CO2 capture in cation-exchanged metal–organic frameworks: Holistic modeling from molecular simulation to process optimization

While CO2 capture has been extensively investigated in different metal–organic frameworks (MOFs), their performance under practical process conditions is scarcely examined. In this study, a multi-scale modeling study is reported to examine CO2 capture from flue gas by vacuum swing adsorption (VSA) p...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering science Vol. 124; pp. 70 - 78
Main Authors Nalaparaju, A., Khurana, M., Farooq, S., Karimi, I.A., Jiang, J.W.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 03.03.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While CO2 capture has been extensively investigated in different metal–organic frameworks (MOFs), their performance under practical process conditions is scarcely examined. In this study, a multi-scale modeling study is reported to examine CO2 capture from flue gas by vacuum swing adsorption (VSA) process using cation-exchanged rho zeolite-like MOFs (rho-ZMOFs) as adsorbents. Three rho-ZMOFs namely Na-, Mg- and Al-rho-ZMOFs are considered and compared with 13X Zeolite, which is the current benchmark for post-combustion capture from dry flue gas. First, Monte Carlo (MC) simulations are conducted to estimate the adsorption isotherms of pure CO2 and N2 in the range from 0 to 100kPa and their mixtures of varying composition at a total pressure of 100kPa. The pure gas isotherms are then fitted by the dual-site Langmuir model. Subsequently, the extended dual-site Langmuir model is used to satisfactorily predict the equilibrium behavior of CO2/N2 binary mixtures over a wide range of composition. In addition, micropore diffusivities are calculated from molecular dynamics (MD) simulations and compared with the estimated macropore diffusivities in order to determine the controlling mechanism of mass transfer. Macropore is expected when these adsorbents are pelletized before using in a separation process. For each rho-ZMOF adsorbent, a four-step VSA process with light product pressurization for CO2 capture and concentration (CCC) from dry flue gas containing 15% CO2 in balance N2 is then simulated using a non-isothermal, non-isobaric model. The process is optimized using multi-objective optimization based on a genetic algorithm for minimizing the energy penalty and maximizing the process productivity, subject to the purity and recovery constraints of 95 and 90%, respectively. The operating spaces of the three rho-ZMOFs are similar to that of 13X zeolite. However, the minimum energy penalty in Al-rho-ZMOF (156kWh/t CO2) is lower than in 13X (165kWh/t CO2). While identifying the cation-exchanged rho-ZMOFs as interesting candidates for CO2 capture, this study also demonstrates that the multi-scale modeling approach adopted here is an effective methodology to screen and design novel MOFs for CCC and other separation applications. [Display omitted] •CO2 capture from dry flue gas is investigated by holistic multi-scale modeling.•Pure-component adsorption and diffusion data are provided by molecular simulation.•A four-step vacuum swing adsorption process is simulated and optimized.•Energy penalty-productivity Paretos are presented for CO2 capture in rho-ZMOFs.
AbstractList While CO2 capture has been extensively investigated in different metal–organic frameworks (MOFs), their performance under practical process conditions is scarcely examined. In this study, a multi-scale modeling study is reported to examine CO2 capture from flue gas by vacuum swing adsorption (VSA) process using cation-exchanged rho zeolite-like MOFs (rho-ZMOFs) as adsorbents. Three rho-ZMOFs namely Na-, Mg- and Al-rho-ZMOFs are considered and compared with 13X Zeolite, which is the current benchmark for post-combustion capture from dry flue gas. First, Monte Carlo (MC) simulations are conducted to estimate the adsorption isotherms of pure CO2 and N2 in the range from 0 to 100kPa and their mixtures of varying composition at a total pressure of 100kPa. The pure gas isotherms are then fitted by the dual-site Langmuir model. Subsequently, the extended dual-site Langmuir model is used to satisfactorily predict the equilibrium behavior of CO2/N2 binary mixtures over a wide range of composition. In addition, micropore diffusivities are calculated from molecular dynamics (MD) simulations and compared with the estimated macropore diffusivities in order to determine the controlling mechanism of mass transfer. Macropore is expected when these adsorbents are pelletized before using in a separation process. For each rho-ZMOF adsorbent, a four-step VSA process with light product pressurization for CO2 capture and concentration (CCC) from dry flue gas containing 15% CO2 in balance N2 is then simulated using a non-isothermal, non-isobaric model. The process is optimized using multi-objective optimization based on a genetic algorithm for minimizing the energy penalty and maximizing the process productivity, subject to the purity and recovery constraints of 95 and 90%, respectively. The operating spaces of the three rho-ZMOFs are similar to that of 13X zeolite. However, the minimum energy penalty in Al-rho-ZMOF (156kWh/t CO2) is lower than in 13X (165kWh/t CO2). While identifying the cation-exchanged rho-ZMOFs as interesting candidates for CO2 capture, this study also demonstrates that the multi-scale modeling approach adopted here is an effective methodology to screen and design novel MOFs for CCC and other separation applications. [Display omitted] •CO2 capture from dry flue gas is investigated by holistic multi-scale modeling.•Pure-component adsorption and diffusion data are provided by molecular simulation.•A four-step vacuum swing adsorption process is simulated and optimized.•Energy penalty-productivity Paretos are presented for CO2 capture in rho-ZMOFs.
Author Khurana, M.
Farooq, S.
Jiang, J.W.
Karimi, I.A.
Nalaparaju, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Nalaparaju
  fullname: Nalaparaju, A.
– sequence: 2
  givenname: M.
  surname: Khurana
  fullname: Khurana, M.
– sequence: 3
  givenname: S.
  surname: Farooq
  fullname: Farooq, S.
  email: chesf@nus.edu.sg
– sequence: 4
  givenname: I.A.
  surname: Karimi
  fullname: Karimi, I.A.
– sequence: 5
  givenname: J.W.
  surname: Jiang
  fullname: Jiang, J.W.
  email: chejj@nus.edu.sg
BookMark eNp9kE1uGzEMhYXCBWq7OUB3usBMKc2vmlVgtEkBA9kka0HhcFy5M6OBpPx109whN8xJIidddeEVyUd8xONbscXkJmLsi4BcgKi_7nOkkEsQZQ4qh6r8wJaibYqsLKFasCUAqExWoD6xVQj7NDaNgCX7u7mUHM0cbz1xO6U2Wjdl9IC_zLSjjo8UzfDy9Oz8zkwWee_NSPfO_w7f-IUbbIhJHF1Hg512aevGNA2Et4PxPNgx1cNFHh2fvUsmA3dztKP986Z_Zh97MwQ6-VfX7PrH96vNRba9PP-5OdtmWDYQM1WTkaqqjaj7vpWyKSsQ0BZFWcu2QlmItqoEmRtUKGvEmsjUolOgeoWdhGLNmve76F0InnqNNr45iN7YQQvQhxz1XieL-pCjBqVTjokU_5Gzt6Pxj0eZ03eG0kt3lrwOaGlC6qwnjLpz9gj9CjUckQ4
CitedBy_id crossref_primary_10_1016_j_coche_2019_04_008
crossref_primary_10_1039_C9EE03977E
crossref_primary_10_1021_acs_jpcc_0c10773
crossref_primary_10_1021_acs_langmuir_7b04320
crossref_primary_10_1016_j_fluid_2020_112643
crossref_primary_10_1021_acs_chemrev_0c01266
crossref_primary_10_1021_acs_iecr_5b02845
crossref_primary_10_1002_aic_15602
crossref_primary_10_3389_fmats_2018_00004
crossref_primary_10_1021_acs_iecr_5b01477
crossref_primary_10_1016_j_molliq_2020_114713
crossref_primary_10_2139_ssrn_3999300
crossref_primary_10_1016_j_ces_2022_117585
crossref_primary_10_1021_acs_iecr_6b04270
crossref_primary_10_1016_j_cej_2020_128322
crossref_primary_10_1016_j_coche_2018_04_004
crossref_primary_10_1016_j_cherd_2017_06_016
crossref_primary_10_1016_j_flatc_2023_100578
crossref_primary_10_1021_acs_iecr_9b05363
crossref_primary_10_1016_j_compchemeng_2022_107938
crossref_primary_10_1016_j_cej_2023_141597
crossref_primary_10_1007_s11696_019_00910_x
crossref_primary_10_1016_j_jmgm_2024_108871
crossref_primary_10_2139_ssrn_5068894
crossref_primary_10_1016_j_apenergy_2015_10_011
crossref_primary_10_1016_j_cjche_2015_11_030
crossref_primary_10_1016_j_apenergy_2017_01_031
crossref_primary_10_1016_j_cej_2022_135395
crossref_primary_10_1021_acs_iecr_9b02383
crossref_primary_10_1016_j_heliyon_2020_e05385
crossref_primary_10_1016_j_ces_2015_06_069
crossref_primary_10_1021_acs_iecr_8b03065
crossref_primary_10_1021_acs_iecr_5b04531
crossref_primary_10_1016_j_molliq_2021_115593
crossref_primary_10_1039_C5CP04676A
crossref_primary_10_1016_j_ceramint_2022_01_021
crossref_primary_10_1016_j_commatsci_2024_113462
crossref_primary_10_1016_j_cej_2020_127121
crossref_primary_10_1016_j_susmat_2023_e00701
Cites_doi 10.1081/SS-200042244
10.1016/0009-2509(68)87056-3
10.1021/jp051771y
10.1021/la800369s
10.1021/ie070831e
10.1021/cr300014x
10.1016/S0169-4332(97)00222-5
10.1021/jp077618g
10.1038/ncomms1956
10.1039/b600188m
10.1021/ja00051a040
10.1016/S1001-0742(08)60002-9
10.1080/00268978000103611
10.1002/cssc.201000080
10.1021/ie950291y
10.1126/science.1172246
10.1021/jp050948l
10.1021/la205152f
10.1039/B618320B
10.1021/es401276r
10.1021/ie302658y
10.1021/cr2003272
10.1002/aic.12107
10.1021/ja901061j
10.1016/j.micromeso.2005.11.023
10.1002/jcc.20291
10.1109/4235.996017
10.1002/aic.690290428
10.1126/science.1230444
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ces.2014.09.054
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4405
EndPage 78
ExternalDocumentID 10_1016_j_ces_2014_09_054
S0009250914005673
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSZ
T5K
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIDUJ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HVGLF
HZ~
NDZJH
R2-
SC5
SEW
SSH
T9H
VH1
WUQ
Y6R
ZY4
ID FETCH-LOGICAL-c470t-96ea2956a16ff82274501083346285c2318551eabc9c26cc6eea61d909f9cd203
IEDL.DBID .~1
ISSN 0009-2509
IngestDate Thu Apr 24 22:57:16 EDT 2025
Tue Jul 01 03:13:59 EDT 2025
Fri Feb 23 02:34:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Molecular simulation
Productivity
Process optimization
Energy penalty
CO2 capture
Metal–organic frameworks
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-96ea2956a16ff82274501083346285c2318551eabc9c26cc6eea61d909f9cd203
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_ces_2014_09_054
crossref_primary_10_1016_j_ces_2014_09_054
elsevier_sciencedirect_doi_10_1016_j_ces_2014_09_054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-03
PublicationDateYYYYMMDD 2015-03-03
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-03
  day: 03
PublicationDecade 2010
PublicationTitle Chemical engineering science
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Agarwal, Biegler, Zitney (bib2) 2010; 56
Frenkel, Smit (bib12) 2002
Cussler (bib8) 1984
Edwards, Richards (bib10) 1968; 23
Walton, Abney, LeVan (bib31) 2006; 91
Ridha, Webley (bib26) 2009; 67
Haszeldine (bib17) 2009; 325
Liu, Kravtsov, Larsen, Eddaoudi (bib21) 2006; 42
Chen, Nalaparaju, Eddaoudi, Jiang (bib7) 2012; 28
Babarao, Jiang (bib3) 2008; 24
Férey (bib11) 2008; 37
Hirotani, Mizukami, Miura, Takaba, Miya, Fahmi, Stirling, Kubo, Miyamoto (bib18) 1997; 120
Babarao, Jiang (bib4) 2009; 131
Furukawa, Cordova, O’Keeffe, Yaghi (bib14) 2013; 341
Haghpanah, Majumder, Nilam, Rajendran, Farooq, Karimi, Amanullah (bib16) 2013; 52
Myers (bib24) 1983; 29
Sabouni, Kazemian, Rohani (bib27) 2013; 47
Deb, Pratap, Agarwal, Meyarivan (bib9) 2002; 6
Zhou, Long, Yaghi (bib34) 2012; 112
Yang, Xu, Fan, Gupta, Slimane, Bland, Wright (bib33) 2008; 20
(bib13) 2004
Xiang, He, Zhang, Wu, Zhou, Krishna, Chen (bib32) 2012; 3
Sumida, Rogow, Mason, McDonald, Bloch, Herm, Bae, Long (bib29) 2012; 112
Skoulidias, Sholl (bib28) 2005; 109
Chen, Jiang (bib6) 2010; 3
Garberoglio, Skoulidas, Johnson (bib15) 2005; 109
Van Der Spoel, Lindahl, Hess, Groenhof, Mark, Berendsen (bib30) 2005; 26
Jiang (bib20) 2012
Mathias, Kumar, Moyer, Schork, Srinivasan, Auvil, Talu (bib22) 1996; 35
Bastin, Barcia, Hurtado, Silva, Rodrigues, Chen (bib5) 2008; 112
Ho, Allinson, Wiley (bib19) 2008; 47
Rappe, Casewit, Colwell, Goddard, Skiff (bib25) 1992; 114
Murthy, Singer, Klein, McDonald (bib23) 1980; 41
Aaron, Tsouris (bib1) 2005; 40
Garberoglio (10.1016/j.ces.2014.09.054_bib15) 2005; 109
Frenkel (10.1016/j.ces.2014.09.054_bib12) 2002
Ho (10.1016/j.ces.2014.09.054_bib19) 2008; 47
Férey (10.1016/j.ces.2014.09.054_bib11) 2008; 37
Bastin (10.1016/j.ces.2014.09.054_bib5) 2008; 112
Sabouni (10.1016/j.ces.2014.09.054_bib27) 2013; 47
Zhou (10.1016/j.ces.2014.09.054_bib34) 2012; 112
Chen (10.1016/j.ces.2014.09.054_bib7) 2012; 28
Agarwal (10.1016/j.ces.2014.09.054_bib2) 2010; 56
Yang (10.1016/j.ces.2014.09.054_bib33) 2008; 20
Ridha (10.1016/j.ces.2014.09.054_bib26) 2009; 67
Babarao (10.1016/j.ces.2014.09.054_bib4) 2009; 131
Hirotani (10.1016/j.ces.2014.09.054_bib18) 1997; 120
Sumida (10.1016/j.ces.2014.09.054_bib29) 2012; 112
Aaron (10.1016/j.ces.2014.09.054_bib1) 2005; 40
Skoulidias (10.1016/j.ces.2014.09.054_bib28) 2005; 109
Cussler (10.1016/j.ces.2014.09.054_bib8) 1984
Edwards (10.1016/j.ces.2014.09.054_bib10) 1968; 23
Haghpanah (10.1016/j.ces.2014.09.054_bib16) 2013; 52
(10.1016/j.ces.2014.09.054_bib13) 2004
Myers (10.1016/j.ces.2014.09.054_bib24) 1983; 29
Rappe (10.1016/j.ces.2014.09.054_bib25) 1992; 114
Jiang (10.1016/j.ces.2014.09.054_bib20) 2012
Deb (10.1016/j.ces.2014.09.054_bib9) 2002; 6
Murthy (10.1016/j.ces.2014.09.054_bib23) 1980; 41
Van Der Spoel (10.1016/j.ces.2014.09.054_bib30) 2005; 26
Xiang (10.1016/j.ces.2014.09.054_bib32) 2012; 3
Mathias (10.1016/j.ces.2014.09.054_bib22) 1996; 35
Haszeldine (10.1016/j.ces.2014.09.054_bib17) 2009; 325
Chen (10.1016/j.ces.2014.09.054_bib6) 2010; 3
Liu (10.1016/j.ces.2014.09.054_bib21) 2006; 42
Walton (10.1016/j.ces.2014.09.054_bib31) 2006; 91
Babarao (10.1016/j.ces.2014.09.054_bib3) 2008; 24
Furukawa (10.1016/j.ces.2014.09.054_bib14) 2013; 341
References_xml – volume: 112
  start-page: 1575
  year: 2008
  end-page: 1581
  ident: bib5
  article-title: A microporous metal–organic framework for separation of CO
  publication-title: J. Phys. Chem. C
– volume: 109
  start-page: 13094
  year: 2005
  end-page: 13103
  ident: bib15
  article-title: Adsorption of gases in metal–organic materials: comparison of simulations and experiments
  publication-title: J. Phys. Chem. B
– volume: 47
  start-page: 9372
  year: 2013
  end-page: 9380
  ident: bib27
  article-title: Mathematical modeling and experimental breakthrough curves of carbon dioxide adsorption on metal organic framework CPM-5
  publication-title: Environ. Sci. Technol.
– volume: 26
  start-page: 1701
  year: 2005
  end-page: 1718
  ident: bib30
  article-title: Gromacs: fast, flexible, and free
  publication-title: J. Comput. Chem.
– volume: 3
  start-page: 982
  year: 2010
  end-page: 988
  ident: bib6
  article-title: A bio-metal–organic framework for highly selective CO
  publication-title: ChemSusChem
– volume: 52
  start-page: 4249
  year: 2013
  end-page: 4265
  ident: bib16
  article-title: Multiobjective optimization of a four-step adsorption process for postcombustion CO
  publication-title: Ind. Eng. Chem. Res.
– volume: 56
  start-page: 1813
  year: 2010
  end-page: 1828
  ident: bib2
  article-title: A superstructure-based optimal synthesis of psa cycles for post-combustion CO
  publication-title: AIChE J.
– year: 1984
  ident: bib8
  article-title: Diffusion, Mass Transfer in Fluid Systems
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib9
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput
– volume: 109
  start-page: 15760
  year: 2005
  end-page: 15768
  ident: bib28
  article-title: Self-diffusion and transport diffusion of light gases in metal–organic framework materials assessed using molecular dynamics simulations
  publication-title: J. Phys. Chem. B
– volume: 42
  start-page: 1488
  year: 2006
  end-page: 1490
  ident: bib21
  article-title: Molecular building blocks approach to the assembly of zeolite-like metal–organic frameworks with extra-large cavities
  publication-title: Chem. Commun.
– volume: 47
  start-page: 4883
  year: 2008
  end-page: 4890
  ident: bib19
  article-title: Reducing the cost of CO capture from flue gases using pressure swing adsorption
  publication-title: Ind. Eng. Chem. Res.
– volume: 41
  start-page: 1387
  year: 1980
  end-page: 1399
  ident: bib23
  article-title: Pairwise additive effective potentials for nitrogen
  publication-title: Mol. Phys.
– volume: 23
  start-page: 109
  year: 1968
  end-page: 123
  ident: bib10
  article-title: Gas dispersion in packed beds
  publication-title: Chem. Eng. Sci.
– volume: 131
  start-page: 11417
  year: 2009
  end-page: 11425
  ident: bib4
  article-title: Unprecedentedly high selective adsorption of gas mixtures in
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 81
  year: 1997
  end-page: 84
  ident: bib18
  article-title: Grand canonical Monte Carlo simulation of the adsorption of CO
  publication-title: Appl. Surf. Sci
– volume: 112
  start-page: 724
  year: 2012
  end-page: 781
  ident: bib29
  article-title: Carbon dioxide capture in metal–organic frameworks
  publication-title: Chem. Rev.
– year: 2004
  ident: bib13
  article-title: Gaussian 03, Revision D.01
– volume: 67
  start-page: 336
  year: 2009
  ident: bib26
  article-title: Anomalous Henry’s law behavior of nitrogen and carbon dioxide adsorption
  publication-title: Sep. Sci. Technol.
– volume: 91
  start-page: 78
  year: 2006
  end-page: 84
  ident: bib31
  article-title: CO
  publication-title: Microporous Mesoporous Mater.
– volume: 3
  start-page: 954
  year: 2012
  ident: bib32
  article-title: Microporous metal–organic framework with potential for carbon dioxide capture at ambient conditions
  publication-title: Nat. Commun
– volume: 29
  start-page: 691
  year: 1983
  end-page: 693
  ident: bib24
  article-title: Activity coefficients of mixtures adsorbed on heterogeneous surfaces
  publication-title: AIChE J
– volume: 28
  start-page: 3903
  year: 2012
  end-page: 3910
  ident: bib7
  article-title: CO
  publication-title: Langmuir
– volume: 341
  start-page: 974
  year: 2013
  end-page: 980
  ident: bib14
  article-title: The chemistry and applications of metal–organic frameworks
  publication-title: Science
– volume: 40
  start-page: 321
  year: 2005
  end-page: 348
  ident: bib1
  article-title: Separation of CO
  publication-title: Sep. Sci. Technol
– volume: 24
  start-page: 6270
  year: 2008
  end-page: 6278
  ident: bib3
  article-title: Molecular screening of metal–organic frameworks for CO
  publication-title: Langmuir
– volume: 114
  start-page: 10024
  year: 1992
  end-page: 10035
  ident: bib25
  article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
  publication-title: J. Am. Chem. Soc.
– volume: 112
  start-page: 673
  year: 2012
  end-page: 674
  ident: bib34
  article-title: Introduction to metal–organic frameworks
  publication-title: Chem. Rev.
– volume: 325
  start-page: 1647
  year: 2009
  end-page: 1652
  ident: bib17
  article-title: Carbon capture and storage: how green can black be?
  publication-title: Science
– volume: 37
  start-page: 191
  year: 2008
  end-page: 214
  ident: bib11
  article-title: Hybrid porous solids: past, present, future
  publication-title: Chem. Soc. Rev.
– volume: 20
  start-page: 14
  year: 2008
  end-page: 27
  ident: bib33
  article-title: Progress in carbon dioxide separation and capture: a review
  publication-title: J. Environ. Sci.
– year: 2002
  ident: bib12
  article-title: Understanding Molecular Simulation: From Algorithms to Applications
– year: 2012
  ident: bib20
  article-title: Metal–organic frameworks for CO
  publication-title: Coordination Polymers and Metal Organic Frameworks
– volume: 35
  start-page: 2477
  year: 1996
  end-page: 2483
  ident: bib22
  article-title: Correlation of multicomponent gas adsorption by the dual-site langmuir model. Application to nitrogen/oxygen adsorption on 5A-zeolite
  publication-title: Ind. Eng. Chem. Res.
– volume: 40
  start-page: 321
  year: 2005
  ident: 10.1016/j.ces.2014.09.054_bib1
  article-title: Separation of CO2 from flue gas: a review
  publication-title: Sep. Sci. Technol
  doi: 10.1081/SS-200042244
– volume: 23
  start-page: 109
  year: 1968
  ident: 10.1016/j.ces.2014.09.054_bib10
  article-title: Gas dispersion in packed beds
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(68)87056-3
– volume: 109
  start-page: 15760
  year: 2005
  ident: 10.1016/j.ces.2014.09.054_bib28
  article-title: Self-diffusion and transport diffusion of light gases in metal–organic framework materials assessed using molecular dynamics simulations
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp051771y
– year: 2002
  ident: 10.1016/j.ces.2014.09.054_bib12
– volume: 24
  start-page: 6270
  year: 2008
  ident: 10.1016/j.ces.2014.09.054_bib3
  article-title: Molecular screening of metal–organic frameworks for CO2 storage
  publication-title: Langmuir
  doi: 10.1021/la800369s
– volume: 47
  start-page: 4883
  year: 2008
  ident: 10.1016/j.ces.2014.09.054_bib19
  article-title: Reducing the cost of CO capture from flue gases using pressure swing adsorption
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie070831e
– volume: 112
  start-page: 673
  year: 2012
  ident: 10.1016/j.ces.2014.09.054_bib34
  article-title: Introduction to metal–organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/cr300014x
– volume: 120
  start-page: 81
  year: 1997
  ident: 10.1016/j.ces.2014.09.054_bib18
  article-title: Grand canonical Monte Carlo simulation of the adsorption of CO2 on silicalite and NaZSM-5
  publication-title: Appl. Surf. Sci
  doi: 10.1016/S0169-4332(97)00222-5
– volume: 112
  start-page: 1575
  year: 2008
  ident: 10.1016/j.ces.2014.09.054_bib5
  article-title: A microporous metal–organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp077618g
– volume: 3
  start-page: 954
  year: 2012
  ident: 10.1016/j.ces.2014.09.054_bib32
  article-title: Microporous metal–organic framework with potential for carbon dioxide capture at ambient conditions
  publication-title: Nat. Commun
  doi: 10.1038/ncomms1956
– volume: 42
  start-page: 1488
  year: 2006
  ident: 10.1016/j.ces.2014.09.054_bib21
  article-title: Molecular building blocks approach to the assembly of zeolite-like metal–organic frameworks with extra-large cavities
  publication-title: Chem. Commun.
  doi: 10.1039/b600188m
– volume: 114
  start-page: 10024
  year: 1992
  ident: 10.1016/j.ces.2014.09.054_bib25
  article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00051a040
– volume: 20
  start-page: 14
  year: 2008
  ident: 10.1016/j.ces.2014.09.054_bib33
  article-title: Progress in carbon dioxide separation and capture: a review
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(08)60002-9
– volume: 41
  start-page: 1387
  year: 1980
  ident: 10.1016/j.ces.2014.09.054_bib23
  article-title: Pairwise additive effective potentials for nitrogen
  publication-title: Mol. Phys.
  doi: 10.1080/00268978000103611
– volume: 3
  start-page: 982
  year: 2010
  ident: 10.1016/j.ces.2014.09.054_bib6
  article-title: A bio-metal–organic framework for highly selective CO2 capture: a molecular simulation study
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201000080
– year: 1984
  ident: 10.1016/j.ces.2014.09.054_bib8
– volume: 35
  start-page: 2477
  year: 1996
  ident: 10.1016/j.ces.2014.09.054_bib22
  article-title: Correlation of multicomponent gas adsorption by the dual-site langmuir model. Application to nitrogen/oxygen adsorption on 5A-zeolite
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie950291y
– volume: 67
  start-page: 336
  year: 2009
  ident: 10.1016/j.ces.2014.09.054_bib26
  article-title: Anomalous Henry’s law behavior of nitrogen and carbon dioxide adsorption
  publication-title: Sep. Sci. Technol.
– volume: 325
  start-page: 1647
  year: 2009
  ident: 10.1016/j.ces.2014.09.054_bib17
  article-title: Carbon capture and storage: how green can black be?
  publication-title: Science
  doi: 10.1126/science.1172246
– volume: 109
  start-page: 13094
  year: 2005
  ident: 10.1016/j.ces.2014.09.054_bib15
  article-title: Adsorption of gases in metal–organic materials: comparison of simulations and experiments
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp050948l
– volume: 28
  start-page: 3903
  year: 2012
  ident: 10.1016/j.ces.2014.09.054_bib7
  article-title: CO2 adsorption in mono-, di- and trivalent cation-exchanged metal–organic frameworks: a molecular simulation study
  publication-title: Langmuir
  doi: 10.1021/la205152f
– volume: 37
  start-page: 191
  year: 2008
  ident: 10.1016/j.ces.2014.09.054_bib11
  article-title: Hybrid porous solids: past, present, future
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B618320B
– volume: 47
  start-page: 9372
  year: 2013
  ident: 10.1016/j.ces.2014.09.054_bib27
  article-title: Mathematical modeling and experimental breakthrough curves of carbon dioxide adsorption on metal organic framework CPM-5
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401276r
– volume: 52
  start-page: 4249
  year: 2013
  ident: 10.1016/j.ces.2014.09.054_bib16
  article-title: Multiobjective optimization of a four-step adsorption process for postcombustion CO2 capture via finite volume simulation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie302658y
– volume: 112
  start-page: 724
  year: 2012
  ident: 10.1016/j.ces.2014.09.054_bib29
  article-title: Carbon dioxide capture in metal–organic frameworks
  publication-title: Chem. Rev.
  doi: 10.1021/cr2003272
– volume: 56
  start-page: 1813
  year: 2010
  ident: 10.1016/j.ces.2014.09.054_bib2
  article-title: A superstructure-based optimal synthesis of psa cycles for post-combustion CO2 capture
  publication-title: AIChE J.
  doi: 10.1002/aic.12107
– volume: 131
  start-page: 11417
  year: 2009
  ident: 10.1016/j.ces.2014.09.054_bib4
  article-title: Unprecedentedly high selective adsorption of gas mixtures in rho zeolite-like metal–organic framework: a molecular simulation study
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901061j
– volume: 91
  start-page: 78
  year: 2006
  ident: 10.1016/j.ces.2014.09.054_bib31
  article-title: CO2 adsorption in Y and X zeolites
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2005.11.023
– volume: 26
  start-page: 1701
  year: 2005
  ident: 10.1016/j.ces.2014.09.054_bib30
  article-title: Gromacs: fast, flexible, and free
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20291
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.ces.2014.09.054_bib9
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput
  doi: 10.1109/4235.996017
– volume: 29
  start-page: 691
  year: 1983
  ident: 10.1016/j.ces.2014.09.054_bib24
  article-title: Activity coefficients of mixtures adsorbed on heterogeneous surfaces
  publication-title: AIChE J
  doi: 10.1002/aic.690290428
– year: 2012
  ident: 10.1016/j.ces.2014.09.054_bib20
  article-title: Metal–organic frameworks for CO2 capture: what are learned from molecular simulations
– volume: 341
  start-page: 974
  year: 2013
  ident: 10.1016/j.ces.2014.09.054_bib14
  article-title: The chemistry and applications of metal–organic frameworks
  publication-title: Science
  doi: 10.1126/science.1230444
– year: 2004
  ident: 10.1016/j.ces.2014.09.054_bib13
  article-title: Gaussian 03, Revision D.01
SSID ssj0007710
Score 2.358035
Snippet While CO2 capture has been extensively investigated in different metal–organic frameworks (MOFs), their performance under practical process conditions is...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 70
SubjectTerms CO2 capture
Energy penalty
Metal–organic frameworks
Molecular simulation
Process optimization
Productivity
Title CO2 capture in cation-exchanged metal–organic frameworks: Holistic modeling from molecular simulation to process optimization
URI https://dx.doi.org/10.1016/j.ces.2014.09.054
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA2LXvQgfuL6seTgSaibtmnTeFsWl6q4XlzYW2mTFCq7bXEreFL_g__QX-KkTXUF9eAxJSlhks6bNPPmIXTi-oBRUjALoI5YVDiuxX1950oTZovATmWgCc43Yz-c0KupN-2gYcuF0WmVxvc3Pr321uZJ31izX2aZ5vgS7mi8o7qeJdMVPyllepefPX-leTBmk1ZNTfdubzbrHC_4FHV2V1Pq1KM_Y9MS3ow20YYJFPGgmcsW6qh8G60vlQ_cQS_DWweLuNSXADjLcfP3zVJPDZtX4rmC0Pr99a2RbhI4bTOxFuc4LGZ1jWZca-HA-7BmmkDLyOXiRTY30l64KnDZEApwAS5mbribu2gyurgbhpYRVLAEZaSCVVCxAwei2PbTFCIDRj04jgWuqwmqHqwTgLdnqzgRXDi-EL5SsW9LTnjKhXSIu4dW8iJX-wjHUtkKQl5PyJSKmMfcDaTtSAYhS-ILt4tIa8pImGrjWvRiFrVpZfcRTDvS1o8Ij8D6XXT6OaRsSm381Zm26xN92y8RQMHvww7-N-wQrUHLq3PP3CO0Uj08qmMIRqqkV--2HlodXF6H4w-AHOCh
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2VcgAOiFXs-AAXpEDiOEmNxAEVqpYWuIDEzaS2IxXRRbQIuAD_wKfwR3wJ48SBIgEHJI5ZHDljZ944njcPYMMPEaOUjByEOtdhkvoOD82eK2tGnix5iSoZgvPxSVg9Z0cXwUUBXnMujEmrtL4_8-mpt7Zndqw1d3qtluH4upwavGOmnmWUK1jX9cMdrtv6e7UDHORNSiuHZ-WqY6UFHMkid4D90THFpUHshUmCGBmxABcmJd83VM0Ae4wwFng6bkouaShlqHUceoq7POFSUdfH547AKEN3YWQTth8_80qiyHNz-TbTvXwrNU0qw2_fpJNltVUD9j0YDgFcZQombWRK9rOXn4aC7szAxFC9wll4Kp9SIuOe2XUgrQ7Jfvc5-j6jDyvS1hjLvz2_ZFpRkiR56ld_l1S712lRaJKK7-DziKG24JHV5yX9VttqiZFBl_QyBgPpok9rW7LoHJz_i5nnodjpdvQCkFhpT2OMHUiVMBnzmPsl5VEVYYzUDKW_CG5uSiFteXOjsnEt8jy2K4HdFsb6wuUCrb8IWx9Nelltj99uZvn4iC8TVCD2_Nxs6W_N1mGsenbcEI3aSX0ZxvFKkCa--StQHNzc6lWMhAbNtXTmEbj876n-DtfwGp4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CO2+capture+in+cation-exchanged+metal%E2%80%93organic+frameworks%3A+Holistic+modeling+from+molecular+simulation+to+process+optimization&rft.jtitle=Chemical+engineering+science&rft.au=Nalaparaju%2C+A.&rft.au=Khurana%2C+M.&rft.au=Farooq%2C+S.&rft.au=Karimi%2C+I.A.&rft.date=2015-03-03&rft.issn=0009-2509&rft.volume=124&rft.spage=70&rft.epage=78&rft_id=info:doi/10.1016%2Fj.ces.2014.09.054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ces_2014_09_054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon