Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH
The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized...
Saved in:
Published in | The Science of the total environment Vol. 634; pp. 188 - 194 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized biochar ranged from 8.1 to 3.7, with one set being adjusted to a pH of 7 as a comparison. It was found that oxidizing the biochars increased their Pb(II) adsorption capacity if the pH remained below 6 (strong oxidation), but decreased their Pb(II) adsorption ability above pH6 (weak oxidation). After adjusting the pH of oxidized biochar to pH7, the Pb(II) adsorption capacity further increased two to sixfold for oxidized biochars originally at pH3.7–6. The adsorption characteristics of Pb(II) were well described by the Langmuir equation. Adsorption of Pb(II) was not fully reversible in water. Less than 6% of Pb(II) desorbed in water in two consecutive steps than was previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 0.1M NaNO3 increased from 0.7% to 32.7% of Pb(II) undesorbed by both preceding water extractions with increasing oxidation, for biochars with a pH below 7. Unextractable Pb(II) was lower at low oxidation but increased to 99.0% of initially adsorbed amounts at low pH, which indicated that the adsorption of Pb(II) on oxidized biochar is pH independent.
[Display omitted]
•Adsorption is largely affected by oxygen-containing surface functional groups and pH.•Oxidation increases the affinity of Pb(II) to biochar and decreases the desorption in water.•Pb(II) adsorption is not fully reversible using NaNO3 irrespective of oxidation.•Oxidized biochar has the potential for Pb(II) immobilization. |
---|---|
AbstractList | The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized biochar ranged from 8.1 to 3.7, with one set being adjusted to a pH of 7 as a comparison. It was found that oxidizing the biochars increased their Pb(II) adsorption capacity if the pH remained below 6 (strong oxidation), but decreased their Pb(II) adsorption ability above pH6 (weak oxidation). After adjusting the pH of oxidized biochar to pH7, the Pb(II) adsorption capacity further increased two to sixfold for oxidized biochars originally at pH3.7-6. The adsorption characteristics of Pb(II) were well described by the Langmuir equation. Adsorption of Pb(II) was not fully reversible in water. Less than 6% of Pb(II) desorbed in water in two consecutive steps than was previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 0.1M NaNO
increased from 0.7% to 32.7% of Pb(II) undesorbed by both preceding water extractions with increasing oxidation, for biochars with a pH below 7. Unextractable Pb(II) was lower at low oxidation but increased to 99.0% of initially adsorbed amounts at low pH, which indicated that the adsorption of Pb(II) on oxidized biochar is pH independent. The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized biochar ranged from 8.1 to 3.7, with one set being adjusted to a pH of 7 as a comparison. It was found that oxidizing the biochars increased their Pb(II) adsorption capacity if the pH remained below 6 (strong oxidation), but decreased their Pb(II) adsorption ability above pH6 (weak oxidation). After adjusting the pH of oxidized biochar to pH7, the Pb(II) adsorption capacity further increased two to sixfold for oxidized biochars originally at pH3.7–6. The adsorption characteristics of Pb(II) were well described by the Langmuir equation. Adsorption of Pb(II) was not fully reversible in water. Less than 6% of Pb(II) desorbed in water in two consecutive steps than was previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 0.1M NaNO3 increased from 0.7% to 32.7% of Pb(II) undesorbed by both preceding water extractions with increasing oxidation, for biochars with a pH below 7. Unextractable Pb(II) was lower at low oxidation but increased to 99.0% of initially adsorbed amounts at low pH, which indicated that the adsorption of Pb(II) on oxidized biochar is pH independent. [Display omitted] •Adsorption is largely affected by oxygen-containing surface functional groups and pH.•Oxidation increases the affinity of Pb(II) to biochar and decreases the desorption in water.•Pb(II) adsorption is not fully reversible using NaNO3 irrespective of oxidation.•Oxidized biochar has the potential for Pb(II) immobilization. The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized biochar ranged from 8.1 to 3.7, with one set being adjusted to a pH of 7 as a comparison. It was found that oxidizing the biochars increased their Pb(II) adsorption capacity if the pH remained below 6 (strong oxidation), but decreased their Pb(II) adsorption ability above pH6 (weak oxidation). After adjusting the pH of oxidized biochar to pH7, the Pb(II) adsorption capacity further increased two to sixfold for oxidized biochars originally at pH3.7–6. The adsorption characteristics of Pb(II) were well described by the Langmuir equation. Adsorption of Pb(II) was not fully reversible in water. Less than 6% of Pb(II) desorbed in water in two consecutive steps than was previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 0.1M NaNO3 increased from 0.7% to 32.7% of Pb(II) undesorbed by both preceding water extractions with increasing oxidation, for biochars with a pH below 7. Unextractable Pb(II) was lower at low oxidation but increased to 99.0% of initially adsorbed amounts at low pH, which indicated that the adsorption of Pb(II) on oxidized biochar is pH independent. The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized biochar ranged from 8.1 to 3.7, with one set being adjusted to a pH of 7 as a comparison. It was found that oxidizing the biochars increased their Pb(II) adsorption capacity if the pH remained below 6 (strong oxidation), but decreased their Pb(II) adsorption ability above pH6 (weak oxidation). After adjusting the pH of oxidized biochar to pH7, the Pb(II) adsorption capacity further increased two to sixfold for oxidized biochars originally at pH3.7-6. The adsorption characteristics of Pb(II) were well described by the Langmuir equation. Adsorption of Pb(II) was not fully reversible in water. Less than 6% of Pb(II) desorbed in water in two consecutive steps than was previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 0.1M NaNO3 increased from 0.7% to 32.7% of Pb(II) undesorbed by both preceding water extractions with increasing oxidation, for biochars with a pH below 7. Unextractable Pb(II) was lower at low oxidation but increased to 99.0% of initially adsorbed amounts at low pH, which indicated that the adsorption of Pb(II) on oxidized biochar is pH independent.The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly functionalized biochar for the removal of Pb(II) in aqueous solution, maple wood biochar was oxidized using hydrogen peroxide. The pH values of oxidized biochar ranged from 8.1 to 3.7, with one set being adjusted to a pH of 7 as a comparison. It was found that oxidizing the biochars increased their Pb(II) adsorption capacity if the pH remained below 6 (strong oxidation), but decreased their Pb(II) adsorption ability above pH6 (weak oxidation). After adjusting the pH of oxidized biochar to pH7, the Pb(II) adsorption capacity further increased two to sixfold for oxidized biochars originally at pH3.7-6. The adsorption characteristics of Pb(II) were well described by the Langmuir equation. Adsorption of Pb(II) was not fully reversible in water. Less than 6% of Pb(II) desorbed in water in two consecutive steps than was previously adsorbed, for biochars with a pH below 7, irrespective of oxidation. Recovery using an extraction with 0.1M NaNO3 increased from 0.7% to 32.7% of Pb(II) undesorbed by both preceding water extractions with increasing oxidation, for biochars with a pH below 7. Unextractable Pb(II) was lower at low oxidation but increased to 99.0% of initially adsorbed amounts at low pH, which indicated that the adsorption of Pb(II) on oxidized biochar is pH independent. |
Author | Lee, Xinqing Wang, Qian Wang, Bing Gao, Bin Lehmann, Johannes |
Author_xml | – sequence: 1 givenname: Qian surname: Wang fullname: Wang, Qian organization: State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China – sequence: 2 givenname: Bing orcidid: 0000-0002-2773-2370 surname: Wang fullname: Wang, Bing email: wangbing@vip.gyig.ac.cn organization: State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China – sequence: 3 givenname: Xinqing surname: Lee fullname: Lee, Xinqing organization: State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China – sequence: 4 givenname: Johannes surname: Lehmann fullname: Lehmann, Johannes organization: Department of Crop and Soil Sciences, Cornell University, 909 Bradfield Hall, Ithaca, NY 14853, USA – sequence: 5 givenname: Bin surname: Gao fullname: Gao, Bin organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29627541$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1OAyEURonRaK2-grLUxYzATGFYuDDGnyZNNFHXhIFLpGmHClOjby-1tgs3CgtCcr6bm-8cot0udIDQKSUlJZRfTMtkfB966N5LRmhTkqqkjdxBA9oIWVDC-C4aEFI3heRSHKDDlKYkH9HQfXTAJGdiVNMBmjyFuOh96LDuLLaQNt_g8GN7Nh6f4z7g1gfzqiPWCWvnwPRgcfuJw4e3ehte3B-hPadnCY5_3iF6ub15vr4vJg934-urSWFqQfpCSuYsr41rXJPXsKzlIykdrTmvgZPaMteONHBL8uWcMeqkBlsZURGnoaqG6Gw9dxHD2xJSr-Y-GZjNdAdhmRQjXDDBGin_gbKqzq0IktGTH3TZzsGqRfRzHT_VpqwMiDVgYkgpgtsilKiVFjVVWy1qpUWRSmUtOXn5K5mx7-b6qP3sH_mrdR5yq-8e4oqDzoD1MdtQNvg_Z3wBd12tkQ |
CitedBy_id | crossref_primary_10_2139_ssrn_4126026 crossref_primary_10_1007_s11356_020_10560_2 crossref_primary_10_1016_j_ecoenv_2019_02_006 crossref_primary_10_1016_j_matchemphys_2024_128929 crossref_primary_10_3390_ijms24031974 crossref_primary_10_1016_j_scitotenv_2019_136024 crossref_primary_10_1080_23570008_2025_2467358 crossref_primary_10_1016_j_bej_2024_109525 crossref_primary_10_1016_j_cec_2024_100117 crossref_primary_10_1002_wer_1377 crossref_primary_10_1080_09593330_2019_1642388 crossref_primary_10_1177_0263617419867519 crossref_primary_10_1016_j_chemosphere_2022_134334 crossref_primary_10_3390_su13052641 crossref_primary_10_1007_s42773_023_00219_9 crossref_primary_10_1111_sum_13112 crossref_primary_10_1016_j_chemosphere_2020_126539 crossref_primary_10_1016_j_indcrop_2021_114304 crossref_primary_10_1155_2024_6355929 crossref_primary_10_1016_j_ecoenv_2022_113363 crossref_primary_10_1149_2_0151904jes crossref_primary_10_1016_j_jhazmat_2020_124221 crossref_primary_10_1016_j_scitotenv_2021_148550 crossref_primary_10_1080_25740881_2020_1719140 crossref_primary_10_1680_jenes_19_00026 crossref_primary_10_1016_j_surfin_2022_102323 crossref_primary_10_1016_j_enmm_2023_100777 crossref_primary_10_1016_j_jwpe_2024_105414 crossref_primary_10_1021_acsomega_2c04882 crossref_primary_10_3390_su131810362 crossref_primary_10_1016_j_ijbiomac_2024_131142 crossref_primary_10_1016_j_chemosphere_2023_140682 crossref_primary_10_1007_s11356_024_33185_1 crossref_primary_10_1016_j_jenvman_2018_10_117 crossref_primary_10_1016_j_jenvman_2021_112490 crossref_primary_10_5004_dwt_2021_27047 crossref_primary_10_1007_s11356_023_27228_2 crossref_primary_10_1016_j_chemosphere_2022_136802 crossref_primary_10_1016_j_resconrec_2020_105204 crossref_primary_10_1016_j_jhazmat_2023_132652 crossref_primary_10_1016_j_envpol_2023_121405 crossref_primary_10_1007_s11356_022_20303_0 crossref_primary_10_1016_j_biortech_2019_122102 crossref_primary_10_1016_j_scitotenv_2024_172632 crossref_primary_10_1016_j_jece_2024_113565 crossref_primary_10_3390_ijms232214053 crossref_primary_10_3390_w17060881 crossref_primary_10_1016_j_scitotenv_2021_147595 crossref_primary_10_1016_j_biortech_2020_124616 crossref_primary_10_1016_j_microc_2021_106250 crossref_primary_10_3390_agronomy11081598 crossref_primary_10_1007_s13399_023_03914_6 crossref_primary_10_1007_s13399_021_01838_7 crossref_primary_10_1016_j_chemosphere_2021_132250 crossref_primary_10_1039_D0RA08055A crossref_primary_10_1016_j_jece_2021_106598 crossref_primary_10_1016_j_envint_2019_03_068 crossref_primary_10_1016_j_jhazmat_2022_130167 crossref_primary_10_1016_j_chemosphere_2022_137025 crossref_primary_10_3390_cleantechnol4030039 crossref_primary_10_3390_ijerph20010155 crossref_primary_10_3390_ma13112462 crossref_primary_10_1016_j_scitotenv_2018_08_013 crossref_primary_10_1007_s12517_022_09539_9 crossref_primary_10_1021_acs_energyfuels_2c01201 crossref_primary_10_3390_app10020688 crossref_primary_10_1016_j_jhazmat_2021_125115 crossref_primary_10_3390_ijms231911202 crossref_primary_10_1016_j_cej_2021_129807 crossref_primary_10_1016_j_eti_2021_101961 crossref_primary_10_1016_j_chemosphere_2020_127683 crossref_primary_10_1007_s11356_020_08706_3 crossref_primary_10_1016_j_scitotenv_2020_143664 crossref_primary_10_1007_s10653_019_00477_2 crossref_primary_10_1016_j_scitotenv_2019_134119 crossref_primary_10_1016_j_jes_2022_10_023 crossref_primary_10_1007_s42773_019_00030_5 crossref_primary_10_18273_revuin_v20n1_2021011 crossref_primary_10_1016_j_jece_2020_104567 crossref_primary_10_1016_j_chemosphere_2020_128409 crossref_primary_10_1016_j_envpol_2022_119693 crossref_primary_10_1016_j_jaap_2021_105214 crossref_primary_10_1016_j_jafrearsci_2019_103635 crossref_primary_10_1039_D0EW00619J crossref_primary_10_1007_s10653_023_01520_z crossref_primary_10_1016_j_jece_2024_113861 crossref_primary_10_3390_min13101337 crossref_primary_10_5004_dwt_2020_24844 crossref_primary_10_1016_j_apsusc_2019_04_075 crossref_primary_10_1039_C9RA09470A crossref_primary_10_1080_15226514_2021_1931025 crossref_primary_10_1007_s10653_020_00716_x crossref_primary_10_1016_j_scitotenv_2020_143452 crossref_primary_10_1007_s13399_024_05584_4 crossref_primary_10_1021_acsomega_0c00216 crossref_primary_10_3390_ijerph191811163 crossref_primary_10_1007_s13762_024_05646_0 crossref_primary_10_1016_j_jhazmat_2022_128903 crossref_primary_10_1016_j_biortech_2019_03_086 crossref_primary_10_1016_j_scitotenv_2019_134052 crossref_primary_10_1007_s10653_019_00474_5 crossref_primary_10_1016_j_envpol_2022_118902 crossref_primary_10_1007_s10854_021_07202_9 crossref_primary_10_1016_j_scitotenv_2019_135544 crossref_primary_10_1016_j_jclepro_2022_131097 crossref_primary_10_1155_2022_7813513 crossref_primary_10_1007_s44169_025_00081_9 crossref_primary_10_1002_jeq2_20419 crossref_primary_10_56430_japro_1193955 crossref_primary_10_5802_crchim_173 crossref_primary_10_1007_s10098_023_02545_9 crossref_primary_10_1039_C8RA09061K crossref_primary_10_1016_j_jhazmat_2021_127349 crossref_primary_10_1016_j_jksus_2018_12_007 crossref_primary_10_1007_s11771_024_5632_5 crossref_primary_10_1016_j_envpol_2023_123148 crossref_primary_10_1007_s10163_019_00921_6 crossref_primary_10_1016_j_biortech_2019_02_092 crossref_primary_10_1016_j_cej_2022_137068 crossref_primary_10_1016_j_scitotenv_2022_160649 crossref_primary_10_1016_j_jwpe_2020_101464 crossref_primary_10_1007_s11368_021_03059_x crossref_primary_10_1016_j_jhazmat_2024_133436 crossref_primary_10_1016_j_scitotenv_2023_164810 crossref_primary_10_1016_j_jenvman_2021_112794 crossref_primary_10_1016_j_jenvman_2022_114973 crossref_primary_10_1007_s11270_020_04922_2 crossref_primary_10_5004_dwt_2020_25192 crossref_primary_10_1016_j_jes_2023_04_020 crossref_primary_10_1016_j_scitotenv_2021_149295 crossref_primary_10_1016_j_chemosphere_2024_142101 crossref_primary_10_1016_j_colsurfa_2019_123962 crossref_primary_10_1016_j_jhazmat_2021_128147 crossref_primary_10_3390_f13122080 crossref_primary_10_1080_10643389_2018_1547621 crossref_primary_10_1016_j_jece_2023_110342 crossref_primary_10_1016_j_jwpe_2025_107478 crossref_primary_10_1016_j_biortech_2020_123797 crossref_primary_10_1007_s10163_021_01193_9 crossref_primary_10_1038_s41598_023_27638_9 crossref_primary_10_3390_pr9071209 crossref_primary_10_3390_molecules30051048 crossref_primary_10_1016_j_jics_2022_100791 crossref_primary_10_1016_j_cej_2019_02_119 crossref_primary_10_1016_j_cej_2021_132166 crossref_primary_10_1016_j_biombioe_2023_106787 crossref_primary_10_1016_j_jenvman_2022_115832 crossref_primary_10_1007_s11356_020_07805_5 crossref_primary_10_1039_D3RA07250A crossref_primary_10_5338_KJEA_2023_42_1_06 crossref_primary_10_1111_sum_12757 |
Cites_doi | 10.1016/j.jhazmat.2009.01.085 10.1016/j.chemosphere.2016.01.043 10.1021/es4048126 10.1016/j.jhazmat.2011.10.016 10.1016/j.jenvman.2015.08.046 10.1021/la0004810 10.1016/j.chemosphere.2015.05.062 10.1016/j.biortech.2017.03.133 10.1071/SR10049 10.1021/jf404624h 10.1016/j.biortech.2015.12.056 10.1080/01496395.2011.584604 10.1016/S0009-2614(02)00502-X 10.1016/j.jece.2016.01.011 10.1016/j.envpol.2010.10.016 10.1016/j.biortech.2010.08.067 10.1016/j.gca.2008.01.010 10.1007/s12665-015-4116-1 10.1016/j.jenvman.2013.01.001 10.1007/s11356-013-1769-8 10.1016/j.seppur.2005.02.004 10.1080/10643389.2017.1418580 10.1093/bmb/ldg032 10.1039/C6RA01895E 10.1016/j.cej.2012.04.105 10.1016/j.biortech.2014.06.043 10.1016/j.cej.2012.06.116 10.1016/S0039-9140(97)00406-2 10.1016/j.chemosphere.2014.12.058 10.1016/j.cej.2015.03.006 10.1016/0043-1354(94)90022-1 10.1016/S0043-1354(02)00554-7 10.2134/agronj2007.0161 10.1016/j.biortech.2016.05.057 10.1016/S0043-1354(98)00475-8 10.1021/es103752u 10.1016/j.jenvman.2010.11.011 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2018.03.189 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 194 |
ExternalDocumentID | 29627541 10_1016_j_scitotenv_2018_03_189 S0048969718309483 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-992fd64cf8f8275d2b6599f14664e604d2fb5ae6d0d0d66221f9aed3c730fae33 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 03:16:39 EDT 2025 Tue Aug 05 10:57:49 EDT 2025 Thu Apr 03 07:05:26 EDT 2025 Thu Apr 24 22:56:58 EDT 2025 Tue Jul 01 01:21:37 EDT 2025 Fri Feb 23 02:33:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lead Adsorption Biochar Retention pH independent |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-992fd64cf8f8275d2b6599f14664e604d2fb5ae6d0d0d66221f9aed3c730fae33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2773-2370 |
PMID | 29627541 |
PQID | 2023407870 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2067272899 proquest_miscellaneous_2023407870 pubmed_primary_29627541 crossref_primary_10_1016_j_scitotenv_2018_03_189 crossref_citationtrail_10_1016_j_scitotenv_2018_03_189 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_03_189 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ifthikar, Wang, Wang, Wang, Wang, Khan, Jawad, Sun, Jiao, Chen (bb0080) 2017; 238 Chen, Chen, Lv (bb0035) 2011; 102 Wang, Lehmann, Hanley, Hestrin, Enders (bb0185) 2015; 138 Lehmann, Joseph (bb0110) 2009 Rajapaksha, Chen, Tsang, Zhang, Vithanage, Mandal, Gao, Bolan, Ok (bb0140) 2016; 148 Bailey, Olin, Bricka, Adrian (bb0015) 1999; 33 Liu, Zhang (bb0120) 2009; 167 Liu, Gao, Fang, Wang, Cao (bb0125) 2016; 6 Inyang, Gao, Ding, Pullammanappallil, Zimmerman, Cao (bb0085) 2011; 46 Fang, Gao, Liu, Dionysiou, Wang, Zhou (bb0050) 2014; 48 Hina (bb0065) 2013 Cheng, Lehmann, Engelhard (bb0040) 2008; 72 Hua, Zhang, Pan, Zhang, Lv, Zhang (bb0070) 2012; 211 Brady, Weil (bb0025) 2008 Tan, Liu, Zeng, Wang, Hu, Gu, Yang (bb0165) 2015; 125 Tünay, Kabdaşli (bb0175) 1994; 28 Li, Wang, Wei, Zhang, Xu, Luan, Wu, Wei (bb0115) 2002; 357 Wang, Gao, Fang (bb0190) 2017; 47 Venkata Ramana, Harikishore Kumar Reddy, Yu, Seshaiah (bb0180) 2012; 197 Abdel-Halim, Shehata, El-Shahat (bb0005) 2003; 37 Laird (bb0105) 2008; 100 Qian, Chen (bb0135) 2014; 62 Kadirvelu, Faur-Brasquet, Cloirec (bb0095) 2000; 16 Shen, Li, Wang, Wang, He, Zhang, Singh (bb0155) 2015; 272 Rauret (bb0145) 1998; 46 Beesley, Marmiroli (bb0020) 2011; 159 Ding, Hu, Zimmerman, Gao (bb0045) 2014; 167 Xu, Zhao (bb0195) 2013; 20 Kim, Kim, Kim, Yoon, Yang, Ok, Owens, Kim (bb0100) 2015; 74 Takaya (bb0160) 2016; 4 Cao, Ma, Liang, Gao, Harris (bb0030) 2011; 45 Huff, Lee (bb0075) 2016; 165 Trakal, Veselská, Šafařík, Vítková, Číhalová, Komárek (bb0170) 2016; 203 Ahmed, Zhou, Ngo, Guo, Chen (bb0010) 2016; 214 Namgay, Singh, Singh (bb0130) 2010; 48 Saeed, Akhter, Iqbal (bb0150) 2005; 45 Järup (bb0090) 2003; 68 Xue, Gao, Yao, Inyang, Zhang, Zimmerman, Ro (bb0200) 2012; 200-202 Fu, Wang (bb0055) 2011; 92 Han, Boateng, Qi, Lima, Chang (bb0060) 2013; 118 Fu (10.1016/j.scitotenv.2018.03.189_bb0055) 2011; 92 Takaya (10.1016/j.scitotenv.2018.03.189_bb0160) 2016; 4 Ahmed (10.1016/j.scitotenv.2018.03.189_bb0010) 2016; 214 Wang (10.1016/j.scitotenv.2018.03.189_bb0185) 2015; 138 Ding (10.1016/j.scitotenv.2018.03.189_bb0045) 2014; 167 Trakal (10.1016/j.scitotenv.2018.03.189_bb0170) 2016; 203 Qian (10.1016/j.scitotenv.2018.03.189_bb0135) 2014; 62 Laird (10.1016/j.scitotenv.2018.03.189_bb0105) 2008; 100 Rauret (10.1016/j.scitotenv.2018.03.189_bb0145) 1998; 46 Chen (10.1016/j.scitotenv.2018.03.189_bb0035) 2011; 102 Lehmann (10.1016/j.scitotenv.2018.03.189_bb0110) 2009 Inyang (10.1016/j.scitotenv.2018.03.189_bb0085) 2011; 46 Xu (10.1016/j.scitotenv.2018.03.189_bb0195) 2013; 20 Saeed (10.1016/j.scitotenv.2018.03.189_bb0150) 2005; 45 Huff (10.1016/j.scitotenv.2018.03.189_bb0075) 2016; 165 Ifthikar (10.1016/j.scitotenv.2018.03.189_bb0080) 2017; 238 Rajapaksha (10.1016/j.scitotenv.2018.03.189_bb0140) 2016; 148 Liu (10.1016/j.scitotenv.2018.03.189_bb0125) 2016; 6 Bailey (10.1016/j.scitotenv.2018.03.189_bb0015) 1999; 33 Kim (10.1016/j.scitotenv.2018.03.189_bb0100) 2015; 74 Abdel-Halim (10.1016/j.scitotenv.2018.03.189_bb0005) 2003; 37 Fang (10.1016/j.scitotenv.2018.03.189_bb0050) 2014; 48 Tan (10.1016/j.scitotenv.2018.03.189_bb0165) 2015; 125 Wang (10.1016/j.scitotenv.2018.03.189_bb0190) 2017; 47 Hua (10.1016/j.scitotenv.2018.03.189_bb0070) 2012; 211 Shen (10.1016/j.scitotenv.2018.03.189_bb0155) 2015; 272 Liu (10.1016/j.scitotenv.2018.03.189_bb0120) 2009; 167 Cheng (10.1016/j.scitotenv.2018.03.189_bb0040) 2008; 72 Li (10.1016/j.scitotenv.2018.03.189_bb0115) 2002; 357 Cao (10.1016/j.scitotenv.2018.03.189_bb0030) 2011; 45 Venkata Ramana (10.1016/j.scitotenv.2018.03.189_bb0180) 2012; 197 Namgay (10.1016/j.scitotenv.2018.03.189_bb0130) 2010; 48 Xue (10.1016/j.scitotenv.2018.03.189_bb0200) 2012; 200-202 Brady (10.1016/j.scitotenv.2018.03.189_bb0025) 2008 Tünay (10.1016/j.scitotenv.2018.03.189_bb0175) 1994; 28 Kadirvelu (10.1016/j.scitotenv.2018.03.189_bb0095) 2000; 16 Han (10.1016/j.scitotenv.2018.03.189_bb0060) 2013; 118 Hina (10.1016/j.scitotenv.2018.03.189_bb0065) 2013 Beesley (10.1016/j.scitotenv.2018.03.189_bb0020) 2011; 159 Järup (10.1016/j.scitotenv.2018.03.189_bb0090) 2003; 68 |
References_xml | – volume: 238 start-page: 399 year: 2017 end-page: 406 ident: bb0080 article-title: Highly efficient lead distribution by magnetic sewage sludge biochar: sorption mechanisms and bench applications publication-title: Bioresour. Technol. – volume: 125 start-page: 70 year: 2015 end-page: 85 ident: bb0165 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere – volume: 138 start-page: 120 year: 2015 end-page: 126 ident: bb0185 article-title: Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH publication-title: Chemosphere – volume: 211 start-page: 317 year: 2012 end-page: 331 ident: bb0070 article-title: Heavy metal removal from water/wastewater by nanosized metal oxides: a review publication-title: J. Hazard. Mater. – year: 2009 ident: bb0110 article-title: Biochar for Environmental Management: Science and Technology – volume: 4 start-page: 1156 year: 2016 end-page: 1165 ident: bb0160 article-title: Recovery of phosphate with chemically modified biochars publication-title: J. Environ. Chem. Eng. – volume: 47 start-page: 2158 year: 2017 end-page: 2207 ident: bb0190 article-title: Recent advances in engineered biochar productions and applications publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 118 start-page: 196 year: 2013 end-page: 204 ident: bb0060 article-title: Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties publication-title: J. Environ. Manag. – volume: 33 start-page: 2469 year: 1999 end-page: 2479 ident: bb0015 article-title: A review of potentially low-cost sorbents for heavy metals publication-title: Water Res. – volume: 62 start-page: 373 year: 2014 end-page: 380 ident: bb0135 article-title: Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process publication-title: J. Agric. Food Chem. – year: 2013 ident: bb0065 article-title: Application of Biochar Technologies to Wastewater Treatment – volume: 159 start-page: 474 year: 2011 end-page: 480 ident: bb0020 article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar publication-title: Environ. Pollut. – volume: 74 start-page: 1249 year: 2015 end-page: 1259 ident: bb0100 article-title: Effect of biochar on heavy metal immobilization and uptake by lettuce ( publication-title: Environ. Earth Sci. – volume: 203 start-page: 318 year: 2016 end-page: 324 ident: bb0170 article-title: Lead and cadmium sorption mechanisms on magnetically modified biochars publication-title: Bioresour. Technol. – year: 2008 ident: bb0025 article-title: The Nature and Properties of Soils – volume: 68 start-page: 167 year: 2003 end-page: 182 ident: bb0090 article-title: Hazards of heavy metal contamination publication-title: Br. Med. Bull. – volume: 20 start-page: 8491 year: 2013 end-page: 8501 ident: bb0195 article-title: Effect of biochars on adsorption of Cu(II), Pb(II) and Cd(II) by three variable charge soils from southern China publication-title: Environ. Sci. Pollut. Res. – volume: 167 start-page: 933 year: 2009 end-page: 939 ident: bb0120 article-title: Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass publication-title: J. Hazard. Mater. – volume: 45 start-page: 25 year: 2005 end-page: 31 ident: bb0150 article-title: Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent publication-title: Sep. Purif. Technol. – volume: 197 start-page: 24 year: 2012 end-page: 33 ident: bb0180 article-title: Pigeon peas hulls waste as potential adsorbent for removal of Pb(II) and Ni(II) from water publication-title: Chem. Eng. J. – volume: 45 start-page: 4884 year: 2011 end-page: 4889 ident: bb0030 article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar publication-title: Environ. Sci. Technol. – volume: 102 start-page: 716 year: 2011 end-page: 723 ident: bb0035 article-title: A novel magnetic biochar efficiently sorbs organic pollutants and phosphate publication-title: Bioresour. Technol. – volume: 48 start-page: 1902 year: 2014 end-page: 1910 ident: bb0050 article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation publication-title: Environ. Sci. Technol. – volume: 100 start-page: 178 year: 2008 end-page: 181 ident: bb0105 article-title: The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality publication-title: Agron. J. – volume: 48 start-page: 638 year: 2010 end-page: 647 ident: bb0130 article-title: Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize ( publication-title: Aust. J. Soil Res. – volume: 357 start-page: 263 year: 2002 end-page: 266 ident: bb0115 article-title: Lead adsorption on carbon nanotubes publication-title: Chem. Phys. Lett. – volume: 72 start-page: 1598 year: 2008 end-page: 1610 ident: bb0040 article-title: Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence publication-title: Geochim. Cosmochim. Acta – volume: 37 start-page: 1678 year: 2003 end-page: 1683 ident: bb0005 article-title: Removal of lead ions from industrial waste water by different types of natural materials publication-title: Water Res. – volume: 167 start-page: 569 year: 2014 end-page: 573 ident: bb0045 article-title: Sorption and cosorption of lead (II) and methylene blue on chemically modified biomass publication-title: Bioresour. Technol. – volume: 92 start-page: 407 year: 2011 end-page: 418 ident: bb0055 article-title: Removal of heavy metal ions from wastewaters: a review publication-title: J. Environ. Manag. – volume: 16 start-page: 8404 year: 2000 end-page: 8409 ident: bb0095 article-title: Removal of Cu (II), Pb (II), and Ni (II) by adsorption onto activated carbon cloths publication-title: Langmuir – volume: 6 start-page: 24314 year: 2016 end-page: 24319 ident: bb0125 article-title: Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(ii) and Cd(ii) removal publication-title: RSC Adv. – volume: 46 start-page: 449 year: 1998 end-page: 455 ident: bb0145 article-title: Extraction procedures for the determination of heavy metals in contaminated soil and sediment publication-title: Talanta – volume: 28 start-page: 2117 year: 1994 end-page: 2124 ident: bb0175 article-title: Hydroxide precipitation of complexed metals publication-title: Water Res. – volume: 214 start-page: 836 year: 2016 end-page: 851 ident: bb0010 article-title: Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater publication-title: Bioresour. Technol. – volume: 165 start-page: 17 year: 2016 end-page: 21 ident: bb0075 article-title: Biochar-surface oxygenation with hydrogen peroxide publication-title: J. Environ. Manag. – volume: 200-202 start-page: 673 year: 2012 end-page: 680 ident: bb0200 article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests publication-title: Chem. Eng. J. – volume: 272 start-page: 28 year: 2015 end-page: 37 ident: bb0155 article-title: Elemental mercury removal by the modified bio-char from medicinal residues publication-title: Chem. Eng. J. – volume: 46 start-page: 1950 year: 2011 end-page: 1956 ident: bb0085 article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse publication-title: Sep. Sci. Technol. – volume: 148 start-page: 276 year: 2016 end-page: 291 ident: bb0140 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere – volume: 167 start-page: 933 year: 2009 ident: 10.1016/j.scitotenv.2018.03.189_bb0120 article-title: Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.01.085 – volume: 148 start-page: 276 year: 2016 ident: 10.1016/j.scitotenv.2018.03.189_bb0140 article-title: Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.01.043 – volume: 48 start-page: 1902 year: 2014 ident: 10.1016/j.scitotenv.2018.03.189_bb0050 article-title: Key role of persistent free radicals in hydrogen peroxide activation by biochar: implications to organic contaminant degradation publication-title: Environ. Sci. Technol. doi: 10.1021/es4048126 – volume: 211 start-page: 317 year: 2012 ident: 10.1016/j.scitotenv.2018.03.189_bb0070 article-title: Heavy metal removal from water/wastewater by nanosized metal oxides: a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.10.016 – volume: 165 start-page: 17 year: 2016 ident: 10.1016/j.scitotenv.2018.03.189_bb0075 article-title: Biochar-surface oxygenation with hydrogen peroxide publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2015.08.046 – volume: 16 start-page: 8404 year: 2000 ident: 10.1016/j.scitotenv.2018.03.189_bb0095 article-title: Removal of Cu (II), Pb (II), and Ni (II) by adsorption onto activated carbon cloths publication-title: Langmuir doi: 10.1021/la0004810 – volume: 138 start-page: 120 year: 2015 ident: 10.1016/j.scitotenv.2018.03.189_bb0185 article-title: Adsorption and desorption of ammonium by maple wood biochar as a function of oxidation and pH publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.05.062 – volume: 238 start-page: 399 year: 2017 ident: 10.1016/j.scitotenv.2018.03.189_bb0080 article-title: Highly efficient lead distribution by magnetic sewage sludge biochar: sorption mechanisms and bench applications publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.03.133 – volume: 48 start-page: 638 year: 2010 ident: 10.1016/j.scitotenv.2018.03.189_bb0130 article-title: Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.) publication-title: Aust. J. Soil Res. doi: 10.1071/SR10049 – volume: 62 start-page: 373 year: 2014 ident: 10.1016/j.scitotenv.2018.03.189_bb0135 article-title: Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process publication-title: J. Agric. Food Chem. doi: 10.1021/jf404624h – volume: 203 start-page: 318 year: 2016 ident: 10.1016/j.scitotenv.2018.03.189_bb0170 article-title: Lead and cadmium sorption mechanisms on magnetically modified biochars publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.12.056 – volume: 46 start-page: 1950 year: 2011 ident: 10.1016/j.scitotenv.2018.03.189_bb0085 article-title: Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse publication-title: Sep. Sci. Technol. doi: 10.1080/01496395.2011.584604 – volume: 357 start-page: 263 year: 2002 ident: 10.1016/j.scitotenv.2018.03.189_bb0115 article-title: Lead adsorption on carbon nanotubes publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)00502-X – year: 2008 ident: 10.1016/j.scitotenv.2018.03.189_bb0025 – volume: 4 start-page: 1156 issue: 1 year: 2016 ident: 10.1016/j.scitotenv.2018.03.189_bb0160 article-title: Recovery of phosphate with chemically modified biochars publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.01.011 – volume: 159 start-page: 474 year: 2011 ident: 10.1016/j.scitotenv.2018.03.189_bb0020 article-title: The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2010.10.016 – volume: 102 start-page: 716 year: 2011 ident: 10.1016/j.scitotenv.2018.03.189_bb0035 article-title: A novel magnetic biochar efficiently sorbs organic pollutants and phosphate publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.08.067 – volume: 72 start-page: 1598 year: 2008 ident: 10.1016/j.scitotenv.2018.03.189_bb0040 article-title: Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.01.010 – volume: 74 start-page: 1249 year: 2015 ident: 10.1016/j.scitotenv.2018.03.189_bb0100 article-title: Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4116-1 – volume: 118 start-page: 196 year: 2013 ident: 10.1016/j.scitotenv.2018.03.189_bb0060 article-title: Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2013.01.001 – volume: 20 start-page: 8491 year: 2013 ident: 10.1016/j.scitotenv.2018.03.189_bb0195 article-title: Effect of biochars on adsorption of Cu(II), Pb(II) and Cd(II) by three variable charge soils from southern China publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-013-1769-8 – volume: 45 start-page: 25 year: 2005 ident: 10.1016/j.scitotenv.2018.03.189_bb0150 article-title: Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2005.02.004 – volume: 47 start-page: 2158 year: 2017 ident: 10.1016/j.scitotenv.2018.03.189_bb0190 article-title: Recent advances in engineered biochar productions and applications publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643389.2017.1418580 – volume: 68 start-page: 167 year: 2003 ident: 10.1016/j.scitotenv.2018.03.189_bb0090 article-title: Hazards of heavy metal contamination publication-title: Br. Med. Bull. doi: 10.1093/bmb/ldg032 – volume: 6 start-page: 24314 year: 2016 ident: 10.1016/j.scitotenv.2018.03.189_bb0125 article-title: Biochar-supported carbon nanotube and graphene oxide nanocomposites for Pb(ii) and Cd(ii) removal publication-title: RSC Adv. doi: 10.1039/C6RA01895E – volume: 197 start-page: 24 year: 2012 ident: 10.1016/j.scitotenv.2018.03.189_bb0180 article-title: Pigeon peas hulls waste as potential adsorbent for removal of Pb(II) and Ni(II) from water publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.04.105 – volume: 167 start-page: 569 year: 2014 ident: 10.1016/j.scitotenv.2018.03.189_bb0045 article-title: Sorption and cosorption of lead (II) and methylene blue on chemically modified biomass publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.06.043 – volume: 200-202 start-page: 673 year: 2012 ident: 10.1016/j.scitotenv.2018.03.189_bb0200 article-title: Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2012.06.116 – volume: 46 start-page: 449 year: 1998 ident: 10.1016/j.scitotenv.2018.03.189_bb0145 article-title: Extraction procedures for the determination of heavy metals in contaminated soil and sediment publication-title: Talanta doi: 10.1016/S0039-9140(97)00406-2 – volume: 125 start-page: 70 year: 2015 ident: 10.1016/j.scitotenv.2018.03.189_bb0165 article-title: Application of biochar for the removal of pollutants from aqueous solutions publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.12.058 – volume: 272 start-page: 28 year: 2015 ident: 10.1016/j.scitotenv.2018.03.189_bb0155 article-title: Elemental mercury removal by the modified bio-char from medicinal residues publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2015.03.006 – volume: 28 start-page: 2117 year: 1994 ident: 10.1016/j.scitotenv.2018.03.189_bb0175 article-title: Hydroxide precipitation of complexed metals publication-title: Water Res. doi: 10.1016/0043-1354(94)90022-1 – volume: 37 start-page: 1678 year: 2003 ident: 10.1016/j.scitotenv.2018.03.189_bb0005 article-title: Removal of lead ions from industrial waste water by different types of natural materials publication-title: Water Res. doi: 10.1016/S0043-1354(02)00554-7 – year: 2013 ident: 10.1016/j.scitotenv.2018.03.189_bb0065 – volume: 100 start-page: 178 year: 2008 ident: 10.1016/j.scitotenv.2018.03.189_bb0105 article-title: The charcoal vision: a win-win-win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality publication-title: Agron. J. doi: 10.2134/agronj2007.0161 – volume: 214 start-page: 836 year: 2016 ident: 10.1016/j.scitotenv.2018.03.189_bb0010 article-title: Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.05.057 – volume: 33 start-page: 2469 year: 1999 ident: 10.1016/j.scitotenv.2018.03.189_bb0015 article-title: A review of potentially low-cost sorbents for heavy metals publication-title: Water Res. doi: 10.1016/S0043-1354(98)00475-8 – volume: 45 start-page: 4884 year: 2011 ident: 10.1016/j.scitotenv.2018.03.189_bb0030 article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar publication-title: Environ. Sci. Technol. doi: 10.1021/es103752u – volume: 92 start-page: 407 year: 2011 ident: 10.1016/j.scitotenv.2018.03.189_bb0055 article-title: Removal of heavy metal ions from wastewaters: a review publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2010.11.011 – year: 2009 ident: 10.1016/j.scitotenv.2018.03.189_bb0110 |
SSID | ssj0000781 |
Score | 2.6099799 |
Snippet | The use of biochar for the removal of heavy metals from water has environmental benefits. In order to elucidate the potential application of highly... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 188 |
SubjectTerms | Adsorption aqueous solutions Biochar desorption ecosystem services heavy metals hydrogen peroxide Lead oxidation pH independent Retention sodium nitrate sorption isotherms wood |
Title | Sorption and desorption of Pb(II) to biochar as affected by oxidation and pH |
URI | https://dx.doi.org/10.1016/j.scitotenv.2018.03.189 https://www.ncbi.nlm.nih.gov/pubmed/29627541 https://www.proquest.com/docview/2023407870 https://www.proquest.com/docview/2067272899 |
Volume | 634 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RaxQxEB5KRRBE9LR6VUsEH_RhbXY3m934VkrLnSdF1GLfQjbJwonsHr1tsS_-dmeS3SsFtQ-yD0uWzBIyk8kkM_MNwGtlCFYOhZfnFQ-3VYnyokjqXLjMy9JWJqB9nsjZqfhwVpxtweGYC0NhlYPujzo9aOvhy_4wm_ur5ZJyfEWlpELlmuMZpSLETyFKkvJ3v67DPAjMJnqZcWFj7xsxXvjfvkPb9JJivCpCO02p3vufd6i_WaBhJzp-CA8GE5IdxFE-gi3fTuBuLCp5NYGdo-vcNew2LN71BO7HKzoWM48ew8cv3XlQGMy0jjm_Hptdwz7Vb-bzt6zvWL3sKDOLmTUzIfbDO1Zfse7nMlZjCsSr2RM4PT76ejhLhuIKiRUl7xOlssZJYZuqqbKycFktC6WalODmveTIqaYujJeO4yNllqWNMt7lFlVCY3ye78B227X-GTDjlLeqIqCZUnBLnkVrCuFqm3rUIdkU5Dih2g7I41QA44ceQ8y-6w0nNHFC81wjJ6bAN4SrCL5xO8n7kWP6hhxp3CJuJ3418ljjKiPXiWl9d7HWVGSePJ4l_1ef4NXGA-wUnkYB2Yw6oxpHhUh3_2d4z-EetWKE2wvY7s8v_Es0ifp6L8j8Htw5mC9mJ_RefP62-A1POwwb |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD6UiiiI6Grb9TqCgj7EJpPJJCP4INqya9ci2ELfxklmAiuSLE2q7kv_VP-g52SSLQW1D1LylMuBkzkz31zO5QN4rgyVlcPOG8ZZ2J1WBcqJJMhjYbmTaZGZrtrnvpwcio9HydEanA25MBRW2WO_x_QOrfsn231rbi_mc8rxFZmSCsE1xj1KNjBY77nlT9y3NW-nH9DILzjf3Tl4Pwl6aoGgEGnYBkrx0kpRlFmZ8TSxPJeJUmVExdadDFHPMk-MkzbES0rOo1IZZ-MCB0RpHJ2CIu5fEwgXRJvw-vQ8roSq53i3NiIJqnchqAx_pK1xMfyDgsoyKq8aEcH8n6fEvy15u6lv9w7c7tes7J1vlruw5qoRXPcslssRbOycJ8vhZz1aNCO45c8EmU91ugezL_Vxh1DMVJZZ1wy3dck-5y-n01esrVk-rykVjJmGmS7YxFmWL1n9a-7pnzrhxeQ-HF5Jk2_AelVXbguYscoVKqPKNqkIC3JlFiYRNi8ih6DFxyCHBtVFX-qcGDe-6yGm7ZteWUKTJXQYa7TEGMKV4MJX-7hc5M1gMX2h42qcky4XfjbYWOOwJl-NqVx90mhitScXaxr-65vOjY475jFs-g6y0poTqVIiogf_o95TuDE5-DTTs-n-3kO4SW98eN0jWG-PT9xjXI-1-ZOu_zP4etUD7jdahEZi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sorption+and+desorption+of+Pb%28II%29+to+biochar+as+affected+by+oxidation+and+pH&rft.jtitle=The+Science+of+the+total+environment&rft.au=Wang%2C+Qian&rft.au=Wang%2C+Bing&rft.au=Lee%2C+Xinqing&rft.au=Lehmann%2C+Johannes&rft.date=2018-09-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=634&rft.spage=188&rft.epage=194&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.03.189&rft.externalDocID=S0048969718309483 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |