The Growth Cone Cytoskeleton in Axon Outgrowth and Guidance

Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signal...

Full description

Saved in:
Bibliographic Details
Published inCold Spring Harbor perspectives in biology Vol. 3; no. 3; p. a001800
Main Authors Dent, E. W., Gupton, S. L., Gertler, F. B.
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.03.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the "input" to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article.
AbstractList Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the “input” to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article. Axon growth and targeting require rearrangements of a neuron's microtubule and actin networks. Proteins such as Ena/VASP, cofilin, and APC coordinate these in response to signals relayed by guidance molecules.
Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the "input" to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article.
Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the "input" to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article.Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the "input" to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article.
Author Gertler, F. B.
Gupton, S. L.
Dent, E. W.
AuthorAffiliation 3 Department of Cell and Developmental Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
1 Department of Anatomy, University of Wisconsin-Madison, Madison, Wisconsin 53706
2 The Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
AuthorAffiliation_xml – name: 2 The Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
– name: 3 Department of Cell and Developmental Biology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
– name: 1 Department of Anatomy, University of Wisconsin-Madison, Madison, Wisconsin 53706
Author_xml – sequence: 1
  givenname: E. W.
  surname: Dent
  fullname: Dent, E. W.
– sequence: 2
  givenname: S. L.
  surname: Gupton
  fullname: Gupton, S. L.
– sequence: 3
  givenname: F. B.
  surname: Gertler
  fullname: Gertler, F. B.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21106647$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1LwzAYhYMo7kN_gSC986ozH22aIghj6BQGu5nXIU3TNdoltUnV_Xtbtsn0wqv35c05z4GcETg11igArhCcIATRrXRlrRpXK-knAkLEIDwBQ5RGJISYRqdH-wCMnHuFkNKU0XMwwB2A0igZgrtVqYJ5Yz99Gcw6fjDbeuveVKW8NYE2wfSrm8vWr3caYfJg3upcGKkuwFkhKqcu93MMXh4fVrOncLGcP8-mi1BGCfQhQxLJJOkD44IURBQ06g5QJBBlkrAiwjjBGBVxTCOiMskgIlmBMpywXMSYjMH9jlu32UblUhnfiIrXjd6IZsut0Pz3i9ElX9sPTiBJU0w7wM0e0Nj3VjnPN9pJVVXCKNs6zmKGGY5Jr7w-jvrJOHxYJ0h3AtlY5xpVcKm98Nr2ybriCPK-HH5UDt-X03nJH-8B_5_rG6Y0lx4
CitedBy_id crossref_primary_10_1242_dev_154187
crossref_primary_10_1523_JNEUROSCI_5808_11_2012
crossref_primary_10_1007_s12035_013_8582_8
crossref_primary_10_1038_s41564_021_00924_w
crossref_primary_10_1098_rstb_2021_0324
crossref_primary_10_1523_JNEUROSCI_2645_15_2016
crossref_primary_10_1083_jcb_201509062
crossref_primary_10_1002_ange_201400653
crossref_primary_10_1083_jcb_202003091
crossref_primary_10_1146_annurev_cellbio_101512_122400
crossref_primary_10_1523_JNEUROSCI_0672_14_2014
crossref_primary_10_1016_j_mcn_2011_04_003
crossref_primary_10_1016_j_ijdevneu_2016_03_004
crossref_primary_10_1016_j_neuron_2012_03_005
crossref_primary_10_1038_nrn_2017_129
crossref_primary_10_1093_femsre_fuw021
crossref_primary_10_3389_fcell_2020_578506
crossref_primary_10_1016_j_cub_2014_06_037
crossref_primary_10_1038_s44303_024_00054_y
crossref_primary_10_1016_j_neuroscience_2018_01_046
crossref_primary_10_1088_1741_2552_ace37f
crossref_primary_10_7554_eLife_76189
crossref_primary_10_3390_biomedicines9091265
crossref_primary_10_1073_pnas_1607179113
crossref_primary_10_3389_fmicb_2016_00300
crossref_primary_10_1091_mbc_E21_11_0535
crossref_primary_10_1534_genetics_118_301234
crossref_primary_10_1083_jcb_201711023
crossref_primary_10_1177_2398212818818071
crossref_primary_10_1002_dneu_22463
crossref_primary_10_1021_acsomega_3c03186
crossref_primary_10_1172_JCI125771
crossref_primary_10_1016_j_ijdevneu_2013_01_005
crossref_primary_10_59973_ipil_171
crossref_primary_10_1007_s00018_021_03879_7
crossref_primary_10_1038_s41380_022_01864_5
crossref_primary_10_3389_fnmol_2024_1361764
crossref_primary_10_1038_s41596_021_00638_7
crossref_primary_10_1039_c2lc41000a
crossref_primary_10_1091_mbc_E20_06_0366
crossref_primary_10_1007_s00294_015_0554_2
crossref_primary_10_1016_j_neuron_2017_06_048
crossref_primary_10_3390_cells13020188
crossref_primary_10_1152_physrev_00025_2014
crossref_primary_10_1083_jcb_202106078
crossref_primary_10_7600_jpfsm_5_131
crossref_primary_10_1016_j_devcel_2015_12_002
crossref_primary_10_1073_pnas_2404017121
crossref_primary_10_3390_cells9010230
crossref_primary_10_1155_2016_3497901
crossref_primary_10_7554_eLife_36374
crossref_primary_10_1007_s12031_013_0162_x
crossref_primary_10_1021_acsomega_4c11373
crossref_primary_10_1074_jbc_M115_674846
crossref_primary_10_1002_cm_21596
crossref_primary_10_1016_j_pneurobio_2018_02_002
crossref_primary_10_1038_s41419_022_05197_7
crossref_primary_10_1016_j_celrep_2017_02_008
crossref_primary_10_1016_j_ydbio_2015_11_022
crossref_primary_10_1186_s13064_016_0068_8
crossref_primary_10_1016_j_bpj_2015_09_019
crossref_primary_10_1016_j_cell_2013_12_009
crossref_primary_10_1083_jcb_201905199
crossref_primary_10_1111_bcpt_13943
crossref_primary_10_1242_jcs_126912
crossref_primary_10_1016_j_neures_2014_07_005
crossref_primary_10_3390_ijms20092116
crossref_primary_10_1016_j_neuint_2017_09_011
crossref_primary_10_1242_dev_131516
crossref_primary_10_1016_j_bja_2017_12_033
crossref_primary_10_1002_adhm_201800289
crossref_primary_10_1083_jcb_201506110
crossref_primary_10_1080_23262133_2016_1261653
crossref_primary_10_1089_can_2023_0138
crossref_primary_10_1523_JNEUROSCI_2471_19_2020
crossref_primary_10_1016_j_neuron_2015_05_046
crossref_primary_10_1523_JNEUROSCI_0144_12_2012
crossref_primary_10_3389_fcell_2021_660349
crossref_primary_10_1146_annurev_cellbio_101512_122311
crossref_primary_10_3389_fcell_2022_1075751
crossref_primary_10_3389_fnmol_2018_00026
crossref_primary_10_1177_1535370219867296
crossref_primary_10_3389_fncel_2018_00261
crossref_primary_10_1016_j_neulet_2020_134822
crossref_primary_10_1186_1749_8104_8_17
crossref_primary_10_1242_jcs_246710
crossref_primary_10_1016_j_mcn_2022_103795
crossref_primary_10_3390_ijms242015241
crossref_primary_10_7554_eLife_50319
crossref_primary_10_3390_ijms20051172
crossref_primary_10_3389_fncel_2014_00078
crossref_primary_10_1016_j_tins_2016_04_009
crossref_primary_10_1038_s41598_018_20734_1
crossref_primary_10_1016_j_neuron_2015_10_005
crossref_primary_10_1016_j_isci_2018_05_019
crossref_primary_10_1073_pnas_1713010114
crossref_primary_10_1111_jnc_12506
crossref_primary_10_1016_j_brainresbull_2022_10_019
crossref_primary_10_1016_j_neuroscience_2015_02_042
crossref_primary_10_1016_j_semcdb_2017_08_013
crossref_primary_10_1073_pnas_2016830117
crossref_primary_10_1038_ncomms7888
crossref_primary_10_1038_s41420_022_01186_z
crossref_primary_10_1016_j_celrep_2019_05_010
crossref_primary_10_1523_JNEUROSCI_2769_16_2016
crossref_primary_10_1074_jbc_M114_628644
crossref_primary_10_3390_jcm12041555
crossref_primary_10_1016_j_jchemneu_2016_05_006
crossref_primary_10_1016_j_mcn_2017_03_001
crossref_primary_10_1002_cm_21016
crossref_primary_10_1111_jnc_12503
crossref_primary_10_1242_jcs_258785
crossref_primary_10_1242_jcs_122184
crossref_primary_10_3390_biom10050668
crossref_primary_10_3390_biology10090833
crossref_primary_10_1523_JNEUROSCI_0973_14_2015
crossref_primary_10_3389_fncel_2021_661492
crossref_primary_10_1016_j_biomaterials_2023_122143
crossref_primary_10_1177_1073858411404228
crossref_primary_10_1038_ncomms6325
crossref_primary_10_14336_AD_2023_0512
crossref_primary_10_5650_jos_ess17141
crossref_primary_10_1016_j_semcdb_2022_07_004
crossref_primary_10_1242_dev_132985
crossref_primary_10_1016_j_bbrc_2012_09_076
crossref_primary_10_1016_j_mcn_2018_05_003
crossref_primary_10_1063_5_0043014
crossref_primary_10_1242_bio_059625
crossref_primary_10_1242_dev_142695
crossref_primary_10_1007_s10158_018_0212_8
crossref_primary_10_1080_23262133_2017_1288510
crossref_primary_10_1242_dev_148312
crossref_primary_10_3390_cells8101146
crossref_primary_10_3389_fncel_2018_00165
crossref_primary_10_1016_j_conb_2018_08_004
crossref_primary_10_1016_j_jtos_2021_08_011
crossref_primary_10_1016_j_neuron_2018_01_027
crossref_primary_10_1002_glia_23735
crossref_primary_10_1007_s00418_012_1036_y
crossref_primary_10_3390_ijms17040581
crossref_primary_10_1002_dneu_22157
crossref_primary_10_1021_acs_molpharmaceut_3c01104
crossref_primary_10_1016_j_neuron_2012_09_018
crossref_primary_10_1016_j_ceb_2024_102358
crossref_primary_10_3390_fib4010001
crossref_primary_10_1586_eop_12_66
crossref_primary_10_1002_dneu_22390
crossref_primary_10_1038_ncomms5317
crossref_primary_10_1038_s41467_021_22770_4
crossref_primary_10_1016_j_neuron_2019_07_007
crossref_primary_10_1002_dvg_22994
crossref_primary_10_1016_j_ydbio_2018_08_015
crossref_primary_10_18632_oncotarget_20929
crossref_primary_10_1002_cm_21031
crossref_primary_10_1002_cm_21272
crossref_primary_10_1111_boc_201500077
crossref_primary_10_1242_jcs_112607
crossref_primary_10_3389_fncel_2017_00402
crossref_primary_10_1111_jnc_14837
crossref_primary_10_1016_j_bbrc_2021_02_095
crossref_primary_10_1210_en_2013_1175
crossref_primary_10_1083_jcb_201604108
crossref_primary_10_3389_fncel_2015_00417
crossref_primary_10_1002_anie_201400653
crossref_primary_10_1083_jcb_201406102
crossref_primary_10_1523_JNEUROSCI_3876_15_2016
crossref_primary_10_1111_tra_12584
crossref_primary_10_1242_dev_202544
crossref_primary_10_1515_hsz_2017_0341
crossref_primary_10_2147_DMSO_S491175
crossref_primary_10_1186_s13064_019_0134_0
crossref_primary_10_1039_C8LC00845K
crossref_primary_10_1038_ncb2871
crossref_primary_10_1111_tra_12618
crossref_primary_10_1007_s12035_022_02785_8
crossref_primary_10_1159_000497471
crossref_primary_10_1007_s10571_016_0400_1
crossref_primary_10_1007_s00415_024_12724_3
crossref_primary_10_1016_j_neuron_2012_09_038
crossref_primary_10_1089_wound_2024_0074
crossref_primary_10_1016_j_devcel_2018_07_007
crossref_primary_10_1038_s41598_017_09430_8
crossref_primary_10_1007_s12264_014_1444_6
crossref_primary_10_1091_mbc_E24_12_0534
crossref_primary_10_1242_jcs_117473
crossref_primary_10_1016_j_neuroscience_2018_02_003
crossref_primary_10_15252_embj_201695266
crossref_primary_10_15252_embj_2020106798
crossref_primary_10_1242_jcs_261244
crossref_primary_10_1101_cshperspect_a027870
crossref_primary_10_3389_fncel_2018_00195
crossref_primary_10_1038_s41467_022_30116_x
crossref_primary_10_1074_jbc_RA118_007318
crossref_primary_10_1038_s41380_023_01963_x
crossref_primary_10_1083_jcb_201908040
crossref_primary_10_4161_sgtp_22765
crossref_primary_10_1088_1758_5090_aa90e4
crossref_primary_10_4161_cam_24803
crossref_primary_10_1016_j_nano_2014_11_001
crossref_primary_10_1146_annurev_cellbio_100818_125157
crossref_primary_10_1186_s12864_017_4124_5
crossref_primary_10_1371_journal_pone_0050421
crossref_primary_10_1016_j_cub_2015_06_020
crossref_primary_10_1113_JP270590
crossref_primary_10_1016_j_isci_2024_111333
crossref_primary_10_1038_s41598_024_77157_4
crossref_primary_10_1007_s00018_018_2858_0
crossref_primary_10_1523_JNEUROSCI_2281_17_2017
crossref_primary_10_1007_s00210_023_02435_3
crossref_primary_10_1016_j_pnpbp_2013_10_015
crossref_primary_10_1152_physiolgenomics_00080_2017
crossref_primary_10_1080_19336918_2015_1106670
crossref_primary_10_1039_D4LC00546E
crossref_primary_10_3390_cells11091487
crossref_primary_10_1002_smll_202003560
crossref_primary_10_1111_jnc_12676
crossref_primary_10_1098_rstb_2015_0527
crossref_primary_10_1016_j_celrep_2018_06_115
crossref_primary_10_1016_j_semcdb_2022_06_007
crossref_primary_10_1016_j_devcel_2013_09_010
crossref_primary_10_1038_srep04961
crossref_primary_10_1016_j_cell_2021_08_030
crossref_primary_10_1007_s12035_023_03879_7
crossref_primary_10_3389_fnmol_2021_717170
crossref_primary_10_1038_s41467_021_25766_2
crossref_primary_10_1083_jcb_201510107
crossref_primary_10_3390_jdb6040024
crossref_primary_10_1002_dneu_22873
crossref_primary_10_1111_j_1471_4159_2012_07762_x
crossref_primary_10_1007_s12035_021_02637_x
crossref_primary_10_1016_j_cell_2024_06_022
crossref_primary_10_1111_cns_12401
crossref_primary_10_21769_BioProtoc_4158
crossref_primary_10_1002_dneu_22078
crossref_primary_10_15252_embr_201948961
crossref_primary_10_1111_ejn_15493
crossref_primary_10_3892_ijmm_2021_5051
crossref_primary_10_1186_s13041_016_0238_y
crossref_primary_10_3389_fncel_2015_00333
crossref_primary_10_3390_life14091103
crossref_primary_10_1038_srep29395
crossref_primary_10_1146_annurev_bioeng_071811_150045
crossref_primary_10_3168_jdsc_2022_0369
crossref_primary_10_3390_biomedicines8090348
crossref_primary_10_1016_j_expneurol_2024_114715
crossref_primary_10_1038_nrn3302
crossref_primary_10_1016_j_devcel_2018_04_008
crossref_primary_10_3389_fncir_2023_1113023
crossref_primary_10_1016_j_biopsych_2020_04_025
crossref_primary_10_1016_j_bpj_2012_10_021
crossref_primary_10_1126_sciadv_abn0080
crossref_primary_10_1523_JNEUROSCI_2396_15_2016
crossref_primary_10_1002_hbm_26011
crossref_primary_10_1016_j_conb_2017_10_015
crossref_primary_10_1083_jcb_201902088
crossref_primary_10_1534_genetics_116_189357
crossref_primary_10_1080_19420889_2017_1405197
crossref_primary_10_3389_fcell_2021_768970
crossref_primary_10_1002_dneu_22640
crossref_primary_10_1016_j_actbio_2014_02_038
crossref_primary_10_1016_j_cell_2013_06_011
crossref_primary_10_1074_jbc_M112_369173
crossref_primary_10_1002_jnr_24688
crossref_primary_10_1007_s12035_024_04181_w
crossref_primary_10_1016_j_brainres_2020_146692
crossref_primary_10_3390_biomedicines12112631
crossref_primary_10_3892_mmr_2015_4662
crossref_primary_10_1136_jmedgenet_2016_103942
crossref_primary_10_1186_s13064_018_0110_0
crossref_primary_10_1007_s10158_017_0195_x
crossref_primary_10_1016_j_redox_2016_12_004
crossref_primary_10_1021_acs_nanolett_9b02756
crossref_primary_10_1038_s44318_024_00307_x
crossref_primary_10_2183_pjab_95_026
crossref_primary_10_3389_fncel_2018_00300
crossref_primary_10_3390_gels8010025
crossref_primary_10_1016_j_ydbio_2020_09_009
crossref_primary_10_1002_adbi_202101325
crossref_primary_10_1016_j_ceb_2023_102214
crossref_primary_10_1016_j_cub_2013_07_034
crossref_primary_10_1017_S1431927621009867
crossref_primary_10_1074_jbc_M116_774141
crossref_primary_10_3389_fnmol_2020_599948
crossref_primary_10_1016_j_mcn_2018_03_003
crossref_primary_10_1080_19336934_2017_1327106
crossref_primary_10_1242_jcs_259234
crossref_primary_10_1002_dvdy_24406
crossref_primary_10_1523_JNEUROSCI_0661_13_2013
crossref_primary_10_1016_j_neuron_2018_04_009
crossref_primary_10_1016_j_cub_2015_03_030
crossref_primary_10_1126_sciadv_add5501
crossref_primary_10_7554_eLife_38949
crossref_primary_10_1083_jcb_201805128
crossref_primary_10_4161_bioa_26259
crossref_primary_10_1002_pro_3512
crossref_primary_10_1021_acs_nanolett_2c03171
crossref_primary_10_7554_eLife_96891
crossref_primary_10_1177_0963689718808736
crossref_primary_10_1016_j_bioadv_2023_213431
crossref_primary_10_1002_jcp_70005
crossref_primary_10_1038_s41467_021_25781_3
crossref_primary_10_1073_pnas_1522416113
crossref_primary_10_1083_jcb_201105154
crossref_primary_10_3389_fncir_2020_00005
crossref_primary_10_3389_fnmol_2022_1099554
crossref_primary_10_1073_pnas_2309955120
crossref_primary_10_1007_s12017_014_8299_5
crossref_primary_10_1038_s44318_024_00118_0
crossref_primary_10_1093_mtomcs_mfab073
crossref_primary_10_4161_sgtp_28430
crossref_primary_10_1016_j_cma_2016_07_032
crossref_primary_10_1002_dneu_20935
crossref_primary_10_1242_dev_108266
crossref_primary_10_1016_j_bbrc_2020_11_120
crossref_primary_10_1016_j_biochi_2014_07_026
crossref_primary_10_1016_j_cell_2014_05_042
crossref_primary_10_3390_jdb11010008
crossref_primary_10_1038_s41380_019_0561_7
crossref_primary_10_3389_fncel_2016_00267
crossref_primary_10_1242_jcs_115030
crossref_primary_10_1016_j_bbrc_2025_151426
crossref_primary_10_1098_rsif_2019_0505
crossref_primary_10_1111_gtc_12671
crossref_primary_10_1038_s41598_022_05224_9
crossref_primary_10_3389_fcell_2021_789438
crossref_primary_10_1016_j_bpj_2011_12_025
crossref_primary_10_1242_jcs_169094
crossref_primary_10_1523_JNEUROSCI_4603_12_2013
crossref_primary_10_1369_0022155414550691
crossref_primary_10_3390_ijms22158344
crossref_primary_10_1523_JNEUROSCI_0738_12_2012
crossref_primary_10_1038_s41380_022_01909_9
crossref_primary_10_1242_jcs_187294
crossref_primary_10_3390_cells10061525
crossref_primary_10_3389_fcell_2022_874362
crossref_primary_10_1016_j_neuron_2021_10_033
crossref_primary_10_1242_jcs_100107
crossref_primary_10_1534_genetics_115_186262
crossref_primary_10_1016_j_semcdb_2022_05_030
crossref_primary_10_3389_fncel_2019_00324
crossref_primary_10_1093_cercor_bhu037
crossref_primary_10_3389_fnmol_2016_00091
crossref_primary_10_3389_fnmol_2022_949096
crossref_primary_10_1038_s41467_019_11837_y
crossref_primary_10_1016_j_ejcb_2012_05_006
crossref_primary_10_1016_j_neuron_2021_08_014
crossref_primary_10_1016_j_hcl_2015_12_001
crossref_primary_10_1073_pnas_1713625114
crossref_primary_10_1007_s10571_020_01029_4
crossref_primary_10_1016_j_ydbio_2018_12_005
crossref_primary_10_3389_fncel_2018_00221
crossref_primary_10_3390_ijms20092287
crossref_primary_10_1016_j_freeradbiomed_2020_04_027
crossref_primary_10_3389_fnmol_2021_759404
ContentType Journal Article
Copyright Copyright © 2011 Cold Spring Harbor Laboratory Press; all rights reserved
Copyright_xml – notice: Copyright © 2011 Cold Spring Harbor Laboratory Press; all rights reserved
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1101/cshperspect.a001800
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate E.W. Dent et al
EISSN 1943-0264
EndPage a001800
ExternalDocumentID PMC3039926
21106647
10_1101_cshperspect_a001800
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: GM068678
– fundername: NINDS NIH HHS
  grantid: NS064014
– fundername: NIGMS NIH HHS
  grantid: R01 GM068678
– fundername: NINDS NIH HHS
  grantid: R01 NS064014
GroupedDBID ---
39C
4.4
53G
5VS
6J9
AAYXX
ACLKE
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
KQ8
OK1
RCX
RHI
RPM
TR2
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c470t-81c1c7706645f3f3af641c70a701bc38f4227221f55643ebc8013bf1b278da523
ISSN 1943-0264
IngestDate Thu Aug 21 14:07:32 EDT 2025
Thu Jul 10 21:54:57 EDT 2025
Sat May 31 02:09:30 EDT 2025
Tue Jul 01 04:02:26 EDT 2025
Thu Apr 24 22:59:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c470t-81c1c7706645f3f3af641c70a701bc38f4227221f55643ebc8013bf1b278da523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink http://cshperspectives.cshlp.org/content/3/3/a001800.full.pdf
PMID 21106647
PQID 858282536
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3039926
proquest_miscellaneous_858282536
pubmed_primary_21106647
crossref_citationtrail_10_1101_cshperspect_a001800
crossref_primary_10_1101_cshperspect_a001800
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-03-01
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: 2011-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cold Spring Harbor perspectives in biology
PublicationTitleAlternate Cold Spring Harb Perspect Biol
PublicationYear 2011
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
SSID ssj0066986
Score 2.5058892
SecondaryResourceType review_article
Snippet Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage a001800
SubjectTerms Actins - metabolism
Animals
Axons - physiology
Cell Communication - physiology
Cell Movement - physiology
Cytoskeletal Proteins - physiology
Cytoskeleton - physiology
Cytoskeleton - ultrastructure
Growth Cones - physiology
Growth Cones - ultrastructure
Humans
Models, Biological
Second Messenger Systems - physiology
Title The Growth Cone Cytoskeleton in Axon Outgrowth and Guidance
URI https://www.ncbi.nlm.nih.gov/pubmed/21106647
https://www.proquest.com/docview/858282536
https://pubmed.ncbi.nlm.nih.gov/PMC3039926
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELc2pkl7mdh3xzb5YW9dMscfcSOeGIKhfWoaaLxFsZ1ANZQimkjAX885cVwXKjT2klZXx7J9v9pn--53CL3PjFKSGhkJU1QRz5iJMlhJImHjOqU0GZc2Gvn7j3TvgH85FIcL16EuuqRRsb5cGVfyP1oFGejVRsneQbO-UhDAd9AvPEHD8Px3HcM-2sYRzcBa3L5oZvO_sJA0vQPj1jl8_mybo76MPSP_3E6NV_TAUDA7AauzO-GzQT2ACstmPMRgdg6zjqvJm71lT1ewE4__xN6Fpz11vvi_4_G3hbg8a1y44W48_hSH5wxJ4GjlpsaM2xvfnnM8LlfI3HzKAtiwYG4sbAJAQoKlNpDcnMm7DAJ6fjx0OF56P-TNvraeeS_Dbn9DkjyoJHeV3EcPAInUprz4-stfO6Vp1qUG9d1yNFVQyccVLVk2ZW7sT6672QZ2y_46euw2HHirR88TdK-sn6KHfQrSi2doEzCEewxhiyEcYghPa2wxhD2GMGAIDxh6jg52d_a39yKXUCPSXJImmiQ60VJCP7moWMWKKuUgIIUkidJsUnFKYVCSSggwVEulwXxhqkoUlRNTCMpeoLUamvIKYcK10EpbeiPDCaOKGmI6cl2pVFLIEaLD2OTasc3bpCcn-S1aGaEP_qXTnmzl9uJ4GPQcJkV701XU5ayd5xN7GUwFS0foZa8DX5898ID-QwPlknZ8Acu3vvxLPT3ueNfB2ssymr6-Wys30KPF3-kNWmvO2vItGLKNeteB7wolNJ89
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Growth+Cone+Cytoskeleton+in+Axon+Outgrowth+and+Guidance&rft.jtitle=Cold+Spring+Harbor+perspectives+in+biology&rft.au=Dent%2C+E.+W.&rft.au=Gupton%2C+S.+L.&rft.au=Gertler%2C+F.+B.&rft.date=2011-03-01&rft.issn=1943-0264&rft.eissn=1943-0264&rft.volume=3&rft.issue=3&rft.spage=a001800&rft.epage=a001800&rft_id=info:doi/10.1101%2Fcshperspect.a001800&rft.externalDBID=n%2Fa&rft.externalDocID=10_1101_cshperspect_a001800
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0264&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0264&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0264&client=summon