Polycyclic aromatic compounds-modified graphitic carbon nitride for efficient visible-light-driven hydrogen evolution
Polycyclic aromatic compounds with strong conjugated effect, possess the advantage of improving electronic polarizability, thus accelerating the electron transportation. Here, a facile copolymerization between urea and polycyclic aromatic compounds (benzoic acid, naphthoic acid and anthroic acid) ha...
Saved in:
Published in | Carbon (New York) Vol. 134; pp. 134 - 144 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.08.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Polycyclic aromatic compounds with strong conjugated effect, possess the advantage of improving electronic polarizability, thus accelerating the electron transportation. Here, a facile copolymerization between urea and polycyclic aromatic compounds (benzoic acid, naphthoic acid and anthroic acid) has been applied to constructing aromatic rings-grafted graphitic carbon nitride (GCN) photocatalysts. Incorporation of aromatic rings in the GCN network is an effective protocol to extend its π-conjugated system for visible light harvesting and improves the charge transfer efficiency for prolonging lifetime of photogenerated charge carriers in photocatalytic reactions. The corresponding characterization methods demonstrate that the aromatic rings-modified GCN can effectively narrow the bandgap to favor broad band visible light absorption and suppress recombination of electrons and holes. Remarkably, the moderate conjugated effect of aromatic rings (naphthalene) is crucial to promote charge separation. The developed naphthalene-grafted GCN achieves the highest water splitting performance with hydrogen evolution rate up to 102.1 μmol h−1, nearly 3.5 times of that of the GCN, and apparent quantum efficiency reaches 5.6% at 450 nm. This finding reveals that the conjugated effect of aromatic rings is significant to control photocatalytic property and brings new ideas for designing aromatic system-modified GCN as highly active photocatalysts towards solar-to-chemical energy conversion.
This study reports the preparation, characterization and photocatalytic activity of aromatic rings-grafted graphitic carbon nitride (GCN) photocatalysts, which display enhanced visible light absorption and improved separation of charge carriers due to the extended π-conjugated system, and thus the high hydrogen evolution rate. [Display omitted] |
---|---|
AbstractList | Polycyclic aromatic compounds with strong conjugated effect, possess the advantage of improving electronic polarizability, thus accelerating the electron transportation. Here, a facile copolymerization between urea and polycyclic aromatic compounds (benzoic acid, naphthoic acid and anthroic acid) has been applied to constructing aromatic rings-grafted graphitic carbon nitride (GCN) photocatalysts. Incorporation of aromatic rings in the GCN network is an effective protocol to extend its π-conjugated system for visible light harvesting and improves the charge transfer efficiency for prolonging lifetime of photogenerated charge carriers in photocatalytic reactions. The corresponding characterization methods demonstrate that the aromatic rings-modified GCN can effectively narrow the bandgap to favor broad band visible light absorption and suppress recombination of electrons and holes. Remarkably, the moderate conjugated effect of aromatic rings (naphthalene) is crucial to promote charge separation. The developed naphthalene-grafted GCN achieves the highest water splitting performance with hydrogen evolution rate up to 102.1 μmol h−1, nearly 3.5 times of that of the GCN, and apparent quantum efficiency reaches 5.6% at 450 nm. This finding reveals that the conjugated effect of aromatic rings is significant to control photocatalytic property and brings new ideas for designing aromatic system-modified GCN as highly active photocatalysts towards solar-to-chemical energy conversion.
This study reports the preparation, characterization and photocatalytic activity of aromatic rings-grafted graphitic carbon nitride (GCN) photocatalysts, which display enhanced visible light absorption and improved separation of charge carriers due to the extended π-conjugated system, and thus the high hydrogen evolution rate. [Display omitted] Polycyclic aromatic compounds with strong conjugated effect, possess the advantage of improving electronic polarizability, thus accelerating the electron transportation. Here, a facile copolymerization between urea and polycyclic aromatic compounds (benzoic acid, naphthoic acid and anthroic acid) has been applied to constructing aromatic rings-grafted graphitic carbon nitride (GCN) photocatalysts. Incorporation of aromatic rings in the GCN network is an effective protocol to extend its π-conjugated system for visible light harvesting and improves the charge transfer efficiency for prolonging lifetime of photogenerated charge carriers in photocatalytic reactions. The corresponding characterization methods demonstrate that the aromatic rings-modified GCN can effectively narrow the bandgap to favor broad band visible light absorption and suppress recombination of electrons and holes. Remarkably, the moderate conjugated effect of aromatic rings (naphthalene) is crucial to promote charge separation. The developed naphthalene-grafted GCN achieves the highest water splitting performance with hydrogen evolution rate up to 102.1 μmol h−1, nearly 3.5 times of that of the GCN, and apparent quantum efficiency reaches 5.6% at 450 nm. This finding reveals that the conjugated effect of aromatic rings is significant to control photocatalytic property and brings new ideas for designing aromatic system-modified GCN as highly active photocatalysts towards solar-to-chemical energy conversion. Polycyclic aromatic compounds with strong conjugated effect, possess the advantage of improving electronic polarizability, thus accelerating the electron transportation. Here, a facile copolymerization between urea and polycyclic aromatic compounds (benzoic acid, naphthoic acid and anthroic acid) has been applied to constructing aromatic rings-grafted graphitic carbon nitride (GCN) photocatalysts. Incorporation of aromatic rings in the GCN network is an effective protocol to extend its π-conjugated system for visible light harvesting and improves the charge transfer efficiency for prolonging lifetime of photogenerated charge carriers in photocatalytic reactions. The corresponding characterization methods demonstrate that the aromatic rings-modified GCN can effectively narrow the bandgap to favor broad band visible light absorption and suppress recombination of electrons and holes. Remarkably, the moderate conjugated effect of aromatic rings (naphthalene) is crucial to promote charge separation. The developed naphthalene-grafted GCN achieves the highest water splitting performance with hydrogen evolution rate up to 102.1 μmol h⁻¹, nearly 3.5 times of that of the GCN, and apparent quantum efficiency reaches 5.6% at 450 nm. This finding reveals that the conjugated effect of aromatic rings is significant to control photocatalytic property and brings new ideas for designing aromatic system-modified GCN as highly active photocatalysts towards solar-to-chemical energy conversion. |
Author | Li, Kui Sun, Miao Zhang, Wei-De |
Author_xml | – sequence: 1 givenname: Kui surname: Li fullname: Li, Kui – sequence: 2 givenname: Miao surname: Sun fullname: Sun, Miao – sequence: 3 givenname: Wei-De orcidid: 0000-0003-2483-626X surname: Zhang fullname: Zhang, Wei-De email: zhangwd@scut.edu.cn |
BookMark | eNqFUU2P0zAQtdAi0V34BxwiceGSMP5o4nBAQiu-pJXgAGfL8Uc7VWIX26nUf4-75bQHOM2M5r03M29uyU2IwRHymkJHgfbvDp3RaYqhY0BlB7wDOT4jGyoH3nI50huyAQDZ9ozxF-Q250MthaRiQ9YfcT6bs5nRNDrFRZeamLgc4xpsbpdo0aOzzS7p4x4fm4-jmoAloXWNj6lx3qNBF0pzwozT7NoZd_vS2oQnF5r92aa4q4k7xXktGMNL8tzrObtXf-Md-fX508_7r-3D9y_f7j8-tEYMUFotYZR-GJ3phWfbAYz20NOx54KPTPY9nbaDpb0wfCu0tBMHCnbg4-S3bBKe35G3V91jir9Xl4taMBs3zzq4uGbFGIMRgEFfoW-eQA9xTaFup1i1k45cMF5R768ok2LOyXllsOjLSSVpnBUFdfmIOqirTeryEQVcVYlKFk_Ix4SLTuf_0T5caa46dUKXVL6YbZzF5ExRNuK_Bf4A5zmrPA |
CitedBy_id | crossref_primary_10_1016_j_cej_2023_142395 crossref_primary_10_1016_j_jcis_2019_10_050 crossref_primary_10_1016_j_jece_2023_111084 crossref_primary_10_1016_j_jallcom_2024_174491 crossref_primary_10_1016_j_carbon_2019_05_079 crossref_primary_10_1016_j_colsurfa_2022_129831 crossref_primary_10_1039_D1QI01122G crossref_primary_10_1039_D4EN00218K crossref_primary_10_1039_D2CY01598F crossref_primary_10_1007_s11164_024_05460_w crossref_primary_10_1016_j_apcatb_2020_119401 crossref_primary_10_1016_j_molstruc_2024_140321 crossref_primary_10_1021_acsami_1c02722 crossref_primary_10_1016_j_apcata_2021_118397 crossref_primary_10_1016_j_jphotochem_2020_112999 crossref_primary_10_1021_acscatal_3c03509 crossref_primary_10_1016_j_arabjc_2024_105808 crossref_primary_10_1016_j_apcatb_2022_121611 crossref_primary_10_1016_j_jhazmat_2019_01_082 crossref_primary_10_1016_j_renene_2021_06_066 crossref_primary_10_1016_j_cej_2020_127791 crossref_primary_10_1002_idm2_12024 crossref_primary_10_1016_j_jcis_2021_08_122 crossref_primary_10_1016_j_jece_2023_110282 crossref_primary_10_1016_j_jmst_2020_03_086 crossref_primary_10_1021_acs_jpcc_8b10252 crossref_primary_10_1016_j_fuel_2024_133513 crossref_primary_10_1016_j_renene_2020_09_040 crossref_primary_10_1016_j_seppur_2021_119443 crossref_primary_10_1016_j_apsusc_2018_10_152 crossref_primary_10_1016_j_ijhydene_2023_07_175 crossref_primary_10_1016_j_mcat_2021_111856 crossref_primary_10_1021_acsmaterialslett_2c00604 crossref_primary_10_1039_C9TA13513H crossref_primary_10_1039_C9QI01128E crossref_primary_10_1016_j_jcis_2022_10_073 crossref_primary_10_1016_j_jcis_2022_02_122 crossref_primary_10_1016_j_ijhydene_2024_10_078 crossref_primary_10_1016_j_jallcom_2023_172000 crossref_primary_10_1016_j_psep_2024_12_006 crossref_primary_10_3390_nano15050361 crossref_primary_10_1016_j_jhazmat_2021_126333 crossref_primary_10_1016_j_jcis_2022_02_093 crossref_primary_10_1016_j_jiec_2022_02_056 crossref_primary_10_1016_j_jhazmat_2020_123309 crossref_primary_10_1016_j_ijhydene_2023_09_269 crossref_primary_10_1016_j_matlet_2021_130068 crossref_primary_10_1016_j_surfin_2025_106050 crossref_primary_10_1039_D1CY01780B crossref_primary_10_1016_j_scitotenv_2025_178743 crossref_primary_10_1021_acsami_9b15537 crossref_primary_10_1016_j_carbon_2024_119430 crossref_primary_10_1002_cctc_201901314 crossref_primary_10_1021_acsami_9b01704 crossref_primary_10_1016_j_cej_2019_122635 crossref_primary_10_1016_j_jcis_2019_10_088 crossref_primary_10_1007_s11270_023_06638_5 crossref_primary_10_1039_D3TA04906J crossref_primary_10_1016_j_mcat_2021_111518 crossref_primary_10_1016_j_apcatb_2023_122933 crossref_primary_10_1016_j_jece_2020_104445 crossref_primary_10_1016_j_apcatb_2021_120433 crossref_primary_10_1016_j_desal_2025_118824 crossref_primary_10_1016_j_ijhydene_2019_12_168 crossref_primary_10_1039_D3CY00383C crossref_primary_10_1016_j_renene_2020_04_086 crossref_primary_10_1016_j_jcis_2019_07_048 crossref_primary_10_1016_j_mtchem_2023_101643 crossref_primary_10_1016_j_cej_2019_122870 crossref_primary_10_1016_j_ijhydene_2024_07_209 crossref_primary_10_1016_j_cej_2023_146555 crossref_primary_10_1016_j_jphotochem_2019_02_006 crossref_primary_10_1016_j_seppur_2022_120464 crossref_primary_10_1039_D0RA02454F crossref_primary_10_1039_D1SE00670C crossref_primary_10_1016_j_apsusc_2022_154294 crossref_primary_10_3390_catal12091043 crossref_primary_10_1016_j_cej_2019_03_279 crossref_primary_10_1016_j_cej_2023_145468 crossref_primary_10_1016_S1872_2067_23_64602_9 crossref_primary_10_1016_j_jcis_2022_11_073 crossref_primary_10_1016_j_ijhydene_2019_07_067 crossref_primary_10_1016_j_jcis_2021_10_146 crossref_primary_10_1021_acsanm_3c04740 crossref_primary_10_1080_09593330_2023_2283799 crossref_primary_10_1016_j_apsusc_2019_143942 crossref_primary_10_1016_j_cej_2022_141029 crossref_primary_10_1039_D2CY00897A crossref_primary_10_1016_j_fuel_2023_130157 crossref_primary_10_1002_adfm_202005106 crossref_primary_10_1016_j_cej_2020_126661 crossref_primary_10_1007_s40097_020_00363_9 crossref_primary_10_3389_fchem_2022_955065 crossref_primary_10_1016_S1872_2067_20_63733_0 crossref_primary_10_1016_j_ijhydene_2020_12_018 crossref_primary_10_3390_catal12070752 crossref_primary_10_1016_j_carbon_2020_03_031 crossref_primary_10_1016_S1872_2067_19_63337_1 crossref_primary_10_1007_s41664_021_00203_x crossref_primary_10_1039_D3CY00493G crossref_primary_10_1016_j_matchemphys_2020_122987 crossref_primary_10_1016_j_cej_2022_136643 crossref_primary_10_1016_j_molstruc_2024_139810 crossref_primary_10_1002_jssc_201800629 crossref_primary_10_1016_j_optmat_2022_112939 crossref_primary_10_1016_j_seppur_2022_121947 crossref_primary_10_1016_j_cej_2023_147350 crossref_primary_10_1016_j_jcis_2022_04_159 crossref_primary_10_1002_jctb_6864 crossref_primary_10_1088_1361_6528_ac04d3 crossref_primary_10_1016_j_jallcom_2019_153166 crossref_primary_10_1039_D0TA01973A crossref_primary_10_1016_j_apsusc_2019_145145 crossref_primary_10_1016_j_chemosphere_2021_132725 crossref_primary_10_1139_cjc_2023_0066 crossref_primary_10_1016_j_bios_2019_111756 crossref_primary_10_1016_j_nanoen_2019_104273 crossref_primary_10_1002_solr_202000486 crossref_primary_10_1039_D0CY00898B crossref_primary_10_1016_j_ijhydene_2021_07_139 crossref_primary_10_1016_j_jmst_2022_10_042 crossref_primary_10_1016_j_ijhydene_2020_10_162 crossref_primary_10_1016_j_cis_2022_102722 crossref_primary_10_1016_j_apcatb_2020_119461 crossref_primary_10_1016_j_apsusc_2021_151916 crossref_primary_10_1016_j_cej_2021_132579 crossref_primary_10_1016_j_carbon_2022_12_075 crossref_primary_10_1016_j_cej_2020_127370 crossref_primary_10_1016_j_jcis_2023_08_108 crossref_primary_10_1016_j_fuel_2022_125073 crossref_primary_10_1016_j_carbon_2019_01_052 crossref_primary_10_1016_j_apcatb_2020_119116 crossref_primary_10_1016_j_ijhydene_2020_10_052 crossref_primary_10_1021_acsami_1c18450 crossref_primary_10_1016_j_jcis_2022_05_139 crossref_primary_10_1007_s11224_022_01983_3 crossref_primary_10_1016_j_jcis_2021_03_080 crossref_primary_10_1007_s00604_020_4135_9 crossref_primary_10_1002_chem_201905875 crossref_primary_10_1016_j_surfin_2024_104163 crossref_primary_10_1016_j_nanoen_2021_106168 |
Cites_doi | 10.1039/c3ta12273e 10.1002/cssc.201402180 10.1021/ja211637p 10.1016/j.apcatb.2017.08.041 10.1039/C5QI00255A 10.1002/anie.201402191 10.1016/j.apcatb.2016.03.062 10.1002/adma.201601567 10.1016/j.apsusc.2016.03.025 10.1016/j.apcatb.2017.07.053 10.1021/acs.chemrev.6b00075 10.1016/j.carbon.2017.07.080 10.1002/cctc.201600272 10.1039/C7TA02183F 10.1063/1.464913 10.1039/c0cc02355h 10.1016/j.electacta.2017.09.011 10.1002/ange.201106656 10.3389/fmats.2017.00011 10.1007/s12274-016-1391-4 10.1002/cssc.201600850 10.1016/j.apcatb.2015.09.006 10.1002/anie.201101182 10.1016/j.carbon.2017.02.069 10.1016/j.apcatb.2016.12.017 10.1021/acs.chemmater.5b02974 10.1016/j.apcatb.2015.05.005 10.1021/am509213x 10.1016/j.apcatb.2017.01.058 10.1016/j.jcat.2013.07.026 10.1016/j.apcatb.2016.09.013 10.1016/j.apcatb.2015.01.024 10.1021/jacs.6b11878 10.1016/j.carbon.2017.06.020 10.1002/adma.201303611 10.1039/C6TA04297J 10.1016/j.carbon.2016.09.039 10.1039/C6CS00727A 10.1021/acscatal.5b01155 10.1016/j.mcat.2017.02.011 10.1126/science.aaa3145 10.1002/asia.201601518 10.1016/j.apsusc.2014.10.161 10.1039/C5EE01895A 10.1039/C5CS00767D 10.1002/ppsc.201700251 10.1016/j.carbon.2017.12.048 10.1002/cssc.201701392 10.1016/j.jcat.2013.01.008 10.1038/nmat4634 10.1016/j.carbon.2016.05.039 10.1039/C7TA05744J 10.1039/C7TA04816E 10.1002/smll.201703599 10.1039/c3ee44189j 10.1016/j.apcatb.2016.06.071 10.1038/nmat2317 10.1038/natrevmats.2017.30 10.1039/c2cc32181e 10.1021/jacs.5b08773 10.1002/adfm.201200922 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Aug 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Aug 2018 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.carbon.2018.03.089 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3891 |
EndPage | 144 |
ExternalDocumentID | 10_1016_j_carbon_2018_03_089 S0008622318303403 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSR SSZ T5K TWZ WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EFKBS 7SR 8FD JG9 SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-a8098f79ec64f2570caf06196343928661b57d164c354a8db3010d739bf52b4f3 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Mon Jul 21 10:30:12 EDT 2025 Fri Jul 25 07:52:36 EDT 2025 Tue Aug 05 03:08:19 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 Fri Feb 23 02:48:30 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Conjugated effect Polycyclic aromatic compounds Photocatalysis Hydrogen evolution Graphitic carbon nitride |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-a8098f79ec64f2570caf06196343928661b57d164c354a8db3010d739bf52b4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2483-626X |
PQID | 2089193423 |
PQPubID | 2045273 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2220900206 proquest_journals_2089193423 crossref_citationtrail_10_1016_j_carbon_2018_03_089 crossref_primary_10_1016_j_carbon_2018_03_089 elsevier_sciencedirect_doi_10_1016_j_carbon_2018_03_089 |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Carbon (New York) |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Ong, Tan, Ng, Yong, Chai (bib30) 2016; 116 Qiao, Mitchell, Coulson, Jowett, Johnson, Brydson, Lsaacs, Lee, Douthwaite (bib13) 2016; 106 Niu, Zhang, Liu, Cheng (bib45) 2012; 22 Ong (bib12) 2017; 4 Su, Zhang (bib42) 2017; 432 Wang, Maeda, Thomas, Takanabe, Xin, Carsson, Domen, Antonietti (bib1) 2009; 8 Dong, Zhao, Zhang (bib21) 2012; 48 Yu, Yan, Gao, Li, Wang, Wu, Song, Ding (bib43) 2017; 5 Kang, Yang, Yin, Kang, Wang, Liu, Cheng (bib56) 2016; 28 Li, Xie, Zhang (bib14) 2016; 8 Li, Xie, Zhang (bib28) 2016; 110 Wang, Li, Liu, Cheng, Ho, Yu (bib22) 2015; 176–177 Wu, Yan, Tang, Zhao, Jiang (bib48) 2014; 7 Ong, Putri, Tan, Tan, Li, Ng, Wen, Chai (bib19) 2017; 10 Zhang, Wang (bib35) 2014; 7 Zhou, Yang, Yuan, Asiri, Wakeel, Wang (bib10) 2017; 10 Zeng, Ong, Zheng, Wu, Chen, Peng, Han (bib18) 2017; 5 Liu, Liu, Liu, Han, Zhang, Huang, Lifshitz, Lee, Zhong, Kang (bib8) 2015; 347 Wu, Li, Zhang (bib50) 2015; 324 Xu, Hu, Wang, Li, Zhang, Luo, Yu, Jiang (bib57) 2015; 137 Gao, Wang, Xu, Xiong (bib55) 2017; 46 Qin, Wang, Ren, Hou, Wang (bib47) 2015; 179 Liu, Wang, Antonietti (bib31) 2016; 45 Ke, Liu, Sun, Zhang, Duan, Liang, Li, Tade, Liu, Wang (bib60) 2017; 200 Che, Cheng, Yao, Tang, Liu, Su, Huang, Liu, Liu, Hu, Pan, Sun, Wei (bib9) 2017; 139 Du, Sanvito, Li, Wang, Jiao, Liao, Sun, Ng, Zhu, Amal, Smith (bib3) 2012; 134 Zhang, Zhang, Ye, Qiu, Lin, Wang (bib24) 2014; 26 Kang, Watanabe, Broch, Sepe, Brown, Nasrallah, Nikolka, Fei, Heeney, Matsumoto, Marumoto, Tanaka, Kuroda, Sirringhaus (bib59) 2016; 15 Wang, Wang, Antonietti (bib7) 2012; 51 Zeng, Xu, Ong, Xu, Ren, Chen, Zheng, Peng (bib17) 2018; 221 Ho, Zhang, Lin, Huang, Zhang, Wang, Huang (bib16) 2015; 7 Li, Zhang (bib36) 2018 Li, Su, Zhang (bib27) 2016; 375 Cheng, Sun, Fan, Liu, Zhang, Fang (bib40) 2015; 170–171 Guo, Chu, Yan, Wang, Zou (bib39) 2010; 46 Bhunia, Melissen, Parida, Sarawade, Basset, Anjum, Mohammed, Sautet, Bahers, Takanabe (bib54) 2015; 27 Pan, Zheng, Guo, Niu, Wang (bib20) 2017; 10 Zhang, Chen, Wang (bib6) 2015; 8 Li, Cui, Sun, Chu, Cen, Dong (bib5) 2017; 5 Kumar, Kumar, Borkar, Bansiwal, Labhsetwar, Jain (bib49) 2017; 123 Fan, Zhang, Cheng, Wang, Li, Zhou, Shi (bib46) 2015; 5 She, Wu, Xu, Mo, Lian, Song, Liu, Du, Li (bib26) 2017; 202 Fan, Zhang, Wang, Huang, Zhou, Li, Cheng, Shi (bib53) 2016; 182 Patnaik, Martha, Acharya, Parida (bib29) 2016; 3 Zhang, Zhang, Lin, Fu, Wang (bib38) 2014; 310 Xiao, Zhang (bib62) 2017; 252 Chen, Yang, Wang, Zhao, Wang (bib51) 2017; 205 Zhang, Ling, Gao, Wang, Li, J (bib61) 2013; 1 Zhang, Zhang, Chen, Lin, Möhlmann, Dołęga, Lipner, Antonietti, Blechert, Wang (bib32) 2012; 124 Algara-Siller, Severin, Chong, Björkan, Palgrave, Laybourn, Antonietti, Khimyak, Krasheninnikov, Rabe, Kaiser, Cooper, Thomas, Bojdys (bib2) 2014; 53 Lan, Zhang, Wang (bib23) 2016; 192 Hong, Li, Fang, Luo, Shi (bib52) 2017; 121 Li, Lee, Park, Lee, Park, Shin, Hou, Yu (bib41) 2018; 129 Qiu, Xu, Chen, Jiang, Wang, Lu, Zhang (bib58) 2017; 206 Becke (bib37) 1993; 98 Yang, Guo, Zhang, Li (bib44) 2017; 117 Zhang, Wang (bib34) 2013; 307 Kessler, Zheng, Schwarz, Merschjann, Schnick, Wang, Bojdys (bib4) 2017; 2 Zeng, Ong, Chen, Tee, Chua, Peng, Han (bib11) 2018; 35 Tang, Jia, Xue, Li, Wang, Xu, Liu, Wu (bib25) 2017; 219 Tian, Zhang, Fan, Zhou, Wang, Cheng, Li, Kan, Jin, Liu, Gao, Shi (bib33) 2016; 4 Su, Zhang (bib15) 2017; 12 Dong (10.1016/j.carbon.2018.03.089_bib21) 2012; 48 Ong (10.1016/j.carbon.2018.03.089_bib30) 2016; 116 Li (10.1016/j.carbon.2018.03.089_bib36) 2018 Tian (10.1016/j.carbon.2018.03.089_bib33) 2016; 4 Xiao (10.1016/j.carbon.2018.03.089_bib62) 2017; 252 Ong (10.1016/j.carbon.2018.03.089_bib19) 2017; 10 Li (10.1016/j.carbon.2018.03.089_bib14) 2016; 8 Zeng (10.1016/j.carbon.2018.03.089_bib17) 2018; 221 Kang (10.1016/j.carbon.2018.03.089_bib59) 2016; 15 Zhang (10.1016/j.carbon.2018.03.089_bib38) 2014; 310 Li (10.1016/j.carbon.2018.03.089_bib27) 2016; 375 Becke (10.1016/j.carbon.2018.03.089_bib37) 1993; 98 Li (10.1016/j.carbon.2018.03.089_bib5) 2017; 5 Patnaik (10.1016/j.carbon.2018.03.089_bib29) 2016; 3 Ong (10.1016/j.carbon.2018.03.089_bib12) 2017; 4 Ho (10.1016/j.carbon.2018.03.089_bib16) 2015; 7 She (10.1016/j.carbon.2018.03.089_bib26) 2017; 202 Lan (10.1016/j.carbon.2018.03.089_bib23) 2016; 192 Che (10.1016/j.carbon.2018.03.089_bib9) 2017; 139 Niu (10.1016/j.carbon.2018.03.089_bib45) 2012; 22 Liu (10.1016/j.carbon.2018.03.089_bib31) 2016; 45 Fan (10.1016/j.carbon.2018.03.089_bib46) 2015; 5 Zhang (10.1016/j.carbon.2018.03.089_bib35) 2014; 7 Zhang (10.1016/j.carbon.2018.03.089_bib6) 2015; 8 Su (10.1016/j.carbon.2018.03.089_bib15) 2017; 12 Zhang (10.1016/j.carbon.2018.03.089_bib32) 2012; 124 Gao (10.1016/j.carbon.2018.03.089_bib55) 2017; 46 Kang (10.1016/j.carbon.2018.03.089_bib56) 2016; 28 Liu (10.1016/j.carbon.2018.03.089_bib8) 2015; 347 Tang (10.1016/j.carbon.2018.03.089_bib25) 2017; 219 Li (10.1016/j.carbon.2018.03.089_bib28) 2016; 110 Zhang (10.1016/j.carbon.2018.03.089_bib61) 2013; 1 Wang (10.1016/j.carbon.2018.03.089_bib7) 2012; 51 Pan (10.1016/j.carbon.2018.03.089_bib20) 2017; 10 Ke (10.1016/j.carbon.2018.03.089_bib60) 2017; 200 Qin (10.1016/j.carbon.2018.03.089_bib47) 2015; 179 Bhunia (10.1016/j.carbon.2018.03.089_bib54) 2015; 27 Xu (10.1016/j.carbon.2018.03.089_bib57) 2015; 137 Algara-Siller (10.1016/j.carbon.2018.03.089_bib2) 2014; 53 Zeng (10.1016/j.carbon.2018.03.089_bib11) 2018; 35 Zeng (10.1016/j.carbon.2018.03.089_bib18) 2017; 5 Hong (10.1016/j.carbon.2018.03.089_bib52) 2017; 121 Kumar (10.1016/j.carbon.2018.03.089_bib49) 2017; 123 Du (10.1016/j.carbon.2018.03.089_bib3) 2012; 134 Fan (10.1016/j.carbon.2018.03.089_bib53) 2016; 182 Zhang (10.1016/j.carbon.2018.03.089_bib24) 2014; 26 Li (10.1016/j.carbon.2018.03.089_bib41) 2018; 129 Chen (10.1016/j.carbon.2018.03.089_bib51) 2017; 205 Qiu (10.1016/j.carbon.2018.03.089_bib58) 2017; 206 Wang (10.1016/j.carbon.2018.03.089_bib22) 2015; 176–177 Yang (10.1016/j.carbon.2018.03.089_bib44) 2017; 117 Zhou (10.1016/j.carbon.2018.03.089_bib10) 2017; 10 Cheng (10.1016/j.carbon.2018.03.089_bib40) 2015; 170–171 Guo (10.1016/j.carbon.2018.03.089_bib39) 2010; 46 Wang (10.1016/j.carbon.2018.03.089_bib1) 2009; 8 Qiao (10.1016/j.carbon.2018.03.089_bib13) 2016; 106 Su (10.1016/j.carbon.2018.03.089_bib42) 2017; 432 Yu (10.1016/j.carbon.2018.03.089_bib43) 2017; 5 Kessler (10.1016/j.carbon.2018.03.089_bib4) 2017; 2 Zhang (10.1016/j.carbon.2018.03.089_bib34) 2013; 307 Wu (10.1016/j.carbon.2018.03.089_bib50) 2015; 324 Wu (10.1016/j.carbon.2018.03.089_bib48) 2014; 7 |
References_xml | – volume: 200 start-page: 47 year: 2017 end-page: 55 ident: bib60 article-title: Facile assembly of Bi publication-title: Appl. Catal. B Environ. – volume: 22 start-page: 4763 year: 2012 end-page: 4770 ident: bib45 article-title: Graphene-like carbon nitride nanosheets for improved photocatalytic activities publication-title: Adv. Funct. Mater. – volume: 347 start-page: 970 year: 2015 end-page: 974 ident: bib8 article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway publication-title: Science – volume: 117 start-page: 120 year: 2017 end-page: 125 ident: bib44 article-title: Tuning the electronic and magnetic properties of porous graphene-like carbon nitride through 3 publication-title: Carbon – volume: 51 start-page: 68 year: 2012 end-page: 89 ident: bib7 article-title: Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry publication-title: Angew. Chem. Int. Ed. – volume: 375 start-page: 110 year: 2016 end-page: 117 ident: bib27 article-title: Modification of g-C publication-title: Appl. Surf. Sci. – volume: 179 start-page: 1 year: 2015 end-page: 8 ident: bib47 article-title: Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid publication-title: Appl. Catal. B Environ. – volume: 46 year: 2017 ident: bib55 article-title: Coordination chemistry in the design of heterogeneous photocatalysts publication-title: Chem. Soc. Rev. – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: bib1 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. – volume: 134 start-page: 4393 year: 2012 end-page: 4397 ident: bib3 article-title: Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 17199 year: 2017 end-page: 17203 ident: bib43 article-title: Aromatic ring substituted g-C publication-title: J. Mater. Chem. – volume: 28 start-page: 6471 year: 2016 end-page: 6477 ident: bib56 article-title: Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis publication-title: Adv. Mater. – volume: 4 start-page: 13814 year: 2016 end-page: 13821 ident: bib33 article-title: A post-grafting strategy to modify g-C publication-title: J. Mater. Chem. – volume: 139 start-page: 3021 year: 2017 end-page: 3026 ident: bib9 article-title: Fast photoelectron transfer in (C publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 11 year: 2017 ident: bib12 article-title: 2D/2D graphitic carbon nitride (g-C publication-title: Frontiers in Materials – volume: 124 start-page: 3237 year: 2012 end-page: 3241 ident: bib32 article-title: Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light publication-title: Angew. Chem. Int. Ed. – volume: 182 start-page: 68 year: 2016 end-page: 73 ident: bib53 article-title: Constructing carbon-nitride-based copolymers via Schiff base chemistry for visible-light photocatalytic hydrogen evolution publication-title: Appl. Catal. B Environ. – volume: 12 start-page: 515 year: 2017 end-page: 523 ident: bib15 article-title: Carbonyl-grafted g-C publication-title: Chem. Asian J. – volume: 7 start-page: 2654 year: 2014 end-page: 2658 ident: bib48 article-title: Synthesis of potassium-modified graphitic carbon nitride with high photocatalytic activity for hydrogen evolution publication-title: ChemSusChem – volume: 27 start-page: 8237 year: 2015 end-page: 8247 ident: bib54 article-title: Dendritic tip-on polytriazine-based carbon nitride photocatalyst with high hydrogen evolution activity publication-title: Chem. Mater. – volume: 219 start-page: 241 year: 2017 end-page: 248 ident: bib25 article-title: Fabrication of compressible and recyclable macroscopic g-C publication-title: Appl. Catal. B Environ. – volume: 7 start-page: 5497 year: 2015 end-page: 5505 ident: bib16 article-title: Copolymerization with 2, 4, 6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C publication-title: ACS Appl. Mater. Interfaces – volume: 205 start-page: 133 year: 2017 end-page: 147 ident: bib51 article-title: Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C publication-title: Appl. Catal. B Environ. – volume: 176–177 start-page: 44 year: 2015 end-page: 52 ident: bib22 article-title: Sulfur-doped g-C publication-title: Appl. Catal. B Environ. – volume: 170–171 start-page: 10 year: 2015 end-page: 16 ident: bib40 article-title: Textural and electronic structure engineering of carbon nitride via doping with π-deficient aromatic pyridine ring for improving photocatalytic activity publication-title: Appl. Catal. B Environ. – volume: 252 start-page: 416 year: 2017 end-page: 423 ident: bib62 article-title: MoS publication-title: Electrochim. Acta – start-page: 1703599 year: 2018 ident: bib36 article-title: Creating graphitic carbon nitride based Donor-π-Acceptor-π-Donor structured catalysts for highly photocatalytic hydrogen evolution publication-title: Small – volume: 45 start-page: 2308 year: 2016 end-page: 2326 ident: bib31 article-title: Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis publication-title: Chem. Soc. Rev. – volume: 123 start-page: 371 year: 2017 end-page: 379 ident: bib49 article-title: Metal-organic hybrid: photoreduction of CO publication-title: Carbon – volume: 324 start-page: 324 year: 2015 end-page: 331 ident: bib50 article-title: On the heterostructured photocatalysts Ag publication-title: Appl. Surf. Sci. – volume: 206 start-page: 319 year: 2017 end-page: 327 ident: bib58 article-title: One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: role of oxygen on visible light photocatalytic activity publication-title: Appl. Catal. B Environ. – volume: 137 start-page: 13440 year: 2015 end-page: 13443 ident: bib57 article-title: Visible-light photoreduction of CO publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 16171 year: 2017 end-page: 16178 ident: bib18 article-title: Ni publication-title: J. Mater. Chem. – volume: 53 start-page: 7450 year: 2014 end-page: 7455 ident: bib2 article-title: Triazine-based graphitic carbon nitride: a two-dimensional semiconductor publication-title: Angew. Chem. Int. Ed. – volume: 10 start-page: 87 year: 2017 end-page: 90 ident: bib20 article-title: Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers publication-title: ChemSusChem – volume: 129 start-page: 637 year: 2018 end-page: 645 ident: bib41 article-title: Conjugated polyene-functionalized graphitic carbon nitride with enhanced photocatalytic water-splitting efficiency publication-title: Carbon – volume: 15 start-page: 896 year: 2016 end-page: 902 ident: bib59 article-title: 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion publication-title: Nat. Mater. – volume: 116 start-page: 7159 year: 2016 end-page: 7329 ident: bib30 article-title: Graphitic carbon nitride (g-C publication-title: Chem. Rev. – volume: 3 start-page: 336 year: 2016 end-page: 347 ident: bib29 article-title: An overview of the modification of g-C publication-title: Inorg. Chem. Front – volume: 7 start-page: 1902 year: 2014 end-page: 1906 ident: bib35 article-title: Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution publication-title: Energy Environ. Sci. – volume: 1 start-page: 10677 year: 2013 end-page: 10685 ident: bib61 article-title: Enhanced photoelectrochemical water splitting on novel nanoflake WO publication-title: J. Mater. Chem. – volume: 8 start-page: 3092 year: 2015 end-page: 3108 ident: bib6 article-title: Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications publication-title: Energy Environ. Sci. – volume: 35 start-page: 1700251 year: 2018 ident: bib11 article-title: Co publication-title: Part. Part. Syst. Char. – volume: 307 start-page: 246 year: 2013 end-page: 253 ident: bib34 article-title: A facile synthesis of covalent carbon nitride photocatalysts by co-polymerization of urea and phenylurea for hydrogen evolution publication-title: J. Catal. – volume: 98 start-page: 5648 year: 1993 end-page: 5652 ident: bib37 article-title: Density-functional thermochemistry. III. The role of exact exchange publication-title: J. Chem. Phys. – volume: 10 start-page: 4451 year: 2017 end-page: 4456 ident: bib10 article-title: Modulating crystallinity of graphitic carbon nitride for photocatalytic oxidation of alcohols publication-title: ChemSusChem – volume: 202 start-page: 112 year: 2017 end-page: 117 ident: bib26 article-title: Enhancing charge density and steering charge unidirectional flow in 2D non-metallic semiconductor-CNTs-metal coupled photocatalyst for solar energy conversion publication-title: Appl. Catal. B Environ. – volume: 46 start-page: 7325 year: 2010 end-page: 7327 ident: bib39 article-title: Developing a polymeric semiconductor photocatalyst with visible light response publication-title: Chem. Commun. – volume: 221 start-page: 47 year: 2018 end-page: 55 ident: bib17 article-title: Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: monodisperse sub-15 nm Ni publication-title: Appl. Catal. B Environ. – volume: 192 start-page: 116 year: 2016 end-page: 125 ident: bib23 article-title: A facile synthesis of Br-modified g-C publication-title: Appl. Catal. B Environ. – volume: 26 start-page: 805 year: 2014 end-page: 809 ident: bib24 article-title: Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution publication-title: Adv. Mater. – volume: 10 start-page: 1673 year: 2017 end-page: 1696 ident: bib19 article-title: Unravelling charge Carrier dynamics in protonated g-C publication-title: Nano Res. – volume: 5 start-page: 5008 year: 2015 end-page: 5015 ident: bib46 article-title: Construction of graphitic-C publication-title: ACS Catal. – volume: 121 start-page: 463 year: 2017 end-page: 471 ident: bib52 article-title: Rational synthesis of ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution publication-title: Carbon – volume: 2 start-page: 17030 year: 2017 ident: bib4 article-title: Functional carbon nitride materials-design strategies for electrochemical devices publication-title: Nat. Rev. Mater – volume: 48 start-page: 6178 year: 2012 end-page: 6180 ident: bib21 article-title: Carbon self-doping induced high electronic conductivity and photoreactivity of g-C publication-title: Chem. Commun. – volume: 110 start-page: 356 year: 2016 end-page: 366 ident: bib28 article-title: Photocatalysts based on g-C publication-title: Carbon – volume: 5 start-page: 9358 year: 2017 end-page: 9364 ident: bib5 article-title: Directional electron delivery via a vertical channel between g-C publication-title: J. Mater. Chem. – volume: 432 start-page: 64 year: 2017 end-page: 75 ident: bib42 article-title: Creating distortion in g-C publication-title: Mol. Catal – volume: 106 start-page: 320 year: 2016 end-page: 329 ident: bib13 article-title: Pore confinement effects and stabilization of carbon nitride oligomers in macroporous silica for photocatalytic hydrogen production publication-title: Carbon – volume: 8 start-page: 2128 year: 2016 end-page: 2135 ident: bib14 article-title: Porous graphitic carbon nitride derived from melamine–ammonium oxalate stacking sheets with excellent photocatalytic hydrogen evolution activity publication-title: ChemCatChem – volume: 310 start-page: 24 year: 2014 end-page: 30 ident: bib38 article-title: Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity publication-title: J. Catal. – volume: 1 start-page: 10677 year: 2013 ident: 10.1016/j.carbon.2018.03.089_bib61 article-title: Enhanced photoelectrochemical water splitting on novel nanoflake WO3 electrodes by dealloying of amorphous Fe-W alloys publication-title: J. Mater. Chem. doi: 10.1039/c3ta12273e – volume: 7 start-page: 2654 year: 2014 ident: 10.1016/j.carbon.2018.03.089_bib48 article-title: Synthesis of potassium-modified graphitic carbon nitride with high photocatalytic activity for hydrogen evolution publication-title: ChemSusChem doi: 10.1002/cssc.201402180 – volume: 134 start-page: 4393 year: 2012 ident: 10.1016/j.carbon.2018.03.089_bib3 article-title: Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211637p – volume: 221 start-page: 47 year: 2018 ident: 10.1016/j.carbon.2018.03.089_bib17 article-title: Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: monodisperse sub-15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.08.041 – volume: 3 start-page: 336 year: 2016 ident: 10.1016/j.carbon.2018.03.089_bib29 article-title: An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications publication-title: Inorg. Chem. Front doi: 10.1039/C5QI00255A – volume: 53 start-page: 7450 year: 2014 ident: 10.1016/j.carbon.2018.03.089_bib2 article-title: Triazine-based graphitic carbon nitride: a two-dimensional semiconductor publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402191 – volume: 192 start-page: 116 year: 2016 ident: 10.1016/j.carbon.2018.03.089_bib23 article-title: A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.03.062 – volume: 28 start-page: 6471 year: 2016 ident: 10.1016/j.carbon.2018.03.089_bib56 article-title: Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201601567 – volume: 375 start-page: 110 year: 2016 ident: 10.1016/j.carbon.2018.03.089_bib27 article-title: Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.03.025 – volume: 219 start-page: 241 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib25 article-title: Fabrication of compressible and recyclable macroscopic g-C3N4/GO aerogel hybrids for visible-light harvesting: a promising strategy for water remediation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.07.053 – volume: 116 start-page: 7159 year: 2016 ident: 10.1016/j.carbon.2018.03.089_bib30 article-title: Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00075 – volume: 123 start-page: 371 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib49 article-title: Metal-organic hybrid: photoreduction of CO2 using graphitic carbon nitride supported heteroleptic iridium complex under visible light irradiation publication-title: Carbon doi: 10.1016/j.carbon.2017.07.080 – volume: 8 start-page: 2128 year: 2016 ident: 10.1016/j.carbon.2018.03.089_bib14 article-title: Porous graphitic carbon nitride derived from melamine–ammonium oxalate stacking sheets with excellent photocatalytic hydrogen evolution activity publication-title: ChemCatChem doi: 10.1002/cctc.201600272 – volume: 5 start-page: 9358 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib5 article-title: Directional electron delivery via a vertical channel between g-C3N4 layers promotes photocatalytic efficiency publication-title: J. Mater. Chem. doi: 10.1039/C7TA02183F – volume: 98 start-page: 5648 year: 1993 ident: 10.1016/j.carbon.2018.03.089_bib37 article-title: Density-functional thermochemistry. III. The role of exact exchange publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 46 start-page: 7325 year: 2010 ident: 10.1016/j.carbon.2018.03.089_bib39 article-title: Developing a polymeric semiconductor photocatalyst with visible light response publication-title: Chem. Commun. doi: 10.1039/c0cc02355h – volume: 252 start-page: 416 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib62 article-title: MoS2 quantum dots interspersed WO3 nanoplatelet arrays with enhanced photoelectrochemical activity publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.09.011 – volume: 124 start-page: 3237 year: 2012 ident: 10.1016/j.carbon.2018.03.089_bib32 article-title: Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201106656 – volume: 4 start-page: 11 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib12 article-title: 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: why does face-to-face interface matter? publication-title: Frontiers in Materials doi: 10.3389/fmats.2017.00011 – volume: 10 start-page: 1673 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib19 article-title: Unravelling charge Carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: a combined experimental and first-principles DFT study publication-title: Nano Res. doi: 10.1007/s12274-016-1391-4 – volume: 10 start-page: 87 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib20 article-title: Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers publication-title: ChemSusChem doi: 10.1002/cssc.201600850 – volume: 182 start-page: 68 year: 2016 ident: 10.1016/j.carbon.2018.03.089_bib53 article-title: Constructing carbon-nitride-based copolymers via Schiff base chemistry for visible-light photocatalytic hydrogen evolution publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.09.006 – volume: 51 start-page: 68 year: 2012 ident: 10.1016/j.carbon.2018.03.089_bib7 article-title: Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201101182 – volume: 117 start-page: 120 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib44 article-title: Tuning the electronic and magnetic properties of porous graphene-like carbon nitride through 3d transition-metal doping publication-title: Carbon doi: 10.1016/j.carbon.2017.02.069 – volume: 205 start-page: 133 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib51 article-title: Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.12.017 – volume: 27 start-page: 8237 year: 2015 ident: 10.1016/j.carbon.2018.03.089_bib54 article-title: Dendritic tip-on polytriazine-based carbon nitride photocatalyst with high hydrogen evolution activity publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b02974 – volume: 179 start-page: 1 year: 2015 ident: 10.1016/j.carbon.2018.03.089_bib47 article-title: Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.05.005 – volume: 7 start-page: 5497 year: 2015 ident: 10.1016/j.carbon.2018.03.089_bib16 article-title: Copolymerization with 2, 4, 6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C3N4 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am509213x – volume: 206 start-page: 319 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib58 article-title: One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: role of oxygen on visible light photocatalytic activity publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.01.058 – volume: 307 start-page: 246 year: 2013 ident: 10.1016/j.carbon.2018.03.089_bib34 article-title: A facile synthesis of covalent carbon nitride photocatalysts by co-polymerization of urea and phenylurea for hydrogen evolution publication-title: J. Catal. doi: 10.1016/j.jcat.2013.07.026 – volume: 202 start-page: 112 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib26 article-title: Enhancing charge density and steering charge unidirectional flow in 2D non-metallic semiconductor-CNTs-metal coupled photocatalyst for solar energy conversion publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.09.013 – volume: 170–171 start-page: 10 year: 2015 ident: 10.1016/j.carbon.2018.03.089_bib40 article-title: Textural and electronic structure engineering of carbon nitride via doping with π-deficient aromatic pyridine ring for improving photocatalytic activity publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.01.024 – volume: 139 start-page: 3021 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib9 article-title: Fast photoelectron transfer in (Cring)-C3N4 plane heterostructural nanosheets for overall water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11878 – volume: 121 start-page: 463 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib52 article-title: Rational synthesis of ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution publication-title: Carbon doi: 10.1016/j.carbon.2017.06.020 – volume: 26 start-page: 805 year: 2014 ident: 10.1016/j.carbon.2018.03.089_bib24 article-title: Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201303611 – volume: 4 start-page: 13814 year: 2016 ident: 10.1016/j.carbon.2018.03.089_bib33 article-title: A post-grafting strategy to modify g-C3N4 with aromatic heterocycles for enhanced photocatalytic activity publication-title: J. Mater. Chem. doi: 10.1039/C6TA04297J – volume: 110 start-page: 356 year: 2016 ident: 10.1016/j.carbon.2018.03.089_bib28 article-title: Photocatalysts based on g-C3N4-encapsulating carbon spheres with high visible light activity for photocatalytic hydrogen evolution publication-title: Carbon doi: 10.1016/j.carbon.2016.09.039 – volume: 46 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib55 article-title: Coordination chemistry in the design of heterogeneous photocatalysts publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00727A – volume: 5 start-page: 5008 year: 2015 ident: 10.1016/j.carbon.2018.03.089_bib46 article-title: Construction of graphitic-C3N4-based intramolecular donor-acceptor conjugated copolymers for photocatalytic hydrogen evolution publication-title: ACS Catal. doi: 10.1021/acscatal.5b01155 – volume: 432 start-page: 64 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib42 article-title: Creating distortion in g-C3N4 framework by incorporation of ethylenediaminetetramethylene for enhancing photocatalytic generation of hydrogen publication-title: Mol. Catal doi: 10.1016/j.mcat.2017.02.011 – volume: 347 start-page: 970 year: 2015 ident: 10.1016/j.carbon.2018.03.089_bib8 article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway publication-title: Science doi: 10.1126/science.aaa3145 – volume: 12 start-page: 515 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib15 article-title: Carbonyl-grafted g-C3N4 porous nanosheets for efficient photocatalytic hydrogen evolution publication-title: Chem. Asian J. doi: 10.1002/asia.201601518 – volume: 324 start-page: 324 year: 2015 ident: 10.1016/j.carbon.2018.03.089_bib50 article-title: On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.10.161 – volume: 8 start-page: 3092 year: 2015 ident: 10.1016/j.carbon.2018.03.089_bib6 article-title: Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01895A – volume: 45 start-page: 2308 year: 2016 ident: 10.1016/j.carbon.2018.03.089_bib31 article-title: Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00767D – volume: 35 start-page: 1700251 year: 2018 ident: 10.1016/j.carbon.2018.03.089_bib11 article-title: Co2P nanorods as an efficient cocatalyst decorated porous g-C3N4 nanosheets for photocatalytic hydrogen production under visible light irradiation publication-title: Part. Part. Syst. Char. doi: 10.1002/ppsc.201700251 – volume: 129 start-page: 637 year: 2018 ident: 10.1016/j.carbon.2018.03.089_bib41 article-title: Conjugated polyene-functionalized graphitic carbon nitride with enhanced photocatalytic water-splitting efficiency publication-title: Carbon doi: 10.1016/j.carbon.2017.12.048 – volume: 10 start-page: 4451 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib10 article-title: Modulating crystallinity of graphitic carbon nitride for photocatalytic oxidation of alcohols publication-title: ChemSusChem doi: 10.1002/cssc.201701392 – volume: 310 start-page: 24 year: 2014 ident: 10.1016/j.carbon.2018.03.089_bib38 article-title: Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity publication-title: J. Catal. doi: 10.1016/j.jcat.2013.01.008 – volume: 15 start-page: 896 year: 2016 ident: 10.1016/j.carbon.2018.03.089_bib59 article-title: 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion publication-title: Nat. Mater. doi: 10.1038/nmat4634 – volume: 106 start-page: 320 year: 2016 ident: 10.1016/j.carbon.2018.03.089_bib13 article-title: Pore confinement effects and stabilization of carbon nitride oligomers in macroporous silica for photocatalytic hydrogen production publication-title: Carbon doi: 10.1016/j.carbon.2016.05.039 – volume: 5 start-page: 17199 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib43 article-title: Aromatic ring substituted g-C3N4 for enhanced photocatalytic hydrogen evolution publication-title: J. Mater. Chem. doi: 10.1039/C7TA05744J – volume: 5 start-page: 16171 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib18 article-title: Ni12P5 nanoparticles embedded into porous g-C3N4 nanosheets as a noble-metal-free hetero-structure photocatalyst for efficient H2 production under visible light publication-title: J. Mater. Chem. doi: 10.1039/C7TA04816E – start-page: 1703599 year: 2018 ident: 10.1016/j.carbon.2018.03.089_bib36 article-title: Creating graphitic carbon nitride based Donor-π-Acceptor-π-Donor structured catalysts for highly photocatalytic hydrogen evolution publication-title: Small doi: 10.1002/smll.201703599 – volume: 176–177 start-page: 44 year: 2015 ident: 10.1016/j.carbon.2018.03.089_bib22 article-title: Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance publication-title: Appl. Catal. B Environ. – volume: 7 start-page: 1902 year: 2014 ident: 10.1016/j.carbon.2018.03.089_bib35 article-title: Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution publication-title: Energy Environ. Sci. doi: 10.1039/c3ee44189j – volume: 200 start-page: 47 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib60 article-title: Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.06.071 – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.carbon.2018.03.089_bib1 article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 2 start-page: 17030 year: 2017 ident: 10.1016/j.carbon.2018.03.089_bib4 article-title: Functional carbon nitride materials-design strategies for electrochemical devices publication-title: Nat. Rev. Mater doi: 10.1038/natrevmats.2017.30 – volume: 48 start-page: 6178 year: 2012 ident: 10.1016/j.carbon.2018.03.089_bib21 article-title: Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4 publication-title: Chem. Commun. doi: 10.1039/c2cc32181e – volume: 137 start-page: 13440 year: 2015 ident: 10.1016/j.carbon.2018.03.089_bib57 article-title: Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08773 – volume: 22 start-page: 4763 year: 2012 ident: 10.1016/j.carbon.2018.03.089_bib45 article-title: Graphene-like carbon nitride nanosheets for improved photocatalytic activities publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200922 |
SSID | ssj0004814 |
Score | 2.5963693 |
Snippet | Polycyclic aromatic compounds with strong conjugated effect, possess the advantage of improving electronic polarizability, thus accelerating the electron... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 134 |
SubjectTerms | Aromatic compounds Benzoic acid Carbon Carbon nitride Charge efficiency Charge transfer Chemical compounds Chemical energy Conjugated effect Copolymerization Copolymers Current carriers Electromagnetic absorption Electron recombination electron transfer electrons Energy conversion graphene Graphitic carbon nitride Hydrogen Hydrogen evolution hydrogen production Naphthalene Organic chemistry Photocatalysis Photocatalysts Polycyclic aromatic compounds Polycyclic aromatic hydrocarbons polycyclic compounds Quantum efficiency urea Water splitting |
Title | Polycyclic aromatic compounds-modified graphitic carbon nitride for efficient visible-light-driven hydrogen evolution |
URI | https://dx.doi.org/10.1016/j.carbon.2018.03.089 https://www.proquest.com/docview/2089193423 https://www.proquest.com/docview/2220900206 |
Volume | 134 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT1xfRPBa7SZpmx5lUVZF8aDgLeRVrJSt1F1hL_52Z9JWUQTBY5uEppPJzBcy8w0hx9IneTp0GIfDTSS08ZFklkWeWaOlkJ6FkP-b23T8IK4ek8cFMupzYTCssrP9rU0P1rp7c9pJ8_SlLDHHF-E4Q6WMuQiMn0JkqOUn719hHkK2_N54zY-9-_S5EONldWNqZEEdykB1isXef3dPPwx18D4Xa2S1g430rJ3ZOlnwkw2yPOqrtW2S2V1dze3cVqWluqkDESvFeHEsmwTH2dqVBaBNGgiqy9AYZkVhSzel8xTAK_WBTwLcEMWUc1P5qAo8I65Bm0if5q6pQeGof-sUdos8XJzfj8ZRV1IhsiKLp5GWcS6LLPc2FQUWsLO6AI8OuxCACZPgrE2SOThCWZ4ILZ2B_R-7jOemSJgRBd8mi5N64ncI1cJkQ8u9zgFSIelL4mzKU21SwIA5YwPCe0kq2_GNY9mLSvWBZc-q_VOF8lcxVyD_AYk-R720fBt_9M_6RVLf9EaBS_hj5H6_pqrbt6_QLnOAtIAxB-TosxmWEq9R9MTXM-jDWJwjzE53__3xPbKCT20k4T5ZnDYzfwDoZmoOg_oekqWzy-vx7Qcu0fsL |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7C5pBeSp9027RVoVcTryTb8jEsDZsmWXpIIDehl6mLWQdnt7D_vjOynNJSCPTqsbA8Gs18QjPfAHxWoajLhac8HGEzaWzIFHc8C9xZo6QKPKb8X63L1Y38elvcHsByqoWhtMrk-0efHr11enKStHly17ZU40twnJNR5kIS4-chsVMVMzg8Pb9YrX-XR6qR4ptu-mnAVEEX07ycGWxPRKgLFdlOqd_7vyPUX746BqCzZ_A0IUd2Ok7uORyEzQs4Wk4N217C7lvf7d3eda1jZugjFyujlHHqnIQn2t63DQJOFjmq2yiMs2K4q4fWB4b4lYVIKYGRiFHVue1C1kWqET-QW2Tf937o0eZY-Jls9hXcnH25Xq6y1FUhc7LKt5lRea2aqg6ulA31sHOmwaCOGxGxCVcYr21ReTxFOVFIo7xFF5D7StS2KbiVjXgNs02_CW-AGWmrhRPB1IiqiPel8K4UpbElwsCa8zmISZPaJcpx6nzR6Sm37Ice_1ST_nUuNOp_DtnDqLuRcuOR96tpkfQfpqMxKjwy8nhaU5227j3KVY2oFmHmHD49iHEp6SbFbEK_w3c4z2tC2uXb__74RzhaXV9d6svz9cU7eEKSMbHwGGbbYRfeI9jZ2g_JmH8Bwjz9vA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polycyclic+aromatic+compounds-modified+graphitic+carbon+nitride+for+efficient+visible-light-driven+hydrogen+evolution&rft.jtitle=Carbon+%28New+York%29&rft.au=Li%2C+Kui&rft.au=Sun%2C+Miao&rft.au=Zhang%2C+Wei-De&rft.date=2018-08-01&rft.issn=0008-6223&rft.volume=134+p.134-144&rft.spage=134&rft.epage=144&rft_id=info:doi/10.1016%2Fj.carbon.2018.03.089&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |