Subject-Specific Axes of Rotation Based on Talar Morphology Do Not Improve Predictions of Tibiotalar and Subtalar Joint Kinematics

Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and su...

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 45; no. 9; pp. 2109 - 2121
Main Authors Nichols, Jennifer A., Roach, Koren E., Fiorentino, Niccolo M., Anderson, Andrew E.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured in vivo by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject’s talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9° ± 4.3° and 24.4° ± 5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics.
AbstractList Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured in vivo by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject's talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9° ± 4.3° and 24.4° ± 5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics.
Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured in vivo by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject's talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9° ± 4.3° and 24.4° ± 5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics.Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured in vivo by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject's talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9° ± 4.3° and 24.4° ± 5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics.
Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured in vivo by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject's talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9° ± 4.3° and 24.4° ± 5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics.
Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured in vivo by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject’s talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9° ± 4.3° and 24.4° ± 5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics.
Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured in vivo by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject's talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9°±4.3° and 24.4°±5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics.
Author Nichols, Jennifer A.
Roach, Koren E.
Anderson, Andrew E.
Fiorentino, Niccolo M.
AuthorAffiliation 1 Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA
4 Scientific Computing and Imaging Institute, 72 S Central Campus Drive, Room 3750, Salt Lake City, UT 84112, USA
3 Department of Physical Therapy, University of Utah, 520 Wakara Way, Suite 240 Salt Lake City, UT 84108, USA
2 Department of Bioengineering, University of Utah, James LeVoy Sorenson Molecular Biotechnology Building, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT 84112 USA
AuthorAffiliation_xml – name: 4 Scientific Computing and Imaging Institute, 72 S Central Campus Drive, Room 3750, Salt Lake City, UT 84112, USA
– name: 3 Department of Physical Therapy, University of Utah, 520 Wakara Way, Suite 240 Salt Lake City, UT 84108, USA
– name: 1 Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA
– name: 2 Department of Bioengineering, University of Utah, James LeVoy Sorenson Molecular Biotechnology Building, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT 84112 USA
Author_xml – sequence: 1
  givenname: Jennifer A.
  surname: Nichols
  fullname: Nichols, Jennifer A.
  organization: Department of Orthopaedics, Harold K. Dunn Orthopaedic Research Laboratory, University of Utah
– sequence: 2
  givenname: Koren E.
  surname: Roach
  fullname: Roach, Koren E.
  organization: Department of Orthopaedics, Harold K. Dunn Orthopaedic Research Laboratory, University of Utah, Department of Bioengineering, University of Utah
– sequence: 3
  givenname: Niccolo M.
  surname: Fiorentino
  fullname: Fiorentino, Niccolo M.
  organization: Department of Orthopaedics, Harold K. Dunn Orthopaedic Research Laboratory, University of Utah
– sequence: 4
  givenname: Andrew E.
  surname: Anderson
  fullname: Anderson, Andrew E.
  email: andrew.anderson@hsc.utah.edu
  organization: Department of Orthopaedics, Harold K. Dunn Orthopaedic Research Laboratory, University of Utah, Department of Bioengineering, University of Utah, Department of Physical Therapy and Athletic Training, University of Utah, Scientific Computing and Imaging Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28639171$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1TAQtFARfX3wA7ggS1y4BLyxk9gXpLZQKJQP0cfZchzn1U-JHeykaq_8chzSolIJTt7VzsyOtXOA9px3BqGnQF4CIdWrCIRRkRGoMuAVy8QDtIKiopkoebmHVoQIkpWiZPvoIMYdIQCcFo_Qfs5LKqCCFfp5PtU7o8fsfDDatlbjwysTsW_xNz-q0XqHj1Q0DU7FRnUq4E8-DBe-89tr_Mbjz37Ep_0Q_KXBX4NprJ45vwU2trZJY-Yo1-C0aGk-eOtG_NE606cFOj5GD1vVRfPk5l2j7ydvN8fvs7Mv706PD88yzSoyZjxvhQFFapbTVGraMEoVZ6KlhWGsyCuhOIWSK13UjBFegmnb1HBqWMMaukavF91hqnvTaOPGoDo5BNurcC29svLvibMXcusvZVERASJPAi9uBIL_MZk4yt5GbbpOOeOnKEFAXgLNOU_Q5_egOz8Fl76XUBSAFjNyjZ7ddfTHyu15EqBaADr4GINppbbLVZJB20kgcg6CXIIgUxDkHAQpEhPuMW_F_8fJF05MWLc14Y7pf5J-AbjdxfE
CitedBy_id crossref_primary_10_1080_10255842_2020_1714231
crossref_primary_10_1016_j_clinbiomech_2023_106032
crossref_primary_10_1016_j_compbiomed_2021_104436
crossref_primary_10_1155_2023_2763099
crossref_primary_10_1007_s11517_023_03010_x
crossref_primary_10_3390_ijerph18105494
crossref_primary_10_1007_s42235_023_00368_4
crossref_primary_10_1016_j_jbiomech_2023_111451
crossref_primary_10_1038_s41598_020_57912_z
crossref_primary_10_1016_j_jbiomech_2021_110344
crossref_primary_10_1038_s41598_024_80716_4
crossref_primary_10_1155_2022_1248990
crossref_primary_10_1177_10711007231213361
Cites_doi 10.1115/1.4034263
10.1016/0958-2592(93)90064-A
10.1016/j.jbiomech.2007.05.019
10.1001/jama.295.10.1152
10.1115/1.4005694
10.1115/1.2205866
10.1016/j.jbiomech.2012.01.011
10.1002/jor.1100080310
10.1016/j.jbiomech.2004.03.031
10.3113/FAI.2007.0323
10.1016/j.jbiomech.2008.10.010
10.1016/j.gaitpost.2015.03.008
10.1016/S0021-9290(99)00022-6
10.1016/S0021-9290(01)00031-8
10.1002/ca.22785
10.1016/0021-9290(94)90197-X
10.1016/j.jbiomech.2004.03.009
10.1177/107110079601700106
10.1007/s10439-009-9852-5
10.1109/TBME.2007.901024
10.1016/S0958-2592(98)90042-6
10.1016/j.jbiomech.2008.02.020
10.1002/ar.1090800402
10.1016/j.gaitpost.2009.09.007
10.1115/1.2206199
10.1177/096228029900800204
10.1109/TBME.2008.919854
10.1093/ptj/68.12.1815
10.1115/1.3108455
10.1016/j.joca.2016.07.015
10.1016/0021-9290(87)90050-9
10.1016/j.gaitpost.2016.06.031
10.1123/jab.2015-0324
ContentType Journal Article
Copyright Biomedical Engineering Society 2017
Annals of Biomedical Engineering is a copyright of Springer, 2017.
Copyright_xml – notice: Biomedical Engineering Society 2017
– notice: Annals of Biomedical Engineering is a copyright of Springer, 2017.
DBID AAYXX
CITATION
NPM
3V.
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7X7
7XB
88E
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0S
M1P
M7P
M7S
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7X8
5PM
DOI 10.1007/s10439-017-1874-9
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-9686
EndPage 2121
ExternalDocumentID PMC5709192
28639171
10_1007_s10439_017_1874_9
Genre Journal Article
GrantInformation_xml – fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases
  grantid: R21-AR063844; F32-AR067075
  funderid: http://dx.doi.org/10.13039/100000069
– fundername: National Center for Research Resources
  grantid: S10-RR026565
  funderid: http://dx.doi.org/10.13039/100000097
– fundername: LS-Peery Foundation
– fundername: Orthopaedic Research and Education Foundation
  funderid: http://dx.doi.org/10.13039/100001279
– fundername: American Orthopaedic Foot and Ankle Society
  funderid: http://dx.doi.org/10.13039/100001460
– fundername: NIAMS NIH HHS
  grantid: R21 AR069773
– fundername: NIAMS NIH HHS
  grantid: R21 AR063844
– fundername: NCRR NIH HHS
  grantid: S10 RR026565
– fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases
  grantid: R21-AR063844
– fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases
  grantid: F32-AR067075
– fundername: National Center for Research Resources
  grantid: S10-RR026565
GroupedDBID ---
-4W
-56
-5G
-BR
-DZ
-EM
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6J9
6NX
78A
7X7
85S
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
L7B
LAK
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UKR
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8N
Z8O
Z8R
Z8T
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
ZY4
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
NPM
PJZUB
PPXIY
PQGLB
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c470t-82f9e1a0b4232f9c3d433a849f35e445279a83168ac5b440861effac583e4d4d3
IEDL.DBID 7X7
ISSN 0090-6964
1573-9686
IngestDate Thu Aug 21 17:52:30 EDT 2025
Tue Aug 05 10:40:55 EDT 2025
Fri Jul 25 19:09:18 EDT 2025
Mon Jul 21 05:57:41 EDT 2025
Thu Apr 24 23:08:20 EDT 2025
Tue Jul 01 00:38:13 EDT 2025
Fri Feb 21 02:37:47 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Ankle
Biomechanics
Model
Gait
Dynamic imaging
Motion analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-82f9e1a0b4232f9c3d433a849f35e445279a83168ac5b440861effac583e4d4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5709192
PMID 28639171
PQID 1931135261
PQPubID 54090
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5709192
proquest_miscellaneous_1912613288
proquest_journals_1931135261
pubmed_primary_28639171
crossref_citationtrail_10_1007_s10439_017_1874_9
crossref_primary_10_1007_s10439_017_1874_9
springer_journals_10_1007_s10439_017_1874_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle The Journal of the Biomedical Engineering Society
PublicationTitle Annals of biomedical engineering
PublicationTitleAbbrev Ann Biomed Eng
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Fisher, Lewis, Embleton (CR8) 1989
Lewis, Piazza, Sommer (CR16) 2006; 128
Beimers, Tuijthof, Blankevoort, Jonges, Maas, van Dijk (CR2) 2008; 41
Bey, Zauel, Brock, Tashman (CR3) 2006; 128
Leardini, O’Connor, Catani, Giannini (CR13) 1999; 32
Nichols, Roach, Fiorentino, Anderson (CR23) 2016; 49
Piaggio, Elbourne, Altman, Pocock, Evans, Group (CR27) 2006; 295
Kadaba, Ramakrishnan, Wootten (CR12) 1990; 8
Lewis, Cohen, Seisler, Kirby, Sheehan, Piazza (CR15) 2009; 42
CR11
Wang, Roach, Kapron, Fiorentino, Saltzman, Singer, Anderson (CR37) 2015; 41
Isman, Inman (CR10) 1969; 11
Reinbolt, Schutte, Fregly, Koh, Haftka, George, Mitchell (CR28) 2005; 38
Chang, Pollard (CR5) 2008; 55
Arnold, Ward, Lieber, Delp (CR1) 2010; 38
Inman (CR9) 1976
Lunberg, Svensson (CR17) 1993; 3
Maas, Ellis, Ateshian, Weiss (CR18) 2012; 134
Nozaki, Watanabe, Katayose (CR24) 2016; 29
Sheehan, Seisler, Siegel (CR32) 2007; 28
Siegler, Chen, Schneck (CR33) 1988; 110
Engsberg (CR7) 1987; 20
Leardini, Stagni, O’Connor (CR14) 2001; 34
Parr, Chatterjee, Soligo (CR26) 2012; 45
Nester, Jones, Liu, Howard, Lundberg, Arndt, Lundgren, Stacoff, Wolf (CR21) 2007; 40
Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (CR6) 2007; 54
Schwartz, Rozumalski (CR31) 2005; 38
van den Bogert, Smith, Nigg (CR36) 1994; 27
Nester (CR20) 1998; 8
Bland, Altman (CR4) 1999; 8
CR22
Oatis (CR25) 1988; 68
Tulchin, Orendurff, Karol (CR34) 2010; 31
Manter (CR19) 1941; 80
Rome, Cowieson (CR30) 1996; 17
Tumer, Blankevoort, van de Giessen, Terra, de Jong, Weinans, Tuijthof, Zadpoor (CR35) 2016; 24
Roach, Wang, Kapron, Fiorentino, Saltzman, Foreman, Anderson (CR29) 2016; 138
1874_CR11
JR Engsberg (1874_CR7) 1987; 20
FT Sheehan (1874_CR32) 2007; 28
C Nester (1874_CR21) 2007; 40
K Rome (1874_CR30) 1996; 17
C Nester (1874_CR20) 1998; 8
A Lunberg (1874_CR17) 1993; 3
EM Arnold (1874_CR1) 2010; 38
KE Roach (1874_CR29) 2016; 138
B Wang (1874_CR37) 2015; 41
A Leardini (1874_CR14) 2001; 34
JA Reinbolt (1874_CR28) 2005; 38
JA Nichols (1874_CR23) 2016; 49
SA Maas (1874_CR18) 2012; 134
S Siegler (1874_CR33) 1988; 110
RE Isman (1874_CR10) 1969; 11
N Tumer (1874_CR35) 2016; 24
NI Fisher (1874_CR8) 1989
WC Parr (1874_CR26) 2012; 45
MJ Bey (1874_CR3) 2006; 128
1874_CR22
S Nozaki (1874_CR24) 2016; 29
L Beimers (1874_CR2) 2008; 41
JM Bland (1874_CR4) 1999; 8
MP Kadaba (1874_CR12) 1990; 8
MH Schwartz (1874_CR31) 2005; 38
LY Chang (1874_CR5) 2008; 55
GS Lewis (1874_CR15) 2009; 42
AJ van den Bogert (1874_CR36) 1994; 27
VT Inman (1874_CR9) 1976
CA Oatis (1874_CR25) 1988; 68
JT Manter (1874_CR19) 1941; 80
G Piaggio (1874_CR27) 2006; 295
A Leardini (1874_CR13) 1999; 32
K Tulchin (1874_CR34) 2010; 31
GS Lewis (1874_CR16) 2006; 128
SL Delp (1874_CR6) 2007; 54
References_xml – volume: 138
  start-page: 091006
  issue: 9
  year: 2016
  ident: CR29
  article-title: In vivo kinematics of the tibiotalar and subtalar joints in asymptomatic subjects: a high-speed dual fluoroscopy study
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4034263
– volume: 3
  start-page: 65
  year: 1993
  end-page: 70
  ident: CR17
  article-title: The axes of rotation of the talocalcaneal and talonavicular joints
  publication-title: Foot
  doi: 10.1016/0958-2592(93)90064-A
– ident: CR22
– volume: 11
  start-page: 129
  issue: 97
  year: 1969
  ident: CR10
  article-title: Anthropometric studies of the human foot and ankle
  publication-title: Bull. Prosthet. Res.
– volume: 40
  start-page: 3412
  year: 2007
  end-page: 3423
  ident: CR21
  article-title: Foot kinematics during walking measured using bone and surface mounted markers
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.05.019
– volume: 295
  start-page: 1152
  year: 2006
  end-page: 1160
  ident: CR27
  article-title: Reporting of noninferiority and equivalence randomized trials: an extension of the consort statement
  publication-title: JAMA.
  doi: 10.1001/jama.295.10.1152
– volume: 134
  start-page: 011005
  year: 2012
  ident: CR18
  article-title: Febio: finite elements for biomechanics
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4005694
– volume: 128
  start-page: 596
  year: 2006
  end-page: 603
  ident: CR16
  article-title: In vitro assessment of a motion-based optimization method for locating the talocrural and subtalar joint axes
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2205866
– volume: 45
  start-page: 1103
  year: 2012
  end-page: 1107
  ident: CR26
  article-title: Calculating the axes of rotation for the subtalar and talocrural joints using 3d bone reconstructions
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.01.011
– volume: 8
  start-page: 383
  year: 1990
  end-page: 392
  ident: CR12
  article-title: Measurement of lower extremity kinematics during level walking
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100080310
– volume: 38
  start-page: 621
  year: 2005
  end-page: 626
  ident: CR28
  article-title: Determination of patient-specific multi-joint kinematic models through two-level optimization
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.03.031
– volume: 28
  start-page: 323
  year: 2007
  end-page: 335
  ident: CR32
  article-title: In vivo talocrural and subtalar kinematics: a non-invasive 3d dynamic mri study
  publication-title: Foot Ankle Int.
  doi: 10.3113/FAI.2007.0323
– volume: 42
  start-page: 146
  year: 2009
  end-page: 151
  ident: CR15
  article-title: In vivo tests of an improved method for functional location of the subtalar joint axis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.10.010
– volume: 41
  start-page: 888
  year: 2015
  end-page: 893
  ident: CR37
  article-title: Accuracy and feasibility of high-speed dual fluoroscopy and model-based tracking to measure in vivo ankle arthrokinematics
  publication-title: Gait Posture.
  doi: 10.1016/j.gaitpost.2015.03.008
– volume: 32
  start-page: 585
  year: 1999
  end-page: 591
  ident: CR13
  article-title: A geometric model of the human ankle joint
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(99)00022-6
– volume: 34
  start-page: 805
  year: 2001
  end-page: 809
  ident: CR14
  article-title: Mobility of the subtalar joint in the intact ankle complex
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00031-8
– year: 1976
  ident: CR9
  publication-title: The Joints of the Ankle
– volume: 29
  start-page: 1066
  year: 2016
  end-page: 1074
  ident: CR24
  article-title: Three-dimensional analysis of talar trochlea morphology: implications for subject-specific kinematics of the talocrural joint
  publication-title: Clin. Anat.
  doi: 10.1002/ca.22785
– volume: 27
  start-page: 1477
  year: 1994
  end-page: 1488
  ident: CR36
  article-title: In vivo determination of the anatomical axes of the ankle joint complex: an optimization approach
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)90197-X
– volume: 38
  start-page: 107
  year: 2005
  end-page: 116
  ident: CR31
  article-title: A new method for estimating joint parameters from motion data
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.03.009
– volume: 17
  start-page: 28
  year: 1996
  end-page: 32
  ident: CR30
  article-title: A reliability study of the universal goniometer, fluid goniometer, and electrogoniometer for the measurement of ankle dorsiflexion
  publication-title: Foot Ankle Int.
  doi: 10.1177/107110079601700106
– volume: 38
  start-page: 269
  year: 2010
  end-page: 279
  ident: CR1
  article-title: A model of the lower limb for analysis of human movement
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-009-9852-5
– volume: 54
  start-page: 1940
  year: 2007
  end-page: 1950
  ident: CR6
  article-title: Opensim: open-source software to create and analyze dynamic simulations of movement
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– volume: 8
  start-page: 111
  year: 1998
  end-page: 118
  ident: CR20
  article-title: Review of literature on the axis of rotation at the subtalar joint
  publication-title: Foot
  doi: 10.1016/S0958-2592(98)90042-6
– volume: 41
  start-page: 1390
  year: 2008
  end-page: 1397
  ident: CR2
  article-title: In-vivo range of motion of the subtalar joint using computed tomography
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.02.020
– volume: 80
  start-page: 397
  year: 1941
  end-page: 410
  ident: CR19
  article-title: Movements of the subtalar and transverse tarsal joints
  publication-title: Anat. Record.
  doi: 10.1002/ar.1090800402
– volume: 31
  start-page: 104
  year: 2010
  end-page: 108
  ident: CR34
  article-title: A comparison of multi-segment foot kinematics during level overground and treadmill walking
  publication-title: Gait Posture.
  doi: 10.1016/j.gaitpost.2009.09.007
– volume: 128
  start-page: 604
  year: 2006
  end-page: 609
  ident: CR3
  article-title: Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2206199
– ident: CR11
– volume: 8
  start-page: 135
  year: 1999
  end-page: 160
  ident: CR4
  article-title: Measuring agreement in method comparison studies
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/096228029900800204
– volume: 55
  start-page: 1897
  year: 2008
  end-page: 1906
  ident: CR5
  article-title: Method for determining kinematic parameters of the in vivo thumb carpometacarpal joint
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.919854
– volume: 68
  start-page: 1815
  year: 1988
  end-page: 1821
  ident: CR25
  article-title: Biomechanics of the foot and ankle under static conditions
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/68.12.1815
– volume: 110
  start-page: 364
  year: 1988
  end-page: 373
  ident: CR33
  article-title: The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints–part I: kinematics
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3108455
– volume: 24
  start-page: 2108
  year: 2016
  end-page: 2115
  ident: CR35
  article-title: Bone shape difference between control and osteochondral defect groups of the ankle joint
  publication-title: Osteoar. Cartil.
  doi: 10.1016/j.joca.2016.07.015
– volume: 20
  start-page: 429
  year: 1987
  end-page: 442
  ident: CR7
  article-title: A biomechanical analysis of the talocalcaneal joint–in vitro
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(87)90050-9
– start-page: 194
  year: 1989
  end-page: 229
  ident: CR8
  publication-title: Analysis of Two or more Samples of Vectoral or Axial Data. Statistical Analysis of Sphereical Data
– volume: 49
  start-page: 136
  year: 2016
  end-page: 143
  ident: CR23
  article-title: Predicting tibiotalar and subtalar joint angles from skin-marker data with dual-fluoroscopy as a reference standard
  publication-title: Gait Posture.
  doi: 10.1016/j.gaitpost.2016.06.031
– volume: 38
  start-page: 107
  year: 2005
  ident: 1874_CR31
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.03.009
– volume: 8
  start-page: 135
  year: 1999
  ident: 1874_CR4
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/096228029900800204
– start-page: 194
  volume-title: Analysis of Two or more Samples of Vectoral or Axial Data. Statistical Analysis of Sphereical Data
  year: 1989
  ident: 1874_CR8
– volume: 32
  start-page: 585
  year: 1999
  ident: 1874_CR13
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(99)00022-6
– volume: 138
  start-page: 091006
  issue: 9
  year: 2016
  ident: 1874_CR29
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4034263
– ident: 1874_CR11
– volume: 34
  start-page: 805
  year: 2001
  ident: 1874_CR14
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00031-8
– volume: 29
  start-page: 1066
  year: 2016
  ident: 1874_CR24
  publication-title: Clin. Anat.
  doi: 10.1002/ca.22785
– volume: 42
  start-page: 146
  year: 2009
  ident: 1874_CR15
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.10.010
– volume: 128
  start-page: 596
  year: 2006
  ident: 1874_CR16
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2205866
– volume: 45
  start-page: 1103
  year: 2012
  ident: 1874_CR26
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.01.011
– volume: 49
  start-page: 136
  year: 2016
  ident: 1874_CR23
  publication-title: Gait Posture.
  doi: 10.1016/j.gaitpost.2016.06.031
– volume: 295
  start-page: 1152
  year: 2006
  ident: 1874_CR27
  publication-title: JAMA.
  doi: 10.1001/jama.295.10.1152
– volume: 55
  start-page: 1897
  year: 2008
  ident: 1874_CR5
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.919854
– volume: 20
  start-page: 429
  year: 1987
  ident: 1874_CR7
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(87)90050-9
– ident: 1874_CR22
  doi: 10.1123/jab.2015-0324
– volume: 31
  start-page: 104
  year: 2010
  ident: 1874_CR34
  publication-title: Gait Posture.
  doi: 10.1016/j.gaitpost.2009.09.007
– volume: 27
  start-page: 1477
  year: 1994
  ident: 1874_CR36
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)90197-X
– volume: 110
  start-page: 364
  year: 1988
  ident: 1874_CR33
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3108455
– volume: 8
  start-page: 383
  year: 1990
  ident: 1874_CR12
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100080310
– volume-title: The Joints of the Ankle
  year: 1976
  ident: 1874_CR9
– volume: 24
  start-page: 2108
  year: 2016
  ident: 1874_CR35
  publication-title: Osteoar. Cartil.
  doi: 10.1016/j.joca.2016.07.015
– volume: 80
  start-page: 397
  year: 1941
  ident: 1874_CR19
  publication-title: Anat. Record.
  doi: 10.1002/ar.1090800402
– volume: 17
  start-page: 28
  year: 1996
  ident: 1874_CR30
  publication-title: Foot Ankle Int.
  doi: 10.1177/107110079601700106
– volume: 38
  start-page: 269
  year: 2010
  ident: 1874_CR1
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-009-9852-5
– volume: 11
  start-page: 129
  issue: 97
  year: 1969
  ident: 1874_CR10
  publication-title: Bull. Prosthet. Res.
– volume: 40
  start-page: 3412
  year: 2007
  ident: 1874_CR21
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2007.05.019
– volume: 28
  start-page: 323
  year: 2007
  ident: 1874_CR32
  publication-title: Foot Ankle Int.
  doi: 10.3113/FAI.2007.0323
– volume: 38
  start-page: 621
  year: 2005
  ident: 1874_CR28
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.03.031
– volume: 128
  start-page: 604
  year: 2006
  ident: 1874_CR3
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2206199
– volume: 134
  start-page: 011005
  year: 2012
  ident: 1874_CR18
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4005694
– volume: 3
  start-page: 65
  year: 1993
  ident: 1874_CR17
  publication-title: Foot
  doi: 10.1016/0958-2592(93)90064-A
– volume: 41
  start-page: 1390
  year: 2008
  ident: 1874_CR2
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2008.02.020
– volume: 68
  start-page: 1815
  year: 1988
  ident: 1874_CR25
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/68.12.1815
– volume: 54
  start-page: 1940
  year: 2007
  ident: 1874_CR6
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2007.901024
– volume: 8
  start-page: 111
  year: 1998
  ident: 1874_CR20
  publication-title: Foot
  doi: 10.1016/S0958-2592(98)90042-6
– volume: 41
  start-page: 888
  year: 2015
  ident: 1874_CR37
  publication-title: Gait Posture.
  doi: 10.1016/j.gaitpost.2015.03.008
SSID ssj0011835
Score 2.2904172
Snippet Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2109
SubjectTerms Anatomy
Ankle
Axes (reference lines)
Axes of rotation
Biochemistry
Biological and Medical Physics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Classical Mechanics
Computed tomography
Fluoroscopy
Image reconstruction
Inverse kinematics
Kinematics
Knee
Mathematical models
Morphology
Predictions
Talus
Walking
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBddC2N7GG23dVm74sGeNgyJP5L48da1lJYrY9xB34KTOCxQktJLYc_7yyc5H71bt8HeYmzLSSTLsn-yBPABlZ6xsQq5MqnjCpc8nkc25KWwidXSicISoju_is-X6uJaXw_3uFejt_sISXpNvXbZjSiRVqU8ctw8gR2NW3fy41qK2QQdoIz2aQsM7otMrEYo808kNhejRxbmY0fJ39BSvwid7cKLwXpks57de7Dlmn14vhZTcB-ezge0_CX8RK1AxyzcJ5mv6oLNfrgVayv2re0RePYZF7GS4cPC4haXzVv87f6gnX1p2VXbsf7QwbGvd0TWCykRWNR5jTSoj21KhgP1hYu2bjp2icP7ULCrV7A8O12cnPMh5wIvVBJ2PBWVccisnADcyhSyVFLaVJlKaqeUFomxKSW7soXOKVt1HLmqwkIqnSpVKV_DdtM27g0wgbaJjqULY2eUs6E1iY6VVbjHcpVWKoBw_PlZMQQkp7wYN9lDKGXiV4b8yohfmQng49Tlto_G8a_GRyNHs2FirjK0V6OIcgJEAbyfqnFKEU5iG9feU5sI66VI0wAOegGYRhMpmnRRgr2TDdGYGlC47s2apv7uw3brBG0zIwL4NArR2mv97SPe_lfrQ3gmSLq9D9wRbHd39-4dGk1dfuwnyS_lYw1n
  priority: 102
  providerName: Springer Nature
Title Subject-Specific Axes of Rotation Based on Talar Morphology Do Not Improve Predictions of Tibiotalar and Subtalar Joint Kinematics
URI https://link.springer.com/article/10.1007/s10439-017-1874-9
https://www.ncbi.nlm.nih.gov/pubmed/28639171
https://www.proquest.com/docview/1931135261
https://www.proquest.com/docview/1912613288
https://pubmed.ncbi.nlm.nih.gov/PMC5709192
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJiF4QDC-AmMyEk8gi8Sxk_gJddBu2tRqmlqpPEVO4miRUDzWTOKZv5y7fG1lYi9tU38lvfP5fOf-fgAf0ehpE0mfS51YLnHJ41lgfF4IExsVWpEbyujOF9HxSp6s1boPuG36Y5WDTWwNdeFyipF_QUcjCAjMPfh6-YsTaxRlV3sKjYewS9BlpNXxetxwoe_cEWz6GrdIOpJDVrP76xzdF9loYqXjentduuNs3j0z-U_itF2PZs_gae9Iskkn-efwwNZ78OQWvOAePJr3ifMX8AcNBEVceMs3X1Y5m_y2G-ZKdu66ZDw7xPWsYPhhaXC3y-YOJdDG3Nl3xxauYV38wbKzK-q21VfqYFllFfZBbUxdMByouzhxVd2wUxy-RYXdvITVbLr8dsx7-gWey9hveCJKbVFuGeVyS52HhQxDk0hdhspKqUSsTUK8VyZXGRFXR4EtS7xIQisLWYSvYKd2tX0DTKCboqLQ-pHV0hrf6FhF0kjcbtlSSemBP_z4ad5jkxNFxs_0BlWZ5JWivFKSV6o9-DQ2ueyAOe6rvD9INO3n6Ca90SgPPozFOLsoZWJq666pToDloUgSD153CjCOJhL07oIYW8dbqjFWIOTu7ZK6umgRvFWMbpoWHnwelOjWbf3vId7e_xDv4LEgdW7Pv-3DTnN1bd-jw9RkB-2swNdkdnQAu5OjH6dTfD-cLs7O8duVmPwFAZ4VuQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9ICivlAJGggvIIrGdhw8IFcqy7XZXCG2l3lIncUQklJRuKui1P4jfyExe7VLRW2-J_Eoyb3_ODMArVHraBMrlSkeWKzR5PPGMyzNhQuNLK1JDiO50Foz31e6Bf7ACf_p_YehYZa8TG0WdVSntkb9DR8PzKJm79-HoJ6eqUYSu9iU0WraY2NNfGLIt3u9sI31fCzH6PP805l1VAZ6q0K15JHJt8XESgihzncpMSWkipXPpW6V8EWoTUTknk_oJ1WMOPJvneBNJqzKVSZz3BtzEQZqCvWj0ZUAtUDzaigkaQzIdqB5FbX_Vo-9ANoGq4HG9bAcvObeXz2j-A9Q29m90D-52jivbajntPqzYch3WLqQzXIdb0w6ofwBnqJBoh4c39e3zImVbv-2CVTn7VrXgP_uI9jNjeDE3GF2zaYUUb_b42XbFZlXN2v0Oy74e07SNfNAE8yIpcA4aY8qM4ULtzW5VlDWb4PJNFtrFQ9i_FsI8gtWyKu0TYALdIj-Q1g2sVta4Rod-oIzC8M7mvlIOuP3Hj9MuFzqV5PgRn2dxJnrFSK-Y6BVrB94MQ47aRCBXdd7sKRp3OmERn3OwAy-HZpRmgmhMaasT6uNhuxRR5MDjlgGG1USE3qQX4uhwiTWGDpQpfLmlLL43GcP9EN1CLRx42zPRhcf630tsXP0SL-D2eD7di_d2ZpOncEcQazdn7zZhtT4-sc_QWauT542EMDi8bpH8C9cgTLY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dT9RAcIJHQvTBKH5VUddEXzQb2u32Yx-IAY8LcN7lQo6Et7Jtt7GJaZErUV_5Wfw6ZvoFJ5E33trsV7vzvTM7A_ARmZ7SvrS5VKHhEkUejx1t81ToQHuuEYkmj-5k6u8dyYNj73gFLru7MBRW2fHEmlGnZUJn5JuoaDgOJXN3NrM2LGI2HH09_cWpghR5WrtyGg2KjM3f32i-Lbb2hwjrT0KMduff9nhbYYAnMrArHopMGfy0mNyVmUrcVLquDqXKXM9I6YlA6ZBKO-nEi6k2s--YLMOX0DUylamL8z6A1YCsogGs7uxOZ4e9DwOJpamfoNBAU77sfKrNxT3aFZIQVBOPq2WpeEvVvR2x-Y_btpaGoyfwuFVj2XaDd09hxRTr8OhGcsN1WJu0bvtncIHsic57eF3tPssTtv3HLFiZscOyCQVgOyhNU4YPc422NpuUCP_6xJ8NSzYtK9acfhg2O6Npa2qhCeZ5nOMcNEYXKcOFmpeDMi8qNsbl65y0i-dwdC-geQGDoizMK2AClSTPd43tGyWNtrUKPF9qicaeyTwpLbC7zY-SNjM6Fej4GV3ndCZ4RQiviOAVKQs-90NOm7Qgd3Xe6CAatRxiEV3jswUf-makbXLY6MKU59THwXZXhKEFLxsE6FcTIeqWToCjgyXU6DtQ3vDlliL_UecP9wJUEpWw4EuHRDc-638_8frun3gPa0iO0ff96fgNPBSE2XUg3gYMqrNz8xY1typ-15IIg5P7psorIa9SSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Specific+Axes+of+Rotation+Based+on+Talar+Morphology+Do+Not+Improve+Predictions+of+Tibiotalar+and+Subtalar+Joint+Kinematics&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Nichols%2C+Jennifer+A&rft.au=Roach%2C+Koren+E&rft.au=Fiorentino%2C+Niccolo+M&rft.au=Anderson%2C+Andrew+E&rft.date=2017-09-01&rft.eissn=1573-9686&rft.volume=45&rft.issue=9&rft.spage=2109&rft_id=info:doi/10.1007%2Fs10439-017-1874-9&rft_id=info%3Apmid%2F28639171&rft.externalDocID=28639171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon