The Growth Cone Cytoskeleton in Axon Outgrowth and Guidance
Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signal...
Saved in:
Published in | Cold Spring Harbor perspectives in biology Vol. 3; no. 3; p. a001800 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.03.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the "input" to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article. |
---|---|
AbstractList | Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the “input” to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article.
Axon growth and targeting require rearrangements of a neuron's microtubule and actin networks. Proteins such as Ena/VASP, cofilin, and APC coordinate these in response to signals relayed by guidance molecules. Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the "input" to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article. Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the "input" to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article.Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the "input" to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article. |
Author | Gertler, F. B. Gupton, S. L. Dent, E. W. |
AuthorAffiliation | 3 Department of Cell and Developmental Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599 1 Department of Anatomy, University of Wisconsin-Madison, Madison, Wisconsin 53706 2 The Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 |
AuthorAffiliation_xml | – name: 2 The Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 – name: 3 Department of Cell and Developmental Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599 – name: 1 Department of Anatomy, University of Wisconsin-Madison, Madison, Wisconsin 53706 |
Author_xml | – sequence: 1 givenname: E. W. surname: Dent fullname: Dent, E. W. – sequence: 2 givenname: S. L. surname: Gupton fullname: Gupton, S. L. – sequence: 3 givenname: F. B. surname: Gertler fullname: Gertler, F. B. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21106647$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1LwzAYhYMo7kN_gSC986ozH22aIghj6BQGu5nXIU3TNdoltUnV_Xtbtsn0wqv35c05z4GcETg11igArhCcIATRrXRlrRpXK-knAkLEIDwBQ5RGJISYRqdH-wCMnHuFkNKU0XMwwB2A0igZgrtVqYJ5Yz99Gcw6fjDbeuveVKW8NYE2wfSrm8vWr3caYfJg3upcGKkuwFkhKqcu93MMXh4fVrOncLGcP8-mi1BGCfQhQxLJJOkD44IURBQ06g5QJBBlkrAiwjjBGBVxTCOiMskgIlmBMpywXMSYjMH9jlu32UblUhnfiIrXjd6IZsut0Pz3i9ElX9sPTiBJU0w7wM0e0Nj3VjnPN9pJVVXCKNs6zmKGGY5Jr7w-jvrJOHxYJ0h3AtlY5xpVcKm98Nr2ybriCPK-HH5UDt-X03nJH-8B_5_rG6Y0lx4 |
CitedBy_id | crossref_primary_10_1242_dev_154187 crossref_primary_10_1523_JNEUROSCI_5808_11_2012 crossref_primary_10_1007_s12035_013_8582_8 crossref_primary_10_1038_s41564_021_00924_w crossref_primary_10_1098_rstb_2021_0324 crossref_primary_10_1523_JNEUROSCI_2645_15_2016 crossref_primary_10_1083_jcb_201509062 crossref_primary_10_1002_ange_201400653 crossref_primary_10_1083_jcb_202003091 crossref_primary_10_1146_annurev_cellbio_101512_122400 crossref_primary_10_1523_JNEUROSCI_0672_14_2014 crossref_primary_10_1016_j_mcn_2011_04_003 crossref_primary_10_1016_j_ijdevneu_2016_03_004 crossref_primary_10_1016_j_neuron_2012_03_005 crossref_primary_10_1038_nrn_2017_129 crossref_primary_10_1093_femsre_fuw021 crossref_primary_10_3389_fcell_2020_578506 crossref_primary_10_1016_j_cub_2014_06_037 crossref_primary_10_1038_s44303_024_00054_y crossref_primary_10_1016_j_neuroscience_2018_01_046 crossref_primary_10_1088_1741_2552_ace37f crossref_primary_10_7554_eLife_76189 crossref_primary_10_3390_biomedicines9091265 crossref_primary_10_1073_pnas_1607179113 crossref_primary_10_3389_fmicb_2016_00300 crossref_primary_10_1091_mbc_E21_11_0535 crossref_primary_10_1534_genetics_118_301234 crossref_primary_10_1083_jcb_201711023 crossref_primary_10_1177_2398212818818071 crossref_primary_10_1002_dneu_22463 crossref_primary_10_1021_acsomega_3c03186 crossref_primary_10_1172_JCI125771 crossref_primary_10_1016_j_ijdevneu_2013_01_005 crossref_primary_10_59973_ipil_171 crossref_primary_10_1007_s00018_021_03879_7 crossref_primary_10_1038_s41380_022_01864_5 crossref_primary_10_3389_fnmol_2024_1361764 crossref_primary_10_1038_s41596_021_00638_7 crossref_primary_10_1039_c2lc41000a crossref_primary_10_1091_mbc_E20_06_0366 crossref_primary_10_1007_s00294_015_0554_2 crossref_primary_10_1016_j_neuron_2017_06_048 crossref_primary_10_3390_cells13020188 crossref_primary_10_1152_physrev_00025_2014 crossref_primary_10_1083_jcb_202106078 crossref_primary_10_7600_jpfsm_5_131 crossref_primary_10_1016_j_devcel_2015_12_002 crossref_primary_10_1073_pnas_2404017121 crossref_primary_10_3390_cells9010230 crossref_primary_10_1155_2016_3497901 crossref_primary_10_7554_eLife_36374 crossref_primary_10_1007_s12031_013_0162_x crossref_primary_10_1021_acsomega_4c11373 crossref_primary_10_1074_jbc_M115_674846 crossref_primary_10_1002_cm_21596 crossref_primary_10_1016_j_pneurobio_2018_02_002 crossref_primary_10_1038_s41419_022_05197_7 crossref_primary_10_1016_j_celrep_2017_02_008 crossref_primary_10_1016_j_ydbio_2015_11_022 crossref_primary_10_1186_s13064_016_0068_8 crossref_primary_10_1016_j_bpj_2015_09_019 crossref_primary_10_1016_j_cell_2013_12_009 crossref_primary_10_1083_jcb_201905199 crossref_primary_10_1111_bcpt_13943 crossref_primary_10_1242_jcs_126912 crossref_primary_10_1016_j_neures_2014_07_005 crossref_primary_10_3390_ijms20092116 crossref_primary_10_1016_j_neuint_2017_09_011 crossref_primary_10_1242_dev_131516 crossref_primary_10_1016_j_bja_2017_12_033 crossref_primary_10_1002_adhm_201800289 crossref_primary_10_1083_jcb_201506110 crossref_primary_10_1080_23262133_2016_1261653 crossref_primary_10_1089_can_2023_0138 crossref_primary_10_1523_JNEUROSCI_2471_19_2020 crossref_primary_10_1016_j_neuron_2015_05_046 crossref_primary_10_1523_JNEUROSCI_0144_12_2012 crossref_primary_10_3389_fcell_2021_660349 crossref_primary_10_1146_annurev_cellbio_101512_122311 crossref_primary_10_3389_fcell_2022_1075751 crossref_primary_10_3389_fnmol_2018_00026 crossref_primary_10_1177_1535370219867296 crossref_primary_10_3389_fncel_2018_00261 crossref_primary_10_1016_j_neulet_2020_134822 crossref_primary_10_1186_1749_8104_8_17 crossref_primary_10_1242_jcs_246710 crossref_primary_10_1016_j_mcn_2022_103795 crossref_primary_10_3390_ijms242015241 crossref_primary_10_7554_eLife_50319 crossref_primary_10_3390_ijms20051172 crossref_primary_10_3389_fncel_2014_00078 crossref_primary_10_1016_j_tins_2016_04_009 crossref_primary_10_1038_s41598_018_20734_1 crossref_primary_10_1016_j_neuron_2015_10_005 crossref_primary_10_1016_j_isci_2018_05_019 crossref_primary_10_1073_pnas_1713010114 crossref_primary_10_1111_jnc_12506 crossref_primary_10_1016_j_brainresbull_2022_10_019 crossref_primary_10_1016_j_neuroscience_2015_02_042 crossref_primary_10_1016_j_semcdb_2017_08_013 crossref_primary_10_1073_pnas_2016830117 crossref_primary_10_1038_ncomms7888 crossref_primary_10_1038_s41420_022_01186_z crossref_primary_10_1016_j_celrep_2019_05_010 crossref_primary_10_1523_JNEUROSCI_2769_16_2016 crossref_primary_10_1074_jbc_M114_628644 crossref_primary_10_3390_jcm12041555 crossref_primary_10_1016_j_jchemneu_2016_05_006 crossref_primary_10_1016_j_mcn_2017_03_001 crossref_primary_10_1002_cm_21016 crossref_primary_10_1111_jnc_12503 crossref_primary_10_1242_jcs_258785 crossref_primary_10_1242_jcs_122184 crossref_primary_10_3390_biom10050668 crossref_primary_10_3390_biology10090833 crossref_primary_10_1523_JNEUROSCI_0973_14_2015 crossref_primary_10_3389_fncel_2021_661492 crossref_primary_10_1016_j_biomaterials_2023_122143 crossref_primary_10_1177_1073858411404228 crossref_primary_10_1038_ncomms6325 crossref_primary_10_14336_AD_2023_0512 crossref_primary_10_5650_jos_ess17141 crossref_primary_10_1016_j_semcdb_2022_07_004 crossref_primary_10_1242_dev_132985 crossref_primary_10_1016_j_bbrc_2012_09_076 crossref_primary_10_1016_j_mcn_2018_05_003 crossref_primary_10_1063_5_0043014 crossref_primary_10_1242_bio_059625 crossref_primary_10_1242_dev_142695 crossref_primary_10_1007_s10158_018_0212_8 crossref_primary_10_1080_23262133_2017_1288510 crossref_primary_10_1242_dev_148312 crossref_primary_10_3390_cells8101146 crossref_primary_10_3389_fncel_2018_00165 crossref_primary_10_1016_j_conb_2018_08_004 crossref_primary_10_1016_j_jtos_2021_08_011 crossref_primary_10_1016_j_neuron_2018_01_027 crossref_primary_10_1002_glia_23735 crossref_primary_10_1007_s00418_012_1036_y crossref_primary_10_3390_ijms17040581 crossref_primary_10_1002_dneu_22157 crossref_primary_10_1021_acs_molpharmaceut_3c01104 crossref_primary_10_1016_j_neuron_2012_09_018 crossref_primary_10_1016_j_ceb_2024_102358 crossref_primary_10_3390_fib4010001 crossref_primary_10_1586_eop_12_66 crossref_primary_10_1002_dneu_22390 crossref_primary_10_1038_ncomms5317 crossref_primary_10_1038_s41467_021_22770_4 crossref_primary_10_1016_j_neuron_2019_07_007 crossref_primary_10_1002_dvg_22994 crossref_primary_10_1016_j_ydbio_2018_08_015 crossref_primary_10_18632_oncotarget_20929 crossref_primary_10_1002_cm_21031 crossref_primary_10_1002_cm_21272 crossref_primary_10_1111_boc_201500077 crossref_primary_10_1242_jcs_112607 crossref_primary_10_3389_fncel_2017_00402 crossref_primary_10_1111_jnc_14837 crossref_primary_10_1016_j_bbrc_2021_02_095 crossref_primary_10_1210_en_2013_1175 crossref_primary_10_1083_jcb_201604108 crossref_primary_10_3389_fncel_2015_00417 crossref_primary_10_1002_anie_201400653 crossref_primary_10_1083_jcb_201406102 crossref_primary_10_1523_JNEUROSCI_3876_15_2016 crossref_primary_10_1111_tra_12584 crossref_primary_10_1242_dev_202544 crossref_primary_10_1515_hsz_2017_0341 crossref_primary_10_2147_DMSO_S491175 crossref_primary_10_1186_s13064_019_0134_0 crossref_primary_10_1039_C8LC00845K crossref_primary_10_1038_ncb2871 crossref_primary_10_1111_tra_12618 crossref_primary_10_1007_s12035_022_02785_8 crossref_primary_10_1159_000497471 crossref_primary_10_1007_s10571_016_0400_1 crossref_primary_10_1007_s00415_024_12724_3 crossref_primary_10_1016_j_neuron_2012_09_038 crossref_primary_10_1089_wound_2024_0074 crossref_primary_10_1016_j_devcel_2018_07_007 crossref_primary_10_1038_s41598_017_09430_8 crossref_primary_10_1007_s12264_014_1444_6 crossref_primary_10_1091_mbc_E24_12_0534 crossref_primary_10_1242_jcs_117473 crossref_primary_10_1016_j_neuroscience_2018_02_003 crossref_primary_10_15252_embj_201695266 crossref_primary_10_15252_embj_2020106798 crossref_primary_10_1242_jcs_261244 crossref_primary_10_1101_cshperspect_a027870 crossref_primary_10_3389_fncel_2018_00195 crossref_primary_10_1038_s41467_022_30116_x crossref_primary_10_1074_jbc_RA118_007318 crossref_primary_10_1038_s41380_023_01963_x crossref_primary_10_1083_jcb_201908040 crossref_primary_10_4161_sgtp_22765 crossref_primary_10_1088_1758_5090_aa90e4 crossref_primary_10_4161_cam_24803 crossref_primary_10_1016_j_nano_2014_11_001 crossref_primary_10_1146_annurev_cellbio_100818_125157 crossref_primary_10_1186_s12864_017_4124_5 crossref_primary_10_1371_journal_pone_0050421 crossref_primary_10_1016_j_cub_2015_06_020 crossref_primary_10_1113_JP270590 crossref_primary_10_1016_j_isci_2024_111333 crossref_primary_10_1038_s41598_024_77157_4 crossref_primary_10_1007_s00018_018_2858_0 crossref_primary_10_1523_JNEUROSCI_2281_17_2017 crossref_primary_10_1007_s00210_023_02435_3 crossref_primary_10_1016_j_pnpbp_2013_10_015 crossref_primary_10_1152_physiolgenomics_00080_2017 crossref_primary_10_1080_19336918_2015_1106670 crossref_primary_10_1039_D4LC00546E crossref_primary_10_3390_cells11091487 crossref_primary_10_1002_smll_202003560 crossref_primary_10_1111_jnc_12676 crossref_primary_10_1098_rstb_2015_0527 crossref_primary_10_1016_j_celrep_2018_06_115 crossref_primary_10_1016_j_semcdb_2022_06_007 crossref_primary_10_1016_j_devcel_2013_09_010 crossref_primary_10_1038_srep04961 crossref_primary_10_1016_j_cell_2021_08_030 crossref_primary_10_1007_s12035_023_03879_7 crossref_primary_10_3389_fnmol_2021_717170 crossref_primary_10_1038_s41467_021_25766_2 crossref_primary_10_1083_jcb_201510107 crossref_primary_10_3390_jdb6040024 crossref_primary_10_1002_dneu_22873 crossref_primary_10_1111_j_1471_4159_2012_07762_x crossref_primary_10_1007_s12035_021_02637_x crossref_primary_10_1016_j_cell_2024_06_022 crossref_primary_10_1111_cns_12401 crossref_primary_10_21769_BioProtoc_4158 crossref_primary_10_1002_dneu_22078 crossref_primary_10_15252_embr_201948961 crossref_primary_10_1111_ejn_15493 crossref_primary_10_3892_ijmm_2021_5051 crossref_primary_10_1186_s13041_016_0238_y crossref_primary_10_3389_fncel_2015_00333 crossref_primary_10_3390_life14091103 crossref_primary_10_1038_srep29395 crossref_primary_10_1146_annurev_bioeng_071811_150045 crossref_primary_10_3168_jdsc_2022_0369 crossref_primary_10_3390_biomedicines8090348 crossref_primary_10_1016_j_expneurol_2024_114715 crossref_primary_10_1038_nrn3302 crossref_primary_10_1016_j_devcel_2018_04_008 crossref_primary_10_3389_fncir_2023_1113023 crossref_primary_10_1016_j_biopsych_2020_04_025 crossref_primary_10_1016_j_bpj_2012_10_021 crossref_primary_10_1126_sciadv_abn0080 crossref_primary_10_1523_JNEUROSCI_2396_15_2016 crossref_primary_10_1002_hbm_26011 crossref_primary_10_1016_j_conb_2017_10_015 crossref_primary_10_1083_jcb_201902088 crossref_primary_10_1534_genetics_116_189357 crossref_primary_10_1080_19420889_2017_1405197 crossref_primary_10_3389_fcell_2021_768970 crossref_primary_10_1002_dneu_22640 crossref_primary_10_1016_j_actbio_2014_02_038 crossref_primary_10_1016_j_cell_2013_06_011 crossref_primary_10_1074_jbc_M112_369173 crossref_primary_10_1002_jnr_24688 crossref_primary_10_1007_s12035_024_04181_w crossref_primary_10_1016_j_brainres_2020_146692 crossref_primary_10_3390_biomedicines12112631 crossref_primary_10_3892_mmr_2015_4662 crossref_primary_10_1136_jmedgenet_2016_103942 crossref_primary_10_1186_s13064_018_0110_0 crossref_primary_10_1007_s10158_017_0195_x crossref_primary_10_1016_j_redox_2016_12_004 crossref_primary_10_1021_acs_nanolett_9b02756 crossref_primary_10_1038_s44318_024_00307_x crossref_primary_10_2183_pjab_95_026 crossref_primary_10_3389_fncel_2018_00300 crossref_primary_10_3390_gels8010025 crossref_primary_10_1016_j_ydbio_2020_09_009 crossref_primary_10_1002_adbi_202101325 crossref_primary_10_1016_j_ceb_2023_102214 crossref_primary_10_1016_j_cub_2013_07_034 crossref_primary_10_1017_S1431927621009867 crossref_primary_10_1074_jbc_M116_774141 crossref_primary_10_3389_fnmol_2020_599948 crossref_primary_10_1016_j_mcn_2018_03_003 crossref_primary_10_1080_19336934_2017_1327106 crossref_primary_10_1242_jcs_259234 crossref_primary_10_1002_dvdy_24406 crossref_primary_10_1523_JNEUROSCI_0661_13_2013 crossref_primary_10_1016_j_neuron_2018_04_009 crossref_primary_10_1016_j_cub_2015_03_030 crossref_primary_10_1126_sciadv_add5501 crossref_primary_10_7554_eLife_38949 crossref_primary_10_1083_jcb_201805128 crossref_primary_10_4161_bioa_26259 crossref_primary_10_1002_pro_3512 crossref_primary_10_1021_acs_nanolett_2c03171 crossref_primary_10_7554_eLife_96891 crossref_primary_10_1177_0963689718808736 crossref_primary_10_1016_j_bioadv_2023_213431 crossref_primary_10_1002_jcp_70005 crossref_primary_10_1038_s41467_021_25781_3 crossref_primary_10_1073_pnas_1522416113 crossref_primary_10_1083_jcb_201105154 crossref_primary_10_3389_fncir_2020_00005 crossref_primary_10_3389_fnmol_2022_1099554 crossref_primary_10_1073_pnas_2309955120 crossref_primary_10_1007_s12017_014_8299_5 crossref_primary_10_1038_s44318_024_00118_0 crossref_primary_10_1093_mtomcs_mfab073 crossref_primary_10_4161_sgtp_28430 crossref_primary_10_1016_j_cma_2016_07_032 crossref_primary_10_1002_dneu_20935 crossref_primary_10_1242_dev_108266 crossref_primary_10_1016_j_bbrc_2020_11_120 crossref_primary_10_1016_j_biochi_2014_07_026 crossref_primary_10_1016_j_cell_2014_05_042 crossref_primary_10_3390_jdb11010008 crossref_primary_10_1038_s41380_019_0561_7 crossref_primary_10_3389_fncel_2016_00267 crossref_primary_10_1242_jcs_115030 crossref_primary_10_1016_j_bbrc_2025_151426 crossref_primary_10_1098_rsif_2019_0505 crossref_primary_10_1111_gtc_12671 crossref_primary_10_1038_s41598_022_05224_9 crossref_primary_10_3389_fcell_2021_789438 crossref_primary_10_1016_j_bpj_2011_12_025 crossref_primary_10_1242_jcs_169094 crossref_primary_10_1523_JNEUROSCI_4603_12_2013 crossref_primary_10_1369_0022155414550691 crossref_primary_10_3390_ijms22158344 crossref_primary_10_1523_JNEUROSCI_0738_12_2012 crossref_primary_10_1038_s41380_022_01909_9 crossref_primary_10_1242_jcs_187294 crossref_primary_10_3390_cells10061525 crossref_primary_10_3389_fcell_2022_874362 crossref_primary_10_1016_j_neuron_2021_10_033 crossref_primary_10_1242_jcs_100107 crossref_primary_10_1534_genetics_115_186262 crossref_primary_10_1016_j_semcdb_2022_05_030 crossref_primary_10_3389_fncel_2019_00324 crossref_primary_10_1093_cercor_bhu037 crossref_primary_10_3389_fnmol_2016_00091 crossref_primary_10_3389_fnmol_2022_949096 crossref_primary_10_1038_s41467_019_11837_y crossref_primary_10_1016_j_ejcb_2012_05_006 crossref_primary_10_1016_j_neuron_2021_08_014 crossref_primary_10_1016_j_hcl_2015_12_001 crossref_primary_10_1073_pnas_1713625114 crossref_primary_10_1007_s10571_020_01029_4 crossref_primary_10_1016_j_ydbio_2018_12_005 crossref_primary_10_3389_fncel_2018_00221 crossref_primary_10_3390_ijms20092287 crossref_primary_10_1016_j_freeradbiomed_2020_04_027 crossref_primary_10_3389_fnmol_2021_759404 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Cold Spring Harbor Laboratory Press; all rights reserved |
Copyright_xml | – notice: Copyright © 2011 Cold Spring Harbor Laboratory Press; all rights reserved |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1101/cshperspect.a001800 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | E.W. Dent et al |
EISSN | 1943-0264 |
EndPage | a001800 |
ExternalDocumentID | PMC3039926 21106647 10_1101_cshperspect_a001800 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: GM068678 – fundername: NINDS NIH HHS grantid: NS064014 – fundername: NIGMS NIH HHS grantid: R01 GM068678 – fundername: NINDS NIH HHS grantid: R01 NS064014 |
GroupedDBID | --- 39C 4.4 53G 5VS 6J9 AAYXX ACLKE ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE KQ8 OK1 RCX RHI RPM TR2 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c470t-81c1c7706645f3f3af641c70a701bc38f4227221f55643ebc8013bf1b278da523 |
ISSN | 1943-0264 |
IngestDate | Thu Aug 21 14:07:32 EDT 2025 Thu Jul 10 21:54:57 EDT 2025 Sat May 31 02:09:30 EDT 2025 Tue Jul 01 04:02:26 EDT 2025 Thu Apr 24 22:59:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c470t-81c1c7706645f3f3af641c70a701bc38f4227221f55643ebc8013bf1b278da523 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | http://cshperspectives.cshlp.org/content/3/3/a001800.full.pdf |
PMID | 21106647 |
PQID | 858282536 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3039926 proquest_miscellaneous_858282536 pubmed_primary_21106647 crossref_citationtrail_10_1101_cshperspect_a001800 crossref_primary_10_1101_cshperspect_a001800 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-03-01 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: 2011-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cold Spring Harbor perspectives in biology |
PublicationTitleAlternate | Cold Spring Harb Perspect Biol |
PublicationYear | 2011 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
SSID | ssj0066986 |
Score | 2.5058892 |
SecondaryResourceType | review_article |
Snippet | Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | a001800 |
SubjectTerms | Actins - metabolism Animals Axons - physiology Cell Communication - physiology Cell Movement - physiology Cytoskeletal Proteins - physiology Cytoskeleton - physiology Cytoskeleton - ultrastructure Growth Cones - physiology Growth Cones - ultrastructure Humans Models, Biological Second Messenger Systems - physiology |
Title | The Growth Cone Cytoskeleton in Axon Outgrowth and Guidance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21106647 https://www.proquest.com/docview/858282536 https://pubmed.ncbi.nlm.nih.gov/PMC3039926 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELc2pkl7mdh3xzb5YW9dMscfcSOeGIKhfWoaaLxFsZ1ANZQimkjAX885cVwXKjT2klZXx7J9v9pn--53CL3PjFKSGhkJU1QRz5iJMlhJImHjOqU0GZc2Gvn7j3TvgH85FIcL16EuuqRRsb5cGVfyP1oFGejVRsneQbO-UhDAd9AvPEHD8Px3HcM-2sYRzcBa3L5oZvO_sJA0vQPj1jl8_mybo76MPSP_3E6NV_TAUDA7AauzO-GzQT2ACstmPMRgdg6zjqvJm71lT1ewE4__xN6Fpz11vvi_4_G3hbg8a1y44W48_hSH5wxJ4GjlpsaM2xvfnnM8LlfI3HzKAtiwYG4sbAJAQoKlNpDcnMm7DAJ6fjx0OF56P-TNvraeeS_Dbn9DkjyoJHeV3EcPAInUprz4-stfO6Vp1qUG9d1yNFVQyccVLVk2ZW7sT6672QZ2y_46euw2HHirR88TdK-sn6KHfQrSi2doEzCEewxhiyEcYghPa2wxhD2GMGAIDxh6jg52d_a39yKXUCPSXJImmiQ60VJCP7moWMWKKuUgIIUkidJsUnFKYVCSSggwVEulwXxhqkoUlRNTCMpeoLUamvIKYcK10EpbeiPDCaOKGmI6cl2pVFLIEaLD2OTasc3bpCcn-S1aGaEP_qXTnmzl9uJ4GPQcJkV701XU5ayd5xN7GUwFS0foZa8DX5898ID-QwPlknZ8Acu3vvxLPT3ueNfB2ssymr6-Wys30KPF3-kNWmvO2vItGLKNeteB7wolNJ89 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Growth+Cone+Cytoskeleton+in+Axon+Outgrowth+and+Guidance&rft.jtitle=Cold+Spring+Harbor+perspectives+in+biology&rft.au=Dent%2C+E.+W.&rft.au=Gupton%2C+S.+L.&rft.au=Gertler%2C+F.+B.&rft.date=2011-03-01&rft.issn=1943-0264&rft.eissn=1943-0264&rft.volume=3&rft.issue=3&rft.spage=a001800&rft.epage=a001800&rft_id=info:doi/10.1101%2Fcshperspect.a001800&rft.externalDBID=n%2Fa&rft.externalDocID=10_1101_cshperspect_a001800 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0264&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0264&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0264&client=summon |