Polycyclic aromatic compounds-modified graphitic carbon nitride for efficient visible-light-driven hydrogen evolution

Polycyclic aromatic compounds with strong conjugated effect, possess the advantage of improving electronic polarizability, thus accelerating the electron transportation. Here, a facile copolymerization between urea and polycyclic aromatic compounds (benzoic acid, naphthoic acid and anthroic acid) ha...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 134; pp. 134 - 144
Main Authors Li, Kui, Sun, Miao, Zhang, Wei-De
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 01.08.2018
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Polycyclic aromatic compounds with strong conjugated effect, possess the advantage of improving electronic polarizability, thus accelerating the electron transportation. Here, a facile copolymerization between urea and polycyclic aromatic compounds (benzoic acid, naphthoic acid and anthroic acid) has been applied to constructing aromatic rings-grafted graphitic carbon nitride (GCN) photocatalysts. Incorporation of aromatic rings in the GCN network is an effective protocol to extend its π-conjugated system for visible light harvesting and improves the charge transfer efficiency for prolonging lifetime of photogenerated charge carriers in photocatalytic reactions. The corresponding characterization methods demonstrate that the aromatic rings-modified GCN can effectively narrow the bandgap to favor broad band visible light absorption and suppress recombination of electrons and holes. Remarkably, the moderate conjugated effect of aromatic rings (naphthalene) is crucial to promote charge separation. The developed naphthalene-grafted GCN achieves the highest water splitting performance with hydrogen evolution rate up to 102.1 μmol h−1, nearly 3.5 times of that of the GCN, and apparent quantum efficiency reaches 5.6% at 450 nm. This finding reveals that the conjugated effect of aromatic rings is significant to control photocatalytic property and brings new ideas for designing aromatic system-modified GCN as highly active photocatalysts towards solar-to-chemical energy conversion. This study reports the preparation, characterization and photocatalytic activity of aromatic rings-grafted graphitic carbon nitride (GCN) photocatalysts, which display enhanced visible light absorption and improved separation of charge carriers due to the extended π-conjugated system, and thus the high hydrogen evolution rate. [Display omitted]
AbstractList Polycyclic aromatic compounds with strong conjugated effect, possess the advantage of improving electronic polarizability, thus accelerating the electron transportation. Here, a facile copolymerization between urea and polycyclic aromatic compounds (benzoic acid, naphthoic acid and anthroic acid) has been applied to constructing aromatic rings-grafted graphitic carbon nitride (GCN) photocatalysts. Incorporation of aromatic rings in the GCN network is an effective protocol to extend its π-conjugated system for visible light harvesting and improves the charge transfer efficiency for prolonging lifetime of photogenerated charge carriers in photocatalytic reactions. The corresponding characterization methods demonstrate that the aromatic rings-modified GCN can effectively narrow the bandgap to favor broad band visible light absorption and suppress recombination of electrons and holes. Remarkably, the moderate conjugated effect of aromatic rings (naphthalene) is crucial to promote charge separation. The developed naphthalene-grafted GCN achieves the highest water splitting performance with hydrogen evolution rate up to 102.1 μmol h−1, nearly 3.5 times of that of the GCN, and apparent quantum efficiency reaches 5.6% at 450 nm. This finding reveals that the conjugated effect of aromatic rings is significant to control photocatalytic property and brings new ideas for designing aromatic system-modified GCN as highly active photocatalysts towards solar-to-chemical energy conversion. This study reports the preparation, characterization and photocatalytic activity of aromatic rings-grafted graphitic carbon nitride (GCN) photocatalysts, which display enhanced visible light absorption and improved separation of charge carriers due to the extended π-conjugated system, and thus the high hydrogen evolution rate. [Display omitted]
Polycyclic aromatic compounds with strong conjugated effect, possess the advantage of improving electronic polarizability, thus accelerating the electron transportation. Here, a facile copolymerization between urea and polycyclic aromatic compounds (benzoic acid, naphthoic acid and anthroic acid) has been applied to constructing aromatic rings-grafted graphitic carbon nitride (GCN) photocatalysts. Incorporation of aromatic rings in the GCN network is an effective protocol to extend its π-conjugated system for visible light harvesting and improves the charge transfer efficiency for prolonging lifetime of photogenerated charge carriers in photocatalytic reactions. The corresponding characterization methods demonstrate that the aromatic rings-modified GCN can effectively narrow the bandgap to favor broad band visible light absorption and suppress recombination of electrons and holes. Remarkably, the moderate conjugated effect of aromatic rings (naphthalene) is crucial to promote charge separation. The developed naphthalene-grafted GCN achieves the highest water splitting performance with hydrogen evolution rate up to 102.1 μmol h−1, nearly 3.5 times of that of the GCN, and apparent quantum efficiency reaches 5.6% at 450 nm. This finding reveals that the conjugated effect of aromatic rings is significant to control photocatalytic property and brings new ideas for designing aromatic system-modified GCN as highly active photocatalysts towards solar-to-chemical energy conversion.
Polycyclic aromatic compounds with strong conjugated effect, possess the advantage of improving electronic polarizability, thus accelerating the electron transportation. Here, a facile copolymerization between urea and polycyclic aromatic compounds (benzoic acid, naphthoic acid and anthroic acid) has been applied to constructing aromatic rings-grafted graphitic carbon nitride (GCN) photocatalysts. Incorporation of aromatic rings in the GCN network is an effective protocol to extend its π-conjugated system for visible light harvesting and improves the charge transfer efficiency for prolonging lifetime of photogenerated charge carriers in photocatalytic reactions. The corresponding characterization methods demonstrate that the aromatic rings-modified GCN can effectively narrow the bandgap to favor broad band visible light absorption and suppress recombination of electrons and holes. Remarkably, the moderate conjugated effect of aromatic rings (naphthalene) is crucial to promote charge separation. The developed naphthalene-grafted GCN achieves the highest water splitting performance with hydrogen evolution rate up to 102.1 μmol h⁻¹, nearly 3.5 times of that of the GCN, and apparent quantum efficiency reaches 5.6% at 450 nm. This finding reveals that the conjugated effect of aromatic rings is significant to control photocatalytic property and brings new ideas for designing aromatic system-modified GCN as highly active photocatalysts towards solar-to-chemical energy conversion.
Author Li, Kui
Sun, Miao
Zhang, Wei-De
Author_xml – sequence: 1
  givenname: Kui
  surname: Li
  fullname: Li, Kui
– sequence: 2
  givenname: Miao
  surname: Sun
  fullname: Sun, Miao
– sequence: 3
  givenname: Wei-De
  orcidid: 0000-0003-2483-626X
  surname: Zhang
  fullname: Zhang, Wei-De
  email: zhangwd@scut.edu.cn
BookMark eNqFUU2P0zAQtdAi0V34BxwiceGSMP5o4nBAQiu-pJXgAGfL8Uc7VWIX26nUf4-75bQHOM2M5r03M29uyU2IwRHymkJHgfbvDp3RaYqhY0BlB7wDOT4jGyoH3nI50huyAQDZ9ozxF-Q250MthaRiQ9YfcT6bs5nRNDrFRZeamLgc4xpsbpdo0aOzzS7p4x4fm4-jmoAloXWNj6lx3qNBF0pzwozT7NoZd_vS2oQnF5r92aa4q4k7xXktGMNL8tzrObtXf-Md-fX508_7r-3D9y_f7j8-tEYMUFotYZR-GJ3phWfbAYz20NOx54KPTPY9nbaDpb0wfCu0tBMHCnbg4-S3bBKe35G3V91jir9Xl4taMBs3zzq4uGbFGIMRgEFfoW-eQA9xTaFup1i1k45cMF5R768ok2LOyXllsOjLSSVpnBUFdfmIOqirTeryEQVcVYlKFk_Ix4SLTuf_0T5caa46dUKXVL6YbZzF5ExRNuK_Bf4A5zmrPA
CitedBy_id crossref_primary_10_1016_j_cej_2023_142395
crossref_primary_10_1016_j_jcis_2019_10_050
crossref_primary_10_1016_j_jece_2023_111084
crossref_primary_10_1016_j_jallcom_2024_174491
crossref_primary_10_1016_j_carbon_2019_05_079
crossref_primary_10_1016_j_colsurfa_2022_129831
crossref_primary_10_1039_D1QI01122G
crossref_primary_10_1039_D4EN00218K
crossref_primary_10_1039_D2CY01598F
crossref_primary_10_1007_s11164_024_05460_w
crossref_primary_10_1016_j_apcatb_2020_119401
crossref_primary_10_1016_j_molstruc_2024_140321
crossref_primary_10_1021_acsami_1c02722
crossref_primary_10_1016_j_apcata_2021_118397
crossref_primary_10_1016_j_jphotochem_2020_112999
crossref_primary_10_1021_acscatal_3c03509
crossref_primary_10_1016_j_arabjc_2024_105808
crossref_primary_10_1016_j_apcatb_2022_121611
crossref_primary_10_1016_j_jhazmat_2019_01_082
crossref_primary_10_1016_j_renene_2021_06_066
crossref_primary_10_1016_j_cej_2020_127791
crossref_primary_10_1002_idm2_12024
crossref_primary_10_1016_j_jcis_2021_08_122
crossref_primary_10_1016_j_jece_2023_110282
crossref_primary_10_1016_j_jmst_2020_03_086
crossref_primary_10_1021_acs_jpcc_8b10252
crossref_primary_10_1016_j_fuel_2024_133513
crossref_primary_10_1016_j_renene_2020_09_040
crossref_primary_10_1016_j_seppur_2021_119443
crossref_primary_10_1016_j_apsusc_2018_10_152
crossref_primary_10_1016_j_ijhydene_2023_07_175
crossref_primary_10_1016_j_mcat_2021_111856
crossref_primary_10_1021_acsmaterialslett_2c00604
crossref_primary_10_1039_C9TA13513H
crossref_primary_10_1039_C9QI01128E
crossref_primary_10_1016_j_jcis_2022_10_073
crossref_primary_10_1016_j_jcis_2022_02_122
crossref_primary_10_1016_j_ijhydene_2024_10_078
crossref_primary_10_1016_j_jallcom_2023_172000
crossref_primary_10_1016_j_psep_2024_12_006
crossref_primary_10_3390_nano15050361
crossref_primary_10_1016_j_jhazmat_2021_126333
crossref_primary_10_1016_j_jcis_2022_02_093
crossref_primary_10_1016_j_jiec_2022_02_056
crossref_primary_10_1016_j_jhazmat_2020_123309
crossref_primary_10_1016_j_ijhydene_2023_09_269
crossref_primary_10_1016_j_matlet_2021_130068
crossref_primary_10_1016_j_surfin_2025_106050
crossref_primary_10_1039_D1CY01780B
crossref_primary_10_1016_j_scitotenv_2025_178743
crossref_primary_10_1021_acsami_9b15537
crossref_primary_10_1016_j_carbon_2024_119430
crossref_primary_10_1002_cctc_201901314
crossref_primary_10_1021_acsami_9b01704
crossref_primary_10_1016_j_cej_2019_122635
crossref_primary_10_1016_j_jcis_2019_10_088
crossref_primary_10_1007_s11270_023_06638_5
crossref_primary_10_1039_D3TA04906J
crossref_primary_10_1016_j_mcat_2021_111518
crossref_primary_10_1016_j_apcatb_2023_122933
crossref_primary_10_1016_j_jece_2020_104445
crossref_primary_10_1016_j_apcatb_2021_120433
crossref_primary_10_1016_j_desal_2025_118824
crossref_primary_10_1016_j_ijhydene_2019_12_168
crossref_primary_10_1039_D3CY00383C
crossref_primary_10_1016_j_renene_2020_04_086
crossref_primary_10_1016_j_jcis_2019_07_048
crossref_primary_10_1016_j_mtchem_2023_101643
crossref_primary_10_1016_j_cej_2019_122870
crossref_primary_10_1016_j_ijhydene_2024_07_209
crossref_primary_10_1016_j_cej_2023_146555
crossref_primary_10_1016_j_jphotochem_2019_02_006
crossref_primary_10_1016_j_seppur_2022_120464
crossref_primary_10_1039_D0RA02454F
crossref_primary_10_1039_D1SE00670C
crossref_primary_10_1016_j_apsusc_2022_154294
crossref_primary_10_3390_catal12091043
crossref_primary_10_1016_j_cej_2019_03_279
crossref_primary_10_1016_j_cej_2023_145468
crossref_primary_10_1016_S1872_2067_23_64602_9
crossref_primary_10_1016_j_jcis_2022_11_073
crossref_primary_10_1016_j_ijhydene_2019_07_067
crossref_primary_10_1016_j_jcis_2021_10_146
crossref_primary_10_1021_acsanm_3c04740
crossref_primary_10_1080_09593330_2023_2283799
crossref_primary_10_1016_j_apsusc_2019_143942
crossref_primary_10_1016_j_cej_2022_141029
crossref_primary_10_1039_D2CY00897A
crossref_primary_10_1016_j_fuel_2023_130157
crossref_primary_10_1002_adfm_202005106
crossref_primary_10_1016_j_cej_2020_126661
crossref_primary_10_1007_s40097_020_00363_9
crossref_primary_10_3389_fchem_2022_955065
crossref_primary_10_1016_S1872_2067_20_63733_0
crossref_primary_10_1016_j_ijhydene_2020_12_018
crossref_primary_10_3390_catal12070752
crossref_primary_10_1016_j_carbon_2020_03_031
crossref_primary_10_1016_S1872_2067_19_63337_1
crossref_primary_10_1007_s41664_021_00203_x
crossref_primary_10_1039_D3CY00493G
crossref_primary_10_1016_j_matchemphys_2020_122987
crossref_primary_10_1016_j_cej_2022_136643
crossref_primary_10_1016_j_molstruc_2024_139810
crossref_primary_10_1002_jssc_201800629
crossref_primary_10_1016_j_optmat_2022_112939
crossref_primary_10_1016_j_seppur_2022_121947
crossref_primary_10_1016_j_cej_2023_147350
crossref_primary_10_1016_j_jcis_2022_04_159
crossref_primary_10_1002_jctb_6864
crossref_primary_10_1088_1361_6528_ac04d3
crossref_primary_10_1016_j_jallcom_2019_153166
crossref_primary_10_1039_D0TA01973A
crossref_primary_10_1016_j_apsusc_2019_145145
crossref_primary_10_1016_j_chemosphere_2021_132725
crossref_primary_10_1139_cjc_2023_0066
crossref_primary_10_1016_j_bios_2019_111756
crossref_primary_10_1016_j_nanoen_2019_104273
crossref_primary_10_1002_solr_202000486
crossref_primary_10_1039_D0CY00898B
crossref_primary_10_1016_j_ijhydene_2021_07_139
crossref_primary_10_1016_j_jmst_2022_10_042
crossref_primary_10_1016_j_ijhydene_2020_10_162
crossref_primary_10_1016_j_cis_2022_102722
crossref_primary_10_1016_j_apcatb_2020_119461
crossref_primary_10_1016_j_apsusc_2021_151916
crossref_primary_10_1016_j_cej_2021_132579
crossref_primary_10_1016_j_carbon_2022_12_075
crossref_primary_10_1016_j_cej_2020_127370
crossref_primary_10_1016_j_jcis_2023_08_108
crossref_primary_10_1016_j_fuel_2022_125073
crossref_primary_10_1016_j_carbon_2019_01_052
crossref_primary_10_1016_j_apcatb_2020_119116
crossref_primary_10_1016_j_ijhydene_2020_10_052
crossref_primary_10_1021_acsami_1c18450
crossref_primary_10_1016_j_jcis_2022_05_139
crossref_primary_10_1007_s11224_022_01983_3
crossref_primary_10_1016_j_jcis_2021_03_080
crossref_primary_10_1007_s00604_020_4135_9
crossref_primary_10_1002_chem_201905875
crossref_primary_10_1016_j_surfin_2024_104163
crossref_primary_10_1016_j_nanoen_2021_106168
Cites_doi 10.1039/c3ta12273e
10.1002/cssc.201402180
10.1021/ja211637p
10.1016/j.apcatb.2017.08.041
10.1039/C5QI00255A
10.1002/anie.201402191
10.1016/j.apcatb.2016.03.062
10.1002/adma.201601567
10.1016/j.apsusc.2016.03.025
10.1016/j.apcatb.2017.07.053
10.1021/acs.chemrev.6b00075
10.1016/j.carbon.2017.07.080
10.1002/cctc.201600272
10.1039/C7TA02183F
10.1063/1.464913
10.1039/c0cc02355h
10.1016/j.electacta.2017.09.011
10.1002/ange.201106656
10.3389/fmats.2017.00011
10.1007/s12274-016-1391-4
10.1002/cssc.201600850
10.1016/j.apcatb.2015.09.006
10.1002/anie.201101182
10.1016/j.carbon.2017.02.069
10.1016/j.apcatb.2016.12.017
10.1021/acs.chemmater.5b02974
10.1016/j.apcatb.2015.05.005
10.1021/am509213x
10.1016/j.apcatb.2017.01.058
10.1016/j.jcat.2013.07.026
10.1016/j.apcatb.2016.09.013
10.1016/j.apcatb.2015.01.024
10.1021/jacs.6b11878
10.1016/j.carbon.2017.06.020
10.1002/adma.201303611
10.1039/C6TA04297J
10.1016/j.carbon.2016.09.039
10.1039/C6CS00727A
10.1021/acscatal.5b01155
10.1016/j.mcat.2017.02.011
10.1126/science.aaa3145
10.1002/asia.201601518
10.1016/j.apsusc.2014.10.161
10.1039/C5EE01895A
10.1039/C5CS00767D
10.1002/ppsc.201700251
10.1016/j.carbon.2017.12.048
10.1002/cssc.201701392
10.1016/j.jcat.2013.01.008
10.1038/nmat4634
10.1016/j.carbon.2016.05.039
10.1039/C7TA05744J
10.1039/C7TA04816E
10.1002/smll.201703599
10.1039/c3ee44189j
10.1016/j.apcatb.2016.06.071
10.1038/nmat2317
10.1038/natrevmats.2017.30
10.1039/c2cc32181e
10.1021/jacs.5b08773
10.1002/adfm.201200922
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Aug 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Aug 2018
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.carbon.2018.03.089
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3891
EndPage 144
ExternalDocumentID 10_1016_j_carbon_2018_03_089
S0008622318303403
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
EFKBS
7SR
8FD
JG9
SSH
7S9
L.6
ID FETCH-LOGICAL-c470t-a8098f79ec64f2570caf06196343928661b57d164c354a8db3010d739bf52b4f3
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Mon Jul 21 10:30:12 EDT 2025
Fri Jul 25 07:52:36 EDT 2025
Tue Aug 05 03:08:19 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
Fri Feb 23 02:48:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Conjugated effect
Polycyclic aromatic compounds
Photocatalysis
Hydrogen evolution
Graphitic carbon nitride
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-a8098f79ec64f2570caf06196343928661b57d164c354a8db3010d739bf52b4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2483-626X
PQID 2089193423
PQPubID 2045273
PageCount 11
ParticipantIDs proquest_miscellaneous_2220900206
proquest_journals_2089193423
crossref_citationtrail_10_1016_j_carbon_2018_03_089
crossref_primary_10_1016_j_carbon_2018_03_089
elsevier_sciencedirect_doi_10_1016_j_carbon_2018_03_089
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Carbon (New York)
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Ong, Tan, Ng, Yong, Chai (bib30) 2016; 116
Qiao, Mitchell, Coulson, Jowett, Johnson, Brydson, Lsaacs, Lee, Douthwaite (bib13) 2016; 106
Niu, Zhang, Liu, Cheng (bib45) 2012; 22
Ong (bib12) 2017; 4
Su, Zhang (bib42) 2017; 432
Wang, Maeda, Thomas, Takanabe, Xin, Carsson, Domen, Antonietti (bib1) 2009; 8
Dong, Zhao, Zhang (bib21) 2012; 48
Yu, Yan, Gao, Li, Wang, Wu, Song, Ding (bib43) 2017; 5
Kang, Yang, Yin, Kang, Wang, Liu, Cheng (bib56) 2016; 28
Li, Xie, Zhang (bib14) 2016; 8
Li, Xie, Zhang (bib28) 2016; 110
Wang, Li, Liu, Cheng, Ho, Yu (bib22) 2015; 176–177
Wu, Yan, Tang, Zhao, Jiang (bib48) 2014; 7
Ong, Putri, Tan, Tan, Li, Ng, Wen, Chai (bib19) 2017; 10
Zhang, Wang (bib35) 2014; 7
Zhou, Yang, Yuan, Asiri, Wakeel, Wang (bib10) 2017; 10
Zeng, Ong, Zheng, Wu, Chen, Peng, Han (bib18) 2017; 5
Liu, Liu, Liu, Han, Zhang, Huang, Lifshitz, Lee, Zhong, Kang (bib8) 2015; 347
Wu, Li, Zhang (bib50) 2015; 324
Xu, Hu, Wang, Li, Zhang, Luo, Yu, Jiang (bib57) 2015; 137
Gao, Wang, Xu, Xiong (bib55) 2017; 46
Qin, Wang, Ren, Hou, Wang (bib47) 2015; 179
Liu, Wang, Antonietti (bib31) 2016; 45
Ke, Liu, Sun, Zhang, Duan, Liang, Li, Tade, Liu, Wang (bib60) 2017; 200
Che, Cheng, Yao, Tang, Liu, Su, Huang, Liu, Liu, Hu, Pan, Sun, Wei (bib9) 2017; 139
Du, Sanvito, Li, Wang, Jiao, Liao, Sun, Ng, Zhu, Amal, Smith (bib3) 2012; 134
Zhang, Zhang, Ye, Qiu, Lin, Wang (bib24) 2014; 26
Kang, Watanabe, Broch, Sepe, Brown, Nasrallah, Nikolka, Fei, Heeney, Matsumoto, Marumoto, Tanaka, Kuroda, Sirringhaus (bib59) 2016; 15
Wang, Wang, Antonietti (bib7) 2012; 51
Zeng, Xu, Ong, Xu, Ren, Chen, Zheng, Peng (bib17) 2018; 221
Ho, Zhang, Lin, Huang, Zhang, Wang, Huang (bib16) 2015; 7
Li, Zhang (bib36) 2018
Li, Su, Zhang (bib27) 2016; 375
Cheng, Sun, Fan, Liu, Zhang, Fang (bib40) 2015; 170–171
Guo, Chu, Yan, Wang, Zou (bib39) 2010; 46
Bhunia, Melissen, Parida, Sarawade, Basset, Anjum, Mohammed, Sautet, Bahers, Takanabe (bib54) 2015; 27
Pan, Zheng, Guo, Niu, Wang (bib20) 2017; 10
Zhang, Chen, Wang (bib6) 2015; 8
Li, Cui, Sun, Chu, Cen, Dong (bib5) 2017; 5
Kumar, Kumar, Borkar, Bansiwal, Labhsetwar, Jain (bib49) 2017; 123
Fan, Zhang, Cheng, Wang, Li, Zhou, Shi (bib46) 2015; 5
She, Wu, Xu, Mo, Lian, Song, Liu, Du, Li (bib26) 2017; 202
Fan, Zhang, Wang, Huang, Zhou, Li, Cheng, Shi (bib53) 2016; 182
Patnaik, Martha, Acharya, Parida (bib29) 2016; 3
Zhang, Zhang, Lin, Fu, Wang (bib38) 2014; 310
Xiao, Zhang (bib62) 2017; 252
Chen, Yang, Wang, Zhao, Wang (bib51) 2017; 205
Zhang, Ling, Gao, Wang, Li, J (bib61) 2013; 1
Zhang, Zhang, Chen, Lin, Möhlmann, Dołęga, Lipner, Antonietti, Blechert, Wang (bib32) 2012; 124
Algara-Siller, Severin, Chong, Björkan, Palgrave, Laybourn, Antonietti, Khimyak, Krasheninnikov, Rabe, Kaiser, Cooper, Thomas, Bojdys (bib2) 2014; 53
Lan, Zhang, Wang (bib23) 2016; 192
Hong, Li, Fang, Luo, Shi (bib52) 2017; 121
Li, Lee, Park, Lee, Park, Shin, Hou, Yu (bib41) 2018; 129
Qiu, Xu, Chen, Jiang, Wang, Lu, Zhang (bib58) 2017; 206
Becke (bib37) 1993; 98
Yang, Guo, Zhang, Li (bib44) 2017; 117
Zhang, Wang (bib34) 2013; 307
Kessler, Zheng, Schwarz, Merschjann, Schnick, Wang, Bojdys (bib4) 2017; 2
Zeng, Ong, Chen, Tee, Chua, Peng, Han (bib11) 2018; 35
Tang, Jia, Xue, Li, Wang, Xu, Liu, Wu (bib25) 2017; 219
Tian, Zhang, Fan, Zhou, Wang, Cheng, Li, Kan, Jin, Liu, Gao, Shi (bib33) 2016; 4
Su, Zhang (bib15) 2017; 12
Dong (10.1016/j.carbon.2018.03.089_bib21) 2012; 48
Ong (10.1016/j.carbon.2018.03.089_bib30) 2016; 116
Li (10.1016/j.carbon.2018.03.089_bib36) 2018
Tian (10.1016/j.carbon.2018.03.089_bib33) 2016; 4
Xiao (10.1016/j.carbon.2018.03.089_bib62) 2017; 252
Ong (10.1016/j.carbon.2018.03.089_bib19) 2017; 10
Li (10.1016/j.carbon.2018.03.089_bib14) 2016; 8
Zeng (10.1016/j.carbon.2018.03.089_bib17) 2018; 221
Kang (10.1016/j.carbon.2018.03.089_bib59) 2016; 15
Zhang (10.1016/j.carbon.2018.03.089_bib38) 2014; 310
Li (10.1016/j.carbon.2018.03.089_bib27) 2016; 375
Becke (10.1016/j.carbon.2018.03.089_bib37) 1993; 98
Li (10.1016/j.carbon.2018.03.089_bib5) 2017; 5
Patnaik (10.1016/j.carbon.2018.03.089_bib29) 2016; 3
Ong (10.1016/j.carbon.2018.03.089_bib12) 2017; 4
Ho (10.1016/j.carbon.2018.03.089_bib16) 2015; 7
She (10.1016/j.carbon.2018.03.089_bib26) 2017; 202
Lan (10.1016/j.carbon.2018.03.089_bib23) 2016; 192
Che (10.1016/j.carbon.2018.03.089_bib9) 2017; 139
Niu (10.1016/j.carbon.2018.03.089_bib45) 2012; 22
Liu (10.1016/j.carbon.2018.03.089_bib31) 2016; 45
Fan (10.1016/j.carbon.2018.03.089_bib46) 2015; 5
Zhang (10.1016/j.carbon.2018.03.089_bib35) 2014; 7
Zhang (10.1016/j.carbon.2018.03.089_bib6) 2015; 8
Su (10.1016/j.carbon.2018.03.089_bib15) 2017; 12
Zhang (10.1016/j.carbon.2018.03.089_bib32) 2012; 124
Gao (10.1016/j.carbon.2018.03.089_bib55) 2017; 46
Kang (10.1016/j.carbon.2018.03.089_bib56) 2016; 28
Liu (10.1016/j.carbon.2018.03.089_bib8) 2015; 347
Tang (10.1016/j.carbon.2018.03.089_bib25) 2017; 219
Li (10.1016/j.carbon.2018.03.089_bib28) 2016; 110
Zhang (10.1016/j.carbon.2018.03.089_bib61) 2013; 1
Wang (10.1016/j.carbon.2018.03.089_bib7) 2012; 51
Pan (10.1016/j.carbon.2018.03.089_bib20) 2017; 10
Ke (10.1016/j.carbon.2018.03.089_bib60) 2017; 200
Qin (10.1016/j.carbon.2018.03.089_bib47) 2015; 179
Bhunia (10.1016/j.carbon.2018.03.089_bib54) 2015; 27
Xu (10.1016/j.carbon.2018.03.089_bib57) 2015; 137
Algara-Siller (10.1016/j.carbon.2018.03.089_bib2) 2014; 53
Zeng (10.1016/j.carbon.2018.03.089_bib11) 2018; 35
Zeng (10.1016/j.carbon.2018.03.089_bib18) 2017; 5
Hong (10.1016/j.carbon.2018.03.089_bib52) 2017; 121
Kumar (10.1016/j.carbon.2018.03.089_bib49) 2017; 123
Du (10.1016/j.carbon.2018.03.089_bib3) 2012; 134
Fan (10.1016/j.carbon.2018.03.089_bib53) 2016; 182
Zhang (10.1016/j.carbon.2018.03.089_bib24) 2014; 26
Li (10.1016/j.carbon.2018.03.089_bib41) 2018; 129
Chen (10.1016/j.carbon.2018.03.089_bib51) 2017; 205
Qiu (10.1016/j.carbon.2018.03.089_bib58) 2017; 206
Wang (10.1016/j.carbon.2018.03.089_bib22) 2015; 176–177
Yang (10.1016/j.carbon.2018.03.089_bib44) 2017; 117
Zhou (10.1016/j.carbon.2018.03.089_bib10) 2017; 10
Cheng (10.1016/j.carbon.2018.03.089_bib40) 2015; 170–171
Guo (10.1016/j.carbon.2018.03.089_bib39) 2010; 46
Wang (10.1016/j.carbon.2018.03.089_bib1) 2009; 8
Qiao (10.1016/j.carbon.2018.03.089_bib13) 2016; 106
Su (10.1016/j.carbon.2018.03.089_bib42) 2017; 432
Yu (10.1016/j.carbon.2018.03.089_bib43) 2017; 5
Kessler (10.1016/j.carbon.2018.03.089_bib4) 2017; 2
Zhang (10.1016/j.carbon.2018.03.089_bib34) 2013; 307
Wu (10.1016/j.carbon.2018.03.089_bib50) 2015; 324
Wu (10.1016/j.carbon.2018.03.089_bib48) 2014; 7
References_xml – volume: 200
  start-page: 47
  year: 2017
  end-page: 55
  ident: bib60
  article-title: Facile assembly of Bi
  publication-title: Appl. Catal. B Environ.
– volume: 22
  start-page: 4763
  year: 2012
  end-page: 4770
  ident: bib45
  article-title: Graphene-like carbon nitride nanosheets for improved photocatalytic activities
  publication-title: Adv. Funct. Mater.
– volume: 347
  start-page: 970
  year: 2015
  end-page: 974
  ident: bib8
  article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway
  publication-title: Science
– volume: 117
  start-page: 120
  year: 2017
  end-page: 125
  ident: bib44
  article-title: Tuning the electronic and magnetic properties of porous graphene-like carbon nitride through 3
  publication-title: Carbon
– volume: 51
  start-page: 68
  year: 2012
  end-page: 89
  ident: bib7
  article-title: Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry
  publication-title: Angew. Chem. Int. Ed.
– volume: 375
  start-page: 110
  year: 2016
  end-page: 117
  ident: bib27
  article-title: Modification of g-C
  publication-title: Appl. Surf. Sci.
– volume: 179
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib47
  article-title: Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid
  publication-title: Appl. Catal. B Environ.
– volume: 46
  year: 2017
  ident: bib55
  article-title: Coordination chemistry in the design of heterogeneous photocatalysts
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 76
  year: 2009
  end-page: 80
  ident: bib1
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat. Mater.
– volume: 134
  start-page: 4393
  year: 2012
  end-page: 4397
  ident: bib3
  article-title: Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 17199
  year: 2017
  end-page: 17203
  ident: bib43
  article-title: Aromatic ring substituted g-C
  publication-title: J. Mater. Chem.
– volume: 28
  start-page: 6471
  year: 2016
  end-page: 6477
  ident: bib56
  article-title: Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis
  publication-title: Adv. Mater.
– volume: 4
  start-page: 13814
  year: 2016
  end-page: 13821
  ident: bib33
  article-title: A post-grafting strategy to modify g-C
  publication-title: J. Mater. Chem.
– volume: 139
  start-page: 3021
  year: 2017
  end-page: 3026
  ident: bib9
  article-title: Fast photoelectron transfer in (C
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 11
  year: 2017
  ident: bib12
  article-title: 2D/2D graphitic carbon nitride (g-C
  publication-title: Frontiers in Materials
– volume: 124
  start-page: 3237
  year: 2012
  end-page: 3241
  ident: bib32
  article-title: Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light
  publication-title: Angew. Chem. Int. Ed.
– volume: 182
  start-page: 68
  year: 2016
  end-page: 73
  ident: bib53
  article-title: Constructing carbon-nitride-based copolymers via Schiff base chemistry for visible-light photocatalytic hydrogen evolution
  publication-title: Appl. Catal. B Environ.
– volume: 12
  start-page: 515
  year: 2017
  end-page: 523
  ident: bib15
  article-title: Carbonyl-grafted g-C
  publication-title: Chem. Asian J.
– volume: 7
  start-page: 2654
  year: 2014
  end-page: 2658
  ident: bib48
  article-title: Synthesis of potassium-modified graphitic carbon nitride with high photocatalytic activity for hydrogen evolution
  publication-title: ChemSusChem
– volume: 27
  start-page: 8237
  year: 2015
  end-page: 8247
  ident: bib54
  article-title: Dendritic tip-on polytriazine-based carbon nitride photocatalyst with high hydrogen evolution activity
  publication-title: Chem. Mater.
– volume: 219
  start-page: 241
  year: 2017
  end-page: 248
  ident: bib25
  article-title: Fabrication of compressible and recyclable macroscopic g-C
  publication-title: Appl. Catal. B Environ.
– volume: 7
  start-page: 5497
  year: 2015
  end-page: 5505
  ident: bib16
  article-title: Copolymerization with 2, 4, 6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C
  publication-title: ACS Appl. Mater. Interfaces
– volume: 205
  start-page: 133
  year: 2017
  end-page: 147
  ident: bib51
  article-title: Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C
  publication-title: Appl. Catal. B Environ.
– volume: 176–177
  start-page: 44
  year: 2015
  end-page: 52
  ident: bib22
  article-title: Sulfur-doped g-C
  publication-title: Appl. Catal. B Environ.
– volume: 170–171
  start-page: 10
  year: 2015
  end-page: 16
  ident: bib40
  article-title: Textural and electronic structure engineering of carbon nitride via doping with π-deficient aromatic pyridine ring for improving photocatalytic activity
  publication-title: Appl. Catal. B Environ.
– volume: 252
  start-page: 416
  year: 2017
  end-page: 423
  ident: bib62
  article-title: MoS
  publication-title: Electrochim. Acta
– start-page: 1703599
  year: 2018
  ident: bib36
  article-title: Creating graphitic carbon nitride based Donor-π-Acceptor-π-Donor structured catalysts for highly photocatalytic hydrogen evolution
  publication-title: Small
– volume: 45
  start-page: 2308
  year: 2016
  end-page: 2326
  ident: bib31
  article-title: Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis
  publication-title: Chem. Soc. Rev.
– volume: 123
  start-page: 371
  year: 2017
  end-page: 379
  ident: bib49
  article-title: Metal-organic hybrid: photoreduction of CO
  publication-title: Carbon
– volume: 324
  start-page: 324
  year: 2015
  end-page: 331
  ident: bib50
  article-title: On the heterostructured photocatalysts Ag
  publication-title: Appl. Surf. Sci.
– volume: 206
  start-page: 319
  year: 2017
  end-page: 327
  ident: bib58
  article-title: One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: role of oxygen on visible light photocatalytic activity
  publication-title: Appl. Catal. B Environ.
– volume: 137
  start-page: 13440
  year: 2015
  end-page: 13443
  ident: bib57
  article-title: Visible-light photoreduction of CO
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 16171
  year: 2017
  end-page: 16178
  ident: bib18
  article-title: Ni
  publication-title: J. Mater. Chem.
– volume: 53
  start-page: 7450
  year: 2014
  end-page: 7455
  ident: bib2
  article-title: Triazine-based graphitic carbon nitride: a two-dimensional semiconductor
  publication-title: Angew. Chem. Int. Ed.
– volume: 10
  start-page: 87
  year: 2017
  end-page: 90
  ident: bib20
  article-title: Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers
  publication-title: ChemSusChem
– volume: 129
  start-page: 637
  year: 2018
  end-page: 645
  ident: bib41
  article-title: Conjugated polyene-functionalized graphitic carbon nitride with enhanced photocatalytic water-splitting efficiency
  publication-title: Carbon
– volume: 15
  start-page: 896
  year: 2016
  end-page: 902
  ident: bib59
  article-title: 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion
  publication-title: Nat. Mater.
– volume: 116
  start-page: 7159
  year: 2016
  end-page: 7329
  ident: bib30
  article-title: Graphitic carbon nitride (g-C
  publication-title: Chem. Rev.
– volume: 3
  start-page: 336
  year: 2016
  end-page: 347
  ident: bib29
  article-title: An overview of the modification of g-C
  publication-title: Inorg. Chem. Front
– volume: 7
  start-page: 1902
  year: 2014
  end-page: 1906
  ident: bib35
  article-title: Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution
  publication-title: Energy Environ. Sci.
– volume: 1
  start-page: 10677
  year: 2013
  end-page: 10685
  ident: bib61
  article-title: Enhanced photoelectrochemical water splitting on novel nanoflake WO
  publication-title: J. Mater. Chem.
– volume: 8
  start-page: 3092
  year: 2015
  end-page: 3108
  ident: bib6
  article-title: Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications
  publication-title: Energy Environ. Sci.
– volume: 35
  start-page: 1700251
  year: 2018
  ident: bib11
  article-title: Co
  publication-title: Part. Part. Syst. Char.
– volume: 307
  start-page: 246
  year: 2013
  end-page: 253
  ident: bib34
  article-title: A facile synthesis of covalent carbon nitride photocatalysts by co-polymerization of urea and phenylurea for hydrogen evolution
  publication-title: J. Catal.
– volume: 98
  start-page: 5648
  year: 1993
  end-page: 5652
  ident: bib37
  article-title: Density-functional thermochemistry. III. The role of exact exchange
  publication-title: J. Chem. Phys.
– volume: 10
  start-page: 4451
  year: 2017
  end-page: 4456
  ident: bib10
  article-title: Modulating crystallinity of graphitic carbon nitride for photocatalytic oxidation of alcohols
  publication-title: ChemSusChem
– volume: 202
  start-page: 112
  year: 2017
  end-page: 117
  ident: bib26
  article-title: Enhancing charge density and steering charge unidirectional flow in 2D non-metallic semiconductor-CNTs-metal coupled photocatalyst for solar energy conversion
  publication-title: Appl. Catal. B Environ.
– volume: 46
  start-page: 7325
  year: 2010
  end-page: 7327
  ident: bib39
  article-title: Developing a polymeric semiconductor photocatalyst with visible light response
  publication-title: Chem. Commun.
– volume: 221
  start-page: 47
  year: 2018
  end-page: 55
  ident: bib17
  article-title: Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: monodisperse sub-15 nm Ni
  publication-title: Appl. Catal. B Environ.
– volume: 192
  start-page: 116
  year: 2016
  end-page: 125
  ident: bib23
  article-title: A facile synthesis of Br-modified g-C
  publication-title: Appl. Catal. B Environ.
– volume: 26
  start-page: 805
  year: 2014
  end-page: 809
  ident: bib24
  article-title: Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1673
  year: 2017
  end-page: 1696
  ident: bib19
  article-title: Unravelling charge Carrier dynamics in protonated g-C
  publication-title: Nano Res.
– volume: 5
  start-page: 5008
  year: 2015
  end-page: 5015
  ident: bib46
  article-title: Construction of graphitic-C
  publication-title: ACS Catal.
– volume: 121
  start-page: 463
  year: 2017
  end-page: 471
  ident: bib52
  article-title: Rational synthesis of ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution
  publication-title: Carbon
– volume: 2
  start-page: 17030
  year: 2017
  ident: bib4
  article-title: Functional carbon nitride materials-design strategies for electrochemical devices
  publication-title: Nat. Rev. Mater
– volume: 48
  start-page: 6178
  year: 2012
  end-page: 6180
  ident: bib21
  article-title: Carbon self-doping induced high electronic conductivity and photoreactivity of g-C
  publication-title: Chem. Commun.
– volume: 110
  start-page: 356
  year: 2016
  end-page: 366
  ident: bib28
  article-title: Photocatalysts based on g-C
  publication-title: Carbon
– volume: 5
  start-page: 9358
  year: 2017
  end-page: 9364
  ident: bib5
  article-title: Directional electron delivery via a vertical channel between g-C
  publication-title: J. Mater. Chem.
– volume: 432
  start-page: 64
  year: 2017
  end-page: 75
  ident: bib42
  article-title: Creating distortion in g-C
  publication-title: Mol. Catal
– volume: 106
  start-page: 320
  year: 2016
  end-page: 329
  ident: bib13
  article-title: Pore confinement effects and stabilization of carbon nitride oligomers in macroporous silica for photocatalytic hydrogen production
  publication-title: Carbon
– volume: 8
  start-page: 2128
  year: 2016
  end-page: 2135
  ident: bib14
  article-title: Porous graphitic carbon nitride derived from melamine–ammonium oxalate stacking sheets with excellent photocatalytic hydrogen evolution activity
  publication-title: ChemCatChem
– volume: 310
  start-page: 24
  year: 2014
  end-page: 30
  ident: bib38
  article-title: Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity
  publication-title: J. Catal.
– volume: 1
  start-page: 10677
  year: 2013
  ident: 10.1016/j.carbon.2018.03.089_bib61
  article-title: Enhanced photoelectrochemical water splitting on novel nanoflake WO3 electrodes by dealloying of amorphous Fe-W alloys
  publication-title: J. Mater. Chem.
  doi: 10.1039/c3ta12273e
– volume: 7
  start-page: 2654
  year: 2014
  ident: 10.1016/j.carbon.2018.03.089_bib48
  article-title: Synthesis of potassium-modified graphitic carbon nitride with high photocatalytic activity for hydrogen evolution
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402180
– volume: 134
  start-page: 4393
  year: 2012
  ident: 10.1016/j.carbon.2018.03.089_bib3
  article-title: Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211637p
– volume: 221
  start-page: 47
  year: 2018
  ident: 10.1016/j.carbon.2018.03.089_bib17
  article-title: Toward noble-metal-free visible-light-driven photocatalytic hydrogen evolution: monodisperse sub-15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.08.041
– volume: 3
  start-page: 336
  year: 2016
  ident: 10.1016/j.carbon.2018.03.089_bib29
  article-title: An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications
  publication-title: Inorg. Chem. Front
  doi: 10.1039/C5QI00255A
– volume: 53
  start-page: 7450
  year: 2014
  ident: 10.1016/j.carbon.2018.03.089_bib2
  article-title: Triazine-based graphitic carbon nitride: a two-dimensional semiconductor
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402191
– volume: 192
  start-page: 116
  year: 2016
  ident: 10.1016/j.carbon.2018.03.089_bib23
  article-title: A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.03.062
– volume: 28
  start-page: 6471
  year: 2016
  ident: 10.1016/j.carbon.2018.03.089_bib56
  article-title: Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601567
– volume: 375
  start-page: 110
  year: 2016
  ident: 10.1016/j.carbon.2018.03.089_bib27
  article-title: Modification of g-C3N4 nanosheets by carbon quantum dots for highly efficient photocatalytic generation of hydrogen
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2016.03.025
– volume: 219
  start-page: 241
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib25
  article-title: Fabrication of compressible and recyclable macroscopic g-C3N4/GO aerogel hybrids for visible-light harvesting: a promising strategy for water remediation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.07.053
– volume: 116
  start-page: 7159
  year: 2016
  ident: 10.1016/j.carbon.2018.03.089_bib30
  article-title: Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00075
– volume: 123
  start-page: 371
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib49
  article-title: Metal-organic hybrid: photoreduction of CO2 using graphitic carbon nitride supported heteroleptic iridium complex under visible light irradiation
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.07.080
– volume: 8
  start-page: 2128
  year: 2016
  ident: 10.1016/j.carbon.2018.03.089_bib14
  article-title: Porous graphitic carbon nitride derived from melamine–ammonium oxalate stacking sheets with excellent photocatalytic hydrogen evolution activity
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201600272
– volume: 5
  start-page: 9358
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib5
  article-title: Directional electron delivery via a vertical channel between g-C3N4 layers promotes photocatalytic efficiency
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA02183F
– volume: 98
  start-page: 5648
  year: 1993
  ident: 10.1016/j.carbon.2018.03.089_bib37
  article-title: Density-functional thermochemistry. III. The role of exact exchange
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 46
  start-page: 7325
  year: 2010
  ident: 10.1016/j.carbon.2018.03.089_bib39
  article-title: Developing a polymeric semiconductor photocatalyst with visible light response
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc02355h
– volume: 252
  start-page: 416
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib62
  article-title: MoS2 quantum dots interspersed WO3 nanoplatelet arrays with enhanced photoelectrochemical activity
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.09.011
– volume: 124
  start-page: 3237
  year: 2012
  ident: 10.1016/j.carbon.2018.03.089_bib32
  article-title: Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201106656
– volume: 4
  start-page: 11
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib12
  article-title: 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: why does face-to-face interface matter?
  publication-title: Frontiers in Materials
  doi: 10.3389/fmats.2017.00011
– volume: 10
  start-page: 1673
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib19
  article-title: Unravelling charge Carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: a combined experimental and first-principles DFT study
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1391-4
– volume: 10
  start-page: 87
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib20
  article-title: Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201600850
– volume: 182
  start-page: 68
  year: 2016
  ident: 10.1016/j.carbon.2018.03.089_bib53
  article-title: Constructing carbon-nitride-based copolymers via Schiff base chemistry for visible-light photocatalytic hydrogen evolution
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.09.006
– volume: 51
  start-page: 68
  year: 2012
  ident: 10.1016/j.carbon.2018.03.089_bib7
  article-title: Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201101182
– volume: 117
  start-page: 120
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib44
  article-title: Tuning the electronic and magnetic properties of porous graphene-like carbon nitride through 3d transition-metal doping
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.02.069
– volume: 205
  start-page: 133
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib51
  article-title: Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.12.017
– volume: 27
  start-page: 8237
  year: 2015
  ident: 10.1016/j.carbon.2018.03.089_bib54
  article-title: Dendritic tip-on polytriazine-based carbon nitride photocatalyst with high hydrogen evolution activity
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b02974
– volume: 179
  start-page: 1
  year: 2015
  ident: 10.1016/j.carbon.2018.03.089_bib47
  article-title: Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.05.005
– volume: 7
  start-page: 5497
  year: 2015
  ident: 10.1016/j.carbon.2018.03.089_bib16
  article-title: Copolymerization with 2, 4, 6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C3N4
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am509213x
– volume: 206
  start-page: 319
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib58
  article-title: One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: role of oxygen on visible light photocatalytic activity
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.01.058
– volume: 307
  start-page: 246
  year: 2013
  ident: 10.1016/j.carbon.2018.03.089_bib34
  article-title: A facile synthesis of covalent carbon nitride photocatalysts by co-polymerization of urea and phenylurea for hydrogen evolution
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2013.07.026
– volume: 202
  start-page: 112
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib26
  article-title: Enhancing charge density and steering charge unidirectional flow in 2D non-metallic semiconductor-CNTs-metal coupled photocatalyst for solar energy conversion
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.09.013
– volume: 170–171
  start-page: 10
  year: 2015
  ident: 10.1016/j.carbon.2018.03.089_bib40
  article-title: Textural and electronic structure engineering of carbon nitride via doping with π-deficient aromatic pyridine ring for improving photocatalytic activity
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.01.024
– volume: 139
  start-page: 3021
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib9
  article-title: Fast photoelectron transfer in (Cring)-C3N4 plane heterostructural nanosheets for overall water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11878
– volume: 121
  start-page: 463
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib52
  article-title: Rational synthesis of ultrathin graphitic carbon nitride nanosheets for efficient photocatalytic hydrogen evolution
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.06.020
– volume: 26
  start-page: 805
  year: 2014
  ident: 10.1016/j.carbon.2018.03.089_bib24
  article-title: Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303611
– volume: 4
  start-page: 13814
  year: 2016
  ident: 10.1016/j.carbon.2018.03.089_bib33
  article-title: A post-grafting strategy to modify g-C3N4 with aromatic heterocycles for enhanced photocatalytic activity
  publication-title: J. Mater. Chem.
  doi: 10.1039/C6TA04297J
– volume: 110
  start-page: 356
  year: 2016
  ident: 10.1016/j.carbon.2018.03.089_bib28
  article-title: Photocatalysts based on g-C3N4-encapsulating carbon spheres with high visible light activity for photocatalytic hydrogen evolution
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.09.039
– volume: 46
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib55
  article-title: Coordination chemistry in the design of heterogeneous photocatalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00727A
– volume: 5
  start-page: 5008
  year: 2015
  ident: 10.1016/j.carbon.2018.03.089_bib46
  article-title: Construction of graphitic-C3N4-based intramolecular donor-acceptor conjugated copolymers for photocatalytic hydrogen evolution
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b01155
– volume: 432
  start-page: 64
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib42
  article-title: Creating distortion in g-C3N4 framework by incorporation of ethylenediaminetetramethylene for enhancing photocatalytic generation of hydrogen
  publication-title: Mol. Catal
  doi: 10.1016/j.mcat.2017.02.011
– volume: 347
  start-page: 970
  year: 2015
  ident: 10.1016/j.carbon.2018.03.089_bib8
  article-title: Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway
  publication-title: Science
  doi: 10.1126/science.aaa3145
– volume: 12
  start-page: 515
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib15
  article-title: Carbonyl-grafted g-C3N4 porous nanosheets for efficient photocatalytic hydrogen evolution
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201601518
– volume: 324
  start-page: 324
  year: 2015
  ident: 10.1016/j.carbon.2018.03.089_bib50
  article-title: On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.10.161
– volume: 8
  start-page: 3092
  year: 2015
  ident: 10.1016/j.carbon.2018.03.089_bib6
  article-title: Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01895A
– volume: 45
  start-page: 2308
  year: 2016
  ident: 10.1016/j.carbon.2018.03.089_bib31
  article-title: Graphitic carbon nitride “reloaded”: emerging applications beyond (photo)catalysis
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00767D
– volume: 35
  start-page: 1700251
  year: 2018
  ident: 10.1016/j.carbon.2018.03.089_bib11
  article-title: Co2P nanorods as an efficient cocatalyst decorated porous g-C3N4 nanosheets for photocatalytic hydrogen production under visible light irradiation
  publication-title: Part. Part. Syst. Char.
  doi: 10.1002/ppsc.201700251
– volume: 129
  start-page: 637
  year: 2018
  ident: 10.1016/j.carbon.2018.03.089_bib41
  article-title: Conjugated polyene-functionalized graphitic carbon nitride with enhanced photocatalytic water-splitting efficiency
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.12.048
– volume: 10
  start-page: 4451
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib10
  article-title: Modulating crystallinity of graphitic carbon nitride for photocatalytic oxidation of alcohols
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201701392
– volume: 310
  start-page: 24
  year: 2014
  ident: 10.1016/j.carbon.2018.03.089_bib38
  article-title: Molecular doping of carbon nitride photocatalysts with tunable bandgap and enhanced activity
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2013.01.008
– volume: 15
  start-page: 896
  year: 2016
  ident: 10.1016/j.carbon.2018.03.089_bib59
  article-title: 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4634
– volume: 106
  start-page: 320
  year: 2016
  ident: 10.1016/j.carbon.2018.03.089_bib13
  article-title: Pore confinement effects and stabilization of carbon nitride oligomers in macroporous silica for photocatalytic hydrogen production
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.05.039
– volume: 5
  start-page: 17199
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib43
  article-title: Aromatic ring substituted g-C3N4 for enhanced photocatalytic hydrogen evolution
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA05744J
– volume: 5
  start-page: 16171
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib18
  article-title: Ni12P5 nanoparticles embedded into porous g-C3N4 nanosheets as a noble-metal-free hetero-structure photocatalyst for efficient H2 production under visible light
  publication-title: J. Mater. Chem.
  doi: 10.1039/C7TA04816E
– start-page: 1703599
  year: 2018
  ident: 10.1016/j.carbon.2018.03.089_bib36
  article-title: Creating graphitic carbon nitride based Donor-π-Acceptor-π-Donor structured catalysts for highly photocatalytic hydrogen evolution
  publication-title: Small
  doi: 10.1002/smll.201703599
– volume: 176–177
  start-page: 44
  year: 2015
  ident: 10.1016/j.carbon.2018.03.089_bib22
  article-title: Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance
  publication-title: Appl. Catal. B Environ.
– volume: 7
  start-page: 1902
  year: 2014
  ident: 10.1016/j.carbon.2018.03.089_bib35
  article-title: Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee44189j
– volume: 200
  start-page: 47
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib60
  article-title: Facile assembly of Bi2O3/Bi2S3/MoS2 n-p heterojunction with layered n-Bi2O3 and p-MoS2 for enhanced photocatalytic water oxidation and pollutant degradation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.06.071
– volume: 8
  start-page: 76
  year: 2009
  ident: 10.1016/j.carbon.2018.03.089_bib1
  article-title: A metal-free polymeric photocatalyst for hydrogen production from water under visible light
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2317
– volume: 2
  start-page: 17030
  year: 2017
  ident: 10.1016/j.carbon.2018.03.089_bib4
  article-title: Functional carbon nitride materials-design strategies for electrochemical devices
  publication-title: Nat. Rev. Mater
  doi: 10.1038/natrevmats.2017.30
– volume: 48
  start-page: 6178
  year: 2012
  ident: 10.1016/j.carbon.2018.03.089_bib21
  article-title: Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc32181e
– volume: 137
  start-page: 13440
  year: 2015
  ident: 10.1016/j.carbon.2018.03.089_bib57
  article-title: Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08773
– volume: 22
  start-page: 4763
  year: 2012
  ident: 10.1016/j.carbon.2018.03.089_bib45
  article-title: Graphene-like carbon nitride nanosheets for improved photocatalytic activities
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200922
SSID ssj0004814
Score 2.5963693
Snippet Polycyclic aromatic compounds with strong conjugated effect, possess the advantage of improving electronic polarizability, thus accelerating the electron...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 134
SubjectTerms Aromatic compounds
Benzoic acid
Carbon
Carbon nitride
Charge efficiency
Charge transfer
Chemical compounds
Chemical energy
Conjugated effect
Copolymerization
Copolymers
Current carriers
Electromagnetic absorption
Electron recombination
electron transfer
electrons
Energy conversion
graphene
Graphitic carbon nitride
Hydrogen
Hydrogen evolution
hydrogen production
Naphthalene
Organic chemistry
Photocatalysis
Photocatalysts
Polycyclic aromatic compounds
Polycyclic aromatic hydrocarbons
polycyclic compounds
Quantum efficiency
urea
Water splitting
Title Polycyclic aromatic compounds-modified graphitic carbon nitride for efficient visible-light-driven hydrogen evolution
URI https://dx.doi.org/10.1016/j.carbon.2018.03.089
https://www.proquest.com/docview/2089193423
https://www.proquest.com/docview/2220900206
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT1xfRPBa7SZpmx5lUVZF8aDgLeRVrJSt1F1hL_52Z9JWUQTBY5uEppPJzBcy8w0hx9IneTp0GIfDTSS08ZFklkWeWaOlkJ6FkP-b23T8IK4ek8cFMupzYTCssrP9rU0P1rp7c9pJ8_SlLDHHF-E4Q6WMuQiMn0JkqOUn719hHkK2_N54zY-9-_S5EONldWNqZEEdykB1isXef3dPPwx18D4Xa2S1g430rJ3ZOlnwkw2yPOqrtW2S2V1dze3cVqWluqkDESvFeHEsmwTH2dqVBaBNGgiqy9AYZkVhSzel8xTAK_WBTwLcEMWUc1P5qAo8I65Bm0if5q6pQeGof-sUdos8XJzfj8ZRV1IhsiKLp5GWcS6LLPc2FQUWsLO6AI8OuxCACZPgrE2SOThCWZ4ILZ2B_R-7jOemSJgRBd8mi5N64ncI1cJkQ8u9zgFSIelL4mzKU21SwIA5YwPCe0kq2_GNY9mLSvWBZc-q_VOF8lcxVyD_AYk-R720fBt_9M_6RVLf9EaBS_hj5H6_pqrbt6_QLnOAtIAxB-TosxmWEq9R9MTXM-jDWJwjzE53__3xPbKCT20k4T5ZnDYzfwDoZmoOg_oekqWzy-vx7Qcu0fsL
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7C5pBeSp9027RVoVcTryTb8jEsDZsmWXpIIDehl6mLWQdnt7D_vjOynNJSCPTqsbA8Gs18QjPfAHxWoajLhac8HGEzaWzIFHc8C9xZo6QKPKb8X63L1Y38elvcHsByqoWhtMrk-0efHr11enKStHly17ZU40twnJNR5kIS4-chsVMVMzg8Pb9YrX-XR6qR4ptu-mnAVEEX07ycGWxPRKgLFdlOqd_7vyPUX746BqCzZ_A0IUd2Ok7uORyEzQs4Wk4N217C7lvf7d3eda1jZugjFyujlHHqnIQn2t63DQJOFjmq2yiMs2K4q4fWB4b4lYVIKYGRiFHVue1C1kWqET-QW2Tf937o0eZY-Jls9hXcnH25Xq6y1FUhc7LKt5lRea2aqg6ulA31sHOmwaCOGxGxCVcYr21ReTxFOVFIo7xFF5D7StS2KbiVjXgNs02_CW-AGWmrhRPB1IiqiPel8K4UpbElwsCa8zmISZPaJcpx6nzR6Sm37Ice_1ST_nUuNOp_DtnDqLuRcuOR96tpkfQfpqMxKjwy8nhaU5227j3KVY2oFmHmHD49iHEp6SbFbEK_w3c4z2tC2uXb__74RzhaXV9d6svz9cU7eEKSMbHwGGbbYRfeI9jZ2g_JmH8Bwjz9vA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polycyclic+aromatic+compounds-modified+graphitic+carbon+nitride+for+efficient+visible-light-driven+hydrogen+evolution&rft.jtitle=Carbon+%28New+York%29&rft.au=Li%2C+Kui&rft.au=Sun%2C+Miao&rft.au=Zhang%2C+Wei-De&rft.date=2018-08-01&rft.issn=0008-6223&rft.volume=134+p.134-144&rft.spage=134&rft.epage=144&rft_id=info:doi/10.1016%2Fj.carbon.2018.03.089&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon