Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells

Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovs...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 377; no. 6613; pp. 1425 - 1430
Main Authors Sidhik, Siraj, Wang, Yafei, De Siena, Michael, Asadpour, Reza, Torma, Andrew J., Terlier, Tanguy, Ho, Kevin, Li, Wenbin, Puthirath, Anand B., Shuai, Xinting, Agrawal, Ayush, Traore, Boubacar, Jones, Matthew, Giridharagopal, Rajiv, Ajayan, Pulickel M., Strzalka, Joseph, Ginger, David S., Katan, Claudine, Alam, Muhammad Ashraful, Even, Jacky, Kanatzidis, Mercouri G., Mohite, Aditya D.
Format Journal Article
LanguageEnglish
Published Washington The American Association for the Advancement of Science 23.09.2022
American Association for the Advancement of Science (AAAS)
AAAS
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D–2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. We measured a photovoltaic efficiency of 24.5%, with exceptional stability of T 99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency. Two-dimensional (2D) halide perovskite passivation layers grown on three-dimensional (3D) perovskite can boost the power conversion efficiency (PCE) of solar cells, but spin-coating of these layers usually forms heterogeneous 2D phases or only ultrathin layers. Sidhik et al . found that solvents with the appropriate dielectric constant and donor strength could grow phase-pure 2D phases of controlled thickness and composition on 3D substrates without dissolving them. Solar cells maintained a peak PCE of 24.5% for 2000 hours with less than 1% degradation under continuous light at 55°C and 65% relative humidity. —PDS Solvents enable growth of phase-pure two-dimensional perovskites without dissolving three-dimensional perovskite substrates.
AbstractList Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D–2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. We measured a photovoltaic efficiency of 24.5%, with exceptional stability of T 99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency.
Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D-2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. We measured a photovoltaic efficiency of 24.5%, with exceptional stability of T99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency.Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D-2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. We measured a photovoltaic efficiency of 24.5%, with exceptional stability of T99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency.
Pure perovskite topcoatsTwo-dimensional (2D) halide perovskite passivation layers grown on three-dimensional (3D) perovskite can boost the power conversion efficiency (PCE) of solar cells, but spin-coating of these layers usually forms heterogeneous 2D phases or only ultrathin layers. Sidhik et al. found that solvents with the appropriate dielectric constant and donor strength could grow phase-pure 2D phases of controlled thickness and composition on 3D substrates without dissolving them. Solar cells maintained a peak PCE of 24.5% for 2000 hours with less than 1% degradation under continuous light at 55°C and 65% relative humidity. —PDS
Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D–2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. Here we measured a photovoltaic efficiency of 24.5%, with exceptional stability of T99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency.
Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the underlying layer. By leveraging the solvent dielectric constant and Gutmann donor number, we could grow phase-pure two-dimensional (2D) halide perovskite stacks of the desired composition, thickness, and bandgap onto 3D perovskites without dissolving the underlying substrate. Characterization reveals a 3D–2D transition region of 20 nanometers mainly determined by the roughness of the bottom 3D layer. Thickness dependence of the 2D perovskite layer reveals the anticipated trends for n-i-p and p-i-n architectures, which is consistent with band alignment and carrier transport limits for 2D perovskites. We measured a photovoltaic efficiency of 24.5%, with exceptional stability of T 99 (time required to preserve 99% of initial photovoltaic efficiency) of >2000 hours, implying that the 3D/2D bilayer inherits the intrinsic durability of 2D perovskite without compromising efficiency. Two-dimensional (2D) halide perovskite passivation layers grown on three-dimensional (3D) perovskite can boost the power conversion efficiency (PCE) of solar cells, but spin-coating of these layers usually forms heterogeneous 2D phases or only ultrathin layers. Sidhik et al . found that solvents with the appropriate dielectric constant and donor strength could grow phase-pure 2D phases of controlled thickness and composition on 3D substrates without dissolving them. Solar cells maintained a peak PCE of 24.5% for 2000 hours with less than 1% degradation under continuous light at 55°C and 65% relative humidity. —PDS Solvents enable growth of phase-pure two-dimensional perovskites without dissolving three-dimensional perovskite substrates.
Author Torma, Andrew J.
Even, Jacky
Alam, Muhammad Ashraful
Mohite, Aditya D.
Agrawal, Ayush
Wang, Yafei
Kanatzidis, Mercouri G.
Strzalka, Joseph
Ajayan, Pulickel M.
Traore, Boubacar
Li, Wenbin
Terlier, Tanguy
Giridharagopal, Rajiv
Asadpour, Reza
Ginger, David S.
Sidhik, Siraj
De Siena, Michael
Shuai, Xinting
Puthirath, Anand B.
Ho, Kevin
Jones, Matthew
Katan, Claudine
Author_xml – sequence: 1
  givenname: Siraj
  orcidid: 0000-0002-2097-2830
  surname: Sidhik
  fullname: Sidhik, Siraj
  organization: Department of Material Science and Nanoengineering, Rice University, Houston, TX 77005, USA., Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
– sequence: 2
  givenname: Yafei
  surname: Wang
  fullname: Wang, Yafei
  organization: Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA., School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
– sequence: 3
  givenname: Michael
  orcidid: 0000-0003-0379-5577
  surname: De Siena
  fullname: De Siena, Michael
  organization: Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
– sequence: 4
  givenname: Reza
  orcidid: 0000-0003-0930-2120
  surname: Asadpour
  fullname: Asadpour, Reza
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
– sequence: 5
  givenname: Andrew J.
  orcidid: 0000-0003-3443-2621
  surname: Torma
  fullname: Torma, Andrew J.
  organization: Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
– sequence: 6
  givenname: Tanguy
  orcidid: 0000-0002-4092-0771
  surname: Terlier
  fullname: Terlier, Tanguy
  organization: Shared Equipment Authority, Secure and Intelligent Micro-Systems (SIMS) Laboratory, Rice University, Houston, TX 77005, USA
– sequence: 7
  givenname: Kevin
  orcidid: 0000-0003-2688-2606
  surname: Ho
  fullname: Ho, Kevin
  organization: Department of Chemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 8
  givenname: Wenbin
  surname: Li
  fullname: Li, Wenbin
  organization: Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA., Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
– sequence: 9
  givenname: Anand B.
  orcidid: 0000-0003-4064-6271
  surname: Puthirath
  fullname: Puthirath, Anand B.
  organization: Department of Material Science and Nanoengineering, Rice University, Houston, TX 77005, USA
– sequence: 10
  givenname: Xinting
  orcidid: 0000-0002-2446-020X
  surname: Shuai
  fullname: Shuai, Xinting
  organization: Department of Material Science and Nanoengineering, Rice University, Houston, TX 77005, USA
– sequence: 11
  givenname: Ayush
  orcidid: 0000-0001-5603-0581
  surname: Agrawal
  fullname: Agrawal, Ayush
  organization: Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
– sequence: 12
  givenname: Boubacar
  orcidid: 0000-0003-0568-4141
  surname: Traore
  fullname: Traore, Boubacar
  organization: École Nationale Supérieure de Chimie de Rennes (ENSCR), Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France
– sequence: 13
  givenname: Matthew
  orcidid: 0000-0002-9289-291X
  surname: Jones
  fullname: Jones, Matthew
  organization: Department of Material Science and Nanoengineering, Rice University, Houston, TX 77005, USA., Department of Chemistry, Rice University, Houston, TX 77005, USA
– sequence: 14
  givenname: Rajiv
  orcidid: 0000-0001-6076-852X
  surname: Giridharagopal
  fullname: Giridharagopal, Rajiv
  organization: Department of Chemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 15
  givenname: Pulickel M.
  orcidid: 0000-0001-8323-7860
  surname: Ajayan
  fullname: Ajayan, Pulickel M.
  organization: Department of Material Science and Nanoengineering, Rice University, Houston, TX 77005, USA
– sequence: 16
  givenname: Joseph
  orcidid: 0000-0003-4619-8932
  surname: Strzalka
  fullname: Strzalka, Joseph
  organization: X-Ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
– sequence: 17
  givenname: David S.
  orcidid: 0000-0002-9759-5447
  surname: Ginger
  fullname: Ginger, David S.
  organization: Department of Chemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 18
  givenname: Claudine
  orcidid: 0000-0002-2017-5823
  surname: Katan
  fullname: Katan, Claudine
  organization: École Nationale Supérieure de Chimie de Rennes (ENSCR), Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes (ISCR)–UMR 6226, F-35000 Rennes, France
– sequence: 19
  givenname: Muhammad Ashraful
  orcidid: 0000-0001-8775-6043
  surname: Alam
  fullname: Alam, Muhammad Ashraful
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
– sequence: 20
  givenname: Jacky
  orcidid: 0000-0002-4607-3390
  surname: Even
  fullname: Even, Jacky
  organization: Institut National des Sciences Appliquées (INSA) Rennes, Univ Rennes, CNRS, Institut Fonctions Optiques pour les Technologies de l’Information (FOTON)–UMR 6082, F-35000 Rennes, France
– sequence: 21
  givenname: Mercouri G.
  orcidid: 0000-0003-2037-4168
  surname: Kanatzidis
  fullname: Kanatzidis, Mercouri G.
  organization: Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
– sequence: 22
  givenname: Aditya D.
  orcidid: 0000-0001-8865-409X
  surname: Mohite
  fullname: Mohite, Aditya D.
  organization: Department of Material Science and Nanoengineering, Rice University, Houston, TX 77005, USA., Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
BackLink https://hal.science/hal-03784361$$DView record in HAL
https://www.osti.gov/servlets/purl/1909609$$D View this record in Osti.gov
BookMark eNp1kcFvFCEUxompsdvq2SvRix6m-xhmYDg2XbUmm3jRM2GYR0o7C1tgm_S_l-mulyaeSOD3Pb7vfRfkLMSAhHxkcMVYK9bZegwWr8z4KEXfviErBqpvVAv8jKwAuGgGkP05ucj5HqC-Kf6OnHPBuIQeVmTcYMG088Hn4i11ZkzemuJjoNFRvlm3G7rHFJ_ygy9IRz-bZ0w0F2MfMnUx0emQzDgjNWGi6JxfHBWa42wStTjP-T1568yc8cPpvCR_vn_7fXPbbH_9-HlzvW1sJ6E0RoCT1liB1rKhb7lyTI3OjmxqFW_76llNph8kN1IMXIjRGdcJxwHBwsT4Jfl0nBtrFF03U9De2RgC2qKZAiVAVejrEbozs94nvzPpWUfj9e31Vi93wOXQ1b-eloFfjuw-xccD5qJ3Pi-RTMB4yLqVbHHSd11FP79C7-MhhRr3hVIDDExWqj9SNsWcEzpdTb4suyTjZ81AL63qU6v61GrVrV_p_jn_n-IvQAynAw
CitedBy_id crossref_primary_10_1002_aenm_202300760
crossref_primary_10_1016_j_joule_2024_11_015
crossref_primary_10_1016_j_rser_2023_114161
crossref_primary_10_1002_adfm_202408721
crossref_primary_10_1002_adma_202300647
crossref_primary_10_1002_adfm_202309653
crossref_primary_10_1016_j_joule_2023_05_020
crossref_primary_10_1002_adfm_202400569
crossref_primary_10_1021_acsami_3c04243
crossref_primary_10_1002_anie_202419061
crossref_primary_10_1016_j_scib_2023_12_014
crossref_primary_10_1038_s41560_023_01214_x
crossref_primary_10_1039_D4EL00013G
crossref_primary_10_1016_j_nanoen_2025_110905
crossref_primary_10_1038_s41560_024_01529_3
crossref_primary_10_1038_s42004_023_00812_w
crossref_primary_10_1002_adma_202415068
crossref_primary_10_1016_j_mtener_2024_101786
crossref_primary_10_1002_adma_202416150
crossref_primary_10_1126_science_ado6619
crossref_primary_10_1021_acsnano_3c09176
crossref_primary_10_1002_adom_202202670
crossref_primary_10_1002_ange_202401604
crossref_primary_10_1021_acsaem_4c01057
crossref_primary_10_1002_ange_202418708
crossref_primary_10_1016_j_joule_2024_03_002
crossref_primary_10_1002_adfm_202415491
crossref_primary_10_1039_D4EE02917H
crossref_primary_10_1002_adma_202302839
crossref_primary_10_1088_2515_7655_acc2e6
crossref_primary_10_3390_ma17164008
crossref_primary_10_1016_j_jechem_2024_11_038
crossref_primary_10_1002_adma_202310444
crossref_primary_10_1002_solr_202300100
crossref_primary_10_1021_acs_chemrev_4c00073
crossref_primary_10_1016_j_matt_2024_03_005
crossref_primary_10_1038_s43586_024_00311_9
crossref_primary_10_1016_j_nanoen_2024_109875
crossref_primary_10_1016_j_joule_2023_08_003
crossref_primary_10_1021_acsami_4c05329
crossref_primary_10_1063_5_0185501
crossref_primary_10_1002_adma_202303139
crossref_primary_10_1039_D2NR06919A
crossref_primary_10_1126_sciadv_adp0790
crossref_primary_10_1021_acs_chemmater_3c00011
crossref_primary_10_1021_acsmaterialslett_3c00729
crossref_primary_10_1002_aesr_202200160
crossref_primary_10_1016_j_chempr_2023_09_002
crossref_primary_10_1021_jacs_4c01882
crossref_primary_10_1002_smll_202410172
crossref_primary_10_1039_D4EE02492C
crossref_primary_10_1021_acsami_3c01754
crossref_primary_10_1021_acsami_3c07615
crossref_primary_10_1016_j_cej_2025_159894
crossref_primary_10_1021_jacs_3c12446
crossref_primary_10_1038_s41566_023_01372_0
crossref_primary_10_1126_sciadv_adg0032
crossref_primary_10_1039_D4TA02405B
crossref_primary_10_1007_s11426_024_2115_y
crossref_primary_10_1002_adfm_202416250
crossref_primary_10_1021_acsanm_3c06224
crossref_primary_10_1021_acsenergylett_4c01530
crossref_primary_10_1002_smll_202410731
crossref_primary_10_1016_j_mtcomm_2023_107147
crossref_primary_10_1016_j_nanoen_2023_108979
crossref_primary_10_1016_j_cjsc_2024_100454
crossref_primary_10_1016_j_matt_2022_11_011
crossref_primary_10_1016_j_enchem_2023_100105
crossref_primary_10_1038_s44160_023_00422_3
crossref_primary_10_1002_aenm_202304355
crossref_primary_10_1038_s41578_023_00582_w
crossref_primary_10_1002_adma_202405921
crossref_primary_10_1063_5_0142461
crossref_primary_10_1126_science_adi4107
crossref_primary_10_1002_anie_202312726
crossref_primary_10_1021_acs_chemrev_3c00214
crossref_primary_10_1002_aenm_202301888
crossref_primary_10_1002_smll_202310196
crossref_primary_10_1021_acsami_4c19269
crossref_primary_10_1063_5_0179174
crossref_primary_10_1016_j_jechem_2023_01_066
crossref_primary_10_1038_s41467_025_56409_5
crossref_primary_10_1021_acsnano_3c12433
crossref_primary_10_1016_j_nantod_2024_102479
crossref_primary_10_1002_ange_202406167
crossref_primary_10_1039_D3EE04022D
crossref_primary_10_1016_j_xcrp_2023_101634
crossref_primary_10_1063_5_0175005
crossref_primary_10_1002_adfm_202412552
crossref_primary_10_1039_D3QM00726J
crossref_primary_10_1016_j_apsusc_2024_160094
crossref_primary_10_1039_D4TA02036G
crossref_primary_10_1038_s41467_024_51345_2
crossref_primary_10_1002_adma_202400365
crossref_primary_10_1039_D4TA06793B
crossref_primary_10_1021_acs_nanolett_3c03655
crossref_primary_10_1088_2040_8986_ad33a6
crossref_primary_10_1002_adfm_202304848
crossref_primary_10_1021_acsmaterialslett_4c01779
crossref_primary_10_1002_advs_202306110
crossref_primary_10_1088_1361_6463_ad60d6
crossref_primary_10_1002_aenm_202304126
crossref_primary_10_1016_j_mattod_2024_12_014
crossref_primary_10_1016_j_jechem_2023_01_061
crossref_primary_10_1002_solr_202400411
crossref_primary_10_1016_j_apmate_2025_100275
crossref_primary_10_1039_D3TA01496G
crossref_primary_10_1002_smll_202406929
crossref_primary_10_1002_smll_202406928
crossref_primary_10_1021_jacs_3c03997
crossref_primary_10_1038_s41586_024_07764_8
crossref_primary_10_1038_s41560_023_01249_0
crossref_primary_10_1038_s41560_023_01400_x
crossref_primary_10_1002_adfm_202412189
crossref_primary_10_1002_ange_202219307
crossref_primary_10_3390_nano12244357
crossref_primary_10_1039_D3TA03174H
crossref_primary_10_1038_s41560_023_01203_0
crossref_primary_10_1002_anie_202401604
crossref_primary_10_1021_acs_jpcc_2c07613
crossref_primary_10_1364_AOP_531166
crossref_primary_10_1021_acsenergylett_3c00697
crossref_primary_10_1126_sciadv_adp3112
crossref_primary_10_1002_sstr_202400234
crossref_primary_10_1007_s40820_024_01630_y
crossref_primary_10_1002_adfm_202400075
crossref_primary_10_1021_acsmaterialslett_3c01606
crossref_primary_10_1002_solr_202300535
crossref_primary_10_1002_aenm_202403279
crossref_primary_10_1038_s41560_023_01205_y
crossref_primary_10_1557_s43577_023_00585_6
crossref_primary_10_1016_j_solener_2024_112461
crossref_primary_10_1016_j_joule_2024_09_014
crossref_primary_10_1002_adma_202419750
crossref_primary_10_1039_D3TA04742C
crossref_primary_10_1038_s41560_023_01421_6
crossref_primary_10_1021_jacs_3c13576
crossref_primary_10_1126_science_adr2091
crossref_primary_10_1002_ente_202201475
crossref_primary_10_1021_acsaem_3c00101
crossref_primary_10_1016_j_xcrp_2023_101380
crossref_primary_10_1021_acsenergylett_3c02503
crossref_primary_10_1021_acsenergylett_4c03263
crossref_primary_10_1002_smtd_202201663
crossref_primary_10_1126_science_adj9602
crossref_primary_10_1002_smtd_202401852
crossref_primary_10_1021_acs_inorgchem_3c04536
crossref_primary_10_1021_acsenergylett_3c02616
crossref_primary_10_1039_D4CC01057D
crossref_primary_10_1002_anie_202418708
crossref_primary_10_1002_adfm_202214731
crossref_primary_10_1021_acsnano_5c00480
crossref_primary_10_1038_s41586_024_07189_3
crossref_primary_10_1039_D4EE00568F
crossref_primary_10_1002_adom_202301105
crossref_primary_10_1007_s40843_024_3080_5
crossref_primary_10_1021_accountsmr_2c00207
crossref_primary_10_1016_j_cej_2024_152024
crossref_primary_10_1021_acs_chemmater_4c00907
crossref_primary_10_1021_acsami_3c08182
crossref_primary_10_1002_adfm_202310133
crossref_primary_10_1002_aenm_202302774
crossref_primary_10_1038_s41467_024_52198_5
crossref_primary_10_1038_s41565_024_01799_8
crossref_primary_10_1109_JPHOTOV_2023_3340602
crossref_primary_10_1021_jacs_5c00234
crossref_primary_10_1002_admi_202400823
crossref_primary_10_1002_adfm_202417890
crossref_primary_10_1021_acsaem_4c01314
crossref_primary_10_1002_adma_202401416
crossref_primary_10_1002_adfm_202303038
crossref_primary_10_1002_adma_202307422
crossref_primary_10_1021_acsami_5c00201
crossref_primary_10_1039_D4EE03869J
crossref_primary_10_1021_acsenergylett_4c00093
crossref_primary_10_1039_D4EE01898B
crossref_primary_10_1016_j_matlet_2024_136472
crossref_primary_10_1007_s40820_024_01417_1
crossref_primary_10_1021_acsphotonics_3c01695
crossref_primary_10_1002_ange_202312726
crossref_primary_10_1021_acsaem_4c02890
crossref_primary_10_1039_D4TA08465A
crossref_primary_10_1038_s41566_023_01341_7
crossref_primary_10_1002_adma_202416672
crossref_primary_10_1039_D3TC03807F
crossref_primary_10_1002_adfm_202412389
crossref_primary_10_1016_j_jechem_2025_02_006
crossref_primary_10_1021_acs_chemrev_2c00843
crossref_primary_10_1021_acsenergylett_3c00410
crossref_primary_10_1002_adma_202408387
crossref_primary_10_1002_adma_202309869
crossref_primary_10_1021_jacs_4c09877
crossref_primary_10_1021_acs_accounts_3c00015
crossref_primary_10_1038_s41377_024_01461_x
crossref_primary_10_1002_adfm_202405291
crossref_primary_10_1002_smtd_202201467
crossref_primary_10_3390_nano13081417
crossref_primary_10_1126_science_adh8086
crossref_primary_10_1002_adfm_202412015
crossref_primary_10_1016_j_cinorg_2024_100066
crossref_primary_10_1002_adma_202308655
crossref_primary_10_1002_adma_202403257
crossref_primary_10_1021_acs_cgd_3c01489
crossref_primary_10_1038_s41377_023_01334_9
crossref_primary_10_1002_adma_202301232
crossref_primary_10_1002_adma_202404795
crossref_primary_10_1002_anie_202406167
crossref_primary_10_1002_adsu_202400695
crossref_primary_10_1021_acs_chemmater_2c03718
crossref_primary_10_1016_j_mtphys_2024_101472
crossref_primary_10_1021_acsenergylett_4c00960
crossref_primary_10_1039_D4CC02299H
crossref_primary_10_1039_D4EE05841K
crossref_primary_10_1021_acsenergylett_4c00961
crossref_primary_10_1016_j_jpcs_2024_112016
crossref_primary_10_1016_j_cej_2024_149963
crossref_primary_10_1021_acsami_4c01335
crossref_primary_10_1088_1361_6463_ad436e
crossref_primary_10_1002_adma_202309991
crossref_primary_10_1039_D3TA03249C
crossref_primary_10_1021_acsenergylett_2c02408
crossref_primary_10_1002_aenm_202302337
crossref_primary_10_1002_smtd_202400850
crossref_primary_10_1021_acsenergylett_3c02009
crossref_primary_10_1002_cssc_202402549
crossref_primary_10_1021_acsomega_3c08936
crossref_primary_10_1021_acsami_3c09887
crossref_primary_10_1002_adom_202300957
crossref_primary_10_1002_admt_202300400
crossref_primary_10_1021_acs_jpcc_4c01871
crossref_primary_10_1103_PRXEnergy_3_023012
crossref_primary_10_1002_adfm_202401945
crossref_primary_10_1002_adom_202202809
crossref_primary_10_1002_inf2_12522
crossref_primary_10_1002_advs_202407380
crossref_primary_10_1016_j_decarb_2023_100025
crossref_primary_10_1002_ange_202419061
crossref_primary_10_1002_adfm_202305539
crossref_primary_10_1039_D4RA05576D
crossref_primary_10_1002_adfm_202415429
crossref_primary_10_1002_smsc_202300188
crossref_primary_10_1016_j_device_2024_100285
crossref_primary_10_1002_anie_202219307
crossref_primary_10_1021_acsenergylett_3c00614
crossref_primary_10_1021_acs_jctc_3c00904
crossref_primary_10_1016_j_scib_2024_07_026
crossref_primary_10_1002_aenm_202403326
crossref_primary_10_1016_j_jechem_2024_06_050
crossref_primary_10_1039_D2EE04087E
crossref_primary_10_1007_s13391_025_00563_x
crossref_primary_10_1007_s42493_024_00108_8
crossref_primary_10_1021_acsenergylett_3c01024
crossref_primary_10_1039_D4QM00560K
crossref_primary_10_1016_j_matt_2025_101990
crossref_primary_10_1088_1361_648X_acda71
crossref_primary_10_1002_solr_202300370
crossref_primary_10_1007_s11426_024_2047_7
crossref_primary_10_1021_acsenergylett_3c02357
crossref_primary_10_1038_s41560_023_01310_y
crossref_primary_10_1039_D4SC06637E
crossref_primary_10_1016_j_nanoen_2023_109178
crossref_primary_10_1038_s41560_023_01377_7
crossref_primary_10_1038_s41578_023_00560_2
crossref_primary_10_1002_adma_202301028
crossref_primary_10_1002_smll_202400679
crossref_primary_10_1021_acsnano_4c16440
crossref_primary_10_1002_adma_202301705
crossref_primary_10_1002_adom_202301949
crossref_primary_10_1038_s41560_024_01667_8
crossref_primary_10_1007_s12274_024_6703_5
crossref_primary_10_1038_s43246_024_00636_8
crossref_primary_10_1016_j_ccr_2025_216563
crossref_primary_10_1039_D3CS00728F
crossref_primary_10_1021_acsami_5c02680
crossref_primary_10_1016_j_cej_2024_154611
crossref_primary_10_1039_D2CC07048K
crossref_primary_10_1002_adma_202211207
crossref_primary_10_1039_D3MH01313H
crossref_primary_10_1002_aenm_202302240
crossref_primary_10_1016_j_joule_2024_02_015
crossref_primary_10_1002_adma_202211324
crossref_primary_10_1021_acsnano_4c11785
crossref_primary_10_1021_jacs_4c05191
crossref_primary_10_1126_science_adk1633
crossref_primary_10_1007_s40684_024_00663_3
crossref_primary_10_1002_smtd_202300716
crossref_primary_10_1021_accountsmr_4c00148
crossref_primary_10_1016_j_nanoen_2023_109065
crossref_primary_10_1002_adfm_202422014
crossref_primary_10_1039_D4TC01482K
crossref_primary_10_1016_j_jmst_2024_06_027
crossref_primary_10_1016_j_xinn_2022_100363
crossref_primary_10_1021_acsaelm_4c02294
crossref_primary_10_1039_D3EE04520J
crossref_primary_10_1021_acssuschemeng_2c07584
crossref_primary_10_1039_D4SE00914B
crossref_primary_10_1016_j_mtcomm_2023_107623
crossref_primary_10_1063_5_0155845
crossref_primary_10_1002_adfm_202411153
crossref_primary_10_1063_5_0232621
crossref_primary_10_1021_acsenergylett_4c02546
crossref_primary_10_1002_adma_202211317
crossref_primary_10_1021_acsami_4c02220
crossref_primary_10_1038_s41570_023_00510_0
crossref_primary_10_1002_advs_202300586
crossref_primary_10_1016_j_jechem_2023_07_001
crossref_primary_10_1002_adfm_202411836
crossref_primary_10_1002_anie_202302342
crossref_primary_10_1016_j_rsurfi_2024_100224
crossref_primary_10_1039_D4TA08688K
crossref_primary_10_1016_j_solener_2024_113172
crossref_primary_10_1021_acsenergylett_2c02576
crossref_primary_10_1002_adfm_202300169
crossref_primary_10_1021_acsenergylett_4c02438
crossref_primary_10_1002_adfm_202412482
crossref_primary_10_1002_aenm_202402243
crossref_primary_10_1021_acssuschemeng_4c06348
crossref_primary_10_1103_PhysRevMaterials_9_023803
crossref_primary_10_1002_aenm_202204351
crossref_primary_10_1021_acsanm_4c01909
crossref_primary_10_1002_adfm_202305736
crossref_primary_10_1002_ange_202302342
crossref_primary_10_1007_s42114_023_00691_8
crossref_primary_10_1002_adfm_202315897
crossref_primary_10_1016_j_joule_2022_10_017
Cites_doi 10.1016/j.chempr.2021.04.002
10.1016/j.joule.2021.07.016
10.1103/PhysRevB.82.153412
10.1002/adfm.202009164
10.1021/acsenergylett.6b00236
10.1021/acs.jpcc.0c03465
10.1021/acs.jpclett.5b01432
10.1039/C9EE00751B
10.1107/S0909049512022017
10.1126/sciadv.aaw2543
10.1103/PhysRev.56.978
10.1107/S0108768107031758
10.1364/OME.9.003691
10.1002/adma.202007176
10.1107/S0021889809040126
10.1107/S1600576715004434
10.1109/PVSC45281.2020.9300489
10.1021/acsnano.8b08390
10.1002/adom.202101553
10.1016/j.joule.2018.09.012
10.1021/acsenergylett.8b02058
10.1016/j.xcrp.2021.100601
10.1038/s41560-020-00749-7
10.1002/adma.202105635
10.1038/s41586-021-03964-8
10.1364/OE.23.00A263
10.1016/j.joule.2018.09.022
10.1103/PhysRev.140.A1133
10.1038/s41467-020-15882-w
10.1063/1.3103328
10.1007/BFb0112834
10.1088/0953-8984/14/11/302
10.1016/S0167-5729(99)00002-3
10.1021/acsenergylett.1c02580
10.1021/acsenergylett.7b01057
10.1038/s41560-019-0529-5
10.1103/PhysRevB.81.161104
10.1103/PhysRevB.78.125116
10.1021/acsenergylett.0c02305
10.1119/1.19101
10.1364/OE.24.0A1288
10.1103/PhysRevLett.97.170201
10.1038/s41566-018-0154-z
10.1021/nn5036476
10.1126/sciadv.1501491
10.1021/acsenergylett.1c01649
10.1088/0953-8984/18/34/012
10.1021/acs.chemmater.6b00847
10.1038/s41586-021-03406-5
10.1126/science.abj2637
10.1038/s41560-019-0538-4
10.1038/s41467-020-20272-3
10.1063/1.370757
10.1021/acsmaterialslett.0c00505
10.1021/acs.chemmater.1c01641
10.1103/PhysRevB.43.1993
10.1002/adma.201805323
10.1016/S0010-8545(00)82045-7
10.1107/S0021889896015464
10.1038/s41566-019-0398-2
10.1126/science.abm5784
10.1126/sciadv.abj7930
10.1021/jacs.9b01327
ContentType Journal Article
Copyright Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
– notice: Distributed under a Creative Commons Attribution 4.0 International License
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States)
DBID AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
1XC
VOOES
OIOZB
OTOTI
DOI 10.1126/science.abq7652
DatabaseName CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1430
ExternalDocumentID 1909609
oai_HAL_hal_03784361v1
10_1126_science_abq7652
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
1XC
VOOES
0B8
63O
ABPTK
AEUPB
AFOSN
AKPLA
ANJGP
B-7
ESX
GX1
IGG
OIOZB
OK1
OTOTI
PK8
VQA
XFK
YCJ
YJ6
ZA5
ID FETCH-LOGICAL-c470t-a60f7cac6ecc185239f19bfcb1d293253619da5873a768366bfaf46f30e0c0d13
ISSN 0036-8075
1095-9203
IngestDate Mon Oct 02 04:05:43 EDT 2023
Wed Jul 02 06:34:05 EDT 2025
Tue Aug 05 11:00:05 EDT 2025
Fri Jul 25 10:41:57 EDT 2025
Tue Jul 01 02:24:13 EDT 2025
Thu Apr 24 22:55:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6613
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c470t-a60f7cac6ecc185239f19bfcb1d293253619da5873a768366bfaf46f30e0c0d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
AC02-06CH11357; EERE 0008843; SC0013957; 861985; N00014-20-1-2725; CBET-1626418; DMR-1719797
European Union (EU)
National Science Foundation (NSF)
USDOE Office of Science (SC), Basic Energy Sciences (BES)
US Department of the Navy, Office of Naval Research (ONR)
ORCID 0000-0003-2037-4168
0000-0002-9289-291X
0000-0002-4092-0771
0000-0003-4064-6271
0000-0001-5603-0581
0000-0002-9759-5447
0000-0002-2097-2830
0000-0003-2688-2606
0000-0003-0568-4141
0000-0001-8323-7860
0000-0001-6076-852X
0000-0001-8865-409X
0000-0003-0930-2120
0000-0002-2446-020X
0000-0003-4619-8932
0000-0002-4607-3390
0000-0002-2017-5823
0000-0001-8775-6043
0000-0003-0379-5577
0000-0003-3443-2621
0000000326882606
0000000156030581
0000000297595447
0000000334432621
0000000303795577
000000016076852X
0000000305684141
0000000240920771
0000000183237860
000000022446020X
000000029289291X
0000000346198932
0000000187756043
0000000309302120
0000000220175823
0000000320374168
0000000340646271
0000000246073390
000000018865409X
0000000220972830
OpenAccessLink https://hal.science/hal-03784361
PMID 36137050
PQID 2717980817
PQPubID 1256
PageCount 6
ParticipantIDs osti_scitechconnect_1909609
hal_primary_oai_HAL_hal_03784361v1
proquest_miscellaneous_2717683544
proquest_journals_2717980817
crossref_citationtrail_10_1126_science_abq7652
crossref_primary_10_1126_science_abq7652
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-23
20220923
PublicationDateYYYYMMDD 2022-09-23
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-23
  day: 23
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
– name: United States
PublicationTitle Science (American Association for the Advancement of Science)
PublicationYear 2022
Publisher The American Association for the Advancement of Science
American Association for the Advancement of Science (AAAS)
AAAS
Publisher_xml – name: The American Association for the Advancement of Science
– name: American Association for the Advancement of Science (AAAS)
– name: AAAS
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_60_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
Wien W. (e_1_3_2_48_2) 1915; 3
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
Farrell E. (e_1_3_2_71_2) 2014; 1
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_61_2
Kinigstein E. D. (e_1_3_2_33_2) 2020; 2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
Yuk S. F. (e_1_3_2_53_2) 2017; 7
e_1_3_2_70_2
References_xml – ident: e_1_3_2_11_2
  doi: 10.1016/j.chempr.2021.04.002
– ident: e_1_3_2_37_2
  doi: 10.1016/j.joule.2021.07.016
– ident: e_1_3_2_52_2
  doi: 10.1103/PhysRevB.82.153412
– ident: e_1_3_2_14_2
  doi: 10.1002/adfm.202009164
– ident: e_1_3_2_9_2
  doi: 10.1021/acsenergylett.6b00236
– ident: e_1_3_2_26_2
  doi: 10.1021/acs.jpcc.0c03465
– ident: e_1_3_2_59_2
  doi: 10.1021/acs.jpclett.5b01432
– ident: e_1_3_2_16_2
  doi: 10.1039/C9EE00751B
– ident: e_1_3_2_41_2
  doi: 10.1107/S0909049512022017
– ident: e_1_3_2_7_2
  doi: 10.1126/sciadv.aaw2543
– ident: e_1_3_2_43_2
  doi: 10.1103/PhysRev.56.978
– ident: e_1_3_2_57_2
  doi: 10.1107/S0108768107031758
– ident: e_1_3_2_64_2
  doi: 10.1364/OME.9.003691
– ident: e_1_3_2_27_2
  doi: 10.1002/adma.202007176
– ident: e_1_3_2_45_2
  doi: 10.1107/S0021889809040126
– ident: e_1_3_2_42_2
  doi: 10.1107/S1600576715004434
– ident: e_1_3_2_36_2
  doi: 10.1109/PVSC45281.2020.9300489
– ident: e_1_3_2_39_2
  doi: 10.1021/acsnano.8b08390
– ident: e_1_3_2_62_2
  doi: 10.1002/adom.202101553
– ident: e_1_3_2_47_2
– ident: e_1_3_2_19_2
  doi: 10.1016/j.joule.2018.09.012
– ident: e_1_3_2_40_2
  doi: 10.1021/acsenergylett.8b02058
– ident: e_1_3_2_28_2
  doi: 10.1016/j.xcrp.2021.100601
– ident: e_1_3_2_22_2
  doi: 10.1038/s41560-020-00749-7
– ident: e_1_3_2_12_2
  doi: 10.1002/adma.202105635
– volume: 2
  start-page: 1360
  year: 2020
  ident: e_1_3_2_33_2
  article-title: ACS
  publication-title: Mater. Lett.
– ident: e_1_3_2_3_2
  doi: 10.1038/s41586-021-03964-8
– ident: e_1_3_2_63_2
  doi: 10.1364/OE.23.00A263
– volume: 1
  start-page: 1
  year: 2014
  ident: e_1_3_2_71_2
  article-title: Guide for DLS sample preparation
  publication-title: Brookhaven Instrum.
– ident: e_1_3_2_17_2
  doi: 10.1016/j.joule.2018.09.022
– ident: e_1_3_2_49_2
  doi: 10.1103/PhysRev.140.A1133
– ident: e_1_3_2_32_2
  doi: 10.1038/s41467-020-15882-w
– ident: e_1_3_2_69_2
  doi: 10.1063/1.3103328
– ident: e_1_3_2_29_2
  doi: 10.1007/BFb0112834
– ident: e_1_3_2_50_2
  doi: 10.1088/0953-8984/14/11/302
– ident: e_1_3_2_38_2
  doi: 10.1016/S0167-5729(99)00002-3
– ident: e_1_3_2_21_2
  doi: 10.1021/acsenergylett.1c02580
– ident: e_1_3_2_68_2
– ident: e_1_3_2_25_2
  doi: 10.1021/acsenergylett.7b01057
– ident: e_1_3_2_24_2
  doi: 10.1038/s41560-019-0529-5
– ident: e_1_3_2_51_2
  doi: 10.1103/PhysRevB.81.161104
– ident: e_1_3_2_55_2
  doi: 10.1103/PhysRevB.78.125116
– ident: e_1_3_2_15_2
  doi: 10.1021/acsenergylett.0c02305
– ident: e_1_3_2_46_2
  doi: 10.1119/1.19101
– ident: e_1_3_2_65_2
  doi: 10.1364/OE.24.0A1288
– ident: e_1_3_2_60_2
  doi: 10.1103/PhysRevLett.97.170201
– ident: e_1_3_2_10_2
  doi: 10.1038/s41566-018-0154-z
– ident: e_1_3_2_8_2
  doi: 10.1021/nn5036476
– ident: e_1_3_2_70_2
  doi: 10.1126/sciadv.1501491
– ident: e_1_3_2_13_2
  doi: 10.1021/acsenergylett.1c01649
– ident: e_1_3_2_56_2
  doi: 10.1088/0953-8984/18/34/012
– ident: e_1_3_2_58_2
  doi: 10.1021/acs.chemmater.6b00847
– ident: e_1_3_2_2_2
  doi: 10.1038/s41586-021-03406-5
– ident: e_1_3_2_5_2
  doi: 10.1126/science.abj2637
– ident: e_1_3_2_6_2
  doi: 10.1038/s41560-019-0538-4
– volume: 3
  start-page: 209
  year: 1915
  ident: e_1_3_2_48_2
  article-title: Theorie der Warmestrahlung
  publication-title: Physik
– ident: e_1_3_2_35_2
  doi: 10.1038/s41467-020-20272-3
– ident: e_1_3_2_67_2
– ident: e_1_3_2_66_2
  doi: 10.1063/1.370757
– volume: 7
  start-page: 1
  year: 2017
  ident: e_1_3_2_53_2
  article-title: Towards an accurate description of perovskite ferroelectrics: Exchange and correlation effects
  publication-title: Sci. Rep.
– ident: e_1_3_2_61_2
  doi: 10.1021/acsmaterialslett.0c00505
– ident: e_1_3_2_30_2
  doi: 10.1021/acs.chemmater.1c01641
– ident: e_1_3_2_54_2
  doi: 10.1103/PhysRevB.43.1993
– ident: e_1_3_2_18_2
  doi: 10.1002/adma.201805323
– ident: e_1_3_2_23_2
  doi: 10.1016/S0010-8545(00)82045-7
– ident: e_1_3_2_44_2
  doi: 10.1107/S0021889896015464
– ident: e_1_3_2_4_2
  doi: 10.1038/s41566-019-0398-2
– ident: e_1_3_2_20_2
  doi: 10.1126/science.abm5784
– ident: e_1_3_2_34_2
  doi: 10.1126/sciadv.abj7930
– ident: e_1_3_2_31_2
  doi: 10.1021/jacs.9b01327
SSID ssj0009593
Score 2.7240245
Snippet Realizing solution-processed heterostructures is a long-enduring challenge in halide perovskites because of solvent incompatibilities that disrupt the...
Pure perovskite topcoatsTwo-dimensional (2D) halide perovskite passivation layers grown on three-dimensional (3D) perovskite can boost the power conversion...
SourceID osti
hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1425
SubjectTerms Chemical Sciences
Dielectric constant
Dielectric strength
Energy conversion efficiency
Fabrication
or physical chemistry
Perovskites
Photodegradation
Photovoltaic cells
Relative humidity
Solar cells
SOLAR ENERGY
Spin coating
Substrates
Theoretical and
Title Deterministic fabrication of 3D/2D perovskite bilayer stacks for durable and efficient solar cells
URI https://www.proquest.com/docview/2717980817
https://www.proquest.com/docview/2717683544
https://hal.science/hal-03784361
https://www.osti.gov/servlets/purl/1909609
Volume 377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2TqC9IDZAlA1kEA9DJV0a5_MxI1QFxoTUTRpPkZ04atFoS5tO2v567mIndUUnbbxElWMnru_Dd5e7nwl574ZuHnoitNBHtlzmBJbIvciKYHt1XJblIsLi5O9n_uDC_XrpXW5tfzSylpal6Ga3G-tK_oeq0AZ0xSrZB1C2eSg0wG-gL1yBwnC9F40TnctSgS13Ci7mOgKHJiBLsAwjQWDi6fUCg7QdMb7iNwjfXGJlfZVhmC_nVfEUxs9lBSeByQELdHg7GNRfmNZrrQjAKm2-9Bj0bVIWY5VYUOcZ6GFG0GE4zkfjSg8Px3P-axXVV5rnJy_kuG7MJXSSqnTNTPJHLl3wfAYLpfjklpshDPB-8asOWzHdw2dc_dE4HtYz19pdgyurvU0pdBvPonRsZmp8pk-OUawNFgozVHjPdTzDHAB70t681RiHY8ouF38CX2HxGow3-11xHoM3BLYC2F2H_B7Ew_RH0k9Pv5x9W7_bYH8P4tN0BKxpsyB04UnX4OvvOOAUgVbfiU-Sk_6dINMaysooEqvnuUse15NaM8i2R5gO3JoC2_5jnFQW1_lT8kS7SjRWfL9HtuRknzxSh6fe7JM9TaQFPdLY6R-eEbEmEtQQCTotKEuOnYSuBIJqgaBKIChwA9UCQUEgaCMQtBIIWgnEc3LR_3z-aWDpY0SszA3s0uK-XQQZz3zQVggVwKKiF4kiE70cbF3Hg4WIcu6FAePgezPfFwUvXL9gtrQzO--xF6Q1mU7kS0LtXpGHmQgDLrkrfRFFwrMlc0JZ8EB6bpt067VMM42xj0e9XKWVr-34qaZDqunQJkfNgJmCl7m76ztkg7rXZtZokwOkHY5FDOgMk-WyMgWrH5El2-SwJmmq1dgidQLELATPIGiTt81t2GRwTflETpeqj48hYvfVfWZxQHZXYn5IWuV8KV-D7V6KN5pl_wIF0u_x
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deterministic+fabrication+of+3D%2F2D+perovskite+bilayer+stacks+for+durable+and+efficient+solar+cells&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Sidhik%2C+Siraj&rft.au=Wang%2C+Yafei&rft.au=de+Siena%2C+Michael&rft.au=Asadpour%2C+Reza&rft.date=2022-09-23&rft.pub=American+Association+for+the+Advancement+of+Science+%28AAAS%29&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=377&rft.issue=6613&rft.spage=1425&rft.epage=1430&rft_id=info:doi/10.1126%2Fscience.abq7652&rft_id=info%3Apmid%2F36137050&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03784361v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon