CO2 capture in cation-exchanged metal–organic frameworks: Holistic modeling from molecular simulation to process optimization
While CO2 capture has been extensively investigated in different metal–organic frameworks (MOFs), their performance under practical process conditions is scarcely examined. In this study, a multi-scale modeling study is reported to examine CO2 capture from flue gas by vacuum swing adsorption (VSA) p...
Saved in:
Published in | Chemical engineering science Vol. 124; pp. 70 - 78 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
03.03.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While CO2 capture has been extensively investigated in different metal–organic frameworks (MOFs), their performance under practical process conditions is scarcely examined. In this study, a multi-scale modeling study is reported to examine CO2 capture from flue gas by vacuum swing adsorption (VSA) process using cation-exchanged rho zeolite-like MOFs (rho-ZMOFs) as adsorbents. Three rho-ZMOFs namely Na-, Mg- and Al-rho-ZMOFs are considered and compared with 13X Zeolite, which is the current benchmark for post-combustion capture from dry flue gas. First, Monte Carlo (MC) simulations are conducted to estimate the adsorption isotherms of pure CO2 and N2 in the range from 0 to 100kPa and their mixtures of varying composition at a total pressure of 100kPa. The pure gas isotherms are then fitted by the dual-site Langmuir model. Subsequently, the extended dual-site Langmuir model is used to satisfactorily predict the equilibrium behavior of CO2/N2 binary mixtures over a wide range of composition. In addition, micropore diffusivities are calculated from molecular dynamics (MD) simulations and compared with the estimated macropore diffusivities in order to determine the controlling mechanism of mass transfer. Macropore is expected when these adsorbents are pelletized before using in a separation process. For each rho-ZMOF adsorbent, a four-step VSA process with light product pressurization for CO2 capture and concentration (CCC) from dry flue gas containing 15% CO2 in balance N2 is then simulated using a non-isothermal, non-isobaric model. The process is optimized using multi-objective optimization based on a genetic algorithm for minimizing the energy penalty and maximizing the process productivity, subject to the purity and recovery constraints of 95 and 90%, respectively. The operating spaces of the three rho-ZMOFs are similar to that of 13X zeolite. However, the minimum energy penalty in Al-rho-ZMOF (156kWh/t CO2) is lower than in 13X (165kWh/t CO2). While identifying the cation-exchanged rho-ZMOFs as interesting candidates for CO2 capture, this study also demonstrates that the multi-scale modeling approach adopted here is an effective methodology to screen and design novel MOFs for CCC and other separation applications.
[Display omitted]
•CO2 capture from dry flue gas is investigated by holistic multi-scale modeling.•Pure-component adsorption and diffusion data are provided by molecular simulation.•A four-step vacuum swing adsorption process is simulated and optimized.•Energy penalty-productivity Paretos are presented for CO2 capture in rho-ZMOFs. |
---|---|
AbstractList | While CO2 capture has been extensively investigated in different metal–organic frameworks (MOFs), their performance under practical process conditions is scarcely examined. In this study, a multi-scale modeling study is reported to examine CO2 capture from flue gas by vacuum swing adsorption (VSA) process using cation-exchanged rho zeolite-like MOFs (rho-ZMOFs) as adsorbents. Three rho-ZMOFs namely Na-, Mg- and Al-rho-ZMOFs are considered and compared with 13X Zeolite, which is the current benchmark for post-combustion capture from dry flue gas. First, Monte Carlo (MC) simulations are conducted to estimate the adsorption isotherms of pure CO2 and N2 in the range from 0 to 100kPa and their mixtures of varying composition at a total pressure of 100kPa. The pure gas isotherms are then fitted by the dual-site Langmuir model. Subsequently, the extended dual-site Langmuir model is used to satisfactorily predict the equilibrium behavior of CO2/N2 binary mixtures over a wide range of composition. In addition, micropore diffusivities are calculated from molecular dynamics (MD) simulations and compared with the estimated macropore diffusivities in order to determine the controlling mechanism of mass transfer. Macropore is expected when these adsorbents are pelletized before using in a separation process. For each rho-ZMOF adsorbent, a four-step VSA process with light product pressurization for CO2 capture and concentration (CCC) from dry flue gas containing 15% CO2 in balance N2 is then simulated using a non-isothermal, non-isobaric model. The process is optimized using multi-objective optimization based on a genetic algorithm for minimizing the energy penalty and maximizing the process productivity, subject to the purity and recovery constraints of 95 and 90%, respectively. The operating spaces of the three rho-ZMOFs are similar to that of 13X zeolite. However, the minimum energy penalty in Al-rho-ZMOF (156kWh/t CO2) is lower than in 13X (165kWh/t CO2). While identifying the cation-exchanged rho-ZMOFs as interesting candidates for CO2 capture, this study also demonstrates that the multi-scale modeling approach adopted here is an effective methodology to screen and design novel MOFs for CCC and other separation applications.
[Display omitted]
•CO2 capture from dry flue gas is investigated by holistic multi-scale modeling.•Pure-component adsorption and diffusion data are provided by molecular simulation.•A four-step vacuum swing adsorption process is simulated and optimized.•Energy penalty-productivity Paretos are presented for CO2 capture in rho-ZMOFs. |
Author | Khurana, M. Farooq, S. Jiang, J.W. Karimi, I.A. Nalaparaju, A. |
Author_xml | – sequence: 1 givenname: A. surname: Nalaparaju fullname: Nalaparaju, A. – sequence: 2 givenname: M. surname: Khurana fullname: Khurana, M. – sequence: 3 givenname: S. surname: Farooq fullname: Farooq, S. email: chesf@nus.edu.sg – sequence: 4 givenname: I.A. surname: Karimi fullname: Karimi, I.A. – sequence: 5 givenname: J.W. surname: Jiang fullname: Jiang, J.W. email: chejj@nus.edu.sg |
BookMark | eNp9kE1uGzEMhYXCBWq7OUB3usBMKc2vmlVgtEkBA9kka0HhcFy5M6OBpPx109whN8xJIidddeEVyUd8xONbscXkJmLsi4BcgKi_7nOkkEsQZQ4qh6r8wJaibYqsLKFasCUAqExWoD6xVQj7NDaNgCX7u7mUHM0cbz1xO6U2Wjdl9IC_zLSjjo8UzfDy9Oz8zkwWee_NSPfO_w7f-IUbbIhJHF1Hg512aevGNA2Et4PxPNgx1cNFHh2fvUsmA3dztKP986Z_Zh97MwQ6-VfX7PrH96vNRba9PP-5OdtmWDYQM1WTkaqqjaj7vpWyKSsQ0BZFWcu2QlmItqoEmRtUKGvEmsjUolOgeoWdhGLNmve76F0InnqNNr45iN7YQQvQhxz1XieL-pCjBqVTjokU_5Gzt6Pxj0eZ03eG0kt3lrwOaGlC6qwnjLpz9gj9CjUckQ4 |
CitedBy_id | crossref_primary_10_1016_j_coche_2019_04_008 crossref_primary_10_1039_C9EE03977E crossref_primary_10_1021_acs_jpcc_0c10773 crossref_primary_10_1021_acs_langmuir_7b04320 crossref_primary_10_1016_j_fluid_2020_112643 crossref_primary_10_1021_acs_chemrev_0c01266 crossref_primary_10_1021_acs_iecr_5b02845 crossref_primary_10_1002_aic_15602 crossref_primary_10_3389_fmats_2018_00004 crossref_primary_10_1021_acs_iecr_5b01477 crossref_primary_10_1016_j_molliq_2020_114713 crossref_primary_10_2139_ssrn_3999300 crossref_primary_10_1016_j_ces_2022_117585 crossref_primary_10_1021_acs_iecr_6b04270 crossref_primary_10_1016_j_cej_2020_128322 crossref_primary_10_1016_j_coche_2018_04_004 crossref_primary_10_1016_j_cherd_2017_06_016 crossref_primary_10_1016_j_flatc_2023_100578 crossref_primary_10_1021_acs_iecr_9b05363 crossref_primary_10_1016_j_compchemeng_2022_107938 crossref_primary_10_1016_j_cej_2023_141597 crossref_primary_10_1007_s11696_019_00910_x crossref_primary_10_1016_j_jmgm_2024_108871 crossref_primary_10_2139_ssrn_5068894 crossref_primary_10_1016_j_apenergy_2015_10_011 crossref_primary_10_1016_j_cjche_2015_11_030 crossref_primary_10_1016_j_apenergy_2017_01_031 crossref_primary_10_1016_j_cej_2022_135395 crossref_primary_10_1021_acs_iecr_9b02383 crossref_primary_10_1016_j_heliyon_2020_e05385 crossref_primary_10_1016_j_ces_2015_06_069 crossref_primary_10_1021_acs_iecr_8b03065 crossref_primary_10_1021_acs_iecr_5b04531 crossref_primary_10_1016_j_molliq_2021_115593 crossref_primary_10_1039_C5CP04676A crossref_primary_10_1016_j_ceramint_2022_01_021 crossref_primary_10_1016_j_commatsci_2024_113462 crossref_primary_10_1016_j_cej_2020_127121 crossref_primary_10_1016_j_susmat_2023_e00701 |
Cites_doi | 10.1081/SS-200042244 10.1016/0009-2509(68)87056-3 10.1021/jp051771y 10.1021/la800369s 10.1021/ie070831e 10.1021/cr300014x 10.1016/S0169-4332(97)00222-5 10.1021/jp077618g 10.1038/ncomms1956 10.1039/b600188m 10.1021/ja00051a040 10.1016/S1001-0742(08)60002-9 10.1080/00268978000103611 10.1002/cssc.201000080 10.1021/ie950291y 10.1126/science.1172246 10.1021/jp050948l 10.1021/la205152f 10.1039/B618320B 10.1021/es401276r 10.1021/ie302658y 10.1021/cr2003272 10.1002/aic.12107 10.1021/ja901061j 10.1016/j.micromeso.2005.11.023 10.1002/jcc.20291 10.1109/4235.996017 10.1002/aic.690290428 10.1126/science.1230444 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ces.2014.09.054 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4405 |
EndPage | 78 |
ExternalDocumentID | 10_1016_j_ces_2014_09_054 S0009250914005673 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HLY IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCE SDF SDG SDP SES SPC SPCBC SSG SSZ T5K XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIDUJ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HVGLF HZ~ NDZJH R2- SC5 SEW SSH T9H VH1 WUQ Y6R ZY4 |
ID | FETCH-LOGICAL-c470t-96ea2956a16ff82274501083346285c2318551eabc9c26cc6eea61d909f9cd203 |
IEDL.DBID | .~1 |
ISSN | 0009-2509 |
IngestDate | Thu Apr 24 22:57:16 EDT 2025 Tue Jul 01 03:13:59 EDT 2025 Fri Feb 23 02:34:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Molecular simulation Productivity Process optimization Energy penalty CO2 capture Metal–organic frameworks |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-96ea2956a16ff82274501083346285c2318551eabc9c26cc6eea61d909f9cd203 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ces_2014_09_054 crossref_primary_10_1016_j_ces_2014_09_054 elsevier_sciencedirect_doi_10_1016_j_ces_2014_09_054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-03 |
PublicationDateYYYYMMDD | 2015-03-03 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-03 day: 03 |
PublicationDecade | 2010 |
PublicationTitle | Chemical engineering science |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Agarwal, Biegler, Zitney (bib2) 2010; 56 Frenkel, Smit (bib12) 2002 Cussler (bib8) 1984 Edwards, Richards (bib10) 1968; 23 Walton, Abney, LeVan (bib31) 2006; 91 Ridha, Webley (bib26) 2009; 67 Haszeldine (bib17) 2009; 325 Liu, Kravtsov, Larsen, Eddaoudi (bib21) 2006; 42 Chen, Nalaparaju, Eddaoudi, Jiang (bib7) 2012; 28 Babarao, Jiang (bib3) 2008; 24 Férey (bib11) 2008; 37 Hirotani, Mizukami, Miura, Takaba, Miya, Fahmi, Stirling, Kubo, Miyamoto (bib18) 1997; 120 Babarao, Jiang (bib4) 2009; 131 Furukawa, Cordova, O’Keeffe, Yaghi (bib14) 2013; 341 Haghpanah, Majumder, Nilam, Rajendran, Farooq, Karimi, Amanullah (bib16) 2013; 52 Myers (bib24) 1983; 29 Sabouni, Kazemian, Rohani (bib27) 2013; 47 Deb, Pratap, Agarwal, Meyarivan (bib9) 2002; 6 Zhou, Long, Yaghi (bib34) 2012; 112 Yang, Xu, Fan, Gupta, Slimane, Bland, Wright (bib33) 2008; 20 (bib13) 2004 Xiang, He, Zhang, Wu, Zhou, Krishna, Chen (bib32) 2012; 3 Sumida, Rogow, Mason, McDonald, Bloch, Herm, Bae, Long (bib29) 2012; 112 Skoulidias, Sholl (bib28) 2005; 109 Chen, Jiang (bib6) 2010; 3 Garberoglio, Skoulidas, Johnson (bib15) 2005; 109 Van Der Spoel, Lindahl, Hess, Groenhof, Mark, Berendsen (bib30) 2005; 26 Jiang (bib20) 2012 Mathias, Kumar, Moyer, Schork, Srinivasan, Auvil, Talu (bib22) 1996; 35 Bastin, Barcia, Hurtado, Silva, Rodrigues, Chen (bib5) 2008; 112 Ho, Allinson, Wiley (bib19) 2008; 47 Rappe, Casewit, Colwell, Goddard, Skiff (bib25) 1992; 114 Murthy, Singer, Klein, McDonald (bib23) 1980; 41 Aaron, Tsouris (bib1) 2005; 40 Garberoglio (10.1016/j.ces.2014.09.054_bib15) 2005; 109 Frenkel (10.1016/j.ces.2014.09.054_bib12) 2002 Ho (10.1016/j.ces.2014.09.054_bib19) 2008; 47 Férey (10.1016/j.ces.2014.09.054_bib11) 2008; 37 Bastin (10.1016/j.ces.2014.09.054_bib5) 2008; 112 Sabouni (10.1016/j.ces.2014.09.054_bib27) 2013; 47 Zhou (10.1016/j.ces.2014.09.054_bib34) 2012; 112 Chen (10.1016/j.ces.2014.09.054_bib7) 2012; 28 Agarwal (10.1016/j.ces.2014.09.054_bib2) 2010; 56 Yang (10.1016/j.ces.2014.09.054_bib33) 2008; 20 Ridha (10.1016/j.ces.2014.09.054_bib26) 2009; 67 Babarao (10.1016/j.ces.2014.09.054_bib4) 2009; 131 Hirotani (10.1016/j.ces.2014.09.054_bib18) 1997; 120 Sumida (10.1016/j.ces.2014.09.054_bib29) 2012; 112 Aaron (10.1016/j.ces.2014.09.054_bib1) 2005; 40 Skoulidias (10.1016/j.ces.2014.09.054_bib28) 2005; 109 Cussler (10.1016/j.ces.2014.09.054_bib8) 1984 Edwards (10.1016/j.ces.2014.09.054_bib10) 1968; 23 Haghpanah (10.1016/j.ces.2014.09.054_bib16) 2013; 52 (10.1016/j.ces.2014.09.054_bib13) 2004 Myers (10.1016/j.ces.2014.09.054_bib24) 1983; 29 Rappe (10.1016/j.ces.2014.09.054_bib25) 1992; 114 Jiang (10.1016/j.ces.2014.09.054_bib20) 2012 Deb (10.1016/j.ces.2014.09.054_bib9) 2002; 6 Murthy (10.1016/j.ces.2014.09.054_bib23) 1980; 41 Van Der Spoel (10.1016/j.ces.2014.09.054_bib30) 2005; 26 Xiang (10.1016/j.ces.2014.09.054_bib32) 2012; 3 Mathias (10.1016/j.ces.2014.09.054_bib22) 1996; 35 Haszeldine (10.1016/j.ces.2014.09.054_bib17) 2009; 325 Chen (10.1016/j.ces.2014.09.054_bib6) 2010; 3 Liu (10.1016/j.ces.2014.09.054_bib21) 2006; 42 Walton (10.1016/j.ces.2014.09.054_bib31) 2006; 91 Babarao (10.1016/j.ces.2014.09.054_bib3) 2008; 24 Furukawa (10.1016/j.ces.2014.09.054_bib14) 2013; 341 |
References_xml | – volume: 112 start-page: 1575 year: 2008 end-page: 1581 ident: bib5 article-title: A microporous metal–organic framework for separation of CO publication-title: J. Phys. Chem. C – volume: 109 start-page: 13094 year: 2005 end-page: 13103 ident: bib15 article-title: Adsorption of gases in metal–organic materials: comparison of simulations and experiments publication-title: J. Phys. Chem. B – volume: 47 start-page: 9372 year: 2013 end-page: 9380 ident: bib27 article-title: Mathematical modeling and experimental breakthrough curves of carbon dioxide adsorption on metal organic framework CPM-5 publication-title: Environ. Sci. Technol. – volume: 26 start-page: 1701 year: 2005 end-page: 1718 ident: bib30 article-title: Gromacs: fast, flexible, and free publication-title: J. Comput. Chem. – volume: 3 start-page: 982 year: 2010 end-page: 988 ident: bib6 article-title: A bio-metal–organic framework for highly selective CO publication-title: ChemSusChem – volume: 52 start-page: 4249 year: 2013 end-page: 4265 ident: bib16 article-title: Multiobjective optimization of a four-step adsorption process for postcombustion CO publication-title: Ind. Eng. Chem. Res. – volume: 56 start-page: 1813 year: 2010 end-page: 1828 ident: bib2 article-title: A superstructure-based optimal synthesis of psa cycles for post-combustion CO publication-title: AIChE J. – year: 1984 ident: bib8 article-title: Diffusion, Mass Transfer in Fluid Systems – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib9 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput – volume: 109 start-page: 15760 year: 2005 end-page: 15768 ident: bib28 article-title: Self-diffusion and transport diffusion of light gases in metal–organic framework materials assessed using molecular dynamics simulations publication-title: J. Phys. Chem. B – volume: 42 start-page: 1488 year: 2006 end-page: 1490 ident: bib21 article-title: Molecular building blocks approach to the assembly of zeolite-like metal–organic frameworks with extra-large cavities publication-title: Chem. Commun. – volume: 47 start-page: 4883 year: 2008 end-page: 4890 ident: bib19 article-title: Reducing the cost of CO capture from flue gases using pressure swing adsorption publication-title: Ind. Eng. Chem. Res. – volume: 41 start-page: 1387 year: 1980 end-page: 1399 ident: bib23 article-title: Pairwise additive effective potentials for nitrogen publication-title: Mol. Phys. – volume: 23 start-page: 109 year: 1968 end-page: 123 ident: bib10 article-title: Gas dispersion in packed beds publication-title: Chem. Eng. Sci. – volume: 131 start-page: 11417 year: 2009 end-page: 11425 ident: bib4 article-title: Unprecedentedly high selective adsorption of gas mixtures in publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 81 year: 1997 end-page: 84 ident: bib18 article-title: Grand canonical Monte Carlo simulation of the adsorption of CO publication-title: Appl. Surf. Sci – volume: 112 start-page: 724 year: 2012 end-page: 781 ident: bib29 article-title: Carbon dioxide capture in metal–organic frameworks publication-title: Chem. Rev. – year: 2004 ident: bib13 article-title: Gaussian 03, Revision D.01 – volume: 67 start-page: 336 year: 2009 ident: bib26 article-title: Anomalous Henry’s law behavior of nitrogen and carbon dioxide adsorption publication-title: Sep. Sci. Technol. – volume: 91 start-page: 78 year: 2006 end-page: 84 ident: bib31 article-title: CO publication-title: Microporous Mesoporous Mater. – volume: 3 start-page: 954 year: 2012 ident: bib32 article-title: Microporous metal–organic framework with potential for carbon dioxide capture at ambient conditions publication-title: Nat. Commun – volume: 29 start-page: 691 year: 1983 end-page: 693 ident: bib24 article-title: Activity coefficients of mixtures adsorbed on heterogeneous surfaces publication-title: AIChE J – volume: 28 start-page: 3903 year: 2012 end-page: 3910 ident: bib7 article-title: CO publication-title: Langmuir – volume: 341 start-page: 974 year: 2013 end-page: 980 ident: bib14 article-title: The chemistry and applications of metal–organic frameworks publication-title: Science – volume: 40 start-page: 321 year: 2005 end-page: 348 ident: bib1 article-title: Separation of CO publication-title: Sep. Sci. Technol – volume: 24 start-page: 6270 year: 2008 end-page: 6278 ident: bib3 article-title: Molecular screening of metal–organic frameworks for CO publication-title: Langmuir – volume: 114 start-page: 10024 year: 1992 end-page: 10035 ident: bib25 article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations publication-title: J. Am. Chem. Soc. – volume: 112 start-page: 673 year: 2012 end-page: 674 ident: bib34 article-title: Introduction to metal–organic frameworks publication-title: Chem. Rev. – volume: 325 start-page: 1647 year: 2009 end-page: 1652 ident: bib17 article-title: Carbon capture and storage: how green can black be? publication-title: Science – volume: 37 start-page: 191 year: 2008 end-page: 214 ident: bib11 article-title: Hybrid porous solids: past, present, future publication-title: Chem. Soc. Rev. – volume: 20 start-page: 14 year: 2008 end-page: 27 ident: bib33 article-title: Progress in carbon dioxide separation and capture: a review publication-title: J. Environ. Sci. – year: 2002 ident: bib12 article-title: Understanding Molecular Simulation: From Algorithms to Applications – year: 2012 ident: bib20 article-title: Metal–organic frameworks for CO publication-title: Coordination Polymers and Metal Organic Frameworks – volume: 35 start-page: 2477 year: 1996 end-page: 2483 ident: bib22 article-title: Correlation of multicomponent gas adsorption by the dual-site langmuir model. Application to nitrogen/oxygen adsorption on 5A-zeolite publication-title: Ind. Eng. Chem. Res. – volume: 40 start-page: 321 year: 2005 ident: 10.1016/j.ces.2014.09.054_bib1 article-title: Separation of CO2 from flue gas: a review publication-title: Sep. Sci. Technol doi: 10.1081/SS-200042244 – volume: 23 start-page: 109 year: 1968 ident: 10.1016/j.ces.2014.09.054_bib10 article-title: Gas dispersion in packed beds publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(68)87056-3 – volume: 109 start-page: 15760 year: 2005 ident: 10.1016/j.ces.2014.09.054_bib28 article-title: Self-diffusion and transport diffusion of light gases in metal–organic framework materials assessed using molecular dynamics simulations publication-title: J. Phys. Chem. B doi: 10.1021/jp051771y – year: 2002 ident: 10.1016/j.ces.2014.09.054_bib12 – volume: 24 start-page: 6270 year: 2008 ident: 10.1016/j.ces.2014.09.054_bib3 article-title: Molecular screening of metal–organic frameworks for CO2 storage publication-title: Langmuir doi: 10.1021/la800369s – volume: 47 start-page: 4883 year: 2008 ident: 10.1016/j.ces.2014.09.054_bib19 article-title: Reducing the cost of CO capture from flue gases using pressure swing adsorption publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie070831e – volume: 112 start-page: 673 year: 2012 ident: 10.1016/j.ces.2014.09.054_bib34 article-title: Introduction to metal–organic frameworks publication-title: Chem. Rev. doi: 10.1021/cr300014x – volume: 120 start-page: 81 year: 1997 ident: 10.1016/j.ces.2014.09.054_bib18 article-title: Grand canonical Monte Carlo simulation of the adsorption of CO2 on silicalite and NaZSM-5 publication-title: Appl. Surf. Sci doi: 10.1016/S0169-4332(97)00222-5 – volume: 112 start-page: 1575 year: 2008 ident: 10.1016/j.ces.2014.09.054_bib5 article-title: A microporous metal–organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption publication-title: J. Phys. Chem. C doi: 10.1021/jp077618g – volume: 3 start-page: 954 year: 2012 ident: 10.1016/j.ces.2014.09.054_bib32 article-title: Microporous metal–organic framework with potential for carbon dioxide capture at ambient conditions publication-title: Nat. Commun doi: 10.1038/ncomms1956 – volume: 42 start-page: 1488 year: 2006 ident: 10.1016/j.ces.2014.09.054_bib21 article-title: Molecular building blocks approach to the assembly of zeolite-like metal–organic frameworks with extra-large cavities publication-title: Chem. Commun. doi: 10.1039/b600188m – volume: 114 start-page: 10024 year: 1992 ident: 10.1016/j.ces.2014.09.054_bib25 article-title: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00051a040 – volume: 20 start-page: 14 year: 2008 ident: 10.1016/j.ces.2014.09.054_bib33 article-title: Progress in carbon dioxide separation and capture: a review publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(08)60002-9 – volume: 41 start-page: 1387 year: 1980 ident: 10.1016/j.ces.2014.09.054_bib23 article-title: Pairwise additive effective potentials for nitrogen publication-title: Mol. Phys. doi: 10.1080/00268978000103611 – volume: 3 start-page: 982 year: 2010 ident: 10.1016/j.ces.2014.09.054_bib6 article-title: A bio-metal–organic framework for highly selective CO2 capture: a molecular simulation study publication-title: ChemSusChem doi: 10.1002/cssc.201000080 – year: 1984 ident: 10.1016/j.ces.2014.09.054_bib8 – volume: 35 start-page: 2477 year: 1996 ident: 10.1016/j.ces.2014.09.054_bib22 article-title: Correlation of multicomponent gas adsorption by the dual-site langmuir model. Application to nitrogen/oxygen adsorption on 5A-zeolite publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie950291y – volume: 67 start-page: 336 year: 2009 ident: 10.1016/j.ces.2014.09.054_bib26 article-title: Anomalous Henry’s law behavior of nitrogen and carbon dioxide adsorption publication-title: Sep. Sci. Technol. – volume: 325 start-page: 1647 year: 2009 ident: 10.1016/j.ces.2014.09.054_bib17 article-title: Carbon capture and storage: how green can black be? publication-title: Science doi: 10.1126/science.1172246 – volume: 109 start-page: 13094 year: 2005 ident: 10.1016/j.ces.2014.09.054_bib15 article-title: Adsorption of gases in metal–organic materials: comparison of simulations and experiments publication-title: J. Phys. Chem. B doi: 10.1021/jp050948l – volume: 28 start-page: 3903 year: 2012 ident: 10.1016/j.ces.2014.09.054_bib7 article-title: CO2 adsorption in mono-, di- and trivalent cation-exchanged metal–organic frameworks: a molecular simulation study publication-title: Langmuir doi: 10.1021/la205152f – volume: 37 start-page: 191 year: 2008 ident: 10.1016/j.ces.2014.09.054_bib11 article-title: Hybrid porous solids: past, present, future publication-title: Chem. Soc. Rev. doi: 10.1039/B618320B – volume: 47 start-page: 9372 year: 2013 ident: 10.1016/j.ces.2014.09.054_bib27 article-title: Mathematical modeling and experimental breakthrough curves of carbon dioxide adsorption on metal organic framework CPM-5 publication-title: Environ. Sci. Technol. doi: 10.1021/es401276r – volume: 52 start-page: 4249 year: 2013 ident: 10.1016/j.ces.2014.09.054_bib16 article-title: Multiobjective optimization of a four-step adsorption process for postcombustion CO2 capture via finite volume simulation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie302658y – volume: 112 start-page: 724 year: 2012 ident: 10.1016/j.ces.2014.09.054_bib29 article-title: Carbon dioxide capture in metal–organic frameworks publication-title: Chem. Rev. doi: 10.1021/cr2003272 – volume: 56 start-page: 1813 year: 2010 ident: 10.1016/j.ces.2014.09.054_bib2 article-title: A superstructure-based optimal synthesis of psa cycles for post-combustion CO2 capture publication-title: AIChE J. doi: 10.1002/aic.12107 – volume: 131 start-page: 11417 year: 2009 ident: 10.1016/j.ces.2014.09.054_bib4 article-title: Unprecedentedly high selective adsorption of gas mixtures in rho zeolite-like metal–organic framework: a molecular simulation study publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901061j – volume: 91 start-page: 78 year: 2006 ident: 10.1016/j.ces.2014.09.054_bib31 article-title: CO2 adsorption in Y and X zeolites publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2005.11.023 – volume: 26 start-page: 1701 year: 2005 ident: 10.1016/j.ces.2014.09.054_bib30 article-title: Gromacs: fast, flexible, and free publication-title: J. Comput. Chem. doi: 10.1002/jcc.20291 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.ces.2014.09.054_bib9 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput doi: 10.1109/4235.996017 – volume: 29 start-page: 691 year: 1983 ident: 10.1016/j.ces.2014.09.054_bib24 article-title: Activity coefficients of mixtures adsorbed on heterogeneous surfaces publication-title: AIChE J doi: 10.1002/aic.690290428 – year: 2012 ident: 10.1016/j.ces.2014.09.054_bib20 article-title: Metal–organic frameworks for CO2 capture: what are learned from molecular simulations – volume: 341 start-page: 974 year: 2013 ident: 10.1016/j.ces.2014.09.054_bib14 article-title: The chemistry and applications of metal–organic frameworks publication-title: Science doi: 10.1126/science.1230444 – year: 2004 ident: 10.1016/j.ces.2014.09.054_bib13 article-title: Gaussian 03, Revision D.01 |
SSID | ssj0007710 |
Score | 2.358035 |
Snippet | While CO2 capture has been extensively investigated in different metal–organic frameworks (MOFs), their performance under practical process conditions is... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 70 |
SubjectTerms | CO2 capture Energy penalty Metal–organic frameworks Molecular simulation Process optimization Productivity |
Title | CO2 capture in cation-exchanged metal–organic frameworks: Holistic modeling from molecular simulation to process optimization |
URI | https://dx.doi.org/10.1016/j.ces.2014.09.054 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA2LXvQgfuL6seTgSaibtmnTeFsWl6q4XlzYW2mTFCq7bXEreFL_g__QX-KkTXUF9eAxJSlhks6bNPPmIXTi-oBRUjALoI5YVDiuxX1950oTZovATmWgCc43Yz-c0KupN-2gYcuF0WmVxvc3Pr321uZJ31izX2aZ5vgS7mi8o7qeJdMVPyllepefPX-leTBmk1ZNTfdubzbrHC_4FHV2V1Pq1KM_Y9MS3ow20YYJFPGgmcsW6qh8G60vlQ_cQS_DWweLuNSXADjLcfP3zVJPDZtX4rmC0Pr99a2RbhI4bTOxFuc4LGZ1jWZca-HA-7BmmkDLyOXiRTY30l64KnDZEApwAS5mbribu2gyurgbhpYRVLAEZaSCVVCxAwei2PbTFCIDRj04jgWuqwmqHqwTgLdnqzgRXDi-EL5SsW9LTnjKhXSIu4dW8iJX-wjHUtkKQl5PyJSKmMfcDaTtSAYhS-ILt4tIa8pImGrjWvRiFrVpZfcRTDvS1o8Ij8D6XXT6OaRsSm381Zm26xN92y8RQMHvww7-N-wQrUHLq3PP3CO0Uj08qmMIRqqkV--2HlodXF6H4w-AHOCh |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2VcgAOiFXs-AAXpEDiOEmNxAEVqpYWuIDEzaS2IxXRRbQIuAD_wKfwR3wJ48SBIgEHJI5ZHDljZ944njcPYMMPEaOUjByEOtdhkvoOD82eK2tGnix5iSoZgvPxSVg9Z0cXwUUBXnMujEmrtL4_8-mpt7Zndqw1d3qtluH4upwavGOmnmWUK1jX9cMdrtv6e7UDHORNSiuHZ-WqY6UFHMkid4D90THFpUHshUmCGBmxABcmJd83VM0Ae4wwFng6bkouaShlqHUceoq7POFSUdfH547AKEN3YWQTth8_80qiyHNz-TbTvXwrNU0qw2_fpJNltVUD9j0YDgFcZQombWRK9rOXn4aC7szAxFC9wll4Kp9SIuOe2XUgrQ7Jfvc5-j6jDyvS1hjLvz2_ZFpRkiR56ld_l1S712lRaJKK7-DziKG24JHV5yX9VttqiZFBl_QyBgPpok9rW7LoHJz_i5nnodjpdvQCkFhpT2OMHUiVMBnzmPsl5VEVYYzUDKW_CG5uSiFteXOjsnEt8jy2K4HdFsb6wuUCrb8IWx9Nelltj99uZvn4iC8TVCD2_Nxs6W_N1mGsenbcEI3aSX0ZxvFKkCa--StQHNzc6lWMhAbNtXTmEbj876n-DtfwGp4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CO2+capture+in+cation-exchanged+metal%E2%80%93organic+frameworks%3A+Holistic+modeling+from+molecular+simulation+to+process+optimization&rft.jtitle=Chemical+engineering+science&rft.au=Nalaparaju%2C+A.&rft.au=Khurana%2C+M.&rft.au=Farooq%2C+S.&rft.au=Karimi%2C+I.A.&rft.date=2015-03-03&rft.issn=0009-2509&rft.volume=124&rft.spage=70&rft.epage=78&rft_id=info:doi/10.1016%2Fj.ces.2014.09.054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ces_2014_09_054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2509&client=summon |