Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type

Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated transport behaviors of nanoplastics in natural soils. In this study, column experiments were conducted to investigate the effect of soil propert...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 707; p. 136065
Main Authors Wu, Xiaoli, Lyu, Xueyan, Li, Zhengyu, Gao, Bin, Zeng, Xiankui, Wu, Jichun, Sun, Yuanyuan
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated transport behaviors of nanoplastics in natural soils. In this study, column experiments were conducted to investigate the effect of soil properties, ionic strength and cation type on the transport of polystyrene nanoplastics (PSNPs) in a desert soil (DS), a black soil (BS) and a red soil (RS). The effluent recovery of PSNPs in three soils followed the order of DS (0%–96.8%) > BS (0%–87.5%) > RS (0%). The retention of PSNPs was positively correlated with Fe/Al oxides contents (DS: Fe-2.69%, Al-12.6%; BS: Fe-4.04%, Al-15.9%; RS: Fe-6.57%, Al-26.9%), whereas negatively correlated with soil pH (DS: 9.75; BS: 6.57; RS: 4.97). Soil minerals and pH were thus identified as the crucial soil properties determining transport of PSNPs, due to their coupled effects on surface charges to affect electrostatic interactions between soils and PSNPs. In addition, increasing solution ionic strength strongly inhibited the transport of PSNPs in the DS (0%–96.8%) and BS (0%–87.5%). Ca2+ (IS: 1–5 mM) was more pronounced in enhancing PSNP retention than Na+ (IS: 1–20 mM). Our findings highlight that the transport and fate of PSNPs in natural soils are highly sensitive to soil physicochemical properties, ionic strength and cation type, and reveal that nanoplastics have strong mobility ability in soils with high pH and low Fe/Al oxides contents, which may pose potential risks to the soil and groundwater environment. [Display omitted] •PSNPs retention in soils was positively correlated with Fe/Al oxides contents.•PSNPs retention in soils was negatively correlated with soil pH.•PSNPs transport decreased with increasing ionic strength in soils.•Ca2+ was more pronounced in inhibiting PSNPs transport than Na+ in soils.
AbstractList Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated transport behaviors of nanoplastics in natural soils. In this study, column experiments were conducted to investigate the effect of soil properties, ionic strength and cation type on the transport of polystyrene nanoplastics (PSNPs) in a desert soil (DS), a black soil (BS) and a red soil (RS). The effluent recovery of PSNPs in three soils followed the order of DS (0%–96.8%) > BS (0%–87.5%) > RS (0%). The retention of PSNPs was positively correlated with Fe/Al oxides contents (DS: Fe-2.69%, Al-12.6%; BS: Fe-4.04%, Al-15.9%; RS: Fe-6.57%, Al-26.9%), whereas negatively correlated with soil pH (DS: 9.75; BS: 6.57; RS: 4.97). Soil minerals and pH were thus identified as the crucial soil properties determining transport of PSNPs, due to their coupled effects on surface charges to affect electrostatic interactions between soils and PSNPs. In addition, increasing solution ionic strength strongly inhibited the transport of PSNPs in the DS (0%–96.8%) and BS (0%–87.5%). Ca2+ (IS: 1–5 mM) was more pronounced in enhancing PSNP retention than Na+ (IS: 1–20 mM). Our findings highlight that the transport and fate of PSNPs in natural soils are highly sensitive to soil physicochemical properties, ionic strength and cation type, and reveal that nanoplastics have strong mobility ability in soils with high pH and low Fe/Al oxides contents, which may pose potential risks to the soil and groundwater environment. [Display omitted] •PSNPs retention in soils was positively correlated with Fe/Al oxides contents.•PSNPs retention in soils was negatively correlated with soil pH.•PSNPs transport decreased with increasing ionic strength in soils.•Ca2+ was more pronounced in inhibiting PSNPs transport than Na+ in soils.
Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated transport behaviors of nanoplastics in natural soils. In this study, column experiments were conducted to investigate the effect of soil properties, ionic strength and cation type on the transport of polystyrene nanoplastics (PSNPs) in a desert soil (DS), a black soil (BS) and a red soil (RS). The effluent recovery of PSNPs in three soils followed the order of DS (0%-96.8%) > BS (0%-87.5%) > RS (0%). The retention of PSNPs was positively correlated with Fe/Al oxides contents (DS: Fe-2.69%, Al-12.6%; BS: Fe-4.04%, Al-15.9%; RS: Fe-6.57%, Al-26.9%), whereas negatively correlated with soil pH (DS: 9.75; BS: 6.57; RS: 4.97). Soil minerals and pH were thus identified as the crucial soil properties determining transport of PSNPs, due to their coupled effects on surface charges to affect electrostatic interactions between soils and PSNPs. In addition, increasing solution ionic strength strongly inhibited the transport of PSNPs in the DS (0%-96.8%) and BS (0%-87.5%). Ca (IS: 1-5 mM) was more pronounced in enhancing PSNP retention than Na (IS: 1-20 mM). Our findings highlight that the transport and fate of PSNPs in natural soils are highly sensitive to soil physicochemical properties, ionic strength and cation type, and reveal that nanoplastics have strong mobility ability in soils with high pH and low Fe/Al oxides contents, which may pose potential risks to the soil and groundwater environment.
Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated transport behaviors of nanoplastics in natural soils. In this study, column experiments were conducted to investigate the effect of soil properties, ionic strength and cation type on the transport of polystyrene nanoplastics (PSNPs) in a desert soil (DS), a black soil (BS) and a red soil (RS). The effluent recovery of PSNPs in three soils followed the order of DS (0%-96.8%) > BS (0%-87.5%) > RS (0%). The retention of PSNPs was positively correlated with Fe/Al oxides contents (DS: Fe-2.69%, Al-12.6%; BS: Fe-4.04%, Al-15.9%; RS: Fe-6.57%, Al-26.9%), whereas negatively correlated with soil pH (DS: 9.75; BS: 6.57; RS: 4.97). Soil minerals and pH were thus identified as the crucial soil properties determining transport of PSNPs, due to their coupled effects on surface charges to affect electrostatic interactions between soils and PSNPs. In addition, increasing solution ionic strength strongly inhibited the transport of PSNPs in the DS (0%-96.8%) and BS (0%-87.5%). Ca2+ (IS: 1-5 mM) was more pronounced in enhancing PSNP retention than Na+ (IS: 1-20 mM). Our findings highlight that the transport and fate of PSNPs in natural soils are highly sensitive to soil physicochemical properties, ionic strength and cation type, and reveal that nanoplastics have strong mobility ability in soils with high pH and low Fe/Al oxides contents, which may pose potential risks to the soil and groundwater environment.Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated transport behaviors of nanoplastics in natural soils. In this study, column experiments were conducted to investigate the effect of soil properties, ionic strength and cation type on the transport of polystyrene nanoplastics (PSNPs) in a desert soil (DS), a black soil (BS) and a red soil (RS). The effluent recovery of PSNPs in three soils followed the order of DS (0%-96.8%) > BS (0%-87.5%) > RS (0%). The retention of PSNPs was positively correlated with Fe/Al oxides contents (DS: Fe-2.69%, Al-12.6%; BS: Fe-4.04%, Al-15.9%; RS: Fe-6.57%, Al-26.9%), whereas negatively correlated with soil pH (DS: 9.75; BS: 6.57; RS: 4.97). Soil minerals and pH were thus identified as the crucial soil properties determining transport of PSNPs, due to their coupled effects on surface charges to affect electrostatic interactions between soils and PSNPs. In addition, increasing solution ionic strength strongly inhibited the transport of PSNPs in the DS (0%-96.8%) and BS (0%-87.5%). Ca2+ (IS: 1-5 mM) was more pronounced in enhancing PSNP retention than Na+ (IS: 1-20 mM). Our findings highlight that the transport and fate of PSNPs in natural soils are highly sensitive to soil physicochemical properties, ionic strength and cation type, and reveal that nanoplastics have strong mobility ability in soils with high pH and low Fe/Al oxides contents, which may pose potential risks to the soil and groundwater environment.
Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated transport behaviors of nanoplastics in natural soils. In this study, column experiments were conducted to investigate the effect of soil properties, ionic strength and cation type on the transport of polystyrene nanoplastics (PSNPs) in a desert soil (DS), a black soil (BS) and a red soil (RS). The effluent recovery of PSNPs in three soils followed the order of DS (0%–96.8%) > BS (0%–87.5%) > RS (0%). The retention of PSNPs was positively correlated with Fe/Al oxides contents (DS: Fe-2.69%, Al-12.6%; BS: Fe-4.04%, Al-15.9%; RS: Fe-6.57%, Al-26.9%), whereas negatively correlated with soil pH (DS: 9.75; BS: 6.57; RS: 4.97). Soil minerals and pH were thus identified as the crucial soil properties determining transport of PSNPs, due to their coupled effects on surface charges to affect electrostatic interactions between soils and PSNPs. In addition, increasing solution ionic strength strongly inhibited the transport of PSNPs in the DS (0%–96.8%) and BS (0%–87.5%). Ca²⁺ (IS: 1–5 mM) was more pronounced in enhancing PSNP retention than Na⁺ (IS: 1–20 mM). Our findings highlight that the transport and fate of PSNPs in natural soils are highly sensitive to soil physicochemical properties, ionic strength and cation type, and reveal that nanoplastics have strong mobility ability in soils with high pH and low Fe/Al oxides contents, which may pose potential risks to the soil and groundwater environment.
ArticleNumber 136065
Author Lyu, Xueyan
Li, Zhengyu
Zeng, Xiankui
Wu, Xiaoli
Gao, Bin
Wu, Jichun
Sun, Yuanyuan
Author_xml – sequence: 1
  givenname: Xiaoli
  surname: Wu
  fullname: Wu, Xiaoli
  organization: State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
– sequence: 2
  givenname: Xueyan
  surname: Lyu
  fullname: Lyu, Xueyan
  organization: State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
– sequence: 3
  givenname: Zhengyu
  surname: Li
  fullname: Li, Zhengyu
  organization: State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
– sequence: 4
  givenname: Bin
  orcidid: 0000-0003-3769-0191
  surname: Gao
  fullname: Gao, Bin
  organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
– sequence: 5
  givenname: Xiankui
  orcidid: 0000-0003-1307-4626
  surname: Zeng
  fullname: Zeng, Xiankui
  organization: State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
– sequence: 6
  givenname: Jichun
  surname: Wu
  fullname: Wu, Jichun
  organization: State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
– sequence: 7
  givenname: Yuanyuan
  orcidid: 0000-0002-4526-9287
  surname: Sun
  fullname: Sun, Yuanyuan
  email: sunyy@nju.edu.cn
  organization: State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31865085$$D View this record in MEDLINE/PubMed
BookMark eNqNkU9PGzEQxa2KqgTar9D62EM39Z9de12pB4RoQULiAmfLmZ1tHW3sxXaQ8u3rEOiBC_hizej33tjzTshRiAEJ-cLZkjOuvq-XGXyJBcPDUjBullwqprp3ZMF7bRrOhDoiC8bavjHK6GNykvOa1aN7_oEcS96rjvXdgtzfJhfyHFOhcaRznHa57BIGpMGFOE8uFw-Z-lDrsk1uojn6Kf-gF-OI8CjaN-ic4oypeMzfqI_BA82l2vwpf6kLAwVXapeW3YwfyfvRTRk_Pd2n5O7Xxe35ZXN98_vq_Oy6gVaz0uiVdg4EcLViDoZ-1BzEOGgNtdYAYjCDEYJ1bmVki3oEp4zkKAFZy9pOnpKvB9_6tPst5mI3PgNOkwsYt9kK2fe6M50Qb0AlY0poLiv6-QndrjY42Dn5jUs7-7zRCvw8AJBizglHW4N6_H1Jzk-WM7tP0K7t_wTtPkF7SLDq9Qv984jXlWcHJdatPnhMew4D4OBTjcoO0b_q8Q9NMr1-
CitedBy_id crossref_primary_10_1016_j_jhazmat_2021_126910
crossref_primary_10_1007_s10311_023_01688_x
crossref_primary_10_1016_j_chemosphere_2021_133239
crossref_primary_10_1016_j_jenvman_2024_122741
crossref_primary_10_1016_j_scitotenv_2024_171563
crossref_primary_10_1016_j_scitotenv_2024_173586
crossref_primary_10_3390_w12092633
crossref_primary_10_1007_s00767_022_00533_2
crossref_primary_10_1016_j_envres_2025_121128
crossref_primary_10_1016_j_scitotenv_2024_174270
crossref_primary_10_1016_j_nantod_2024_102409
crossref_primary_10_3390_su14127024
crossref_primary_10_1016_j_jhazmat_2023_133056
crossref_primary_10_3390_agronomy14061193
crossref_primary_10_1002_ldr_5115
crossref_primary_10_1016_j_envadv_2022_100227
crossref_primary_10_1021_acs_est_4c10405
crossref_primary_10_1016_j_envc_2025_101080
crossref_primary_10_3390_molecules25235518
crossref_primary_10_1016_j_watres_2024_122463
crossref_primary_10_1021_acs_est_1c05614
crossref_primary_10_1016_j_impact_2021_100295
crossref_primary_10_1016_j_ecoenv_2024_116366
crossref_primary_10_1016_j_jhazmat_2021_125410
crossref_primary_10_1016_j_envpol_2020_115828
crossref_primary_10_1016_j_ecoenv_2024_117332
crossref_primary_10_1016_j_watres_2022_119443
crossref_primary_10_1016_j_advwatres_2023_104507
crossref_primary_10_1016_j_chemosphere_2021_131965
crossref_primary_10_1007_s10311_023_01577_3
crossref_primary_10_3390_w14213586
crossref_primary_10_1016_j_jhazmat_2020_123415
crossref_primary_10_1016_j_scitotenv_2023_169638
crossref_primary_10_3390_nano14060529
crossref_primary_10_1007_s44169_023_00031_3
crossref_primary_10_1016_j_scitotenv_2024_173194
crossref_primary_10_1007_s11440_022_01767_3
crossref_primary_10_1016_j_envpol_2025_126026
crossref_primary_10_1016_j_scitotenv_2023_161867
crossref_primary_10_1016_j_jcis_2024_12_186
crossref_primary_10_1016_j_scitotenv_2022_157790
crossref_primary_10_1002_ldr_5103
crossref_primary_10_1016_j_envpol_2023_121804
crossref_primary_10_1016_j_envpol_2022_120456
crossref_primary_10_1016_j_jhazmat_2024_135867
crossref_primary_10_3389_fenvs_2022_1114940
crossref_primary_10_1016_j_clay_2023_106868
crossref_primary_10_1016_j_envpol_2022_120978
crossref_primary_10_1007_s10661_024_12962_y
crossref_primary_10_1016_j_microc_2024_111884
crossref_primary_10_1016_j_geothermics_2023_102784
crossref_primary_10_1016_j_jhazmat_2023_132416
crossref_primary_10_3390_ijms26052207
crossref_primary_10_3390_su16219395
crossref_primary_10_1016_j_envpol_2022_119474
crossref_primary_10_1016_j_scitotenv_2021_151831
crossref_primary_10_1016_j_scitotenv_2022_155619
crossref_primary_10_1016_j_chemosphere_2020_127854
crossref_primary_10_1021_acs_est_1c08503
crossref_primary_10_1016_j_geoderma_2025_117229
crossref_primary_10_1021_acs_jafc_1c07849
crossref_primary_10_1007_s11270_024_07690_5
crossref_primary_10_1016_j_jhazmat_2021_126455
crossref_primary_10_1016_j_jhazmat_2021_127787
crossref_primary_10_1016_j_jenvman_2022_115510
crossref_primary_10_1016_j_cej_2023_141568
crossref_primary_10_1016_j_scitotenv_2021_147115
crossref_primary_10_1016_j_marpolbul_2022_114317
crossref_primary_10_1016_j_scitotenv_2024_178298
crossref_primary_10_1007_s11270_025_07751_3
crossref_primary_10_1016_j_envpol_2022_120788
crossref_primary_10_1016_j_scitotenv_2020_141378
crossref_primary_10_1016_j_scitotenv_2022_158099
crossref_primary_10_1016_j_scitotenv_2022_157168
crossref_primary_10_1007_s11368_022_03266_0
crossref_primary_10_1016_j_impact_2023_100473
crossref_primary_10_1016_j_scitotenv_2024_171658
crossref_primary_10_1111_sum_12709
crossref_primary_10_1016_j_heliyon_2023_e18464
crossref_primary_10_1016_j_chemosphere_2021_130214
crossref_primary_10_3389_fpls_2022_1027608
crossref_primary_10_3390_ijms23179860
crossref_primary_10_1039_D1EN00381J
crossref_primary_10_1111_gwmr_12633
crossref_primary_10_1007_s11270_022_05837_w
crossref_primary_10_1016_j_jes_2024_03_042
crossref_primary_10_3390_molecules27051744
crossref_primary_10_1016_j_envpol_2021_117098
crossref_primary_10_1016_j_scitotenv_2020_141368
crossref_primary_10_1016_j_scitotenv_2023_163237
crossref_primary_10_1016_j_gsd_2023_101036
crossref_primary_10_1016_j_scitotenv_2022_157576
crossref_primary_10_1016_j_scitotenv_2023_166189
crossref_primary_10_1080_26395940_2024_2308116
crossref_primary_10_1007_s11270_021_05125_z
crossref_primary_10_1007_s41742_024_00698_z
crossref_primary_10_1016_j_watres_2022_118978
crossref_primary_10_1360_SSC_2024_0064
crossref_primary_10_1016_j_jclepro_2024_143877
crossref_primary_10_1007_s11356_023_29640_0
crossref_primary_10_1016_j_envpol_2024_125143
crossref_primary_10_1016_j_scitotenv_2021_148982
crossref_primary_10_1016_j_scitotenv_2024_175204
crossref_primary_10_1021_acsestwater_3c00645
crossref_primary_10_1021_acsestwater_0c00130
crossref_primary_10_1016_j_jhazmat_2024_135153
crossref_primary_10_1016_j_envpol_2023_121862
crossref_primary_10_1016_j_scp_2024_101544
crossref_primary_10_1007_s11270_021_05469_6
crossref_primary_10_1016_j_jhazmat_2021_127806
crossref_primary_10_1007_s10653_023_01664_y
crossref_primary_10_1016_j_envint_2021_106708
crossref_primary_10_1007_s00425_023_04069_4
crossref_primary_10_1016_j_jhazmat_2022_130266
crossref_primary_10_1016_j_trac_2022_116889
crossref_primary_10_3390_ijerph182010629
crossref_primary_10_1021_acsestengg_3c00615
crossref_primary_10_1016_j_envpol_2021_116552
crossref_primary_10_1002_jpln_202200136
crossref_primary_10_5194_soil_8_31_2022
crossref_primary_10_1016_j_hazadv_2023_100345
crossref_primary_10_1016_j_impact_2023_100474
crossref_primary_10_1016_j_watres_2025_123129
crossref_primary_10_1016_j_jhazmat_2022_129834
crossref_primary_10_1016_j_jes_2024_07_007
crossref_primary_10_1016_j_jenvman_2024_120918
crossref_primary_10_1016_j_earscirev_2025_105108
crossref_primary_10_1016_j_watres_2021_117407
crossref_primary_10_1016_j_scitotenv_2023_169709
crossref_primary_10_1016_j_scitotenv_2025_178693
crossref_primary_10_1016_j_jhazmat_2023_132572
crossref_primary_10_1016_j_chemosphere_2022_136968
crossref_primary_10_1016_j_jhazmat_2022_130012
crossref_primary_10_1016_j_jhazmat_2024_133487
crossref_primary_10_1016_j_jhazmat_2022_129312
crossref_primary_10_1016_j_jconhyd_2024_104398
crossref_primary_10_1016_j_jhazmat_2021_127870
crossref_primary_10_1016_j_scitotenv_2023_163294
crossref_primary_10_1016_j_heliyon_2024_e38738
crossref_primary_10_1016_j_jhazmat_2022_129155
crossref_primary_10_1016_j_jconhyd_2023_104215
crossref_primary_10_1016_j_scitotenv_2022_155657
crossref_primary_10_1016_j_chemosphere_2022_136091
crossref_primary_10_1021_acs_est_1c07574
crossref_primary_10_1007_s10311_022_01479_w
crossref_primary_10_1016_j_jhydrol_2021_126960
crossref_primary_10_3390_agronomy13030701
crossref_primary_10_1016_j_scitotenv_2021_149338
crossref_primary_10_1016_j_envpol_2024_123542
crossref_primary_10_1016_j_envres_2023_115383
crossref_primary_10_1007_s11270_022_05630_9
crossref_primary_10_1016_j_jhazmat_2021_127903
crossref_primary_10_1016_j_envpol_2024_125047
crossref_primary_10_1016_j_jhazmat_2022_130084
crossref_primary_10_1016_j_chemosphere_2022_134354
crossref_primary_10_1016_j_chemosphere_2022_135322
crossref_primary_10_1016_j_envpol_2021_117585
crossref_primary_10_1021_acs_est_0c06839
crossref_primary_10_1016_j_jhazmat_2023_132269
crossref_primary_10_1016_j_jhazmat_2024_134640
crossref_primary_10_1016_j_watres_2021_117016
crossref_primary_10_1061_JGGEFK_GTENG_13047
crossref_primary_10_1016_j_chemosphere_2022_136658
crossref_primary_10_1016_j_eehl_2022_10_001
crossref_primary_10_1016_j_chemosphere_2021_131628
crossref_primary_10_1016_j_jhazmat_2021_127614
crossref_primary_10_1016_j_scitotenv_2024_176405
crossref_primary_10_1016_j_ecoenv_2023_115597
crossref_primary_10_3390_environments10050070
crossref_primary_10_1016_j_jcis_2023_09_090
crossref_primary_10_1016_j_scitotenv_2021_146752
crossref_primary_10_1016_j_envpol_2023_122323
crossref_primary_10_1016_j_apsoil_2022_104426
crossref_primary_10_1021_acsomega_4c04083
crossref_primary_10_3390_polym13234129
crossref_primary_10_1016_j_jhazmat_2025_137805
crossref_primary_10_1016_j_scitotenv_2023_163832
crossref_primary_10_1007_s13205_022_03361_6
crossref_primary_10_1016_j_chemosphere_2022_135730
crossref_primary_10_1016_j_scitotenv_2020_140355
crossref_primary_10_1016_j_cej_2021_131870
crossref_primary_10_1016_j_scitotenv_2023_165611
crossref_primary_10_1016_j_envpol_2024_124758
crossref_primary_10_1016_j_scitotenv_2021_152507
crossref_primary_10_1016_j_scitotenv_2023_166783
crossref_primary_10_1680_jenge_20_00179
crossref_primary_10_1016_j_fct_2022_113521
crossref_primary_10_1016_j_jhazmat_2021_125550
crossref_primary_10_1016_j_ecoenv_2024_116066
crossref_primary_10_1038_s41598_024_78480_6
Cites_doi 10.1021/es203784u
10.1021/cr60234a002
10.1021/acs.est.7b05559
10.1016/j.clay.2006.05.009
10.1016/j.envpol.2018.05.008
10.1016/j.envpol.2019.03.092
10.1016/j.scitotenv.2017.08.086
10.1016/j.coesh.2017.10.006
10.1016/j.chemosphere.2018.01.052
10.1021/acs.est.6b00183
10.1016/j.envpol.2018.02.042
10.1016/j.envpol.2018.11.055
10.1029/2002WR001340
10.1021/es960053+
10.1016/j.watres.2018.10.071
10.1016/j.watres.2012.02.049
10.1111/gcb.14020
10.1021/es2045458
10.1016/j.scitotenv.2013.05.089
10.1016/j.jconhyd.2005.09.006
10.1016/j.colsurfa.2012.03.004
10.1016/j.watres.2018.07.007
10.1016/j.scitotenv.2014.09.095
10.1016/0095-8522(55)90030-1
10.1016/j.watres.2007.03.030
10.1016/j.aquatox.2018.04.015
10.1111/ejss.12118
10.1098/rstb.2008.0304
10.1038/s41598-017-01594-7
10.1016/j.scitotenv.2018.06.004
10.1016/j.jcis.2011.12.059
10.1021/acs.est.7b05211
10.2136/vzj2015.01.0007
10.1016/j.scitotenv.2019.03.102
10.1021/acs.estlett.7b00187
10.1021/es901927y
10.1016/j.jconhyd.2019.03.009
10.1021/acs.est.7b06003
10.1016/j.colsurfa.2014.05.075
10.1016/j.scitotenv.2016.05.041
10.1016/j.jhydrol.2014.09.053
10.1021/acs.est.7b05062
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2019.136065
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 31865085
10_1016_j_scitotenv_2019_136065
S0048969719360619
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c470t-7b7aac2c16b0acd8f71c2fd77cb0a7cc2d9d92205ab934e7fca6931e3ce040453
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Jul 11 12:14:57 EDT 2025
Fri Jul 11 02:38:58 EDT 2025
Wed Feb 19 02:31:34 EST 2025
Tue Jul 01 03:35:25 EDT 2025
Thu Apr 24 22:58:44 EDT 2025
Fri Feb 23 02:47:21 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords pH
Soils
Minerals
Transport
Retention
Nanoplastics
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-7b7aac2c16b0acd8f71c2fd77cb0a7cc2d9d92205ab934e7fca6931e3ce040453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1307-4626
0000-0003-3769-0191
0000-0002-4526-9287
PMID 31865085
PQID 2330062713
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2388759522
proquest_miscellaneous_2330062713
pubmed_primary_31865085
crossref_citationtrail_10_1016_j_scitotenv_2019_136065
crossref_primary_10_1016_j_scitotenv_2019_136065
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_136065
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-10
PublicationDateYYYYMMDD 2020-03-10
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-10
  day: 10
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fisher-Power, Cheng (bb0075) 2018; 52
Quevedo, Tufenkji (bb0145) 2012; 46
Scheurer, Bigalke (bb0160) 2018; 52
Alimi, Farner Budarz, Hernandez, Tufenkji (bb0005) 2018; 52
Bradford, Torkzaban, Walker (bb0030) 2007; 41
da Costa, Santos, Duarte, Rocha-Santos (bb0050) 2016; 566-567
Liu, Ma, Zhu, Xia, Qi, Yao, Guo, Ji, Chen (bb0120) 2018; 52
Hurley, Nizzetto (bb0085) 2018; 1
Wu, Jiang, Lin, Ouyang (bb0200) 2019; 245
Bradford, Yates, Bettahar, Simunek (bb0025) 2002; 38
de Souza Machado, Kloas, Zarfl, Hempel, Rillig (bb0055) 2017; 24
Rillig, Ziersch, Hempel (bb0150) 2017; 7
Wang, Bradford, Harvey, Gao, Cang, Zhou (bb0185) 2012; 46
Jiang, Tong, Lu, Kim (bb0100) 2012; 401
Lyu, Liu, Sun, Ji, Gao, Wu (bb0130) 2019; 225
Dong, Zhang, Qiu, Yang, Wang, Zhang (bb0070) 2019; 148
Israelachvili (bb0090) 1992
Zhang, Isaacson, Rattanaudompol, Powell, Bouchard (bb0215) 2012; 46
Wang, Su, Zhang, Hao, Cang, Wang, Zhou (bb0190) 2014; 519
Lu, Zhang, Deng, Jiang, Zhao, Geng, Ding, Ren (bb0125) 2016; 50
Sun, Shijirbaatar, Fang, Owens, Lin, Zhang (bb0170) 2015; 505
Zhang, Liu (bb0210) 2018; 642
Bläsing, Amelung (bb0015) 2018; 612
Sasidharan, Torkzaban, Bradford, Dillon, Cook (bb0155) 2014; 457
Bradford, Bettahar (bb0020) 2006; 82
Derjaguin, Landau (bb0060) 1941; 14
Hernandez, Yousefi, Tufenkji (bb0080) 2017; 4
Yu, Liu, Wu, Chen, Lv, Zhao (bb0205) 2018; 200
Andrady, Neal (bb0010) 2009; 364
Tombacz, Szekeres (bb0175) 2006; 34
Verwey, Overbeek (bb0180) 1955; 10
Cai, Hu, Shi, Ye, Zhang, Kim (bb0035) 2018; 197
Chae, An (bb0040) 2018; 240
Jaisi, Elimelech (bb0095) 2009; 43
Johnson, Sun, Elimelech (bb0105) 1996; 30
O'Connor, Pan, Shen, Song, Jin, Wu, Hou (bb0135) 2019; 249
Wang, Jaisi, Yan, Jin, Zhou (bb0195) 2015; 14
Cornelis, Pang, Doolette, Kirby, McLaughlin (bb0045) 2013; 463-464
Zhu, Chen, Li, He, Brookes, Xu (bb0220) 2014; 65
Li, Liu, Gao, Abdurahman, Dai, Zeng (bb0115) 2018; 237
Dong, Qiu, Zhang, Yang, Wei (bb0065) 2018; 143
Parks (bb0140) 1965; 65
Song, Yang, Chen, Zhao, Zhao, Ruan, Wang, Yang (bb0165) 2019; 669
Kim, Phenrat, Tilton, Lowry (bb0110) 2012; 370
Zhang (10.1016/j.scitotenv.2019.136065_bb0210) 2018; 642
Song (10.1016/j.scitotenv.2019.136065_bb0165) 2019; 669
Israelachvili (10.1016/j.scitotenv.2019.136065_bb0090) 1992
Cornelis (10.1016/j.scitotenv.2019.136065_bb0045) 2013; 463-464
Derjaguin (10.1016/j.scitotenv.2019.136065_bb0060) 1941; 14
Fisher-Power (10.1016/j.scitotenv.2019.136065_bb0075) 2018; 52
Bradford (10.1016/j.scitotenv.2019.136065_bb0020) 2006; 82
Dong (10.1016/j.scitotenv.2019.136065_bb0070) 2019; 148
Zhang (10.1016/j.scitotenv.2019.136065_bb0215) 2012; 46
da Costa (10.1016/j.scitotenv.2019.136065_bb0050) 2016; 566-567
O'Connor (10.1016/j.scitotenv.2019.136065_bb0135) 2019; 249
Johnson (10.1016/j.scitotenv.2019.136065_bb0105) 1996; 30
Wu (10.1016/j.scitotenv.2019.136065_bb0200) 2019; 245
de Souza Machado (10.1016/j.scitotenv.2019.136065_bb0055) 2017; 24
Liu (10.1016/j.scitotenv.2019.136065_bb0120) 2018; 52
Li (10.1016/j.scitotenv.2019.136065_bb0115) 2018; 237
Wang (10.1016/j.scitotenv.2019.136065_bb0190) 2014; 519
Zhu (10.1016/j.scitotenv.2019.136065_bb0220) 2014; 65
Cai (10.1016/j.scitotenv.2019.136065_bb0035) 2018; 197
Chae (10.1016/j.scitotenv.2019.136065_bb0040) 2018; 240
Scheurer (10.1016/j.scitotenv.2019.136065_bb0160) 2018; 52
Sasidharan (10.1016/j.scitotenv.2019.136065_bb0155) 2014; 457
Yu (10.1016/j.scitotenv.2019.136065_bb0205) 2018; 200
Dong (10.1016/j.scitotenv.2019.136065_bb0065) 2018; 143
Jaisi (10.1016/j.scitotenv.2019.136065_bb0095) 2009; 43
Wang (10.1016/j.scitotenv.2019.136065_bb0195) 2015; 14
Tombacz (10.1016/j.scitotenv.2019.136065_bb0175) 2006; 34
Alimi (10.1016/j.scitotenv.2019.136065_bb0005) 2018; 52
Lu (10.1016/j.scitotenv.2019.136065_bb0125) 2016; 50
Kim (10.1016/j.scitotenv.2019.136065_bb0110) 2012; 370
Jiang (10.1016/j.scitotenv.2019.136065_bb0100) 2012; 401
Bradford (10.1016/j.scitotenv.2019.136065_bb0030) 2007; 41
Hurley (10.1016/j.scitotenv.2019.136065_bb0085) 2018; 1
Sun (10.1016/j.scitotenv.2019.136065_bb0170) 2015; 505
Bläsing (10.1016/j.scitotenv.2019.136065_bb0015) 2018; 612
Andrady (10.1016/j.scitotenv.2019.136065_bb0010) 2009; 364
Bradford (10.1016/j.scitotenv.2019.136065_bb0025) 2002; 38
Parks (10.1016/j.scitotenv.2019.136065_bb0140) 1965; 65
Verwey (10.1016/j.scitotenv.2019.136065_bb0180) 1955; 10
Quevedo (10.1016/j.scitotenv.2019.136065_bb0145) 2012; 46
Rillig (10.1016/j.scitotenv.2019.136065_bb0150) 2017; 7
Hernandez (10.1016/j.scitotenv.2019.136065_bb0080) 2017; 4
Lyu (10.1016/j.scitotenv.2019.136065_bb0130) 2019; 225
Wang (10.1016/j.scitotenv.2019.136065_bb0185) 2012; 46
References_xml – volume: 249
  start-page: 527
  year: 2019
  end-page: 534
  ident: bb0135
  article-title: Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles
  publication-title: Environ. Pollut.
– volume: 4
  start-page: 280
  year: 2017
  end-page: 285
  ident: bb0080
  article-title: Are there nanoplastics in your personal care products?
  publication-title: Environ. Sci. Technol. Lett.
– volume: 566-567
  start-page: 15
  year: 2016
  end-page: 26
  ident: bb0050
  article-title: (Nano)plastics in the environment - sources, fates and effects
  publication-title: Sci. Total Environ.
– volume: 225
  year: 2019
  ident: bb0130
  article-title: Transport and retention of perfluorooctanoic acid (PFOA) in natural soils: importance of soil organic matter and mineral contents, and solution ionic strength
  publication-title: J. Contam. Hydrol.
– volume: 52
  start-page: 2677
  year: 2018
  end-page: 2685
  ident: bb0120
  article-title: Polystyrene nanoplastics-enhanced contaminant transport: role of irreversible adsorption in glassy polymeric domain
  publication-title: Environ. Sci. Technol.
– volume: 52
  start-page: 1704
  year: 2018
  end-page: 1724
  ident: bb0005
  article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 9161
  year: 2009
  end-page: 9166
  ident: bb0095
  article-title: Single-walled carbon nanotubes exhibit limited transport in soil columns
  publication-title: Environ. Sci. Technol.
– volume: 237
  start-page: 126
  year: 2018
  end-page: 132
  ident: bb0115
  article-title: Aggregation kinetics of microplastics in aquatic environment: complex roles of electrolytes, pH, and natural organic matter
  publication-title: Environ. Pollut.
– volume: 401
  start-page: 29
  year: 2012
  end-page: 37
  ident: bb0100
  article-title: Transport and deposition of ZnO nanoparticles in saturated porous media
  publication-title: Colloids and Surfaces Colloid Surf. A-Physicochem. Eng. Asp.
– volume: 65
  start-page: 206
  year: 2014
  end-page: 217
  ident: bb0220
  article-title: Aggregation kinetics of natural soil nanoparticles in different electrolytes
  publication-title: Eur. J. Soil Sci.
– volume: 14
  year: 2015
  ident: bb0195
  article-title: Transport and retention of polyvinylpyrrolidone-coated silver nanoparticles in natural soils
  publication-title: Vadose Zone J.
– volume: 24
  start-page: 1405
  year: 2017
  end-page: 1416
  ident: bb0055
  article-title: Microplastics as an emerging threat to terrestrial ecosystems
  publication-title: Glob. Change Biol.
– volume: 38
  start-page: 63
  year: 2002
  end-page: 61-63-12
  ident: bb0025
  article-title: Physical factors affecting the transport and fate of colloids in saturated porous media
  publication-title: Water Resour. Res.
– volume: 50
  start-page: 4054
  year: 2016
  end-page: 4060
  ident: bb0125
  article-title: Uptake and accumulation of polystyrene microplastics in Zebrafish (Danio rerio) and toxic effects in liver
  publication-title: Environ. Sci. Technol.
– volume: 65
  start-page: 177
  year: 1965
  end-page: 198
  ident: bb0140
  article-title: Isoelectric points of solid oxides solid hydroxides and aqueous hydroxo complex systems
  publication-title: Chem. Rev.
– volume: 41
  start-page: 3012
  year: 2007
  end-page: 3024
  ident: bb0030
  article-title: Coupling of physical and chemical mechanisms of colloid straining in saturated porous media
  publication-title: Water Res.
– volume: 457
  start-page: 169
  year: 2014
  end-page: 179
  ident: bb0155
  article-title: Coupled effects of hydrodynamic and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media
  publication-title: Colloid Surf. A-Physicochem. Eng. Asp.
– volume: 148
  start-page: 469
  year: 2019
  end-page: 478
  ident: bb0070
  article-title: Cotransport of nanoplastics (NPs) with fullerene (C
  publication-title: Water Res.
– volume: 240
  start-page: 387
  year: 2018
  end-page: 395
  ident: bb0040
  article-title: Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review
  publication-title: Environ. Pollut.
– volume: 46
  start-page: 4449
  year: 2012
  end-page: 4457
  ident: bb0145
  article-title: Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand
  publication-title: Environ. Sci. Technol.
– volume: 245
  start-page: 836
  year: 2019
  end-page: 843
  ident: bb0200
  article-title: Effect of salinity and humic acid on the aggregation and toxicity of polystyrene nanoplastics with different functional groups and charges
  publication-title: Environ. Pollut.
– volume: 197
  start-page: 142
  year: 2018
  end-page: 151
  ident: bb0035
  article-title: Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics
  publication-title: Chemosphere
– volume: 46
  start-page: 2738
  year: 2012
  end-page: 2745
  ident: bb0185
  article-title: Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand
  publication-title: Environ. Sci. Technol.
– volume: 642
  start-page: 12
  year: 2018
  end-page: 20
  ident: bb0210
  article-title: The distribution of microplastics in soil aggregate fractions in southwestern China
  publication-title: Sci. Total Environ.
– volume: 52
  start-page: 3591
  year: 2018
  end-page: 3598
  ident: bb0160
  article-title: Microplastics in Swiss floodplain soils
  publication-title: Environ. Sci. Technol.
– volume: 519
  start-page: 1677
  year: 2014
  end-page: 1687
  ident: bb0190
  article-title: Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (Ultisol)
  publication-title: J. Hydrol.
– volume: 463-464
  start-page: 120
  year: 2013
  end-page: 130
  ident: bb0045
  article-title: Transport of silver nanoparticles in saturated columns of natural soils
  publication-title: Sci. Total Environ.
– volume: 52
  start-page: 2668
  year: 2018
  end-page: 2676
  ident: bb0075
  article-title: Nanoscale titanium dioxide (nTiO
  publication-title: Environ. Sci. Technol.
– volume: 30
  start-page: 3284
  year: 1996
  end-page: 3293
  ident: bb0105
  article-title: Colloid transport in geochemically heterogeneous porous media: modeling and measurements
  publication-title: Environ. Sci. Technol.
– volume: 10
  start-page: 224
  year: 1955
  end-page: 225
  ident: bb0180
  article-title: Theory of the stability of lyophobic colloids
  publication-title: J. Colloid Science.
– volume: 34
  start-page: 105
  year: 2006
  end-page: 124
  ident: bb0175
  article-title: Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite
  publication-title: Appl. Clay Sci.
– volume: 1
  start-page: 6
  year: 2018
  end-page: 11
  ident: bb0085
  article-title: Fate and occurrence of micro(nano)plastics in soils: knowledge gaps and possible risks
  publication-title: Curr. Opi. Environ. Sci. Health.
– volume: 505
  start-page: 189
  year: 2015
  end-page: 198
  ident: bb0170
  article-title: Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns
  publication-title: Sci. Total Environ.
– volume: 364
  start-page: 1977
  year: 2009
  end-page: 1984
  ident: bb0010
  article-title: Applications and societal benefits of plastics
  publication-title: Philos. Trans. R. Soc. B-Biol. Sci.
– volume: 200
  start-page: 28
  year: 2018
  end-page: 36
  ident: bb0205
  article-title: Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver
  publication-title: Aquat. Toxicol.
– volume: 14
  start-page: 633
  year: 1941
  end-page: 662
  ident: bb0060
  article-title: Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes
  publication-title: Acta Physicochim.
– volume: 143
  start-page: 518
  year: 2018
  end-page: 526
  ident: bb0065
  article-title: Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater
  publication-title: Water Res.
– volume: 46
  start-page: 2992
  year: 2012
  end-page: 3004
  ident: bb0215
  article-title: Fullerene nanoparticles exhibit greater retention in freshwater sediment than in model porous media
  publication-title: Water Res.
– volume: 612
  start-page: 422
  year: 2018
  end-page: 435
  ident: bb0015
  article-title: Plastics in soil: analytical methods and possible sources
  publication-title: Sci. Total Environ.
– year: 1992
  ident: bb0090
  article-title: Intermolecular and Surface Forces
– volume: 370
  start-page: 1
  year: 2012
  end-page: 10
  ident: bb0110
  article-title: Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 1362
  year: 2017
  ident: bb0150
  article-title: Microplastic transport in soil by earthworms
  publication-title: Sci. Rep.
– volume: 669
  start-page: 120
  year: 2019
  end-page: 128
  ident: bb0165
  article-title: Fate and transport of nanoplastics in complex natural aquifer media: effect of particle size and surface functionalization
  publication-title: Sci. Total Environ.
– volume: 82
  start-page: 99
  year: 2006
  end-page: 117
  ident: bb0020
  article-title: Concentration dependent transport of colloids in saturated porous media
  publication-title: J. Contam. Hydrol.
– volume: 46
  start-page: 2738
  year: 2012
  ident: 10.1016/j.scitotenv.2019.136065_bb0185
  article-title: Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es203784u
– volume: 65
  start-page: 177
  year: 1965
  ident: 10.1016/j.scitotenv.2019.136065_bb0140
  article-title: Isoelectric points of solid oxides solid hydroxides and aqueous hydroxo complex systems
  publication-title: Chem. Rev.
  doi: 10.1021/cr60234a002
– volume: 52
  start-page: 1704
  year: 2018
  ident: 10.1016/j.scitotenv.2019.136065_bb0005
  article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05559
– volume: 34
  start-page: 105
  year: 2006
  ident: 10.1016/j.scitotenv.2019.136065_bb0175
  article-title: Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2006.05.009
– volume: 240
  start-page: 387
  year: 2018
  ident: 10.1016/j.scitotenv.2019.136065_bb0040
  article-title: Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.05.008
– volume: 249
  start-page: 527
  year: 2019
  ident: 10.1016/j.scitotenv.2019.136065_bb0135
  article-title: Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.03.092
– volume: 612
  start-page: 422
  year: 2018
  ident: 10.1016/j.scitotenv.2019.136065_bb0015
  article-title: Plastics in soil: analytical methods and possible sources
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.086
– volume: 1
  start-page: 6
  year: 2018
  ident: 10.1016/j.scitotenv.2019.136065_bb0085
  article-title: Fate and occurrence of micro(nano)plastics in soils: knowledge gaps and possible risks
  publication-title: Curr. Opi. Environ. Sci. Health.
  doi: 10.1016/j.coesh.2017.10.006
– volume: 197
  start-page: 142
  year: 2018
  ident: 10.1016/j.scitotenv.2019.136065_bb0035
  article-title: Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.01.052
– volume: 50
  start-page: 4054
  year: 2016
  ident: 10.1016/j.scitotenv.2019.136065_bb0125
  article-title: Uptake and accumulation of polystyrene microplastics in Zebrafish (Danio rerio) and toxic effects in liver
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b00183
– volume: 237
  start-page: 126
  year: 2018
  ident: 10.1016/j.scitotenv.2019.136065_bb0115
  article-title: Aggregation kinetics of microplastics in aquatic environment: complex roles of electrolytes, pH, and natural organic matter
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.02.042
– volume: 245
  start-page: 836
  year: 2019
  ident: 10.1016/j.scitotenv.2019.136065_bb0200
  article-title: Effect of salinity and humic acid on the aggregation and toxicity of polystyrene nanoplastics with different functional groups and charges
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.11.055
– volume: 38
  start-page: 63
  year: 2002
  ident: 10.1016/j.scitotenv.2019.136065_bb0025
  article-title: Physical factors affecting the transport and fate of colloids in saturated porous media
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001340
– volume: 30
  start-page: 3284
  year: 1996
  ident: 10.1016/j.scitotenv.2019.136065_bb0105
  article-title: Colloid transport in geochemically heterogeneous porous media: modeling and measurements
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es960053+
– volume: 148
  start-page: 469
  year: 2019
  ident: 10.1016/j.scitotenv.2019.136065_bb0070
  article-title: Cotransport of nanoplastics (NPs) with fullerene (C60) in saturated sand: effect of NPs/C60 ratio and seawater salinity
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.10.071
– volume: 46
  start-page: 2992
  year: 2012
  ident: 10.1016/j.scitotenv.2019.136065_bb0215
  article-title: Fullerene nanoparticles exhibit greater retention in freshwater sediment than in model porous media
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.02.049
– volume: 24
  start-page: 1405
  year: 2017
  ident: 10.1016/j.scitotenv.2019.136065_bb0055
  article-title: Microplastics as an emerging threat to terrestrial ecosystems
  publication-title: Glob. Change Biol.
  doi: 10.1111/gcb.14020
– volume: 46
  start-page: 4449
  year: 2012
  ident: 10.1016/j.scitotenv.2019.136065_bb0145
  article-title: Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2045458
– volume: 463-464
  start-page: 120
  year: 2013
  ident: 10.1016/j.scitotenv.2019.136065_bb0045
  article-title: Transport of silver nanoparticles in saturated columns of natural soils
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.05.089
– volume: 82
  start-page: 99
  year: 2006
  ident: 10.1016/j.scitotenv.2019.136065_bb0020
  article-title: Concentration dependent transport of colloids in saturated porous media
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2005.09.006
– volume: 401
  start-page: 29
  year: 2012
  ident: 10.1016/j.scitotenv.2019.136065_bb0100
  article-title: Transport and deposition of ZnO nanoparticles in saturated porous media
  publication-title: Colloids and Surfaces Colloid Surf. A-Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2012.03.004
– volume: 143
  start-page: 518
  year: 2018
  ident: 10.1016/j.scitotenv.2019.136065_bb0065
  article-title: Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.07.007
– volume: 505
  start-page: 189
  year: 2015
  ident: 10.1016/j.scitotenv.2019.136065_bb0170
  article-title: Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.09.095
– volume: 10
  start-page: 224
  year: 1955
  ident: 10.1016/j.scitotenv.2019.136065_bb0180
  article-title: Theory of the stability of lyophobic colloids
  publication-title: J. Colloid Science.
  doi: 10.1016/0095-8522(55)90030-1
– year: 1992
  ident: 10.1016/j.scitotenv.2019.136065_bb0090
– volume: 14
  start-page: 633
  year: 1941
  ident: 10.1016/j.scitotenv.2019.136065_bb0060
  article-title: Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes
  publication-title: Acta Physicochim.
– volume: 41
  start-page: 3012
  year: 2007
  ident: 10.1016/j.scitotenv.2019.136065_bb0030
  article-title: Coupling of physical and chemical mechanisms of colloid straining in saturated porous media
  publication-title: Water Res.
  doi: 10.1016/j.watres.2007.03.030
– volume: 200
  start-page: 28
  year: 2018
  ident: 10.1016/j.scitotenv.2019.136065_bb0205
  article-title: Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver
  publication-title: Aquat. Toxicol.
  doi: 10.1016/j.aquatox.2018.04.015
– volume: 65
  start-page: 206
  year: 2014
  ident: 10.1016/j.scitotenv.2019.136065_bb0220
  article-title: Aggregation kinetics of natural soil nanoparticles in different electrolytes
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12118
– volume: 364
  start-page: 1977
  year: 2009
  ident: 10.1016/j.scitotenv.2019.136065_bb0010
  article-title: Applications and societal benefits of plastics
  publication-title: Philos. Trans. R. Soc. B-Biol. Sci.
  doi: 10.1098/rstb.2008.0304
– volume: 7
  start-page: 1362
  year: 2017
  ident: 10.1016/j.scitotenv.2019.136065_bb0150
  article-title: Microplastic transport in soil by earthworms
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01594-7
– volume: 642
  start-page: 12
  year: 2018
  ident: 10.1016/j.scitotenv.2019.136065_bb0210
  article-title: The distribution of microplastics in soil aggregate fractions in southwestern China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.06.004
– volume: 370
  start-page: 1
  year: 2012
  ident: 10.1016/j.scitotenv.2019.136065_bb0110
  article-title: Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.12.059
– volume: 52
  start-page: 2677
  year: 2018
  ident: 10.1016/j.scitotenv.2019.136065_bb0120
  article-title: Polystyrene nanoplastics-enhanced contaminant transport: role of irreversible adsorption in glassy polymeric domain
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05211
– volume: 14
  year: 2015
  ident: 10.1016/j.scitotenv.2019.136065_bb0195
  article-title: Transport and retention of polyvinylpyrrolidone-coated silver nanoparticles in natural soils
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2015.01.0007
– volume: 669
  start-page: 120
  year: 2019
  ident: 10.1016/j.scitotenv.2019.136065_bb0165
  article-title: Fate and transport of nanoplastics in complex natural aquifer media: effect of particle size and surface functionalization
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.03.102
– volume: 4
  start-page: 280
  year: 2017
  ident: 10.1016/j.scitotenv.2019.136065_bb0080
  article-title: Are there nanoplastics in your personal care products?
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.7b00187
– volume: 43
  start-page: 9161
  year: 2009
  ident: 10.1016/j.scitotenv.2019.136065_bb0095
  article-title: Single-walled carbon nanotubes exhibit limited transport in soil columns
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es901927y
– volume: 225
  year: 2019
  ident: 10.1016/j.scitotenv.2019.136065_bb0130
  article-title: Transport and retention of perfluorooctanoic acid (PFOA) in natural soils: importance of soil organic matter and mineral contents, and solution ionic strength
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2019.03.009
– volume: 52
  start-page: 3591
  year: 2018
  ident: 10.1016/j.scitotenv.2019.136065_bb0160
  article-title: Microplastics in Swiss floodplain soils
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b06003
– volume: 457
  start-page: 169
  year: 2014
  ident: 10.1016/j.scitotenv.2019.136065_bb0155
  article-title: Coupled effects of hydrodynamic and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media
  publication-title: Colloid Surf. A-Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2014.05.075
– volume: 566-567
  start-page: 15
  year: 2016
  ident: 10.1016/j.scitotenv.2019.136065_bb0050
  article-title: (Nano)plastics in the environment - sources, fates and effects
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.05.041
– volume: 519
  start-page: 1677
  year: 2014
  ident: 10.1016/j.scitotenv.2019.136065_bb0190
  article-title: Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (Ultisol)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.09.053
– volume: 52
  start-page: 2668
  year: 2018
  ident: 10.1016/j.scitotenv.2019.136065_bb0075
  article-title: Nanoscale titanium dioxide (nTiO2) transport in natural sediments: importance of soil organic matter and Fe/Al oxyhydroxides
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b05062
SSID ssj0000781
Score 2.671917
Snippet Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 136065
SubjectTerms aluminum
aluminum oxide
calcium
cations
desert soils
electrostatic interactions
groundwater
ionic strength
iron
Minerals
Nanoplastics
pollutants
polystyrenes
Retention
risk
sodium
soil minerals
soil pH
soil physical properties
Soils
Transport
Title Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type
URI https://dx.doi.org/10.1016/j.scitotenv.2019.136065
https://www.ncbi.nlm.nih.gov/pubmed/31865085
https://www.proquest.com/docview/2330062713
https://www.proquest.com/docview/2388759522
Volume 707
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEA6lIggielo9f5QIPrp2L9lsLn0rpeX0sA9isW8hO5vVkyO7dreFvvRvd2aze6Wg9sGnZZckhMxk5tvJzBfG3pW5doiiTTLzRidZoSCZm9IkxVz6HITxpr-S5fNJvjjNPp2psy12ONbCUFrlYPujTe-t9fBlb1jNvWa1ohrfbG5yoxGCIArvqT-zTJOWf7i-SfMgMpt4yowbG1vfyvHCcbsasekl5XgZSvlKycv82UP9DYH2nuj4MXs0QEh-EGf5hG35MGH346WSVxO2c3RTu4bNhs3bTtjDGKLjsfLoKfu1ITbndcWben3VUkg6eB5cqBuE1UThzFeB9-yfOFZbr9btPo-Mx9SJPvCG4vnnRMz6nlN0FzgVoITv3Q_uQsljTJBTrPcZOz0--nq4SIYbGBLIdNolutDOgYBZXqQOynmlZyCqUmvAdw0gSpQrleq6wsjM6wpcbuTMS_BoHDIld9h2qIN_wbgQBqTy0qkqzUCBEQX6ToACEEAVRk1ZPq66hYGenG7JWNsxD-2n3YjLkrhsFNeUpZuOTWTouLvL_ihWe0vZLPqRuzu_HRXB4lak8xUXfH3RWiEllaTib_-_2qBVVwZR75Q9j1q0mTWaV8LL6uX_TO8VeyAoJNCnHL5m2935hX-DuKkrdvuNscvuHXxcLk7oufzybfkbRX8crA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQSQrBQWJ5GghuhifNwXIkDglZb-ji1Um_GmTiwaOWEJgXthT_FH2QmTraqBPSAeksiT-R4xjNfxvNg7GWZSYMoWgWRVTJIihSCXJUqKPLYZiCUVX1LloPDbHacfDxJT9bYrzEXhsIqB93vdXqvrYcnm8NqbjbzOeX4JrnKlEQIgig8UkNk5Z5d_sD_tvbt7gdk8ishdraP3s-CobVAAIkMu0AW0hgQEGVFaKDMKxmBqEopAe8lgChxwpSDagoVJ1ZWYDIVRzYGi1KfUKsI1PvX8CKntglvfp7HlVD1HH-sjZoEp3chqAw_pKsRDH-noDJFMWYhmbU_m8S_Qd7e9O3cYbcHzMrf-WW5y9asm7DrvovlcsI2ts-T5XDYoC3aCbvlfYLcpzrdY99WldR5XfGmXixb8oE7y51xdYM4nmpG87njfblRfFdbzxftFvcllomIHvCGDhBOqRLsa07uZOCU8eI-d1-4cSX3TkhOzuX77PhK-LLB1l3t7EPGhVAQpzY2aRUmkIISBRprgAIQsRUqnbJsXHUNQz10asux0GPg21e9YpcmdmnPrikLV4SNLwlyOcnWyFZ9Qbo1Gq7LiV-MgqBx79OBjnG2Pmu1iGPKgZVR_K8xaEZShTB7yh54KVrNGvU5AfT00f9M7zm7MTs62Nf7u4d7j9lNQf6IPt7xCVvvTs_sUwRtXfGs3yScfbrqXfkbAJRYIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transport+of+polystyrene+nanoplastics+in+natural+soils%3A+Effect+of+soil+properties%2C+ionic+strength+and+cation+type&rft.jtitle=The+Science+of+the+total+environment&rft.au=Wu%2C+Xiaoli&rft.au=Lyu%2C+Xueyan&rft.au=Li%2C+Zhengyu&rft.au=Gao%2C+Bin&rft.date=2020-03-10&rft.issn=0048-9697&rft.volume=707&rft.spage=136065&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.136065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2019_136065
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon