Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH

The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 634; pp. 188 - 194
Main Authors Wang, Qian, Wang, Bing, Lee, Xinqing, Lehmann, Johannes, Gao, Bin
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized biochar ranged from 8.1 to 3.7, with one set being adjusted to a pH of 7 as a comparison. It was found that oxidizing the biochars increased their Pb(II) adsorption capacity if the pH remained below 6 (strong oxidation), but decreased their Pb(II) adsorption ability above pH6 (weak oxidation). After adjusting the pH of oxidized biochar to pH7, the Pb(II) adsorption capacity further increased two to sixfold for oxidized biochars originally at pH3.7–6. The adsorption characteristics of Pb(II) were well described by the Langmuir equation. Adsorption of Pb(II) was not fully reversible in water. Less than 6% of Pb(II) desorbed in water in two consecutive steps than was previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 0.1M NaNO3 increased from 0.7% to 32.7% of Pb(II) undesorbed by both preceding water extractions with increasing oxidation, for biochars with a pH below 7. Unextractable Pb(II) was lower at low oxidation but increased to 99.0% of initially adsorbed amounts at low pH, which indicated that the adsorption of Pb(II) on oxidized biochar is pH independent. [Display omitted] •Adsorption is largely affected by oxygen-containing surface functional groups and pH.•Oxidation increases the affinity of Pb(II) to biochar and decreases the desorption in water.•Pb(II) adsorption is not fully reversible using NaNO3 irrespective of oxidation.•Oxidized biochar has the potential for Pb(II) immobilization.
AbstractList The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized biochar ranged from 8.1 to 3.7, with one set being adjusted to a pH of 7 as a comparison. It was found that oxidizing the biochars increased their Pb(II) adsorption capacity if the pH remained below 6 (strong oxidation), but decreased their Pb(II) adsorption ability above pH6 (weak oxidation). After adjusting the pH of oxidized biochar to pH7, the Pb(II) adsorption capacity further increased two to sixfold for oxidized biochars originally at pH3.7-6. The adsorption characteristics of Pb(II) were well described by the Langmuir equation. Adsorption of Pb(II) was not fully reversible in water. Less than 6% of Pb(II) desorbed in water in two consecutive steps than was previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 0.1M NaNO increased from 0.7% to 32.7% of Pb(II) undesorbed by both preceding water extractions with increasing oxidation, for biochars with a pH below 7. Unextractable Pb(II) was lower at low oxidation but increased to 99.0% of initially adsorbed amounts at low pH, which indicated that the adsorption of Pb(II) on oxidized biochar is pH independent.
The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized biochar ranged from 8.1 to 3.7, with one set being adjusted to a pH of 7 as a comparison. It was found that oxidizing the biochars increased their Pb(II) adsorption capacity if the pH remained below 6 (strong oxidation), but decreased their Pb(II) adsorption ability above pH6 (weak oxidation). After adjusting the pH of oxidized biochar to pH7, the Pb(II) adsorption capacity further increased two to sixfold for oxidized biochars originally at pH3.7–6. The adsorption characteristics of Pb(II) were well described by the Langmuir equation. Adsorption of Pb(II) was not fully reversible in water. Less than 6% of Pb(II) desorbed in water in two consecutive steps than was previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 0.1M NaNO3 increased from 0.7% to 32.7% of Pb(II) undesorbed by both preceding water extractions with increasing oxidation, for biochars with a pH below 7. Unextractable Pb(II) was lower at low oxidation but increased to 99.0% of initially adsorbed amounts at low pH, which indicated that the adsorption of Pb(II) on oxidized biochar is pH independent. [Display omitted] •Adsorption is largely affected by oxygen-containing surface functional groups and pH.•Oxidation increases the affinity of Pb(II) to biochar and decreases the desorption in water.•Pb(II) adsorption is not fully reversible using NaNO3 irrespective of oxidation.•Oxidized biochar has the potential for Pb(II) immobilization.
The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized biochar ranged from 8.1 to 3.7, with one set being adjusted to a pH of 7 as a comparison. It was found that oxidizing the biochars increased their Pb(II) adsorption capacity if the pH remained below 6 (strong oxidation), but decreased their Pb(II) adsorption ability above pH6 (weak oxidation). After adjusting the pH of oxidized biochar to pH7, the Pb(II) adsorption capacity further increased two to sixfold for oxidized biochars originally at pH3.7–6. The adsorption characteristics of Pb(II) were well described by the Langmuir equation. Adsorption of Pb(II) was not fully reversible in water. Less than 6% of Pb(II) desorbed in water in two consecutive steps than was previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 0.1M NaNO3 increased from 0.7% to 32.7% of Pb(II) undesorbed by both preceding water extractions with increasing oxidation, for biochars with a pH below 7. Unextractable Pb(II) was lower at low oxidation but increased to 99.0% of initially adsorbed amounts at low pH, which indicated that the adsorption of Pb(II) on oxidized biochar is pH independent.
The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized biochar ranged from 8.1 to 3.7, with one set being adjusted to a pH of 7 as a comparison. It was found that oxidizing the biochars increased their Pb(II) adsorption capacity if the pH remained below 6 (strong oxidation), but decreased their Pb(II) adsorption ability above pH6 (weak oxidation). After adjusting the pH of oxidized biochar to pH7, the Pb(II) adsorption capacity further increased two to sixfold for oxidized biochars originally at pH3.7-6. The adsorption characteristics of Pb(II) were well described by the Langmuir equation. Adsorption of Pb(II) was not fully reversible in water. Less than 6% of Pb(II) desorbed in water in two consecutive steps than was previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 0.1M NaNO3 increased from 0.7% to 32.7% of Pb(II) undesorbed by both preceding water extractions with increasing oxidation, for biochars with a pH below 7. Unextractable Pb(II) was lower at low oxidation but increased to 99.0% of initially adsorbed amounts at low pH, which indicated that the adsorption of Pb(II) on oxidized biochar is pH independent.The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized biochar ranged from 8.1 to 3.7, with one set being adjusted to a pH of 7 as a comparison. It was found that oxidizing the biochars increased their Pb(II) adsorption capacity if the pH remained below 6 (strong oxidation), but decreased their Pb(II) adsorption ability above pH6 (weak oxidation). After adjusting the pH of oxidized biochar to pH7, the Pb(II) adsorption capacity further increased two to sixfold for oxidized biochars originally at pH3.7-6. The adsorption characteristics of Pb(II) were well described by the Langmuir equation. Adsorption of Pb(II) was not fully reversible in water. Less than 6% of Pb(II) desorbed in water in two consecutive steps than was previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 0.1M NaNO3 increased from 0.7% to 32.7% of Pb(II) undesorbed by both preceding water extractions with increasing oxidation, for biochars with a pH below 7. Unextractable Pb(II) was lower at low oxidation but increased to 99.0% of initially adsorbed amounts at low pH, which indicated that the adsorption of Pb(II) on oxidized biochar is pH independent.
Author Lee, Xinqing
Wang, Qian
Wang, Bing
Gao, Bin
Lehmann, Johannes
Author_xml – sequence: 1
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  organization: State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
– sequence: 2
  givenname: Bing
  orcidid: 0000-0002-2773-2370
  surname: Wang
  fullname: Wang, Bing
  email: wangbing@vip.gyig.ac.cn
  organization: State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
– sequence: 3
  givenname: Xinqing
  surname: Lee
  fullname: Lee, Xinqing
  organization: State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
– sequence: 4
  givenname: Johannes
  surname: Lehmann
  fullname: Lehmann, Johannes
  organization: Department of Crop and Soil Sciences, Cornell University, 909 Bradfield Hall, Ithaca, NY 14853, USA
– sequence: 5
  givenname: Bin
  surname: Gao
  fullname: Gao, Bin
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29627541$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1OAyEURonRaK2-grLUxYzATGFYuDDGnyZNNFHXhIFLpGmHClOjby-1tgs3CgtCcr6bm-8cot0udIDQKSUlJZRfTMtkfB966N5LRmhTkqqkjdxBA9oIWVDC-C4aEFI3heRSHKDDlKYkH9HQfXTAJGdiVNMBmjyFuOh96LDuLLaQNt_g8GN7Nh6f4z7g1gfzqiPWCWvnwPRgcfuJw4e3ehte3B-hPadnCY5_3iF6ub15vr4vJg934-urSWFqQfpCSuYsr41rXJPXsKzlIykdrTmvgZPaMteONHBL8uWcMeqkBlsZURGnoaqG6Gw9dxHD2xJSr-Y-GZjNdAdhmRQjXDDBGin_gbKqzq0IktGTH3TZzsGqRfRzHT_VpqwMiDVgYkgpgtsilKiVFjVVWy1qpUWRSmUtOXn5K5mx7-b6qP3sH_mrdR5yq-8e4oqDzoD1MdtQNvg_Z3wBd12tkQ
CitedBy_id crossref_primary_10_2139_ssrn_4126026
crossref_primary_10_1007_s11356_020_10560_2
crossref_primary_10_1016_j_ecoenv_2019_02_006
crossref_primary_10_1016_j_matchemphys_2024_128929
crossref_primary_10_3390_ijms24031974
crossref_primary_10_1016_j_scitotenv_2019_136024
crossref_primary_10_1080_23570008_2025_2467358
crossref_primary_10_1016_j_bej_2024_109525
crossref_primary_10_1016_j_cec_2024_100117
crossref_primary_10_1002_wer_1377
crossref_primary_10_1080_09593330_2019_1642388
crossref_primary_10_1177_0263617419867519
crossref_primary_10_1016_j_chemosphere_2022_134334
crossref_primary_10_3390_su13052641
crossref_primary_10_1007_s42773_023_00219_9
crossref_primary_10_1111_sum_13112
crossref_primary_10_1016_j_chemosphere_2020_126539
crossref_primary_10_1016_j_indcrop_2021_114304
crossref_primary_10_1155_2024_6355929
crossref_primary_10_1016_j_ecoenv_2022_113363
crossref_primary_10_1149_2_0151904jes
crossref_primary_10_1016_j_jhazmat_2020_124221
crossref_primary_10_1016_j_scitotenv_2021_148550
crossref_primary_10_1080_25740881_2020_1719140
crossref_primary_10_1680_jenes_19_00026
crossref_primary_10_1016_j_surfin_2022_102323
crossref_primary_10_1016_j_enmm_2023_100777
crossref_primary_10_1016_j_jwpe_2024_105414
crossref_primary_10_1021_acsomega_2c04882
crossref_primary_10_3390_su131810362
crossref_primary_10_1016_j_ijbiomac_2024_131142
crossref_primary_10_1016_j_chemosphere_2023_140682
crossref_primary_10_1007_s11356_024_33185_1
crossref_primary_10_1016_j_jenvman_2018_10_117
crossref_primary_10_1016_j_jenvman_2021_112490
crossref_primary_10_5004_dwt_2021_27047
crossref_primary_10_1007_s11356_023_27228_2
crossref_primary_10_1016_j_chemosphere_2022_136802
crossref_primary_10_1016_j_resconrec_2020_105204
crossref_primary_10_1016_j_jhazmat_2023_132652
crossref_primary_10_1016_j_envpol_2023_121405
crossref_primary_10_1007_s11356_022_20303_0
crossref_primary_10_1016_j_biortech_2019_122102
crossref_primary_10_1016_j_scitotenv_2024_172632
crossref_primary_10_1016_j_jece_2024_113565
crossref_primary_10_3390_ijms232214053
crossref_primary_10_3390_w17060881
crossref_primary_10_1016_j_scitotenv_2021_147595
crossref_primary_10_1016_j_biortech_2020_124616
crossref_primary_10_1016_j_microc_2021_106250
crossref_primary_10_3390_agronomy11081598
crossref_primary_10_1007_s13399_023_03914_6
crossref_primary_10_1007_s13399_021_01838_7
crossref_primary_10_1016_j_chemosphere_2021_132250
crossref_primary_10_1039_D0RA08055A
crossref_primary_10_1016_j_jece_2021_106598
crossref_primary_10_1016_j_envint_2019_03_068
crossref_primary_10_1016_j_jhazmat_2022_130167
crossref_primary_10_1016_j_chemosphere_2022_137025
crossref_primary_10_3390_cleantechnol4030039
crossref_primary_10_3390_ijerph20010155
crossref_primary_10_3390_ma13112462
crossref_primary_10_1016_j_scitotenv_2018_08_013
crossref_primary_10_1007_s12517_022_09539_9
crossref_primary_10_1021_acs_energyfuels_2c01201
crossref_primary_10_3390_app10020688
crossref_primary_10_1016_j_jhazmat_2021_125115
crossref_primary_10_3390_ijms231911202
crossref_primary_10_1016_j_cej_2021_129807
crossref_primary_10_1016_j_eti_2021_101961
crossref_primary_10_1016_j_chemosphere_2020_127683
crossref_primary_10_1007_s11356_020_08706_3
crossref_primary_10_1016_j_scitotenv_2020_143664
crossref_primary_10_1007_s10653_019_00477_2
crossref_primary_10_1016_j_scitotenv_2019_134119
crossref_primary_10_1016_j_jes_2022_10_023
crossref_primary_10_1007_s42773_019_00030_5
crossref_primary_10_18273_revuin_v20n1_2021011
crossref_primary_10_1016_j_jece_2020_104567
crossref_primary_10_1016_j_chemosphere_2020_128409
crossref_primary_10_1016_j_envpol_2022_119693
crossref_primary_10_1016_j_jaap_2021_105214
crossref_primary_10_1016_j_jafrearsci_2019_103635
crossref_primary_10_1039_D0EW00619J
crossref_primary_10_1007_s10653_023_01520_z
crossref_primary_10_1016_j_jece_2024_113861
crossref_primary_10_3390_min13101337
crossref_primary_10_5004_dwt_2020_24844
crossref_primary_10_1016_j_apsusc_2019_04_075
crossref_primary_10_1039_C9RA09470A
crossref_primary_10_1080_15226514_2021_1931025
crossref_primary_10_1007_s10653_020_00716_x
crossref_primary_10_1016_j_scitotenv_2020_143452
crossref_primary_10_1007_s13399_024_05584_4
crossref_primary_10_1021_acsomega_0c00216
crossref_primary_10_3390_ijerph191811163
crossref_primary_10_1007_s13762_024_05646_0
crossref_primary_10_1016_j_jhazmat_2022_128903
crossref_primary_10_1016_j_biortech_2019_03_086
crossref_primary_10_1016_j_scitotenv_2019_134052
crossref_primary_10_1007_s10653_019_00474_5
crossref_primary_10_1016_j_envpol_2022_118902
crossref_primary_10_1007_s10854_021_07202_9
crossref_primary_10_1016_j_scitotenv_2019_135544
crossref_primary_10_1016_j_jclepro_2022_131097
crossref_primary_10_1155_2022_7813513
crossref_primary_10_1007_s44169_025_00081_9
crossref_primary_10_1002_jeq2_20419
crossref_primary_10_56430_japro_1193955
crossref_primary_10_5802_crchim_173
crossref_primary_10_1007_s10098_023_02545_9
crossref_primary_10_1039_C8RA09061K
crossref_primary_10_1016_j_jhazmat_2021_127349
crossref_primary_10_1016_j_jksus_2018_12_007
crossref_primary_10_1007_s11771_024_5632_5
crossref_primary_10_1016_j_envpol_2023_123148
crossref_primary_10_1007_s10163_019_00921_6
crossref_primary_10_1016_j_biortech_2019_02_092
crossref_primary_10_1016_j_cej_2022_137068
crossref_primary_10_1016_j_scitotenv_2022_160649
crossref_primary_10_1016_j_jwpe_2020_101464
crossref_primary_10_1007_s11368_021_03059_x
crossref_primary_10_1016_j_jhazmat_2024_133436
crossref_primary_10_1016_j_scitotenv_2023_164810
crossref_primary_10_1016_j_jenvman_2021_112794
crossref_primary_10_1016_j_jenvman_2022_114973
crossref_primary_10_1007_s11270_020_04922_2
crossref_primary_10_5004_dwt_2020_25192
crossref_primary_10_1016_j_jes_2023_04_020
crossref_primary_10_1016_j_scitotenv_2021_149295
crossref_primary_10_1016_j_chemosphere_2024_142101
crossref_primary_10_1016_j_colsurfa_2019_123962
crossref_primary_10_1016_j_jhazmat_2021_128147
crossref_primary_10_3390_f13122080
crossref_primary_10_1080_10643389_2018_1547621
crossref_primary_10_1016_j_jece_2023_110342
crossref_primary_10_1016_j_jwpe_2025_107478
crossref_primary_10_1016_j_biortech_2020_123797
crossref_primary_10_1007_s10163_021_01193_9
crossref_primary_10_1038_s41598_023_27638_9
crossref_primary_10_3390_pr9071209
crossref_primary_10_3390_molecules30051048
crossref_primary_10_1016_j_jics_2022_100791
crossref_primary_10_1016_j_cej_2019_02_119
crossref_primary_10_1016_j_cej_2021_132166
crossref_primary_10_1016_j_biombioe_2023_106787
crossref_primary_10_1016_j_jenvman_2022_115832
crossref_primary_10_1007_s11356_020_07805_5
crossref_primary_10_1039_D3RA07250A
crossref_primary_10_5338_KJEA_2023_42_1_06
crossref_primary_10_1111_sum_12757
Cites_doi 10.1016/j.jhazmat.2009.01.085
10.1016/j.chemosphere.2016.01.043
10.1021/es4048126
10.1016/j.jhazmat.2011.10.016
10.1016/j.jenvman.2015.08.046
10.1021/la0004810
10.1016/j.chemosphere.2015.05.062
10.1016/j.biortech.2017.03.133
10.1071/SR10049
10.1021/jf404624h
10.1016/j.biortech.2015.12.056
10.1080/01496395.2011.584604
10.1016/S0009-2614(02)00502-X
10.1016/j.jece.2016.01.011
10.1016/j.envpol.2010.10.016
10.1016/j.biortech.2010.08.067
10.1016/j.gca.2008.01.010
10.1007/s12665-015-4116-1
10.1016/j.jenvman.2013.01.001
10.1007/s11356-013-1769-8
10.1016/j.seppur.2005.02.004
10.1080/10643389.2017.1418580
10.1093/bmb/ldg032
10.1039/C6RA01895E
10.1016/j.cej.2012.04.105
10.1016/j.biortech.2014.06.043
10.1016/j.cej.2012.06.116
10.1016/S0039-9140(97)00406-2
10.1016/j.chemosphere.2014.12.058
10.1016/j.cej.2015.03.006
10.1016/0043-1354(94)90022-1
10.1016/S0043-1354(02)00554-7
10.2134/agronj2007.0161
10.1016/j.biortech.2016.05.057
10.1016/S0043-1354(98)00475-8
10.1021/es103752u
10.1016/j.jenvman.2010.11.011
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2018.03.189
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

AGRICOLA
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 194
ExternalDocumentID 29627541
10_1016_j_scitotenv_2018_03_189
S0048969718309483
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c470t-992fd64cf8f8275d2b6599f14664e604d2fb5ae6d0d0d66221f9aed3c730fae33
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Jul 11 03:16:39 EDT 2025
Tue Aug 05 10:57:49 EDT 2025
Thu Apr 03 07:05:26 EDT 2025
Thu Apr 24 22:56:58 EDT 2025
Tue Jul 01 01:21:37 EDT 2025
Fri Feb 23 02:33:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Lead
Adsorption
Biochar
Retention
pH independent
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-992fd64cf8f8275d2b6599f14664e604d2fb5ae6d0d0d66221f9aed3c730fae33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2773-2370
PMID 29627541
PQID 2023407870
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2067272899
proquest_miscellaneous_2023407870
pubmed_primary_29627541
crossref_primary_10_1016_j_scitotenv_2018_03_189
crossref_citationtrail_10_1016_j_scitotenv_2018_03_189
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_03_189
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ifthikar, Wang, Wang, Wang, Wang, Khan, Jawad, Sun, Jiao, Chen (bb0080) 2017; 238
Chen, Chen, Lv (bb0035) 2011; 102
Wang, Lehmann, Hanley, Hestrin, Enders (bb0185) 2015; 138
Lehmann, Joseph (bb0110) 2009
Rajapaksha, Chen, Tsang, Zhang, Vithanage, Mandal, Gao, Bolan, Ok (bb0140) 2016; 148
Bailey, Olin, Bricka, Adrian (bb0015) 1999; 33
Liu, Zhang (bb0120) 2009; 167
Liu, Gao, Fang, Wang, Cao (bb0125) 2016; 6
Inyang, Gao, Ding, Pullammanappallil, Zimmerman, Cao (bb0085) 2011; 46
Fang, Gao, Liu, Dionysiou, Wang, Zhou (bb0050) 2014; 48
Hina (bb0065) 2013
Cheng, Lehmann, Engelhard (bb0040) 2008; 72
Hua, Zhang, Pan, Zhang, Lv, Zhang (bb0070) 2012; 211
Brady, Weil (bb0025) 2008
Tan, Liu, Zeng, Wang, Hu, Gu, Yang (bb0165) 2015; 125
Tünay, Kabdaşli (bb0175) 1994; 28
Li, Wang, Wei, Zhang, Xu, Luan, Wu, Wei (bb0115) 2002; 357
Wang, Gao, Fang (bb0190) 2017; 47
Venkata Ramana, Harikishore Kumar Reddy, Yu, Seshaiah (bb0180) 2012; 197
Abdel-Halim, Shehata, El-Shahat (bb0005) 2003; 37
Laird (bb0105) 2008; 100
Qian, Chen (bb0135) 2014; 62
Kadirvelu, Faur-Brasquet, Cloirec (bb0095) 2000; 16
Shen, Li, Wang, Wang, He, Zhang, Singh (bb0155) 2015; 272
Rauret (bb0145) 1998; 46
Beesley, Marmiroli (bb0020) 2011; 159
Ding, Hu, Zimmerman, Gao (bb0045) 2014; 167
Xu, Zhao (bb0195) 2013; 20
Kim, Kim, Kim, Yoon, Yang, Ok, Owens, Kim (bb0100) 2015; 74
Takaya (bb0160) 2016; 4
Cao, Ma, Liang, Gao, Harris (bb0030) 2011; 45
Huff, Lee (bb0075) 2016; 165
Trakal, Veselská, Šafařík, Vítková, Číhalová, Komárek (bb0170) 2016; 203
Ahmed, Zhou, Ngo, Guo, Chen (bb0010) 2016; 214
Namgay, Singh, Singh (bb0130) 2010; 48
Saeed, Akhter, Iqbal (bb0150) 2005; 45
Järup (bb0090) 2003; 68
Xue, Gao, Yao, Inyang, Zhang, Zimmerman, Ro (bb0200) 2012; 200-202
Fu, Wang (bb0055) 2011; 92
Han, Boateng, Qi, Lima, Chang (bb0060) 2013; 118
Fu (10.1016/j.scitotenv.2018.03.189_bb0055) 2011; 92
Takaya (10.1016/j.scitotenv.2018.03.189_bb0160) 2016; 4
Ahmed (10.1016/j.scitotenv.2018.03.189_bb0010) 2016; 214
Wang (10.1016/j.scitotenv.2018.03.189_bb0185) 2015; 138
Ding (10.1016/j.scitotenv.2018.03.189_bb0045) 2014; 167
Trakal (10.1016/j.scitotenv.2018.03.189_bb0170) 2016; 203
Qian (10.1016/j.scitotenv.2018.03.189_bb0135) 2014; 62
Laird (10.1016/j.scitotenv.2018.03.189_bb0105) 2008; 100
Rauret (10.1016/j.scitotenv.2018.03.189_bb0145) 1998; 46
Chen (10.1016/j.scitotenv.2018.03.189_bb0035) 2011; 102
Lehmann (10.1016/j.scitotenv.2018.03.189_bb0110) 2009
Inyang (10.1016/j.scitotenv.2018.03.189_bb0085) 2011; 46
Xu (10.1016/j.scitotenv.2018.03.189_bb0195) 2013; 20
Saeed (10.1016/j.scitotenv.2018.03.189_bb0150) 2005; 45
Huff (10.1016/j.scitotenv.2018.03.189_bb0075) 2016; 165
Ifthikar (10.1016/j.scitotenv.2018.03.189_bb0080) 2017; 238
Rajapaksha (10.1016/j.scitotenv.2018.03.189_bb0140) 2016; 148
Liu (10.1016/j.scitotenv.2018.03.189_bb0125) 2016; 6
Bailey (10.1016/j.scitotenv.2018.03.189_bb0015) 1999; 33
Kim (10.1016/j.scitotenv.2018.03.189_bb0100) 2015; 74
Abdel-Halim (10.1016/j.scitotenv.2018.03.189_bb0005) 2003; 37
Fang (10.1016/j.scitotenv.2018.03.189_bb0050) 2014; 48
Tan (10.1016/j.scitotenv.2018.03.189_bb0165) 2015; 125
Wang (10.1016/j.scitotenv.2018.03.189_bb0190) 2017; 47
Hua (10.1016/j.scitotenv.2018.03.189_bb0070) 2012; 211
Shen (10.1016/j.scitotenv.2018.03.189_bb0155) 2015; 272
Liu (10.1016/j.scitotenv.2018.03.189_bb0120) 2009; 167
Cheng (10.1016/j.scitotenv.2018.03.189_bb0040) 2008; 72
Li (10.1016/j.scitotenv.2018.03.189_bb0115) 2002; 357
Cao (10.1016/j.scitotenv.2018.03.189_bb0030) 2011; 45
Venkata Ramana (10.1016/j.scitotenv.2018.03.189_bb0180) 2012; 197
Namgay (10.1016/j.scitotenv.2018.03.189_bb0130) 2010; 48
Xue (10.1016/j.scitotenv.2018.03.189_bb0200) 2012; 200-202
Brady (10.1016/j.scitotenv.2018.03.189_bb0025) 2008
Tünay (10.1016/j.scitotenv.2018.03.189_bb0175) 1994; 28
Kadirvelu (10.1016/j.scitotenv.2018.03.189_bb0095) 2000; 16
Han (10.1016/j.scitotenv.2018.03.189_bb0060) 2013; 118
Hina (10.1016/j.scitotenv.2018.03.189_bb0065) 2013
Beesley (10.1016/j.scitotenv.2018.03.189_bb0020) 2011; 159
Järup (10.1016/j.scitotenv.2018.03.189_bb0090) 2003; 68
References_xml – volume: 238
  start-page: 399
  year: 2017
  end-page: 406
  ident: bb0080
  article-title: Highly efficient lead distribution by magnetic sewage sludge biochar: sorption mechanisms and bench applications
  publication-title: Bioresour. Technol.
– volume: 125
  start-page: 70
  year: 2015
  end-page: 85
  ident: bb0165
  article-title: Application of biochar for the removal of pollutants from aqueous solutions
  publication-title: Chemosphere
– volume: 138
  start-page: 120
  year: 2015
  end-page: 126
  ident: bb0185
  article-title: Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH
  publication-title: Chemosphere
– volume: 211
  start-page: 317
  year: 2012
  end-page: 331
  ident: bb0070
  article-title: Heavy metal removal from water/wastewater by nanosized metal oxides: a review
  publication-title: J. Hazard. Mater.
– year: 2009
  ident: bb0110
  article-title: Biochar for Environmental Management: Science and Technology
– volume: 4
  start-page: 1156
  year: 2016
  end-page: 1165
  ident: bb0160
  article-title: Recovery of phosphate with chemically modified biochars
  publication-title: J. Environ. Chem. Eng.
– volume: 47
  start-page: 2158
  year: 2017
  end-page: 2207
  ident: bb0190
  article-title: Recent advances in engineered biochar productions and applications
  publication-title: Crit. Rev. Environ. Sci. Technol.
– volume: 118
  start-page: 196
  year: 2013
  end-page: 204
  ident: bb0060
  article-title: Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties
  publication-title: J. Environ. Manag.
– volume: 33
  start-page: 2469
  year: 1999
  end-page: 2479
  ident: bb0015
  article-title: A review of potentially low-cost sorbents for heavy metals
  publication-title: Water Res.
– volume: 62
  start-page: 373
  year: 2014
  end-page: 380
  ident: bb0135
  article-title: Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process
  publication-title: J. Agric. Food Chem.
– year: 2013
  ident: bb0065
  article-title: Application of Biochar Technologies to Wastewater Treatment
– volume: 159
  start-page: 474
  year: 2011
  end-page: 480
  ident: bb0020
  article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar
  publication-title: Environ. Pollut.
– volume: 74
  start-page: 1249
  year: 2015
  end-page: 1259
  ident: bb0100
  article-title: Effect of biochar on heavy metal immobilization and uptake by lettuce (
  publication-title: Environ. Earth Sci.
– volume: 203
  start-page: 318
  year: 2016
  end-page: 324
  ident: bb0170
  article-title: Lead and cadmium sorption mechanisms on magnetically modified biochars
  publication-title: Bioresour. Technol.
– year: 2008
  ident: bb0025
  article-title: The Nature and Properties of Soils
– volume: 68
  start-page: 167
  year: 2003
  end-page: 182
  ident: bb0090
  article-title: Hazards of heavy metal contamination
  publication-title: Br. Med. Bull.
– volume: 20
  start-page: 8491
  year: 2013
  end-page: 8501
  ident: bb0195
  article-title: Effect of biochars on adsorption of Cu(II), Pb(II) and Cd(II) by three variable charge soils from southern China
  publication-title: Environ. Sci. Pollut. Res.
– volume: 167
  start-page: 933
  year: 2009
  end-page: 939
  ident: bb0120
  article-title: Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass
  publication-title: J. Hazard. Mater.
– volume: 45
  start-page: 25
  year: 2005
  end-page: 31
  ident: bb0150
  article-title: Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent
  publication-title: Sep. Purif. Technol.
– volume: 197
  start-page: 24
  year: 2012
  end-page: 33
  ident: bb0180
  article-title: Pigeon peas hulls waste as potential adsorbent for removal of Pb(II) and Ni(II) from water
  publication-title: Chem. Eng. J.
– volume: 45
  start-page: 4884
  year: 2011
  end-page: 4889
  ident: bb0030
  article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar
  publication-title: Environ. Sci. Technol.
– volume: 102
  start-page: 716
  year: 2011
  end-page: 723
  ident: bb0035
  article-title: A novel magnetic biochar efficiently sorbs organic pollutants and phosphate
  publication-title: Bioresour. Technol.
– volume: 48
  start-page: 1902
  year: 2014
  end-page: 1910
  ident: bb0050
  article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation
  publication-title: Environ. Sci. Technol.
– volume: 100
  start-page: 178
  year: 2008
  end-page: 181
  ident: bb0105
  article-title: The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality
  publication-title: Agron. J.
– volume: 48
  start-page: 638
  year: 2010
  end-page: 647
  ident: bb0130
  article-title: Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (
  publication-title: Aust. J. Soil Res.
– volume: 357
  start-page: 263
  year: 2002
  end-page: 266
  ident: bb0115
  article-title: Lead adsorption on carbon nanotubes
  publication-title: Chem. Phys. Lett.
– volume: 72
  start-page: 1598
  year: 2008
  end-page: 1610
  ident: bb0040
  article-title: Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence
  publication-title: Geochim. Cosmochim. Acta
– volume: 37
  start-page: 1678
  year: 2003
  end-page: 1683
  ident: bb0005
  article-title: Removal of lead ions from industrial waste water by different types of natural materials
  publication-title: Water Res.
– volume: 167
  start-page: 569
  year: 2014
  end-page: 573
  ident: bb0045
  article-title: Sorption and cosorption of lead (II) and methylene blue on chemically modified biomass
  publication-title: Bioresour. Technol.
– volume: 92
  start-page: 407
  year: 2011
  end-page: 418
  ident: bb0055
  article-title: Removal of heavy metal ions from wastewaters: a review
  publication-title: J. Environ. Manag.
– volume: 16
  start-page: 8404
  year: 2000
  end-page: 8409
  ident: bb0095
  article-title: Removal of Cu (II), Pb (II), and Ni (II) by adsorption onto activated carbon cloths
  publication-title: Langmuir
– volume: 6
  start-page: 24314
  year: 2016
  end-page: 24319
  ident: bb0125
  article-title: Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(ii) and Cd(ii) removal
  publication-title: RSC Adv.
– volume: 46
  start-page: 449
  year: 1998
  end-page: 455
  ident: bb0145
  article-title: Extraction procedures for the determination of heavy metals in contaminated soil and sediment
  publication-title: Talanta
– volume: 28
  start-page: 2117
  year: 1994
  end-page: 2124
  ident: bb0175
  article-title: Hydroxide precipitation of complexed metals
  publication-title: Water Res.
– volume: 214
  start-page: 836
  year: 2016
  end-page: 851
  ident: bb0010
  article-title: Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater
  publication-title: Bioresour. Technol.
– volume: 165
  start-page: 17
  year: 2016
  end-page: 21
  ident: bb0075
  article-title: Biochar-surface oxygenation with hydrogen peroxide
  publication-title: J. Environ. Manag.
– volume: 200-202
  start-page: 673
  year: 2012
  end-page: 680
  ident: bb0200
  article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests
  publication-title: Chem. Eng. J.
– volume: 272
  start-page: 28
  year: 2015
  end-page: 37
  ident: bb0155
  article-title: Elemental mercury removal by the modified bio-char from medicinal residues
  publication-title: Chem. Eng. J.
– volume: 46
  start-page: 1950
  year: 2011
  end-page: 1956
  ident: bb0085
  article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse
  publication-title: Sep. Sci. Technol.
– volume: 148
  start-page: 276
  year: 2016
  end-page: 291
  ident: bb0140
  article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification
  publication-title: Chemosphere
– volume: 167
  start-page: 933
  year: 2009
  ident: 10.1016/j.scitotenv.2018.03.189_bb0120
  article-title: Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.01.085
– volume: 148
  start-page: 276
  year: 2016
  ident: 10.1016/j.scitotenv.2018.03.189_bb0140
  article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.01.043
– volume: 48
  start-page: 1902
  year: 2014
  ident: 10.1016/j.scitotenv.2018.03.189_bb0050
  article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4048126
– volume: 211
  start-page: 317
  year: 2012
  ident: 10.1016/j.scitotenv.2018.03.189_bb0070
  article-title: Heavy metal removal from water/wastewater by nanosized metal oxides: a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.10.016
– volume: 165
  start-page: 17
  year: 2016
  ident: 10.1016/j.scitotenv.2018.03.189_bb0075
  article-title: Biochar-surface oxygenation with hydrogen peroxide
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2015.08.046
– volume: 16
  start-page: 8404
  year: 2000
  ident: 10.1016/j.scitotenv.2018.03.189_bb0095
  article-title: Removal of Cu (II), Pb (II), and Ni (II) by adsorption onto activated carbon cloths
  publication-title: Langmuir
  doi: 10.1021/la0004810
– volume: 138
  start-page: 120
  year: 2015
  ident: 10.1016/j.scitotenv.2018.03.189_bb0185
  article-title: Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.05.062
– volume: 238
  start-page: 399
  year: 2017
  ident: 10.1016/j.scitotenv.2018.03.189_bb0080
  article-title: Highly efficient lead distribution by magnetic sewage sludge biochar: sorption mechanisms and bench applications
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.03.133
– volume: 48
  start-page: 638
  year: 2010
  ident: 10.1016/j.scitotenv.2018.03.189_bb0130
  article-title: Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.)
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR10049
– volume: 62
  start-page: 373
  year: 2014
  ident: 10.1016/j.scitotenv.2018.03.189_bb0135
  article-title: Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf404624h
– volume: 203
  start-page: 318
  year: 2016
  ident: 10.1016/j.scitotenv.2018.03.189_bb0170
  article-title: Lead and cadmium sorption mechanisms on magnetically modified biochars
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.12.056
– volume: 46
  start-page: 1950
  year: 2011
  ident: 10.1016/j.scitotenv.2018.03.189_bb0085
  article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse
  publication-title: Sep. Sci. Technol.
  doi: 10.1080/01496395.2011.584604
– volume: 357
  start-page: 263
  year: 2002
  ident: 10.1016/j.scitotenv.2018.03.189_bb0115
  article-title: Lead adsorption on carbon nanotubes
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00502-X
– year: 2008
  ident: 10.1016/j.scitotenv.2018.03.189_bb0025
– volume: 4
  start-page: 1156
  issue: 1
  year: 2016
  ident: 10.1016/j.scitotenv.2018.03.189_bb0160
  article-title: Recovery of phosphate with chemically modified biochars
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2016.01.011
– volume: 159
  start-page: 474
  year: 2011
  ident: 10.1016/j.scitotenv.2018.03.189_bb0020
  article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2010.10.016
– volume: 102
  start-page: 716
  year: 2011
  ident: 10.1016/j.scitotenv.2018.03.189_bb0035
  article-title: A novel magnetic biochar efficiently sorbs organic pollutants and phosphate
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.08.067
– volume: 72
  start-page: 1598
  year: 2008
  ident: 10.1016/j.scitotenv.2018.03.189_bb0040
  article-title: Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2008.01.010
– volume: 74
  start-page: 1249
  year: 2015
  ident: 10.1016/j.scitotenv.2018.03.189_bb0100
  article-title: Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4116-1
– volume: 118
  start-page: 196
  year: 2013
  ident: 10.1016/j.scitotenv.2018.03.189_bb0060
  article-title: Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2013.01.001
– volume: 20
  start-page: 8491
  year: 2013
  ident: 10.1016/j.scitotenv.2018.03.189_bb0195
  article-title: Effect of biochars on adsorption of Cu(II), Pb(II) and Cd(II) by three variable charge soils from southern China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-013-1769-8
– volume: 45
  start-page: 25
  year: 2005
  ident: 10.1016/j.scitotenv.2018.03.189_bb0150
  article-title: Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2005.02.004
– volume: 47
  start-page: 2158
  year: 2017
  ident: 10.1016/j.scitotenv.2018.03.189_bb0190
  article-title: Recent advances in engineered biochar productions and applications
  publication-title: Crit. Rev. Environ. Sci. Technol.
  doi: 10.1080/10643389.2017.1418580
– volume: 68
  start-page: 167
  year: 2003
  ident: 10.1016/j.scitotenv.2018.03.189_bb0090
  article-title: Hazards of heavy metal contamination
  publication-title: Br. Med. Bull.
  doi: 10.1093/bmb/ldg032
– volume: 6
  start-page: 24314
  year: 2016
  ident: 10.1016/j.scitotenv.2018.03.189_bb0125
  article-title: Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(ii) and Cd(ii) removal
  publication-title: RSC Adv.
  doi: 10.1039/C6RA01895E
– volume: 197
  start-page: 24
  year: 2012
  ident: 10.1016/j.scitotenv.2018.03.189_bb0180
  article-title: Pigeon peas hulls waste as potential adsorbent for removal of Pb(II) and Ni(II) from water
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.04.105
– volume: 167
  start-page: 569
  year: 2014
  ident: 10.1016/j.scitotenv.2018.03.189_bb0045
  article-title: Sorption and cosorption of lead (II) and methylene blue on chemically modified biomass
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.06.043
– volume: 200-202
  start-page: 673
  year: 2012
  ident: 10.1016/j.scitotenv.2018.03.189_bb0200
  article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2012.06.116
– volume: 46
  start-page: 449
  year: 1998
  ident: 10.1016/j.scitotenv.2018.03.189_bb0145
  article-title: Extraction procedures for the determination of heavy metals in contaminated soil and sediment
  publication-title: Talanta
  doi: 10.1016/S0039-9140(97)00406-2
– volume: 125
  start-page: 70
  year: 2015
  ident: 10.1016/j.scitotenv.2018.03.189_bb0165
  article-title: Application of biochar for the removal of pollutants from aqueous solutions
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.12.058
– volume: 272
  start-page: 28
  year: 2015
  ident: 10.1016/j.scitotenv.2018.03.189_bb0155
  article-title: Elemental mercury removal by the modified bio-char from medicinal residues
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2015.03.006
– volume: 28
  start-page: 2117
  year: 1994
  ident: 10.1016/j.scitotenv.2018.03.189_bb0175
  article-title: Hydroxide precipitation of complexed metals
  publication-title: Water Res.
  doi: 10.1016/0043-1354(94)90022-1
– volume: 37
  start-page: 1678
  year: 2003
  ident: 10.1016/j.scitotenv.2018.03.189_bb0005
  article-title: Removal of lead ions from industrial waste water by different types of natural materials
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(02)00554-7
– year: 2013
  ident: 10.1016/j.scitotenv.2018.03.189_bb0065
– volume: 100
  start-page: 178
  year: 2008
  ident: 10.1016/j.scitotenv.2018.03.189_bb0105
  article-title: The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality
  publication-title: Agron. J.
  doi: 10.2134/agronj2007.0161
– volume: 214
  start-page: 836
  year: 2016
  ident: 10.1016/j.scitotenv.2018.03.189_bb0010
  article-title: Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.05.057
– volume: 33
  start-page: 2469
  year: 1999
  ident: 10.1016/j.scitotenv.2018.03.189_bb0015
  article-title: A review of potentially low-cost sorbents for heavy metals
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00475-8
– volume: 45
  start-page: 4884
  year: 2011
  ident: 10.1016/j.scitotenv.2018.03.189_bb0030
  article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es103752u
– volume: 92
  start-page: 407
  year: 2011
  ident: 10.1016/j.scitotenv.2018.03.189_bb0055
  article-title: Removal of heavy metal ions from wastewaters: a review
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2010.11.011
– year: 2009
  ident: 10.1016/j.scitotenv.2018.03.189_bb0110
SSID ssj0000781
Score 2.6099799
Snippet The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 188
SubjectTerms Adsorption
aqueous solutions
Biochar
desorption
ecosystem services
heavy metals
hydrogen peroxide
Lead
oxidation
pH independent
Retention
sodium nitrate
sorption isotherms
wood
Title Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH
URI https://dx.doi.org/10.1016/j.scitotenv.2018.03.189
https://www.ncbi.nlm.nih.gov/pubmed/29627541
https://www.proquest.com/docview/2023407870
https://www.proquest.com/docview/2067272899
Volume 634
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RaxQxEB5KRRBE9LR6VUsEH_RhbXY3m934VkrLnSdF1GLfQjbJwonsHr1tsS_-dmeS3SsFtQ-yD0uWzBIyk8kkM_MNwGtlCFYOhZfnFQ-3VYnyokjqXLjMy9JWJqB9nsjZqfhwVpxtweGYC0NhlYPujzo9aOvhy_4wm_ur5ZJyfEWlpELlmuMZpSLETyFKkvJ3v67DPAjMJnqZcWFj7xsxXvjfvkPb9JJivCpCO02p3vufd6i_WaBhJzp-CA8GE5IdxFE-gi3fTuBuLCp5NYGdo-vcNew2LN71BO7HKzoWM48ew8cv3XlQGMy0jjm_Hptdwz7Vb-bzt6zvWL3sKDOLmTUzIfbDO1Zfse7nMlZjCsSr2RM4PT76ejhLhuIKiRUl7xOlssZJYZuqqbKycFktC6WalODmveTIqaYujJeO4yNllqWNMt7lFlVCY3ye78B227X-GTDjlLeqIqCZUnBLnkVrCuFqm3rUIdkU5Dih2g7I41QA44ceQ8y-6w0nNHFC81wjJ6bAN4SrCL5xO8n7kWP6hhxp3CJuJ3418ljjKiPXiWl9d7HWVGSePJ4l_1ef4NXGA-wUnkYB2Yw6oxpHhUh3_2d4z-EetWKE2wvY7s8v_Es0ifp6L8j8Htw5mC9mJ_RefP62-A1POwwb
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6UiiiI6Grb9TqCgj7EJpPJJCP4INqya9ci2ELfxklmAiuSLE2q7kv_VP-g52SSLQW1D1LylMuBkzkz31zO5QN4rgyVlcPOG8ZZ2J1WBcqJJMhjYbmTaZGZrtrnvpwcio9HydEanA25MBRW2WO_x_QOrfsn231rbi_mc8rxFZmSCsE1xj1KNjBY77nlT9y3NW-nH9DILzjf3Tl4Pwl6aoGgEGnYBkrx0kpRlFmZ8TSxPJeJUmVExdadDFHPMk-MkzbES0rOo1IZZ-MCB0RpHJ2CIu5fEwgXRJvw-vQ8roSq53i3NiIJqnchqAx_pK1xMfyDgsoyKq8aEcH8n6fEvy15u6lv9w7c7tes7J1vlruw5qoRXPcslssRbOycJ8vhZz1aNCO45c8EmU91ugezL_Vxh1DMVJZZ1wy3dck-5y-n01esrVk-rykVjJmGmS7YxFmWL1n9a-7pnzrhxeQ-HF5Jk2_AelVXbguYscoVKqPKNqkIC3JlFiYRNi8ih6DFxyCHBtVFX-qcGDe-6yGm7ZteWUKTJXQYa7TEGMKV4MJX-7hc5M1gMX2h42qcky4XfjbYWOOwJl-NqVx90mhitScXaxr-65vOjY475jFs-g6y0poTqVIiogf_o95TuDE5-DTTs-n-3kO4SW98eN0jWG-PT9xjXI-1-ZOu_zP4etUD7jdahEZi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sorption+and+desorption+of+Pb%28II%29+to+biochar+as+affected+by+oxidation+and+pH&rft.jtitle=The+Science+of+the+total+environment&rft.au=Wang%2C+Qian&rft.au=Wang%2C+Bing&rft.au=Lee%2C+Xinqing&rft.au=Lehmann%2C+Johannes&rft.date=2018-09-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=634&rft.spage=188&rft.epage=194&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.03.189&rft.externalDocID=S0048969718309483
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon