2023_1235204
crossref_primary_10_3390_s22051983
crossref_primary_10_1007_s11277_023_10336_0
crossref_primary_10_1371_journal_pone_0317450
crossref_primary_10_1002_spe_3247
crossref_primary_10_7717_peerj_cs_1250
crossref_primary_10_1155_2023_1102715
crossref_primary_10_3390_electronics12071725
crossref_primary_10_48084_etasr_6127
crossref_primary_10_3390_s21238045
crossref_primary_10_37990_medr_1130194
crossref_primary_10_1186_s12880_022_00876_5
crossref_primary_10_3390_jmse13030424
crossref_primary_10_2174_0118750362303182240516043224
crossref_primary_10_1007_s00034_023_02564_3
crossref_primary_10_7763_IJCTE_2023_V15_1341
crossref_primary_10_37394_23209_2023_20_16
crossref_primary_10_3390_healthcare10112230
crossref_primary_10_3390_technologies11050134
crossref_primary_10_1088_1742_6596_2071_1_012003
crossref_primary_10_1007_s10791_024_09490_1
crossref_primary_10_1007_s11042_023_15488_6
crossref_primary_10_38124_ijisrt_IJISRT24SEP0229
crossref_primary_10_3233_JIFS_230183
crossref_primary_10_1080_03772063_2024_2409677
Cites_doi 10.1007/s13246-020-00865-4
10.4018/ijrsda.2017070105
10.1109/access.2020.2994810
10.1109/RBME.2020.2990959
10.1016/j.irbm.2020.07.001
10.1186/s40537-019-0197-0
10.1109/CHASE.2017.59
10.1016/s1532-0464(03)00034-0
10.1109/access.2020.3041822
10.1016/j.eswa.2014.09.020
10.1109/ACCESS.2021.3056285
10.1080/0952813x.2019.1572657
10.1016/j.ascom.2020.100404
10.1109/ACCESS.2020.2997311
10.1016/j.compmedimag.2007.02.003
10.1016/j.zemedi.2018.11.002
10.1148/radiology.177.3.2244001
10.1038/s41598-020-76550-z
10.1016/j.ijleo.2021.166267
10.1109/ICARCV.2014.7064414
10.1016/j.media.2020.101794
10.1007/978-1-4842-3564-5_6
10.1016/s0031-3203(03)00038-4
10.1038/nature21056
10.1101/2020.03.30.20047456
ContentType Journal Article
Copyright Copyright © 2021 Aijaz Ahmad Reshi et al.
COPYRIGHT 2021 John Wiley & Sons, Inc.
Copyright © 2021 Aijaz Ahmad Reshi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2021 Aijaz Ahmad Reshi et al.
– notice: COPYRIGHT 2021 John Wiley & Sons, Inc.
– notice: Copyright © 2021 Aijaz Ahmad Reshi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1155/2021/6621607
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef

Research Library Prep

Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-0526
Editor Madureira Bueno, Átila
Editor_xml – sequence: 1
  givenname: Átila
  surname: Madureira Bueno
  fullname: Madureira Bueno, Átila
ExternalDocumentID oai_doaj_org_article_ddef8233f1fa42428c4c2b0932d0c11b
A831775265
10_1155_2021_6621607
GrantInformation_xml – fundername: King Saud University
  grantid: RG-1441-455
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3V.
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAFWJ
AAJEY
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACSCC
ADBBV
ADIZJ
AENEX
AFBPY
AFKRA
AFPKN
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ATUGU
AZBYB
AZQEC
AZVAB
BAFTC
BCNDV
BENPR
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DPXWK
DR2
DU5
DWQXO
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
HBH
HCIFZ
HHY
HZ~
IAO
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LP6
LP7
M2O
MK4
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
Q.N
Q11
QB0
QRW
R.K
RHU
RHW
RHX
RWI
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WIH
WQJ
WRC
XBAML
XG1
XPP
XSW
XV2
~IA
~WT
.Y3
24P
31~
3R3
5VS
AAEVG
AAHHS
AANHP
AAYXX
ACBWZ
ACCFJ
ACCMX
ACRPL
ACXQS
ACYXJ
ADNMO
ADZOD
AEEZP
AEIMD
AEQDE
AFZJQ
AGQPQ
AIWBW
AJBDE
AMVHM
ASPBG
AVWKF
AZFZN
BDRZF
BFHJK
CITATION
DCZOG
EJD
FEDTE
H13
HF~
HVGLF
ICD
LH4
LW6
PHGZM
PHGZT
ROL
WYUIH
PMFND
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c470t-a8a7c468f4707475f9123667aafe025bc8ddbaa045b37b9f70246e15434fc38e3
IEDL.DBID DOA
ISSN 1076-2787
IngestDate Wed Aug 27 01:31:11 EDT 2025
Fri Jul 25 21:01:35 EDT 2025
Tue Jun 17 21:57:17 EDT 2025
Tue Jun 10 20:58:08 EDT 2025
Tue Jul 01 02:08:19 EDT 2025
Thu Apr 24 23:00:02 EDT 2025
Sun Jun 02 19:17:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-a8a7c468f4707475f9123667aafe025bc8ddbaa045b37b9f70246e15434fc38e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6295-8685
0000-0002-0795-2835
0000-0002-0854-768X
0000-0001-8403-1047
0000-0001-5822-4005
OpenAccessLink https://doaj.org/article/ddef8233f1fa42428c4c2b0932d0c11b
PQID 2534425133
PQPubID 2029978
ParticipantIDs doaj_primary_oai_doaj_org_article_ddef8233f1fa42428c4c2b0932d0c11b
proquest_journals_2534425133
gale_infotracmisc_A831775265
gale_infotracacademiconefile_A831775265
crossref_citationtrail_10_1155_2021_6621607
crossref_primary_10_1155_2021_6621607
hindawi_primary_10_1155_2021_6621607
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2021
Publisher Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References Ho D. (e_1_2_11_24_2) 2019
e_1_2_11_31_2
e_1_2_11_30_2
e_1_2_11_13_2
e_1_2_11_35_2
e_1_2_11_12_2
e_1_2_11_34_2
Cucinotta D. (e_1_2_11_1_2) 2020; 91
e_1_2_11_11_2
e_1_2_11_33_2
e_1_2_11_10_2
e_1_2_11_6_2
e_1_2_11_28_2
e_1_2_11_5_2
e_1_2_11_27_2
e_1_2_11_4_2
e_1_2_11_3_2
e_1_2_11_25_2
e_1_2_11_2_2
e_1_2_11_29_2
Ramteke R. (e_1_2_11_32_2) 2012; 2
e_1_2_11_20_2
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_8_2
e_1_2_11_22_2
e_1_2_11_7_2
e_1_2_11_21_2
e_1_2_11_17_2
e_1_2_11_16_2
Liaw A. (e_1_2_11_26_2) 2002; 2
e_1_2_11_15_2
e_1_2_11_14_2
e_1_2_11_36_2
e_1_2_11_19_2
e_1_2_11_18_2
References_xml – ident: e_1_2_11_20_2
  doi: 10.1007/s13246-020-00865-4
– ident: e_1_2_11_25_2
  doi: 10.4018/ijrsda.2017070105
– ident: e_1_2_11_11_2
  doi: 10.1109/access.2020.2994810
– ident: e_1_2_11_18_2
  doi: 10.1109/RBME.2020.2990959
– ident: e_1_2_11_35_2
  doi: 10.1016/j.irbm.2020.07.001
– ident: e_1_2_11_23_2
  doi: 10.1186/s40537-019-0197-0
– ident: e_1_2_11_17_2
  doi: 10.1109/CHASE.2017.59
– ident: e_1_2_11_6_2
– ident: e_1_2_11_31_2
  doi: 10.1016/s1532-0464(03)00034-0
– ident: e_1_2_11_27_2
  doi: 10.1109/access.2020.3041822
– volume-title: 1000x Faster Data Augmentation, Berkeley Artificial Intelligence Research
  year: 2019
  ident: e_1_2_11_24_2
– ident: e_1_2_11_9_2
– ident: e_1_2_11_4_2
– ident: e_1_2_11_12_2
  doi: 10.1016/j.eswa.2014.09.020
– ident: e_1_2_11_36_2
  doi: 10.1109/ACCESS.2021.3056285
– ident: e_1_2_11_13_2
  doi: 10.1080/0952813x.2019.1572657
– ident: e_1_2_11_29_2
  doi: 10.1016/j.ascom.2020.100404
– ident: e_1_2_11_2_2
  doi: 10.1109/ACCESS.2020.2997311
– ident: e_1_2_11_33_2
– ident: e_1_2_11_3_2
– ident: e_1_2_11_22_2
– ident: e_1_2_11_15_2
  doi: 10.1016/j.compmedimag.2007.02.003
– ident: e_1_2_11_7_2
  doi: 10.1016/j.zemedi.2018.11.002
– ident: e_1_2_11_14_2
  doi: 10.1148/radiology.177.3.2244001
– ident: e_1_2_11_19_2
  doi: 10.1038/s41598-020-76550-z
– ident: e_1_2_11_8_2
  doi: 10.1016/j.ijleo.2021.166267
– ident: e_1_2_11_10_2
  doi: 10.1109/ICARCV.2014.7064414
– ident: e_1_2_11_34_2
  doi: 10.1016/j.media.2020.101794
– ident: e_1_2_11_28_2
  doi: 10.1007/978-1-4842-3564-5_6
– ident: e_1_2_11_30_2
  doi: 10.1016/s0031-3203(03)00038-4
– ident: e_1_2_11_16_2
  doi: 10.1038/nature21056
– volume: 2
  start-page: 18
  year: 2002
  ident: e_1_2_11_26_2
  article-title: Classification and regression by random forest
  publication-title: R News
– ident: e_1_2_11_21_2
  doi: 10.1101/2020.03.30.20047456
– volume: 91
  start-page: 157
  year: 2020
  ident: e_1_2_11_1_2
  article-title: WHO declares COVID-19 a pandemic
  publication-title: Acta Biomedica: Atenei Parmensis
– volume: 2
  year: 2012
  ident: e_1_2_11_32_2
  article-title: Automatic medical image classification and abnormality detection using k-nearest neighbour
  publication-title: International Journal of Advanced Computer Research
– ident: e_1_2_11_5_2
SSID ssj0009637
Score 2.5326705
Snippet Artificial intelligence (AI) techniques in general and convolutional neural networks (CNNs) in particular have attained successful results in medical image...
SourceID doaj
proquest
gale
crossref
hindawi
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Artificial neural networks
Chest
Classification
Computational linguistics
Coronaviruses
COVID-19
Data mining
Datasets
Deep learning
Design
Diseases
Image analysis
Image classification
Image quality
Language processing
Lung diseases
Lungs
Machine learning
Medical diagnosis
Medical imaging
Medical research
Model testing
Natural language interfaces
Neural networks
Pandemics
Pneumonia
Radiation
Severe acute respiratory syndrome coronavirus 2
X-rays
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9sQdAHaavi6bXkoaIiwd1kk919vN61XIWeIFbOp5BkEyrUVbwT8b93Jpe7chbRt83u7JLNfOfjNwDHtYxWVaXjIRQFR49XcOu85TaKogvOB9XR1MDFTE8vq7dzNc8gSYvbS_jo7Sg9L99oLQgKbQd2UMAoKZ_Ob7B1dYLGxERGc4ECuN7f_se7W54nAfRvzPDdK0qAf36-ZZCTlznbgwc5PGSjFT_34U7oD-D-xQZbdXEA-1kdF-xlxox-9RA-jXp2mtAg0Imw8WzGqMjZNcOQlI3ffTyf8LJlk9ViDJuEZdqA1bMTbHYML-b8vf3Fzr-gdWGpTibtIEpMewSXZ6cfxlOeqyZwX9XFktvG1r7STcQW5goqtgSwomtrY8AAx_mm65y1GMo5Wbs21uildSjpiGn0sgnyMez2X_vwBJiQzsfCCmeDqKJAXW-1a2sRtFdO6XYAr9cjanyGFKfKFtcmpRZKGRp_k8d_AM831N9WUBp_oTsh5mxoCAA73UChMFmfDFrl2AgpYxlthWFG4ysvXIHRaFf4snQDeEGsNaSm2CVv82kD_DECvDKjBgOnmmoDDGC4RYnq5bceH2fh-Eenh2vJMdkKLIxQskKbWEr59P--8gzuUXM1xTOE3eX3H-EQg56lO0oi_xvCk_NB
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central - New (Subscription)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1baxQxFA66RbAPxVbFtavkoaIioTOZSSbzJHsrrdBVipX1KSSZxBba2dpdEf-952SzWxZR3yaTMGSSk-9cknyHkIOqCEaUuWXeZxkDjZcxY51hJvCs8dZ50WBo4HQij8_LD1MxTQG3eTpWucLECNTNzGGM_JCLogT5Apfq_c13hlmjcHc1pdC4T7YAgpXqkK3BePLp7I52V0bWTPBxJOMgm6uj70Kg158fSsmRYW1DKUXu_jVCP7hA3_jn5R9YHRXQ0SOykyxH2l9O9S6559s9sn26pl2d75HdtFLn9E2ik377mHztt3QciSJAv9DhZEIx_9kVBWuVDj9-ORmxvKaj5T4NHflFPJvV0gEUGwoPU3ZmftGTawAeGlNo4uGiOJ9PyPnR-PPwmKWECsyVVbZgRpnKlVIFKIEbIUKN3CuyMiZ4sH2sU01jjQErzxaVrUMFClz6HG-fBlcoXzwlnXbW-meE8sK6kBlujedl4AADtbR1xb10wgpZd8m71Yhql9jGMenFlY5ehxAax1-n8e-SV-vWN0uWjb-0G-DkrNsgN3Z8Mbv9ptNS0wDYQfGiCHkwJVggypWO2wwM1SZzeW675DVOrcYVDF1yJl1EgB9DLizdV2BTVZg2oEt6Gy1h5bmN6oMkHP_pdG8lOToBxFzfifPzf1fvk4f4sWXUp0c6i9sf_gXYQQv7Mgn7bw_-_uA
  priority: 102
  providerName: ProQuest
Title An Efficient CNN Model for COVID-19 Disease Detection Based on X-Ray Image Classification
URI https://dx.doi.org/10.1155/2021/6621607
https://www.proquest.com/docview/2534425133
https://doaj.org/article/ddef8233f1fa42428c4c2b0932d0c11b
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-6IuhB3FXZ0XHIYUVFwrZJk7bH-XRW2FEGV8ZTSNIEhbW7OCPif-97aWZwENmLl9K0gSYv7zN9-T1CTkoRjCxyy7zPMgYWL2PGOsNM4FnjrfOywa2B84WaXxTvVnL1R6kvzAnr4IE7wp2C-IWKCxHyYAqwJ5UrHLcQh_Mmc3luUfuCzdsGU1u4XRXRMiG2UYwDT25T3qXEaD8_VYojstqeMYqY_TvNfPcLxsQ_v_6lo6PhmT0kD5LHSIfdSA_JLd8ekfvnO7jV9RE5TBK6pq8SjPTrR-TzsKXTCBABdoWOFwuKdc8uKXipdPz-09mE5TWddP9n6MRvYk5WS0fQbCjcrNjS_KJn30Dh0Fg6E5OK4jo-Jhez6cfxnKVCCswVZbZhpjKlK1QVoAXhgww1Yq6o0pjgweexrmoaawx4d1aUtg4lGG7lczx1GpyovHhCDtqr1h8TyoV1ITPcGs-LwEH8a2XrknvlpJWq7pE3W4pql1DGsdjFpY7RhpQa6a8T_Xvkxa73dYeu8Y9-I1ycXR_ExI4PgFN04hR9E6f0yEtcWo2SC0NyJh1AgIkhBpYeVuBLlVguoEf6ez1B4tze65PEHDcMur_lHJ0Uw1pzKQpQk7kQT__HnJ6Re_jJbk-oTw4233_45-AlbeyA3K5mbwfkzmi6-LAcRPGA63K--g1hPwn8
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGEAIeEBsgCgX8sAkQspY4sZM8INS1Ky1bi4Q2VJ6M7dgb0mjHWjTtn-Jv5M5JOlUIeNpbflhRYt_d951jf0fIVpZ4LdLYMOeiiAHiRUwbq5n2PCqdsU6UODUwGsvBUfphIiZr5FezFwaXVTYxMQTqcmZxjnyHiyQF-4KU6t3ZD4ZVo_DvalNCozKLfXd5ASnb_O2wB-O7zXl_77A7YHVVAWbTLFownevMpjL3cAZcWvgCBUhkprV3QACMzcvSaA1UxySZKXwGKCZdjFswvU1yl8Bzb5CbaQJIjjvT---vRH5l0OiEjEoyDp7QLLQXAucY4h0pOeq5rUBgqBSwxINbJ5iJX3z7AxkC3PXvk3s1T6WdyrA2yJqbbpK7o6XI63yTbNRxYU5f1eLVrx-QL50p3QuyFIBmtDseU6y2dkqBG9Pux8_DHosL2qv-CtGeW4SVYFO6C6clhYMJ-6Qv6fA7hDkaCnbiUqZgPQ_J0bV09COyPp1N3WNCeWKsjzQ32vHUcwg6hTRFxp20wghZtMibpkeVrbXNscTGqQo5jhAK-1_V_d8i28vWZ5Wmx1_a7eLgLNugEne4MDs_VrVjK4AHn_Mk8bHXKfCd3KaWmwhocRnZODYt8hKHVmG8gFeyut72AB-GyluqkwODy7BIQYu0V1qCn9uV21u1cfznpduN5ag6HM3VlfM8-fftF-T24HB0oA6G4_2n5A4-uJpvapP1xflP9wwY2MI8D2ZPydfr9rPfUZg53w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Efficient+CNN+Model+for+COVID-19+Disease+Detection+Based+on+X-Ray+Image+Classification&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Aijaz+Ahmad+Reshi&rft.au=Furqan+Rustam&rft.au=Arif+Mehmood&rft.au=Abdulaziz+Alhossan&rft.date=2021&rft.pub=Wiley&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F6621607&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ddef8233f1fa42428c4c2b0932d0c11b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon