Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells
Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovs...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 377; no. 6613; pp. 1425 - 1430 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington
The American Association for the Advancement of Science
23.09.2022
American Association for the Advancement of Science (AAAS) AAAS |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D–2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. We measured a photovoltaic efficiency of 24.5%, with exceptional stability of
T
99
(time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency.
Two-dimensional (2D) halide perovskite passivation layers grown on three-dimensional (3D) perovskite can boost the power conversion efficiency (PCE) of solar cells, but spin-coating of these layers usually forms heterogeneous 2D phases or only ultrathin layers. Sidhik
et al
. found that solvents with the appropriate dielectric constant and donor strength could grow phase-pure 2D phases of controlled thickness and composition on 3D substrates without dissolving them. Solar cells maintained a peak PCE of 24.5% for 2000 hours with less than 1% degradation under continuous light at 55°C and 65% relative humidity. —PDS
Solvents enable growth of phase-pure two-dimensional perovskites without dissolving three-dimensional perovskite substrates. |
---|---|
AbstractList | Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D–2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. We measured a photovoltaic efficiency of 24.5%, with exceptional stability of T 99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency. Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D-2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. We measured a photovoltaic efficiency of 24.5%, with exceptional stability of T99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency.Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D-2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. We measured a photovoltaic efficiency of 24.5%, with exceptional stability of T99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency. Pure perovskite topcoatsTwo-dimensional (2D) halide perovskite passivation layers grown on three-dimensional (3D) perovskite can boost the power conversion efficiency (PCE) of solar cells, but spin-coating of these layers usually forms heterogeneous 2D phases or only ultrathin layers. Sidhik et al. found that solvents with the appropriate dielectric constant and donor strength could grow phase-pure 2D phases of controlled thickness and composition on 3D substrates without dissolving them. Solar cells maintained a peak PCE of 24.5% for 2000 hours with less than 1% degradation under continuous light at 55°C and 65% relative humidity. —PDS Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D–2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. Here we measured a photovoltaic efficiency of 24.5%, with exceptional stability of T99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency. Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D–2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. We measured a photovoltaic efficiency of 24.5%, with exceptional stability of T 99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency. Two-dimensional (2D) halide perovskite passivation layers grown on three-dimensional (3D) perovskite can boost the power conversion efficiency (PCE) of solar cells, but spin-coating of these layers usually forms heterogeneous 2D phases or only ultrathin layers. Sidhik et al . found that solvents with the appropriate dielectric constant and donor strength could grow phase-pure 2D phases of controlled thickness and composition on 3D substrates without dissolving them. Solar cells maintained a peak PCE of 24.5% for 2000 hours with less than 1% degradation under continuous light at 55°C and 65% relative humidity. —PDS Solvents enable growth of phase-pure two-dimensional perovskites without dissolving three-dimensional perovskite substrates. |
Author | Torma, Andrew J. Even, Jacky Alam, Muhammad Ashraful Mohite, Aditya D. Agrawal, Ayush Wang, Yafei Kanatzidis, Mercouri G. Strzalka, Joseph Ajayan, Pulickel M. Traore, Boubacar Li, Wenbin Terlier, Tanguy Giridharagopal, Rajiv Asadpour, Reza Ginger, David S. Sidhik, Siraj De Siena, Michael Shuai, Xinting Puthirath, Anand B. Ho, Kevin Jones, Matthew Katan, Claudine |
Author_xml | – sequence: 1 givenname: Siraj orcidid: 0000-0002-2097-2830 surname: Sidhik fullname: Sidhik, Siraj organization: Department of Material Science and Nanoengineering, Rice University, Houston, TX 77005, USA., Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA – sequence: 2 givenname: Yafei surname: Wang fullname: Wang, Yafei organization: Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA., School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China – sequence: 3 givenname: Michael orcidid: 0000-0003-0379-5577 surname: De Siena fullname: De Siena, Michael organization: Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA – sequence: 4 givenname: Reza orcidid: 0000-0003-0930-2120 surname: Asadpour fullname: Asadpour, Reza organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA – sequence: 5 givenname: Andrew J. orcidid: 0000-0003-3443-2621 surname: Torma fullname: Torma, Andrew J. organization: Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX 77005, USA – sequence: 6 givenname: Tanguy orcidid: 0000-0002-4092-0771 surname: Terlier fullname: Terlier, Tanguy organization: Shared Equipment Authority, Secure and Intelligent Micro-Systems (SIMS) Laboratory, Rice University, Houston, TX 77005, USA – sequence: 7 givenname: Kevin orcidid: 0000-0003-2688-2606 surname: Ho fullname: Ho, Kevin organization: Department of Chemistry, University of Washington, Seattle, WA 98195, USA – sequence: 8 givenname: Wenbin surname: Li fullname: Li, Wenbin organization: Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA., Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX 77005, USA – sequence: 9 givenname: Anand B. orcidid: 0000-0003-4064-6271 surname: Puthirath fullname: Puthirath, Anand B. organization: Department of Material Science and Nanoengineering, Rice University, Houston, TX 77005, USA – sequence: 10 givenname: Xinting orcidid: 0000-0002-2446-020X surname: Shuai fullname: Shuai, Xinting organization: Department of Material Science and Nanoengineering, Rice University, Houston, TX 77005, USA – sequence: 11 givenname: Ayush orcidid: 0000-0001-5603-0581 surname: Agrawal fullname: Agrawal, Ayush organization: Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA – sequence: 12 givenname: Boubacar orcidid: 0000-0003-0568-4141 surname: Traore fullname: Traore, Boubacar organization: École Nationale Supérieure de Chimie de Rennes (ENSCR), Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France – sequence: 13 givenname: Matthew orcidid: 0000-0002-9289-291X surname: Jones fullname: Jones, Matthew organization: Department of Material Science and Nanoengineering, Rice University, Houston, TX 77005, USA., Department of Chemistry, Rice University, Houston, TX 77005, USA – sequence: 14 givenname: Rajiv orcidid: 0000-0001-6076-852X surname: Giridharagopal fullname: Giridharagopal, Rajiv organization: Department of Chemistry, University of Washington, Seattle, WA 98195, USA – sequence: 15 givenname: Pulickel M. orcidid: 0000-0001-8323-7860 surname: Ajayan fullname: Ajayan, Pulickel M. organization: Department of Material Science and Nanoengineering, Rice University, Houston, TX 77005, USA – sequence: 16 givenname: Joseph orcidid: 0000-0003-4619-8932 surname: Strzalka fullname: Strzalka, Joseph organization: X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA – sequence: 17 givenname: David S. orcidid: 0000-0002-9759-5447 surname: Ginger fullname: Ginger, David S. organization: Department of Chemistry, University of Washington, Seattle, WA 98195, USA – sequence: 18 givenname: Claudine orcidid: 0000-0002-2017-5823 surname: Katan fullname: Katan, Claudine organization: École Nationale Supérieure de Chimie de Rennes (ENSCR), Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France – sequence: 19 givenname: Muhammad Ashraful orcidid: 0000-0001-8775-6043 surname: Alam fullname: Alam, Muhammad Ashraful organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA – sequence: 20 givenname: Jacky orcidid: 0000-0002-4607-3390 surname: Even fullname: Even, Jacky organization: Institut National des Sciences Appliquées (INSA) Rennes, Univ Rennes, CNRS, Institut Fonctions Optiques pour les Technologies de l’Information (FOTON)–UMR 6082, F-35000 Rennes, France – sequence: 21 givenname: Mercouri G. orcidid: 0000-0003-2037-4168 surname: Kanatzidis fullname: Kanatzidis, Mercouri G. organization: Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA – sequence: 22 givenname: Aditya D. orcidid: 0000-0001-8865-409X surname: Mohite fullname: Mohite, Aditya D. organization: Department of Material Science and Nanoengineering, Rice University, Houston, TX 77005, USA., Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA |
BackLink | https://hal.science/hal-03784361$$DView record in HAL https://www.osti.gov/servlets/purl/1909609$$D View this record in Osti.gov |
BookMark | eNp1kcFvFCEUxompsdvq2SvRix6m-xhmYDg2XbUmm3jRM2GYR0o7C1tgm_S_l-mulyaeSOD3Pb7vfRfkLMSAhHxkcMVYK9bZegwWr8z4KEXfviErBqpvVAv8jKwAuGgGkP05ucj5HqC-Kf6OnHPBuIQeVmTcYMG088Hn4i11ZkzemuJjoNFRvlm3G7rHFJ_ygy9IRz-bZ0w0F2MfMnUx0emQzDgjNWGi6JxfHBWa42wStTjP-T1568yc8cPpvCR_vn_7fXPbbH_9-HlzvW1sJ6E0RoCT1liB1rKhb7lyTI3OjmxqFW_76llNph8kN1IMXIjRGdcJxwHBwsT4Jfl0nBtrFF03U9De2RgC2qKZAiVAVejrEbozs94nvzPpWUfj9e31Vi93wOXQ1b-eloFfjuw-xccD5qJ3Pi-RTMB4yLqVbHHSd11FP79C7-MhhRr3hVIDDExWqj9SNsWcEzpdTb4suyTjZ81AL63qU6v61GrVrV_p_jn_n-IvQAynAw |
CitedBy_id | crossref_primary_10_1002_aenm_202300760 crossref_primary_10_1016_j_joule_2024_11_015 crossref_primary_10_1016_j_rser_2023_114161 crossref_primary_10_1002_adfm_202408721 crossref_primary_10_1002_adma_202300647 crossref_primary_10_1002_adfm_202309653 crossref_primary_10_1016_j_joule_2023_05_020 crossref_primary_10_1002_adfm_202400569 crossref_primary_10_1021_acsami_3c04243 crossref_primary_10_1002_anie_202419061 crossref_primary_10_1016_j_scib_2023_12_014 crossref_primary_10_1038_s41560_023_01214_x crossref_primary_10_1039_D4EL00013G crossref_primary_10_1016_j_nanoen_2025_110905 crossref_primary_10_1038_s41560_024_01529_3 crossref_primary_10_1038_s42004_023_00812_w crossref_primary_10_1002_adma_202415068 crossref_primary_10_1016_j_mtener_2024_101786 crossref_primary_10_1002_adma_202416150 crossref_primary_10_1126_science_ado6619 crossref_primary_10_1021_acsnano_3c09176 crossref_primary_10_1002_adom_202202670 crossref_primary_10_1002_ange_202401604 crossref_primary_10_1021_acsaem_4c01057 crossref_primary_10_1002_ange_202418708 crossref_primary_10_1016_j_joule_2024_03_002 crossref_primary_10_1002_adfm_202415491 crossref_primary_10_1039_D4EE02917H crossref_primary_10_1002_adma_202302839 crossref_primary_10_1088_2515_7655_acc2e6 crossref_primary_10_3390_ma17164008 crossref_primary_10_1016_j_jechem_2024_11_038 crossref_primary_10_1002_adma_202310444 crossref_primary_10_1002_solr_202300100 crossref_primary_10_1021_acs_chemrev_4c00073 crossref_primary_10_1016_j_matt_2024_03_005 crossref_primary_10_1038_s43586_024_00311_9 crossref_primary_10_1016_j_nanoen_2024_109875 crossref_primary_10_1016_j_joule_2023_08_003 crossref_primary_10_1021_acsami_4c05329 crossref_primary_10_1063_5_0185501 crossref_primary_10_1002_adma_202303139 crossref_primary_10_1039_D2NR06919A crossref_primary_10_1126_sciadv_adp0790 crossref_primary_10_1021_acs_chemmater_3c00011 crossref_primary_10_1021_acsmaterialslett_3c00729 crossref_primary_10_1002_aesr_202200160 crossref_primary_10_1016_j_chempr_2023_09_002 crossref_primary_10_1021_jacs_4c01882 crossref_primary_10_1002_smll_202410172 crossref_primary_10_1039_D4EE02492C crossref_primary_10_1021_acsami_3c01754 crossref_primary_10_1021_acsami_3c07615 crossref_primary_10_1016_j_cej_2025_159894 crossref_primary_10_1021_jacs_3c12446 crossref_primary_10_1038_s41566_023_01372_0 crossref_primary_10_1126_sciadv_adg0032 crossref_primary_10_1039_D4TA02405B crossref_primary_10_1007_s11426_024_2115_y crossref_primary_10_1002_adfm_202416250 crossref_primary_10_1021_acsanm_3c06224 crossref_primary_10_1021_acsenergylett_4c01530 crossref_primary_10_1002_smll_202410731 crossref_primary_10_1016_j_mtcomm_2023_107147 crossref_primary_10_1016_j_nanoen_2023_108979 crossref_primary_10_1016_j_cjsc_2024_100454 crossref_primary_10_1016_j_matt_2022_11_011 crossref_primary_10_1016_j_enchem_2023_100105 crossref_primary_10_1038_s44160_023_00422_3 crossref_primary_10_1002_aenm_202304355 crossref_primary_10_1038_s41578_023_00582_w crossref_primary_10_1002_adma_202405921 crossref_primary_10_1063_5_0142461 crossref_primary_10_1126_science_adi4107 crossref_primary_10_1002_anie_202312726 crossref_primary_10_1021_acs_chemrev_3c00214 crossref_primary_10_1002_aenm_202301888 crossref_primary_10_1002_smll_202310196 crossref_primary_10_1021_acsami_4c19269 crossref_primary_10_1063_5_0179174 crossref_primary_10_1016_j_jechem_2023_01_066 crossref_primary_10_1038_s41467_025_56409_5 crossref_primary_10_1021_acsnano_3c12433 crossref_primary_10_1016_j_nantod_2024_102479 crossref_primary_10_1002_ange_202406167 crossref_primary_10_1039_D3EE04022D crossref_primary_10_1016_j_xcrp_2023_101634 crossref_primary_10_1063_5_0175005 crossref_primary_10_1002_adfm_202412552 crossref_primary_10_1039_D3QM00726J crossref_primary_10_1016_j_apsusc_2024_160094 crossref_primary_10_1039_D4TA02036G crossref_primary_10_1038_s41467_024_51345_2 crossref_primary_10_1002_adma_202400365 crossref_primary_10_1039_D4TA06793B crossref_primary_10_1021_acs_nanolett_3c03655 crossref_primary_10_1088_2040_8986_ad33a6 crossref_primary_10_1002_adfm_202304848 crossref_primary_10_1021_acsmaterialslett_4c01779 crossref_primary_10_1002_advs_202306110 crossref_primary_10_1088_1361_6463_ad60d6 crossref_primary_10_1002_aenm_202304126 crossref_primary_10_1016_j_mattod_2024_12_014 crossref_primary_10_1016_j_jechem_2023_01_061 crossref_primary_10_1002_solr_202400411 crossref_primary_10_1016_j_apmate_2025_100275 crossref_primary_10_1039_D3TA01496G crossref_primary_10_1002_smll_202406929 crossref_primary_10_1002_smll_202406928 crossref_primary_10_1021_jacs_3c03997 crossref_primary_10_1038_s41586_024_07764_8 crossref_primary_10_1038_s41560_023_01249_0 crossref_primary_10_1038_s41560_023_01400_x crossref_primary_10_1002_adfm_202412189 crossref_primary_10_1002_ange_202219307 crossref_primary_10_3390_nano12244357 crossref_primary_10_1039_D3TA03174H crossref_primary_10_1038_s41560_023_01203_0 crossref_primary_10_1002_anie_202401604 crossref_primary_10_1021_acs_jpcc_2c07613 crossref_primary_10_1364_AOP_531166 crossref_primary_10_1021_acsenergylett_3c00697 crossref_primary_10_1126_sciadv_adp3112 crossref_primary_10_1002_sstr_202400234 crossref_primary_10_1007_s40820_024_01630_y crossref_primary_10_1002_adfm_202400075 crossref_primary_10_1021_acsmaterialslett_3c01606 crossref_primary_10_1002_solr_202300535 crossref_primary_10_1002_aenm_202403279 crossref_primary_10_1038_s41560_023_01205_y crossref_primary_10_1557_s43577_023_00585_6 crossref_primary_10_1016_j_solener_2024_112461 crossref_primary_10_1016_j_joule_2024_09_014 crossref_primary_10_1002_adma_202419750 crossref_primary_10_1039_D3TA04742C crossref_primary_10_1038_s41560_023_01421_6 crossref_primary_10_1021_jacs_3c13576 crossref_primary_10_1126_science_adr2091 crossref_primary_10_1002_ente_202201475 crossref_primary_10_1021_acsaem_3c00101 crossref_primary_10_1016_j_xcrp_2023_101380 crossref_primary_10_1021_acsenergylett_3c02503 crossref_primary_10_1021_acsenergylett_4c03263 crossref_primary_10_1002_smtd_202201663 crossref_primary_10_1126_science_adj9602 crossref_primary_10_1002_smtd_202401852 crossref_primary_10_1021_acs_inorgchem_3c04536 crossref_primary_10_1021_acsenergylett_3c02616 crossref_primary_10_1039_D4CC01057D crossref_primary_10_1002_anie_202418708 crossref_primary_10_1002_adfm_202214731 crossref_primary_10_1021_acsnano_5c00480 crossref_primary_10_1038_s41586_024_07189_3 crossref_primary_10_1039_D4EE00568F crossref_primary_10_1002_adom_202301105 crossref_primary_10_1007_s40843_024_3080_5 crossref_primary_10_1021_accountsmr_2c00207 crossref_primary_10_1016_j_cej_2024_152024 crossref_primary_10_1021_acs_chemmater_4c00907 crossref_primary_10_1021_acsami_3c08182 crossref_primary_10_1002_adfm_202310133 crossref_primary_10_1002_aenm_202302774 crossref_primary_10_1038_s41467_024_52198_5 crossref_primary_10_1038_s41565_024_01799_8 crossref_primary_10_1109_JPHOTOV_2023_3340602 crossref_primary_10_1021_jacs_5c00234 crossref_primary_10_1002_admi_202400823 crossref_primary_10_1002_adfm_202417890 crossref_primary_10_1021_acsaem_4c01314 crossref_primary_10_1002_adma_202401416 crossref_primary_10_1002_adfm_202303038 crossref_primary_10_1002_adma_202307422 crossref_primary_10_1021_acsami_5c00201 crossref_primary_10_1039_D4EE03869J crossref_primary_10_1021_acsenergylett_4c00093 crossref_primary_10_1039_D4EE01898B crossref_primary_10_1016_j_matlet_2024_136472 crossref_primary_10_1007_s40820_024_01417_1 crossref_primary_10_1021_acsphotonics_3c01695 crossref_primary_10_1002_ange_202312726 crossref_primary_10_1021_acsaem_4c02890 crossref_primary_10_1039_D4TA08465A crossref_primary_10_1038_s41566_023_01341_7 crossref_primary_10_1002_adma_202416672 crossref_primary_10_1039_D3TC03807F crossref_primary_10_1002_adfm_202412389 crossref_primary_10_1016_j_jechem_2025_02_006 crossref_primary_10_1021_acs_chemrev_2c00843 crossref_primary_10_1021_acsenergylett_3c00410 crossref_primary_10_1002_adma_202408387 crossref_primary_10_1002_adma_202309869 crossref_primary_10_1021_jacs_4c09877 crossref_primary_10_1021_acs_accounts_3c00015 crossref_primary_10_1038_s41377_024_01461_x crossref_primary_10_1002_adfm_202405291 crossref_primary_10_1002_smtd_202201467 crossref_primary_10_3390_nano13081417 crossref_primary_10_1126_science_adh8086 crossref_primary_10_1002_adfm_202412015 crossref_primary_10_1016_j_cinorg_2024_100066 crossref_primary_10_1002_adma_202308655 crossref_primary_10_1002_adma_202403257 crossref_primary_10_1021_acs_cgd_3c01489 crossref_primary_10_1038_s41377_023_01334_9 crossref_primary_10_1002_adma_202301232 crossref_primary_10_1002_adma_202404795 crossref_primary_10_1002_anie_202406167 crossref_primary_10_1002_adsu_202400695 crossref_primary_10_1021_acs_chemmater_2c03718 crossref_primary_10_1016_j_mtphys_2024_101472 crossref_primary_10_1021_acsenergylett_4c00960 crossref_primary_10_1039_D4CC02299H crossref_primary_10_1039_D4EE05841K crossref_primary_10_1021_acsenergylett_4c00961 crossref_primary_10_1016_j_jpcs_2024_112016 crossref_primary_10_1016_j_cej_2024_149963 crossref_primary_10_1021_acsami_4c01335 crossref_primary_10_1088_1361_6463_ad436e crossref_primary_10_1002_adma_202309991 crossref_primary_10_1039_D3TA03249C crossref_primary_10_1021_acsenergylett_2c02408 crossref_primary_10_1002_aenm_202302337 crossref_primary_10_1002_smtd_202400850 crossref_primary_10_1021_acsenergylett_3c02009 crossref_primary_10_1002_cssc_202402549 crossref_primary_10_1021_acsomega_3c08936 crossref_primary_10_1021_acsami_3c09887 crossref_primary_10_1002_adom_202300957 crossref_primary_10_1002_admt_202300400 crossref_primary_10_1021_acs_jpcc_4c01871 crossref_primary_10_1103_PRXEnergy_3_023012 crossref_primary_10_1002_adfm_202401945 crossref_primary_10_1002_adom_202202809 crossref_primary_10_1002_inf2_12522 crossref_primary_10_1002_advs_202407380 crossref_primary_10_1016_j_decarb_2023_100025 crossref_primary_10_1002_ange_202419061 crossref_primary_10_1002_adfm_202305539 crossref_primary_10_1039_D4RA05576D crossref_primary_10_1002_adfm_202415429 crossref_primary_10_1002_smsc_202300188 crossref_primary_10_1016_j_device_2024_100285 crossref_primary_10_1002_anie_202219307 crossref_primary_10_1021_acsenergylett_3c00614 crossref_primary_10_1021_acs_jctc_3c00904 crossref_primary_10_1016_j_scib_2024_07_026 crossref_primary_10_1002_aenm_202403326 crossref_primary_10_1016_j_jechem_2024_06_050 crossref_primary_10_1039_D2EE04087E crossref_primary_10_1007_s13391_025_00563_x crossref_primary_10_1007_s42493_024_00108_8 crossref_primary_10_1021_acsenergylett_3c01024 crossref_primary_10_1039_D4QM00560K crossref_primary_10_1016_j_matt_2025_101990 crossref_primary_10_1088_1361_648X_acda71 crossref_primary_10_1002_solr_202300370 crossref_primary_10_1007_s11426_024_2047_7 crossref_primary_10_1021_acsenergylett_3c02357 crossref_primary_10_1038_s41560_023_01310_y crossref_primary_10_1039_D4SC06637E crossref_primary_10_1016_j_nanoen_2023_109178 crossref_primary_10_1038_s41560_023_01377_7 crossref_primary_10_1038_s41578_023_00560_2 crossref_primary_10_1002_adma_202301028 crossref_primary_10_1002_smll_202400679 crossref_primary_10_1021_acsnano_4c16440 crossref_primary_10_1002_adma_202301705 crossref_primary_10_1002_adom_202301949 crossref_primary_10_1038_s41560_024_01667_8 crossref_primary_10_1007_s12274_024_6703_5 crossref_primary_10_1038_s43246_024_00636_8 crossref_primary_10_1016_j_ccr_2025_216563 crossref_primary_10_1039_D3CS00728F crossref_primary_10_1021_acsami_5c02680 crossref_primary_10_1016_j_cej_2024_154611 crossref_primary_10_1039_D2CC07048K crossref_primary_10_1002_adma_202211207 crossref_primary_10_1039_D3MH01313H crossref_primary_10_1002_aenm_202302240 crossref_primary_10_1016_j_joule_2024_02_015 crossref_primary_10_1002_adma_202211324 crossref_primary_10_1021_acsnano_4c11785 crossref_primary_10_1021_jacs_4c05191 crossref_primary_10_1126_science_adk1633 crossref_primary_10_1007_s40684_024_00663_3 crossref_primary_10_1002_smtd_202300716 crossref_primary_10_1021_accountsmr_4c00148 crossref_primary_10_1016_j_nanoen_2023_109065 crossref_primary_10_1002_adfm_202422014 crossref_primary_10_1039_D4TC01482K crossref_primary_10_1016_j_jmst_2024_06_027 crossref_primary_10_1016_j_xinn_2022_100363 crossref_primary_10_1021_acsaelm_4c02294 crossref_primary_10_1039_D3EE04520J crossref_primary_10_1021_acssuschemeng_2c07584 crossref_primary_10_1039_D4SE00914B crossref_primary_10_1016_j_mtcomm_2023_107623 crossref_primary_10_1063_5_0155845 crossref_primary_10_1002_adfm_202411153 crossref_primary_10_1063_5_0232621 crossref_primary_10_1021_acsenergylett_4c02546 crossref_primary_10_1002_adma_202211317 crossref_primary_10_1021_acsami_4c02220 crossref_primary_10_1038_s41570_023_00510_0 crossref_primary_10_1002_advs_202300586 crossref_primary_10_1016_j_jechem_2023_07_001 crossref_primary_10_1002_adfm_202411836 crossref_primary_10_1002_anie_202302342 crossref_primary_10_1016_j_rsurfi_2024_100224 crossref_primary_10_1039_D4TA08688K crossref_primary_10_1016_j_solener_2024_113172 crossref_primary_10_1021_acsenergylett_2c02576 crossref_primary_10_1002_adfm_202300169 crossref_primary_10_1021_acsenergylett_4c02438 crossref_primary_10_1002_adfm_202412482 crossref_primary_10_1002_aenm_202402243 crossref_primary_10_1021_acssuschemeng_4c06348 crossref_primary_10_1103_PhysRevMaterials_9_023803 crossref_primary_10_1002_aenm_202204351 crossref_primary_10_1021_acsanm_4c01909 crossref_primary_10_1002_adfm_202305736 crossref_primary_10_1002_ange_202302342 crossref_primary_10_1007_s42114_023_00691_8 crossref_primary_10_1002_adfm_202315897 crossref_primary_10_1016_j_joule_2022_10_017 |
Cites_doi | 10.1016/j.chempr.2021.04.002 10.1016/j.joule.2021.07.016 10.1103/PhysRevB.82.153412 10.1002/adfm.202009164 10.1021/acsenergylett.6b00236 10.1021/acs.jpcc.0c03465 10.1021/acs.jpclett.5b01432 10.1039/C9EE00751B 10.1107/S0909049512022017 10.1126/sciadv.aaw2543 10.1103/PhysRev.56.978 10.1107/S0108768107031758 10.1364/OME.9.003691 10.1002/adma.202007176 10.1107/S0021889809040126 10.1107/S1600576715004434 10.1109/PVSC45281.2020.9300489 10.1021/acsnano.8b08390 10.1002/adom.202101553 10.1016/j.joule.2018.09.012 10.1021/acsenergylett.8b02058 10.1016/j.xcrp.2021.100601 10.1038/s41560-020-00749-7 10.1002/adma.202105635 10.1038/s41586-021-03964-8 10.1364/OE.23.00A263 10.1016/j.joule.2018.09.022 10.1103/PhysRev.140.A1133 10.1038/s41467-020-15882-w 10.1063/1.3103328 10.1007/BFb0112834 10.1088/0953-8984/14/11/302 10.1016/S0167-5729(99)00002-3 10.1021/acsenergylett.1c02580 10.1021/acsenergylett.7b01057 10.1038/s41560-019-0529-5 10.1103/PhysRevB.81.161104 10.1103/PhysRevB.78.125116 10.1021/acsenergylett.0c02305 10.1119/1.19101 10.1364/OE.24.0A1288 10.1103/PhysRevLett.97.170201 10.1038/s41566-018-0154-z 10.1021/nn5036476 10.1126/sciadv.1501491 10.1021/acsenergylett.1c01649 10.1088/0953-8984/18/34/012 10.1021/acs.chemmater.6b00847 10.1038/s41586-021-03406-5 10.1126/science.abj2637 10.1038/s41560-019-0538-4 10.1038/s41467-020-20272-3 10.1063/1.370757 10.1021/acsmaterialslett.0c00505 10.1021/acs.chemmater.1c01641 10.1103/PhysRevB.43.1993 10.1002/adma.201805323 10.1016/S0010-8545(00)82045-7 10.1107/S0021889896015464 10.1038/s41566-019-0398-2 10.1126/science.abm5784 10.1126/sciadv.abj7930 10.1021/jacs.9b01327 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works – notice: Distributed under a Creative Commons Attribution 4.0 International License |
CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States) |
DBID | AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 1XC VOOES OIOZB OTOTI |
DOI | 10.1126/science.abq7652 |
DatabaseName | CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1430 |
ExternalDocumentID | 1909609 oai_HAL_hal_03784361v1 10_1126_science_abq7652 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 1XC VOOES 0B8 63O ABPTK AEUPB AFOSN AKPLA ANJGP B-7 ESX GX1 IGG OIOZB OK1 OTOTI PK8 VQA XFK YCJ YJ6 ZA5 |
ID | FETCH-LOGICAL-c470t-a60f7cac6ecc185239f19bfcb1d293253619da5873a768366bfaf46f30e0c0d13 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Mon Oct 02 04:05:43 EDT 2023 Wed Jul 02 06:34:05 EDT 2025 Tue Aug 05 11:00:05 EDT 2025 Fri Jul 25 10:41:57 EDT 2025 Tue Jul 01 02:24:13 EDT 2025 Thu Apr 24 22:55:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6613 |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c470t-a60f7cac6ecc185239f19bfcb1d293253619da5873a768366bfaf46f30e0c0d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 AC02-06CH11357; EERE 0008843; SC0013957; 861985; N00014-20-1-2725; CBET-1626418; DMR-1719797 European Union (EU) National Science Foundation (NSF) USDOE Office of Science (SC), Basic Energy Sciences (BES) US Department of the Navy, Office of Naval Research (ONR) |
ORCID | 0000-0003-2037-4168 0000-0002-9289-291X 0000-0002-4092-0771 0000-0003-4064-6271 0000-0001-5603-0581 0000-0002-9759-5447 0000-0002-2097-2830 0000-0003-2688-2606 0000-0003-0568-4141 0000-0001-8323-7860 0000-0001-6076-852X 0000-0001-8865-409X 0000-0003-0930-2120 0000-0002-2446-020X 0000-0003-4619-8932 0000-0002-4607-3390 0000-0002-2017-5823 0000-0001-8775-6043 0000-0003-0379-5577 0000-0003-3443-2621 0000000326882606 0000000156030581 0000000297595447 0000000334432621 0000000303795577 000000016076852X 0000000305684141 0000000240920771 0000000183237860 000000022446020X 000000029289291X 0000000346198932 0000000187756043 0000000309302120 0000000220175823 0000000320374168 0000000340646271 0000000246073390 000000018865409X 0000000220972830 |
OpenAccessLink | https://hal.science/hal-03784361 |
PMID | 36137050 |
PQID | 2717980817 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_1909609 hal_primary_oai_HAL_hal_03784361v1 proquest_miscellaneous_2717683544 proquest_journals_2717980817 crossref_citationtrail_10_1126_science_abq7652 crossref_primary_10_1126_science_abq7652 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-23 20220923 |
PublicationDateYYYYMMDD | 2022-09-23 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington – name: United States |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationYear | 2022 |
Publisher | The American Association for the Advancement of Science American Association for the Advancement of Science (AAAS) AAAS |
Publisher_xml | – name: The American Association for the Advancement of Science – name: American Association for the Advancement of Science (AAAS) – name: AAAS |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 Wien W. (e_1_3_2_48_2) 1915; 3 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 Farrell E. (e_1_3_2_71_2) 2014; 1 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 Kinigstein E. D. (e_1_3_2_33_2) 2020; 2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 Yuk S. F. (e_1_3_2_53_2) 2017; 7 e_1_3_2_70_2 |
References_xml | – ident: e_1_3_2_11_2 doi: 10.1016/j.chempr.2021.04.002 – ident: e_1_3_2_37_2 doi: 10.1016/j.joule.2021.07.016 – ident: e_1_3_2_52_2 doi: 10.1103/PhysRevB.82.153412 – ident: e_1_3_2_14_2 doi: 10.1002/adfm.202009164 – ident: e_1_3_2_9_2 doi: 10.1021/acsenergylett.6b00236 – ident: e_1_3_2_26_2 doi: 10.1021/acs.jpcc.0c03465 – ident: e_1_3_2_59_2 doi: 10.1021/acs.jpclett.5b01432 – ident: e_1_3_2_16_2 doi: 10.1039/C9EE00751B – ident: e_1_3_2_41_2 doi: 10.1107/S0909049512022017 – ident: e_1_3_2_7_2 doi: 10.1126/sciadv.aaw2543 – ident: e_1_3_2_43_2 doi: 10.1103/PhysRev.56.978 – ident: e_1_3_2_57_2 doi: 10.1107/S0108768107031758 – ident: e_1_3_2_64_2 doi: 10.1364/OME.9.003691 – ident: e_1_3_2_27_2 doi: 10.1002/adma.202007176 – ident: e_1_3_2_45_2 doi: 10.1107/S0021889809040126 – ident: e_1_3_2_42_2 doi: 10.1107/S1600576715004434 – ident: e_1_3_2_36_2 doi: 10.1109/PVSC45281.2020.9300489 – ident: e_1_3_2_39_2 doi: 10.1021/acsnano.8b08390 – ident: e_1_3_2_62_2 doi: 10.1002/adom.202101553 – ident: e_1_3_2_47_2 – ident: e_1_3_2_19_2 doi: 10.1016/j.joule.2018.09.012 – ident: e_1_3_2_40_2 doi: 10.1021/acsenergylett.8b02058 – ident: e_1_3_2_28_2 doi: 10.1016/j.xcrp.2021.100601 – ident: e_1_3_2_22_2 doi: 10.1038/s41560-020-00749-7 – ident: e_1_3_2_12_2 doi: 10.1002/adma.202105635 – volume: 2 start-page: 1360 year: 2020 ident: e_1_3_2_33_2 article-title: ACS publication-title: Mater. Lett. – ident: e_1_3_2_3_2 doi: 10.1038/s41586-021-03964-8 – ident: e_1_3_2_63_2 doi: 10.1364/OE.23.00A263 – volume: 1 start-page: 1 year: 2014 ident: e_1_3_2_71_2 article-title: Guide for DLS sample preparation publication-title: Brookhaven Instrum. – ident: e_1_3_2_17_2 doi: 10.1016/j.joule.2018.09.022 – ident: e_1_3_2_49_2 doi: 10.1103/PhysRev.140.A1133 – ident: e_1_3_2_32_2 doi: 10.1038/s41467-020-15882-w – ident: e_1_3_2_69_2 doi: 10.1063/1.3103328 – ident: e_1_3_2_29_2 doi: 10.1007/BFb0112834 – ident: e_1_3_2_50_2 doi: 10.1088/0953-8984/14/11/302 – ident: e_1_3_2_38_2 doi: 10.1016/S0167-5729(99)00002-3 – ident: e_1_3_2_21_2 doi: 10.1021/acsenergylett.1c02580 – ident: e_1_3_2_68_2 – ident: e_1_3_2_25_2 doi: 10.1021/acsenergylett.7b01057 – ident: e_1_3_2_24_2 doi: 10.1038/s41560-019-0529-5 – ident: e_1_3_2_51_2 doi: 10.1103/PhysRevB.81.161104 – ident: e_1_3_2_55_2 doi: 10.1103/PhysRevB.78.125116 – ident: e_1_3_2_15_2 doi: 10.1021/acsenergylett.0c02305 – ident: e_1_3_2_46_2 doi: 10.1119/1.19101 – ident: e_1_3_2_65_2 doi: 10.1364/OE.24.0A1288 – ident: e_1_3_2_60_2 doi: 10.1103/PhysRevLett.97.170201 – ident: e_1_3_2_10_2 doi: 10.1038/s41566-018-0154-z – ident: e_1_3_2_8_2 doi: 10.1021/nn5036476 – ident: e_1_3_2_70_2 doi: 10.1126/sciadv.1501491 – ident: e_1_3_2_13_2 doi: 10.1021/acsenergylett.1c01649 – ident: e_1_3_2_56_2 doi: 10.1088/0953-8984/18/34/012 – ident: e_1_3_2_58_2 doi: 10.1021/acs.chemmater.6b00847 – ident: e_1_3_2_2_2 doi: 10.1038/s41586-021-03406-5 – ident: e_1_3_2_5_2 doi: 10.1126/science.abj2637 – ident: e_1_3_2_6_2 doi: 10.1038/s41560-019-0538-4 – volume: 3 start-page: 209 year: 1915 ident: e_1_3_2_48_2 article-title: Theorie der Warmestrahlung publication-title: Physik – ident: e_1_3_2_35_2 doi: 10.1038/s41467-020-20272-3 – ident: e_1_3_2_67_2 – ident: e_1_3_2_66_2 doi: 10.1063/1.370757 – volume: 7 start-page: 1 year: 2017 ident: e_1_3_2_53_2 article-title: Towards an accurate description of perovskite ferroelectrics: Exchange and correlation effects publication-title: Sci. Rep. – ident: e_1_3_2_61_2 doi: 10.1021/acsmaterialslett.0c00505 – ident: e_1_3_2_30_2 doi: 10.1021/acs.chemmater.1c01641 – ident: e_1_3_2_54_2 doi: 10.1103/PhysRevB.43.1993 – ident: e_1_3_2_18_2 doi: 10.1002/adma.201805323 – ident: e_1_3_2_23_2 doi: 10.1016/S0010-8545(00)82045-7 – ident: e_1_3_2_44_2 doi: 10.1107/S0021889896015464 – ident: e_1_3_2_4_2 doi: 10.1038/s41566-019-0398-2 – ident: e_1_3_2_20_2 doi: 10.1126/science.abm5784 – ident: e_1_3_2_34_2 doi: 10.1126/sciadv.abj7930 – ident: e_1_3_2_31_2 doi: 10.1021/jacs.9b01327 |
SSID | ssj0009593 |
Score | 2.7240245 |
Snippet | Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the... Pure perovskite topcoatsTwo-dimensional (2D) halide perovskite passivation layers grown on three-dimensional (3D) perovskite can boost the power conversion... |
SourceID | osti hal proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1425 |
SubjectTerms | Chemical Sciences Dielectric constant Dielectric strength Energy conversion efficiency Fabrication or physical chemistry Perovskites Photodegradation Photovoltaic cells Relative humidity Solar cells SOLAR ENERGY Spin coating Substrates Theoretical and |
Title | Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells |
URI | https://www.proquest.com/docview/2717980817 https://www.proquest.com/docview/2717683544 https://hal.science/hal-03784361 https://www.osti.gov/servlets/purl/1909609 |
Volume | 377 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2TqC9IDZAlA1kEA9DJV0a5_MxI1QFxoTUTRpPkZ04atFoS5tO2v567mIndUUnbbxElWMnru_Dd5e7nwl574ZuHnoitNBHtlzmBJbIvciKYHt1XJblIsLi5O9n_uDC_XrpXW5tfzSylpal6Ga3G-tK_oeq0AZ0xSrZB1C2eSg0wG-gL1yBwnC9F40TnctSgS13Ci7mOgKHJiBLsAwjQWDi6fUCg7QdMb7iNwjfXGJlfZVhmC_nVfEUxs9lBSeByQELdHg7GNRfmNZrrQjAKm2-9Bj0bVIWY5VYUOcZ6GFG0GE4zkfjSg8Px3P-axXVV5rnJy_kuG7MJXSSqnTNTPJHLl3wfAYLpfjklpshDPB-8asOWzHdw2dc_dE4HtYz19pdgyurvU0pdBvPonRsZmp8pk-OUawNFgozVHjPdTzDHAB70t681RiHY8ouF38CX2HxGow3-11xHoM3BLYC2F2H_B7Ew_RH0k9Pv5x9W7_bYH8P4tN0BKxpsyB04UnX4OvvOOAUgVbfiU-Sk_6dINMaysooEqvnuUse15NaM8i2R5gO3JoC2_5jnFQW1_lT8kS7SjRWfL9HtuRknzxSh6fe7JM9TaQFPdLY6R-eEbEmEtQQCTotKEuOnYSuBIJqgaBKIChwA9UCQUEgaCMQtBIIWgnEc3LR_3z-aWDpY0SszA3s0uK-XQQZz3zQVggVwKKiF4kiE70cbF3Hg4WIcu6FAePgezPfFwUvXL9gtrQzO--xF6Q1mU7kS0LtXpGHmQgDLrkrfRFFwrMlc0JZ8EB6bpt067VMM42xj0e9XKWVr-34qaZDqunQJkfNgJmCl7m76ztkg7rXZtZokwOkHY5FDOgMk-WyMgWrH5El2-SwJmmq1dgidQLELATPIGiTt81t2GRwTflETpeqj48hYvfVfWZxQHZXYn5IWuV8KV-D7V6KN5pl_wIF0u_x |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deterministic+fabrication+of+3D%2F2D+perovskite+bilayer+stacks+for+durable+and+efficient+solar+cells&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Sidhik%2C+Siraj&rft.au=Wang%2C+Yafei&rft.au=de+Siena%2C+Michael&rft.au=Asadpour%2C+Reza&rft.date=2022-09-23&rft.pub=American+Association+for+the+Advancement+of+Science+%28AAAS%29&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=377&rft.issue=6613&rft.spage=1425&rft.epage=1430&rft_id=info:doi/10.1126%2Fscience.abq7652&rft_id=info%3Apmid%2F36137050&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03784361v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |