Subject-Specific Axes of Rotation Based on Talar Morphology Do Not Improve Predictions of Tibiotalar and Subtalar Joint Kinematics
Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and su...
Saved in:
Published in | Annals of biomedical engineering Vol. 45; no. 9; pp. 2109 - 2121 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured
in vivo
by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject’s talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9° ± 4.3° and 24.4° ± 5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics. |
---|---|
AbstractList | Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured in vivo by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject's talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9° ± 4.3° and 24.4° ± 5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics. Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured in vivo by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject's talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9° ± 4.3° and 24.4° ± 5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics.Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured in vivo by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject's talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9° ± 4.3° and 24.4° ± 5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics. Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured in vivo by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject's talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9° ± 4.3° and 24.4° ± 5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics. Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured in vivo by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject’s talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9° ± 4.3° and 24.4° ± 5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics. Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the tibiotalar and subtalar joints of the ankle. The objective of this study was twofold. First, we compared the axes of rotation between generic and subject-specific ankle models for ten control subjects. Second, we quantified the accuracy of generic and subject-specific models for predicting tibiotalar and subtalar joint motion during level walking using inverse kinematics. Here, tibiotalar and subtalar joint kinematics measured in vivo by dual-fluoroscopy served as the reference standard. The generic model was based on a cadaver study, while the subject-specific models were derived from each subject's talus reconstructed from computed tomography images. The subject-specific and generic axes of rotation were significantly different. The average angle between the modeled axes was 12.9°±4.3° and 24.4°±5.9° at the tibiotalar and subtalar joints, respectively. However, predictions from both models did not agree well with dynamic dual-fluoroscopy data, where errors ranged from 1.0° to 8.9° and 0.6° to 7.6° for the generic and subject-specific models, respectively. Our results suggest that methods that rely on talar morphology to define subject-specific axes may be inadequate for accurately predicting tibiotalar and subtalar joint kinematics. |
Author | Nichols, Jennifer A. Roach, Koren E. Anderson, Andrew E. Fiorentino, Niccolo M. |
AuthorAffiliation | 1 Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA 4 Scientific Computing and Imaging Institute, 72 S Central Campus Drive, Room 3750, Salt Lake City, UT 84112, USA 3 Department of Physical Therapy, University of Utah, 520 Wakara Way, Suite 240 Salt Lake City, UT 84108, USA 2 Department of Bioengineering, University of Utah, James LeVoy Sorenson Molecular Biotechnology Building, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT 84112 USA |
AuthorAffiliation_xml | – name: 4 Scientific Computing and Imaging Institute, 72 S Central Campus Drive, Room 3750, Salt Lake City, UT 84112, USA – name: 3 Department of Physical Therapy, University of Utah, 520 Wakara Way, Suite 240 Salt Lake City, UT 84108, USA – name: 1 Department of Orthopaedics, University of Utah, 590 Wakara Way, Salt Lake City, UT, 84108, USA – name: 2 Department of Bioengineering, University of Utah, James LeVoy Sorenson Molecular Biotechnology Building, 36 S. Wasatch Drive, Rm. 3100, Salt Lake City, UT 84112 USA |
Author_xml | – sequence: 1 givenname: Jennifer A. surname: Nichols fullname: Nichols, Jennifer A. organization: Department of Orthopaedics, Harold K. Dunn Orthopaedic Research Laboratory, University of Utah – sequence: 2 givenname: Koren E. surname: Roach fullname: Roach, Koren E. organization: Department of Orthopaedics, Harold K. Dunn Orthopaedic Research Laboratory, University of Utah, Department of Bioengineering, University of Utah – sequence: 3 givenname: Niccolo M. surname: Fiorentino fullname: Fiorentino, Niccolo M. organization: Department of Orthopaedics, Harold K. Dunn Orthopaedic Research Laboratory, University of Utah – sequence: 4 givenname: Andrew E. surname: Anderson fullname: Anderson, Andrew E. email: andrew.anderson@hsc.utah.edu organization: Department of Orthopaedics, Harold K. Dunn Orthopaedic Research Laboratory, University of Utah, Department of Bioengineering, University of Utah, Department of Physical Therapy and Athletic Training, University of Utah, Scientific Computing and Imaging Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28639171$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1TAQtFARfX3wA7ggS1y4BLyxk9gXpLZQKJQP0cfZchzn1U-JHeykaq_8chzSolIJTt7VzsyOtXOA9px3BqGnQF4CIdWrCIRRkRGoMuAVy8QDtIKiopkoebmHVoQIkpWiZPvoIMYdIQCcFo_Qfs5LKqCCFfp5PtU7o8fsfDDatlbjwysTsW_xNz-q0XqHj1Q0DU7FRnUq4E8-DBe-89tr_Mbjz37Ep_0Q_KXBX4NprJ45vwU2trZJY-Yo1-C0aGk-eOtG_NE606cFOj5GD1vVRfPk5l2j7ydvN8fvs7Mv706PD88yzSoyZjxvhQFFapbTVGraMEoVZ6KlhWGsyCuhOIWSK13UjBFegmnb1HBqWMMaukavF91hqnvTaOPGoDo5BNurcC29svLvibMXcusvZVERASJPAi9uBIL_MZk4yt5GbbpOOeOnKEFAXgLNOU_Q5_egOz8Fl76XUBSAFjNyjZ7ddfTHyu15EqBaADr4GINppbbLVZJB20kgcg6CXIIgUxDkHAQpEhPuMW_F_8fJF05MWLc14Y7pf5J-AbjdxfE |
CitedBy_id | crossref_primary_10_1080_10255842_2020_1714231 crossref_primary_10_1016_j_clinbiomech_2023_106032 crossref_primary_10_1016_j_compbiomed_2021_104436 crossref_primary_10_1155_2023_2763099 crossref_primary_10_1007_s11517_023_03010_x crossref_primary_10_3390_ijerph18105494 crossref_primary_10_1007_s42235_023_00368_4 crossref_primary_10_1016_j_jbiomech_2023_111451 crossref_primary_10_1038_s41598_020_57912_z crossref_primary_10_1016_j_jbiomech_2021_110344 crossref_primary_10_1038_s41598_024_80716_4 crossref_primary_10_1155_2022_1248990 crossref_primary_10_1177_10711007231213361 |
Cites_doi | 10.1115/1.4034263 10.1016/0958-2592(93)90064-A 10.1016/j.jbiomech.2007.05.019 10.1001/jama.295.10.1152 10.1115/1.4005694 10.1115/1.2205866 10.1016/j.jbiomech.2012.01.011 10.1002/jor.1100080310 10.1016/j.jbiomech.2004.03.031 10.3113/FAI.2007.0323 10.1016/j.jbiomech.2008.10.010 10.1016/j.gaitpost.2015.03.008 10.1016/S0021-9290(99)00022-6 10.1016/S0021-9290(01)00031-8 10.1002/ca.22785 10.1016/0021-9290(94)90197-X 10.1016/j.jbiomech.2004.03.009 10.1177/107110079601700106 10.1007/s10439-009-9852-5 10.1109/TBME.2007.901024 10.1016/S0958-2592(98)90042-6 10.1016/j.jbiomech.2008.02.020 10.1002/ar.1090800402 10.1016/j.gaitpost.2009.09.007 10.1115/1.2206199 10.1177/096228029900800204 10.1109/TBME.2008.919854 10.1093/ptj/68.12.1815 10.1115/1.3108455 10.1016/j.joca.2016.07.015 10.1016/0021-9290(87)90050-9 10.1016/j.gaitpost.2016.06.031 10.1123/jab.2015-0324 |
ContentType | Journal Article |
Copyright | Biomedical Engineering Society 2017 Annals of Biomedical Engineering is a copyright of Springer, 2017. |
Copyright_xml | – notice: Biomedical Engineering Society 2017 – notice: Annals of Biomedical Engineering is a copyright of Springer, 2017. |
DBID | AAYXX CITATION NPM 3V. 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7X7 7XB 88E 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K9. KR7 L6V L7M LK8 L~C L~D M0S M1P M7P M7S P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM |
DOI | 10.1007/s10439-017-1874-9 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering |
EISSN | 1573-9686 |
EndPage | 2121 |
ExternalDocumentID | PMC5709192 28639171 10_1007_s10439_017_1874_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases grantid: R21-AR063844; F32-AR067075 funderid: http://dx.doi.org/10.13039/100000069 – fundername: National Center for Research Resources grantid: S10-RR026565 funderid: http://dx.doi.org/10.13039/100000097 – fundername: LS-Peery Foundation – fundername: Orthopaedic Research and Education Foundation funderid: http://dx.doi.org/10.13039/100001279 – fundername: American Orthopaedic Foot and Ankle Society funderid: http://dx.doi.org/10.13039/100001460 – fundername: NIAMS NIH HHS grantid: R21 AR069773 – fundername: NIAMS NIH HHS grantid: R21 AR063844 – fundername: NCRR NIH HHS grantid: S10 RR026565 – fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases grantid: R21-AR063844 – fundername: National Institute of Arthritis and Musculoskeletal and Skin Diseases grantid: F32-AR067075 – fundername: National Center for Research Resources grantid: S10-RR026565 |
GroupedDBID | --- -4W -56 -5G -BR -DZ -EM -Y2 -~C -~X .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6J9 6NX 78A 7X7 85S 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L6V L7B LAK LK8 LLZTM M1P M4Y M7P M7S MA- MK~ ML~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 PF0 PQQKQ PROAC PSQYO PT4 PT5 PTHSS Q2X QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UKR UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8N Z8O Z8R Z8T Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ZY4 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ NPM PJZUB PPXIY PQGLB 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 PKEHL PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c470t-82f9e1a0b4232f9c3d433a849f35e445279a83168ac5b440861effac583e4d4d3 |
IEDL.DBID | 7X7 |
ISSN | 0090-6964 1573-9686 |
IngestDate | Thu Aug 21 17:52:30 EDT 2025 Tue Aug 05 10:40:55 EDT 2025 Fri Jul 25 19:09:18 EDT 2025 Mon Jul 21 05:57:41 EDT 2025 Thu Apr 24 23:08:20 EDT 2025 Tue Jul 01 00:38:13 EDT 2025 Fri Feb 21 02:37:47 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Ankle Biomechanics Model Gait Dynamic imaging Motion analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-82f9e1a0b4232f9c3d433a849f35e445279a83168ac5b440861effac583e4d4d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5709192 |
PMID | 28639171 |
PQID | 1931135261 |
PQPubID | 54090 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5709192 proquest_miscellaneous_1912613288 proquest_journals_1931135261 pubmed_primary_28639171 crossref_citationtrail_10_1007_s10439_017_1874_9 crossref_primary_10_1007_s10439_017_1874_9 springer_journals_10_1007_s10439_017_1874_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | The Journal of the Biomedical Engineering Society |
PublicationTitle | Annals of biomedical engineering |
PublicationTitleAbbrev | Ann Biomed Eng |
PublicationTitleAlternate | Ann Biomed Eng |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Fisher, Lewis, Embleton (CR8) 1989 Lewis, Piazza, Sommer (CR16) 2006; 128 Beimers, Tuijthof, Blankevoort, Jonges, Maas, van Dijk (CR2) 2008; 41 Bey, Zauel, Brock, Tashman (CR3) 2006; 128 Leardini, O’Connor, Catani, Giannini (CR13) 1999; 32 Nichols, Roach, Fiorentino, Anderson (CR23) 2016; 49 Piaggio, Elbourne, Altman, Pocock, Evans, Group (CR27) 2006; 295 Kadaba, Ramakrishnan, Wootten (CR12) 1990; 8 Lewis, Cohen, Seisler, Kirby, Sheehan, Piazza (CR15) 2009; 42 CR11 Wang, Roach, Kapron, Fiorentino, Saltzman, Singer, Anderson (CR37) 2015; 41 Isman, Inman (CR10) 1969; 11 Reinbolt, Schutte, Fregly, Koh, Haftka, George, Mitchell (CR28) 2005; 38 Chang, Pollard (CR5) 2008; 55 Arnold, Ward, Lieber, Delp (CR1) 2010; 38 Inman (CR9) 1976 Lunberg, Svensson (CR17) 1993; 3 Maas, Ellis, Ateshian, Weiss (CR18) 2012; 134 Nozaki, Watanabe, Katayose (CR24) 2016; 29 Sheehan, Seisler, Siegel (CR32) 2007; 28 Siegler, Chen, Schneck (CR33) 1988; 110 Engsberg (CR7) 1987; 20 Leardini, Stagni, O’Connor (CR14) 2001; 34 Parr, Chatterjee, Soligo (CR26) 2012; 45 Nester, Jones, Liu, Howard, Lundberg, Arndt, Lundgren, Stacoff, Wolf (CR21) 2007; 40 Delp, Anderson, Arnold, Loan, Habib, John, Guendelman, Thelen (CR6) 2007; 54 Schwartz, Rozumalski (CR31) 2005; 38 van den Bogert, Smith, Nigg (CR36) 1994; 27 Nester (CR20) 1998; 8 Bland, Altman (CR4) 1999; 8 CR22 Oatis (CR25) 1988; 68 Tulchin, Orendurff, Karol (CR34) 2010; 31 Manter (CR19) 1941; 80 Rome, Cowieson (CR30) 1996; 17 Tumer, Blankevoort, van de Giessen, Terra, de Jong, Weinans, Tuijthof, Zadpoor (CR35) 2016; 24 Roach, Wang, Kapron, Fiorentino, Saltzman, Foreman, Anderson (CR29) 2016; 138 1874_CR11 JR Engsberg (1874_CR7) 1987; 20 FT Sheehan (1874_CR32) 2007; 28 C Nester (1874_CR21) 2007; 40 K Rome (1874_CR30) 1996; 17 C Nester (1874_CR20) 1998; 8 A Lunberg (1874_CR17) 1993; 3 EM Arnold (1874_CR1) 2010; 38 KE Roach (1874_CR29) 2016; 138 B Wang (1874_CR37) 2015; 41 A Leardini (1874_CR14) 2001; 34 JA Reinbolt (1874_CR28) 2005; 38 JA Nichols (1874_CR23) 2016; 49 SA Maas (1874_CR18) 2012; 134 S Siegler (1874_CR33) 1988; 110 RE Isman (1874_CR10) 1969; 11 N Tumer (1874_CR35) 2016; 24 NI Fisher (1874_CR8) 1989 WC Parr (1874_CR26) 2012; 45 MJ Bey (1874_CR3) 2006; 128 1874_CR22 S Nozaki (1874_CR24) 2016; 29 L Beimers (1874_CR2) 2008; 41 JM Bland (1874_CR4) 1999; 8 MP Kadaba (1874_CR12) 1990; 8 MH Schwartz (1874_CR31) 2005; 38 LY Chang (1874_CR5) 2008; 55 GS Lewis (1874_CR15) 2009; 42 AJ van den Bogert (1874_CR36) 1994; 27 VT Inman (1874_CR9) 1976 CA Oatis (1874_CR25) 1988; 68 JT Manter (1874_CR19) 1941; 80 G Piaggio (1874_CR27) 2006; 295 A Leardini (1874_CR13) 1999; 32 K Tulchin (1874_CR34) 2010; 31 GS Lewis (1874_CR16) 2006; 128 SL Delp (1874_CR6) 2007; 54 |
References_xml | – volume: 138 start-page: 091006 issue: 9 year: 2016 ident: CR29 article-title: In vivo kinematics of the tibiotalar and subtalar joints in asymptomatic subjects: a high-speed dual fluoroscopy study publication-title: J. Biomech. Eng. doi: 10.1115/1.4034263 – volume: 3 start-page: 65 year: 1993 end-page: 70 ident: CR17 article-title: The axes of rotation of the talocalcaneal and talonavicular joints publication-title: Foot doi: 10.1016/0958-2592(93)90064-A – ident: CR22 – volume: 11 start-page: 129 issue: 97 year: 1969 ident: CR10 article-title: Anthropometric studies of the human foot and ankle publication-title: Bull. Prosthet. Res. – volume: 40 start-page: 3412 year: 2007 end-page: 3423 ident: CR21 article-title: Foot kinematics during walking measured using bone and surface mounted markers publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.05.019 – volume: 295 start-page: 1152 year: 2006 end-page: 1160 ident: CR27 article-title: Reporting of noninferiority and equivalence randomized trials: an extension of the consort statement publication-title: JAMA. doi: 10.1001/jama.295.10.1152 – volume: 134 start-page: 011005 year: 2012 ident: CR18 article-title: Febio: finite elements for biomechanics publication-title: J. Biomech. Eng. doi: 10.1115/1.4005694 – volume: 128 start-page: 596 year: 2006 end-page: 603 ident: CR16 article-title: In vitro assessment of a motion-based optimization method for locating the talocrural and subtalar joint axes publication-title: J. Biomech. Eng. doi: 10.1115/1.2205866 – volume: 45 start-page: 1103 year: 2012 end-page: 1107 ident: CR26 article-title: Calculating the axes of rotation for the subtalar and talocrural joints using 3d bone reconstructions publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.01.011 – volume: 8 start-page: 383 year: 1990 end-page: 392 ident: CR12 article-title: Measurement of lower extremity kinematics during level walking publication-title: J. Orthop. Res. doi: 10.1002/jor.1100080310 – volume: 38 start-page: 621 year: 2005 end-page: 626 ident: CR28 article-title: Determination of patient-specific multi-joint kinematic models through two-level optimization publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.03.031 – volume: 28 start-page: 323 year: 2007 end-page: 335 ident: CR32 article-title: In vivo talocrural and subtalar kinematics: a non-invasive 3d dynamic mri study publication-title: Foot Ankle Int. doi: 10.3113/FAI.2007.0323 – volume: 42 start-page: 146 year: 2009 end-page: 151 ident: CR15 article-title: In vivo tests of an improved method for functional location of the subtalar joint axis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.10.010 – volume: 41 start-page: 888 year: 2015 end-page: 893 ident: CR37 article-title: Accuracy and feasibility of high-speed dual fluoroscopy and model-based tracking to measure in vivo ankle arthrokinematics publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2015.03.008 – volume: 32 start-page: 585 year: 1999 end-page: 591 ident: CR13 article-title: A geometric model of the human ankle joint publication-title: J. Biomech. doi: 10.1016/S0021-9290(99)00022-6 – volume: 34 start-page: 805 year: 2001 end-page: 809 ident: CR14 article-title: Mobility of the subtalar joint in the intact ankle complex publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00031-8 – year: 1976 ident: CR9 publication-title: The Joints of the Ankle – volume: 29 start-page: 1066 year: 2016 end-page: 1074 ident: CR24 article-title: Three-dimensional analysis of talar trochlea morphology: implications for subject-specific kinematics of the talocrural joint publication-title: Clin. Anat. doi: 10.1002/ca.22785 – volume: 27 start-page: 1477 year: 1994 end-page: 1488 ident: CR36 article-title: In vivo determination of the anatomical axes of the ankle joint complex: an optimization approach publication-title: J. Biomech. doi: 10.1016/0021-9290(94)90197-X – volume: 38 start-page: 107 year: 2005 end-page: 116 ident: CR31 article-title: A new method for estimating joint parameters from motion data publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.03.009 – volume: 17 start-page: 28 year: 1996 end-page: 32 ident: CR30 article-title: A reliability study of the universal goniometer, fluid goniometer, and electrogoniometer for the measurement of ankle dorsiflexion publication-title: Foot Ankle Int. doi: 10.1177/107110079601700106 – volume: 38 start-page: 269 year: 2010 end-page: 279 ident: CR1 article-title: A model of the lower limb for analysis of human movement publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-009-9852-5 – volume: 54 start-page: 1940 year: 2007 end-page: 1950 ident: CR6 article-title: Opensim: open-source software to create and analyze dynamic simulations of movement publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.901024 – volume: 8 start-page: 111 year: 1998 end-page: 118 ident: CR20 article-title: Review of literature on the axis of rotation at the subtalar joint publication-title: Foot doi: 10.1016/S0958-2592(98)90042-6 – volume: 41 start-page: 1390 year: 2008 end-page: 1397 ident: CR2 article-title: In-vivo range of motion of the subtalar joint using computed tomography publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.02.020 – volume: 80 start-page: 397 year: 1941 end-page: 410 ident: CR19 article-title: Movements of the subtalar and transverse tarsal joints publication-title: Anat. Record. doi: 10.1002/ar.1090800402 – volume: 31 start-page: 104 year: 2010 end-page: 108 ident: CR34 article-title: A comparison of multi-segment foot kinematics during level overground and treadmill walking publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2009.09.007 – volume: 128 start-page: 604 year: 2006 end-page: 609 ident: CR3 article-title: Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics publication-title: J. Biomech. Eng. doi: 10.1115/1.2206199 – ident: CR11 – volume: 8 start-page: 135 year: 1999 end-page: 160 ident: CR4 article-title: Measuring agreement in method comparison studies publication-title: Stat. Methods Med. Res. doi: 10.1177/096228029900800204 – volume: 55 start-page: 1897 year: 2008 end-page: 1906 ident: CR5 article-title: Method for determining kinematic parameters of the in vivo thumb carpometacarpal joint publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.919854 – volume: 68 start-page: 1815 year: 1988 end-page: 1821 ident: CR25 article-title: Biomechanics of the foot and ankle under static conditions publication-title: Phys. Ther. doi: 10.1093/ptj/68.12.1815 – volume: 110 start-page: 364 year: 1988 end-page: 373 ident: CR33 article-title: The three-dimensional kinematics and flexibility characteristics of the human ankle and subtalar joints–part I: kinematics publication-title: J. Biomech. Eng. doi: 10.1115/1.3108455 – volume: 24 start-page: 2108 year: 2016 end-page: 2115 ident: CR35 article-title: Bone shape difference between control and osteochondral defect groups of the ankle joint publication-title: Osteoar. Cartil. doi: 10.1016/j.joca.2016.07.015 – volume: 20 start-page: 429 year: 1987 end-page: 442 ident: CR7 article-title: A biomechanical analysis of the talocalcaneal joint–in vitro publication-title: J. Biomech. doi: 10.1016/0021-9290(87)90050-9 – start-page: 194 year: 1989 end-page: 229 ident: CR8 publication-title: Analysis of Two or more Samples of Vectoral or Axial Data. Statistical Analysis of Sphereical Data – volume: 49 start-page: 136 year: 2016 end-page: 143 ident: CR23 article-title: Predicting tibiotalar and subtalar joint angles from skin-marker data with dual-fluoroscopy as a reference standard publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2016.06.031 – volume: 38 start-page: 107 year: 2005 ident: 1874_CR31 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.03.009 – volume: 8 start-page: 135 year: 1999 ident: 1874_CR4 publication-title: Stat. Methods Med. Res. doi: 10.1177/096228029900800204 – start-page: 194 volume-title: Analysis of Two or more Samples of Vectoral or Axial Data. Statistical Analysis of Sphereical Data year: 1989 ident: 1874_CR8 – volume: 32 start-page: 585 year: 1999 ident: 1874_CR13 publication-title: J. Biomech. doi: 10.1016/S0021-9290(99)00022-6 – volume: 138 start-page: 091006 issue: 9 year: 2016 ident: 1874_CR29 publication-title: J. Biomech. Eng. doi: 10.1115/1.4034263 – ident: 1874_CR11 – volume: 34 start-page: 805 year: 2001 ident: 1874_CR14 publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00031-8 – volume: 29 start-page: 1066 year: 2016 ident: 1874_CR24 publication-title: Clin. Anat. doi: 10.1002/ca.22785 – volume: 42 start-page: 146 year: 2009 ident: 1874_CR15 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.10.010 – volume: 128 start-page: 596 year: 2006 ident: 1874_CR16 publication-title: J. Biomech. Eng. doi: 10.1115/1.2205866 – volume: 45 start-page: 1103 year: 2012 ident: 1874_CR26 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.01.011 – volume: 49 start-page: 136 year: 2016 ident: 1874_CR23 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2016.06.031 – volume: 295 start-page: 1152 year: 2006 ident: 1874_CR27 publication-title: JAMA. doi: 10.1001/jama.295.10.1152 – volume: 55 start-page: 1897 year: 2008 ident: 1874_CR5 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.919854 – volume: 20 start-page: 429 year: 1987 ident: 1874_CR7 publication-title: J. Biomech. doi: 10.1016/0021-9290(87)90050-9 – ident: 1874_CR22 doi: 10.1123/jab.2015-0324 – volume: 31 start-page: 104 year: 2010 ident: 1874_CR34 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2009.09.007 – volume: 27 start-page: 1477 year: 1994 ident: 1874_CR36 publication-title: J. Biomech. doi: 10.1016/0021-9290(94)90197-X – volume: 110 start-page: 364 year: 1988 ident: 1874_CR33 publication-title: J. Biomech. Eng. doi: 10.1115/1.3108455 – volume: 8 start-page: 383 year: 1990 ident: 1874_CR12 publication-title: J. Orthop. Res. doi: 10.1002/jor.1100080310 – volume-title: The Joints of the Ankle year: 1976 ident: 1874_CR9 – volume: 24 start-page: 2108 year: 2016 ident: 1874_CR35 publication-title: Osteoar. Cartil. doi: 10.1016/j.joca.2016.07.015 – volume: 80 start-page: 397 year: 1941 ident: 1874_CR19 publication-title: Anat. Record. doi: 10.1002/ar.1090800402 – volume: 17 start-page: 28 year: 1996 ident: 1874_CR30 publication-title: Foot Ankle Int. doi: 10.1177/107110079601700106 – volume: 38 start-page: 269 year: 2010 ident: 1874_CR1 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-009-9852-5 – volume: 11 start-page: 129 issue: 97 year: 1969 ident: 1874_CR10 publication-title: Bull. Prosthet. Res. – volume: 40 start-page: 3412 year: 2007 ident: 1874_CR21 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2007.05.019 – volume: 28 start-page: 323 year: 2007 ident: 1874_CR32 publication-title: Foot Ankle Int. doi: 10.3113/FAI.2007.0323 – volume: 38 start-page: 621 year: 2005 ident: 1874_CR28 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.03.031 – volume: 128 start-page: 604 year: 2006 ident: 1874_CR3 publication-title: J. Biomech. Eng. doi: 10.1115/1.2206199 – volume: 134 start-page: 011005 year: 2012 ident: 1874_CR18 publication-title: J. Biomech. Eng. doi: 10.1115/1.4005694 – volume: 3 start-page: 65 year: 1993 ident: 1874_CR17 publication-title: Foot doi: 10.1016/0958-2592(93)90064-A – volume: 41 start-page: 1390 year: 2008 ident: 1874_CR2 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2008.02.020 – volume: 68 start-page: 1815 year: 1988 ident: 1874_CR25 publication-title: Phys. Ther. doi: 10.1093/ptj/68.12.1815 – volume: 54 start-page: 1940 year: 2007 ident: 1874_CR6 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2007.901024 – volume: 8 start-page: 111 year: 1998 ident: 1874_CR20 publication-title: Foot doi: 10.1016/S0958-2592(98)90042-6 – volume: 41 start-page: 888 year: 2015 ident: 1874_CR37 publication-title: Gait Posture. doi: 10.1016/j.gaitpost.2015.03.008 |
SSID | ssj0011835 |
Score | 2.2904172 |
Snippet | Use of subject-specific axes of rotation may improve predictions generated by kinematic models, especially for joints with complex anatomy, such as the... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2109 |
SubjectTerms | Anatomy Ankle Axes (reference lines) Axes of rotation Biochemistry Biological and Medical Physics Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Biophysics Classical Mechanics Computed tomography Fluoroscopy Image reconstruction Inverse kinematics Kinematics Knee Mathematical models Morphology Predictions Talus Walking |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBddC2N7GG23dVm74sGeNgyJP5L48da1lJYrY9xB34KTOCxQktJLYc_7yyc5H71bt8HeYmzLSSTLsn-yBPABlZ6xsQq5MqnjCpc8nkc25KWwidXSicISoju_is-X6uJaXw_3uFejt_sISXpNvXbZjSiRVqU8ctw8gR2NW3fy41qK2QQdoIz2aQsM7otMrEYo808kNhejRxbmY0fJ39BSvwid7cKLwXpks57de7Dlmn14vhZTcB-ezge0_CX8RK1AxyzcJ5mv6oLNfrgVayv2re0RePYZF7GS4cPC4haXzVv87f6gnX1p2VXbsf7QwbGvd0TWCykRWNR5jTSoj21KhgP1hYu2bjp2icP7ULCrV7A8O12cnPMh5wIvVBJ2PBWVccisnADcyhSyVFLaVJlKaqeUFomxKSW7soXOKVt1HLmqwkIqnSpVKV_DdtM27g0wgbaJjqULY2eUs6E1iY6VVbjHcpVWKoBw_PlZMQQkp7wYN9lDKGXiV4b8yohfmQng49Tlto_G8a_GRyNHs2FirjK0V6OIcgJEAbyfqnFKEU5iG9feU5sI66VI0wAOegGYRhMpmnRRgr2TDdGYGlC47s2apv7uw3brBG0zIwL4NArR2mv97SPe_lfrQ3gmSLq9D9wRbHd39-4dGk1dfuwnyS_lYw1n priority: 102 providerName: Springer Nature |
Title | Subject-Specific Axes of Rotation Based on Talar Morphology Do Not Improve Predictions of Tibiotalar and Subtalar Joint Kinematics |
URI | https://link.springer.com/article/10.1007/s10439-017-1874-9 https://www.ncbi.nlm.nih.gov/pubmed/28639171 https://www.proquest.com/docview/1931135261 https://www.proquest.com/docview/1912613288 https://pubmed.ncbi.nlm.nih.gov/PMC5709192 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJiF4QDC-AmMyEk8gi8Sxk_gJddBu2tRqmlqpPEVO4miRUDzWTOKZv5y7fG1lYi9tU38lvfP5fOf-fgAf0ehpE0mfS51YLnHJ41lgfF4IExsVWpEbyujOF9HxSp6s1boPuG36Y5WDTWwNdeFyipF_QUcjCAjMPfh6-YsTaxRlV3sKjYewS9BlpNXxetxwoe_cEWz6GrdIOpJDVrP76xzdF9loYqXjentduuNs3j0z-U_itF2PZs_gae9Iskkn-efwwNZ78OQWvOAePJr3ifMX8AcNBEVceMs3X1Y5m_y2G-ZKdu66ZDw7xPWsYPhhaXC3y-YOJdDG3Nl3xxauYV38wbKzK-q21VfqYFllFfZBbUxdMByouzhxVd2wUxy-RYXdvITVbLr8dsx7-gWey9hveCJKbVFuGeVyS52HhQxDk0hdhspKqUSsTUK8VyZXGRFXR4EtS7xIQisLWYSvYKd2tX0DTKCboqLQ-pHV0hrf6FhF0kjcbtlSSemBP_z4ad5jkxNFxs_0BlWZ5JWivFKSV6o9-DQ2ueyAOe6rvD9INO3n6Ca90SgPPozFOLsoZWJq666pToDloUgSD153CjCOJhL07oIYW8dbqjFWIOTu7ZK6umgRvFWMbpoWHnwelOjWbf3vId7e_xDv4LEgdW7Pv-3DTnN1bd-jw9RkB-2swNdkdnQAu5OjH6dTfD-cLs7O8duVmPwFAZ4VuQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9ICivlAJGggvIIrGdhw8IFcqy7XZXCG2l3lIncUQklJRuKui1P4jfyExe7VLRW2-J_Eoyb3_ODMArVHraBMrlSkeWKzR5PPGMyzNhQuNLK1JDiO50Foz31e6Bf7ACf_p_YehYZa8TG0WdVSntkb9DR8PzKJm79-HoJ6eqUYSu9iU0WraY2NNfGLIt3u9sI31fCzH6PP805l1VAZ6q0K15JHJt8XESgihzncpMSWkipXPpW6V8EWoTUTknk_oJ1WMOPJvneBNJqzKVSZz3BtzEQZqCvWj0ZUAtUDzaigkaQzIdqB5FbX_Vo-9ANoGq4HG9bAcvObeXz2j-A9Q29m90D-52jivbajntPqzYch3WLqQzXIdb0w6ofwBnqJBoh4c39e3zImVbv-2CVTn7VrXgP_uI9jNjeDE3GF2zaYUUb_b42XbFZlXN2v0Oy74e07SNfNAE8yIpcA4aY8qM4ULtzW5VlDWb4PJNFtrFQ9i_FsI8gtWyKu0TYALdIj-Q1g2sVta4Rod-oIzC8M7mvlIOuP3Hj9MuFzqV5PgRn2dxJnrFSK-Y6BVrB94MQ47aRCBXdd7sKRp3OmERn3OwAy-HZpRmgmhMaasT6uNhuxRR5MDjlgGG1USE3qQX4uhwiTWGDpQpfLmlLL43GcP9EN1CLRx42zPRhcf630tsXP0SL-D2eD7di_d2ZpOncEcQazdn7zZhtT4-sc_QWauT542EMDi8bpH8C9cgTLY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1dT9RAcIJHQvTBKH5VUddEXzQb2u32Yx-IAY8LcN7lQo6Et7Jtt7GJaZErUV_5Wfw6ZvoFJ5E33trsV7vzvTM7A_ARmZ7SvrS5VKHhEkUejx1t81ToQHuuEYkmj-5k6u8dyYNj73gFLru7MBRW2fHEmlGnZUJn5JuoaDgOJXN3NrM2LGI2HH09_cWpghR5WrtyGg2KjM3f32i-Lbb2hwjrT0KMduff9nhbYYAnMrArHopMGfy0mNyVmUrcVLquDqXKXM9I6YlA6ZBKO-nEi6k2s--YLMOX0DUylamL8z6A1YCsogGs7uxOZ4e9DwOJpamfoNBAU77sfKrNxT3aFZIQVBOPq2WpeEvVvR2x-Y_btpaGoyfwuFVj2XaDd09hxRTr8OhGcsN1WJu0bvtncIHsic57eF3tPssTtv3HLFiZscOyCQVgOyhNU4YPc422NpuUCP_6xJ8NSzYtK9acfhg2O6Npa2qhCeZ5nOMcNEYXKcOFmpeDMi8qNsbl65y0i-dwdC-geQGDoizMK2AClSTPd43tGyWNtrUKPF9qicaeyTwpLbC7zY-SNjM6Fej4GV3ndCZ4RQiviOAVKQs-90NOm7Qgd3Xe6CAatRxiEV3jswUf-makbXLY6MKU59THwXZXhKEFLxsE6FcTIeqWToCjgyXU6DtQ3vDlliL_UecP9wJUEpWw4EuHRDc-638_8frun3gPa0iO0ff96fgNPBSE2XUg3gYMqrNz8xY1typ-15IIg5P7psorIa9SSA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Subject-Specific+Axes+of+Rotation+Based+on+Talar+Morphology+Do+Not+Improve+Predictions+of+Tibiotalar+and+Subtalar+Joint+Kinematics&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Nichols%2C+Jennifer+A&rft.au=Roach%2C+Koren+E&rft.au=Fiorentino%2C+Niccolo+M&rft.au=Anderson%2C+Andrew+E&rft.date=2017-09-01&rft.eissn=1573-9686&rft.volume=45&rft.issue=9&rft.spage=2109&rft_id=info:doi/10.1007%2Fs10439-017-1874-9&rft_id=info%3Apmid%2F28639171&rft.externalDocID=28639171 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon |