Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type
Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated transport behaviors of nanoplastics in natural soils. In this study, column experiments were conducted to investigate the effect of soil propert...
Saved in:
Published in | The Science of the total environment Vol. 707; p. 136065 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated transport behaviors of nanoplastics in natural soils. In this study, column experiments were conducted to investigate the effect of soil properties, ionic strength and cation type on the transport of polystyrene nanoplastics (PSNPs) in a desert soil (DS), a black soil (BS) and a red soil (RS). The effluent recovery of PSNPs in three soils followed the order of DS (0%–96.8%) > BS (0%–87.5%) > RS (0%). The retention of PSNPs was positively correlated with Fe/Al oxides contents (DS: Fe-2.69%, Al-12.6%; BS: Fe-4.04%, Al-15.9%; RS: Fe-6.57%, Al-26.9%), whereas negatively correlated with soil pH (DS: 9.75; BS: 6.57; RS: 4.97). Soil minerals and pH were thus identified as the crucial soil properties determining transport of PSNPs, due to their coupled effects on surface charges to affect electrostatic interactions between soils and PSNPs. In addition, increasing solution ionic strength strongly inhibited the transport of PSNPs in the DS (0%–96.8%) and BS (0%–87.5%). Ca2+ (IS: 1–5 mM) was more pronounced in enhancing PSNP retention than Na+ (IS: 1–20 mM). Our findings highlight that the transport and fate of PSNPs in natural soils are highly sensitive to soil physicochemical properties, ionic strength and cation type, and reveal that nanoplastics have strong mobility ability in soils with high pH and low Fe/Al oxides contents, which may pose potential risks to the soil and groundwater environment.
[Display omitted]
•PSNPs retention in soils was positively correlated with Fe/Al oxides contents.•PSNPs retention in soils was negatively correlated with soil pH.•PSNPs transport decreased with increasing ionic strength in soils.•Ca2+ was more pronounced in inhibiting PSNPs transport than Na+ in soils. |
---|---|
AbstractList | Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated transport behaviors of nanoplastics in natural soils. In this study, column experiments were conducted to investigate the effect of soil properties, ionic strength and cation type on the transport of polystyrene nanoplastics (PSNPs) in a desert soil (DS), a black soil (BS) and a red soil (RS). The effluent recovery of PSNPs in three soils followed the order of DS (0%–96.8%) > BS (0%–87.5%) > RS (0%). The retention of PSNPs was positively correlated with Fe/Al oxides contents (DS: Fe-2.69%, Al-12.6%; BS: Fe-4.04%, Al-15.9%; RS: Fe-6.57%, Al-26.9%), whereas negatively correlated with soil pH (DS: 9.75; BS: 6.57; RS: 4.97). Soil minerals and pH were thus identified as the crucial soil properties determining transport of PSNPs, due to their coupled effects on surface charges to affect electrostatic interactions between soils and PSNPs. In addition, increasing solution ionic strength strongly inhibited the transport of PSNPs in the DS (0%–96.8%) and BS (0%–87.5%). Ca2+ (IS: 1–5 mM) was more pronounced in enhancing PSNP retention than Na+ (IS: 1–20 mM). Our findings highlight that the transport and fate of PSNPs in natural soils are highly sensitive to soil physicochemical properties, ionic strength and cation type, and reveal that nanoplastics have strong mobility ability in soils with high pH and low Fe/Al oxides contents, which may pose potential risks to the soil and groundwater environment.
[Display omitted]
•PSNPs retention in soils was positively correlated with Fe/Al oxides contents.•PSNPs retention in soils was negatively correlated with soil pH.•PSNPs transport decreased with increasing ionic strength in soils.•Ca2+ was more pronounced in inhibiting PSNPs transport than Na+ in soils. Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated transport behaviors of nanoplastics in natural soils. In this study, column experiments were conducted to investigate the effect of soil properties, ionic strength and cation type on the transport of polystyrene nanoplastics (PSNPs) in a desert soil (DS), a black soil (BS) and a red soil (RS). The effluent recovery of PSNPs in three soils followed the order of DS (0%-96.8%) > BS (0%-87.5%) > RS (0%). The retention of PSNPs was positively correlated with Fe/Al oxides contents (DS: Fe-2.69%, Al-12.6%; BS: Fe-4.04%, Al-15.9%; RS: Fe-6.57%, Al-26.9%), whereas negatively correlated with soil pH (DS: 9.75; BS: 6.57; RS: 4.97). Soil minerals and pH were thus identified as the crucial soil properties determining transport of PSNPs, due to their coupled effects on surface charges to affect electrostatic interactions between soils and PSNPs. In addition, increasing solution ionic strength strongly inhibited the transport of PSNPs in the DS (0%-96.8%) and BS (0%-87.5%). Ca (IS: 1-5 mM) was more pronounced in enhancing PSNP retention than Na (IS: 1-20 mM). Our findings highlight that the transport and fate of PSNPs in natural soils are highly sensitive to soil physicochemical properties, ionic strength and cation type, and reveal that nanoplastics have strong mobility ability in soils with high pH and low Fe/Al oxides contents, which may pose potential risks to the soil and groundwater environment. Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated transport behaviors of nanoplastics in natural soils. In this study, column experiments were conducted to investigate the effect of soil properties, ionic strength and cation type on the transport of polystyrene nanoplastics (PSNPs) in a desert soil (DS), a black soil (BS) and a red soil (RS). The effluent recovery of PSNPs in three soils followed the order of DS (0%-96.8%) > BS (0%-87.5%) > RS (0%). The retention of PSNPs was positively correlated with Fe/Al oxides contents (DS: Fe-2.69%, Al-12.6%; BS: Fe-4.04%, Al-15.9%; RS: Fe-6.57%, Al-26.9%), whereas negatively correlated with soil pH (DS: 9.75; BS: 6.57; RS: 4.97). Soil minerals and pH were thus identified as the crucial soil properties determining transport of PSNPs, due to their coupled effects on surface charges to affect electrostatic interactions between soils and PSNPs. In addition, increasing solution ionic strength strongly inhibited the transport of PSNPs in the DS (0%-96.8%) and BS (0%-87.5%). Ca2+ (IS: 1-5 mM) was more pronounced in enhancing PSNP retention than Na+ (IS: 1-20 mM). Our findings highlight that the transport and fate of PSNPs in natural soils are highly sensitive to soil physicochemical properties, ionic strength and cation type, and reveal that nanoplastics have strong mobility ability in soils with high pH and low Fe/Al oxides contents, which may pose potential risks to the soil and groundwater environment.Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated transport behaviors of nanoplastics in natural soils. In this study, column experiments were conducted to investigate the effect of soil properties, ionic strength and cation type on the transport of polystyrene nanoplastics (PSNPs) in a desert soil (DS), a black soil (BS) and a red soil (RS). The effluent recovery of PSNPs in three soils followed the order of DS (0%-96.8%) > BS (0%-87.5%) > RS (0%). The retention of PSNPs was positively correlated with Fe/Al oxides contents (DS: Fe-2.69%, Al-12.6%; BS: Fe-4.04%, Al-15.9%; RS: Fe-6.57%, Al-26.9%), whereas negatively correlated with soil pH (DS: 9.75; BS: 6.57; RS: 4.97). Soil minerals and pH were thus identified as the crucial soil properties determining transport of PSNPs, due to their coupled effects on surface charges to affect electrostatic interactions between soils and PSNPs. In addition, increasing solution ionic strength strongly inhibited the transport of PSNPs in the DS (0%-96.8%) and BS (0%-87.5%). Ca2+ (IS: 1-5 mM) was more pronounced in enhancing PSNP retention than Na+ (IS: 1-20 mM). Our findings highlight that the transport and fate of PSNPs in natural soils are highly sensitive to soil physicochemical properties, ionic strength and cation type, and reveal that nanoplastics have strong mobility ability in soils with high pH and low Fe/Al oxides contents, which may pose potential risks to the soil and groundwater environment. Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated transport behaviors of nanoplastics in natural soils. In this study, column experiments were conducted to investigate the effect of soil properties, ionic strength and cation type on the transport of polystyrene nanoplastics (PSNPs) in a desert soil (DS), a black soil (BS) and a red soil (RS). The effluent recovery of PSNPs in three soils followed the order of DS (0%–96.8%) > BS (0%–87.5%) > RS (0%). The retention of PSNPs was positively correlated with Fe/Al oxides contents (DS: Fe-2.69%, Al-12.6%; BS: Fe-4.04%, Al-15.9%; RS: Fe-6.57%, Al-26.9%), whereas negatively correlated with soil pH (DS: 9.75; BS: 6.57; RS: 4.97). Soil minerals and pH were thus identified as the crucial soil properties determining transport of PSNPs, due to their coupled effects on surface charges to affect electrostatic interactions between soils and PSNPs. In addition, increasing solution ionic strength strongly inhibited the transport of PSNPs in the DS (0%–96.8%) and BS (0%–87.5%). Ca²⁺ (IS: 1–5 mM) was more pronounced in enhancing PSNP retention than Na⁺ (IS: 1–20 mM). Our findings highlight that the transport and fate of PSNPs in natural soils are highly sensitive to soil physicochemical properties, ionic strength and cation type, and reveal that nanoplastics have strong mobility ability in soils with high pH and low Fe/Al oxides contents, which may pose potential risks to the soil and groundwater environment. |
ArticleNumber | 136065 |
Author | Lyu, Xueyan Li, Zhengyu Zeng, Xiankui Wu, Xiaoli Gao, Bin Wu, Jichun Sun, Yuanyuan |
Author_xml | – sequence: 1 givenname: Xiaoli surname: Wu fullname: Wu, Xiaoli organization: State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China – sequence: 2 givenname: Xueyan surname: Lyu fullname: Lyu, Xueyan organization: State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China – sequence: 3 givenname: Zhengyu surname: Li fullname: Li, Zhengyu organization: State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China – sequence: 4 givenname: Bin orcidid: 0000-0003-3769-0191 surname: Gao fullname: Gao, Bin organization: Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA – sequence: 5 givenname: Xiankui orcidid: 0000-0003-1307-4626 surname: Zeng fullname: Zeng, Xiankui organization: State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China – sequence: 6 givenname: Jichun surname: Wu fullname: Wu, Jichun organization: State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China – sequence: 7 givenname: Yuanyuan orcidid: 0000-0002-4526-9287 surname: Sun fullname: Sun, Yuanyuan email: sunyy@nju.edu.cn organization: State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31865085$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9PGzEQxa2KqgTar9D62EM39Z9de12pB4RoQULiAmfLmZ1tHW3sxXaQ8u3rEOiBC_hizej33tjzTshRiAEJ-cLZkjOuvq-XGXyJBcPDUjBullwqprp3ZMF7bRrOhDoiC8bavjHK6GNykvOa1aN7_oEcS96rjvXdgtzfJhfyHFOhcaRznHa57BIGpMGFOE8uFw-Z-lDrsk1uojn6Kf-gF-OI8CjaN-ic4oypeMzfqI_BA82l2vwpf6kLAwVXapeW3YwfyfvRTRk_Pd2n5O7Xxe35ZXN98_vq_Oy6gVaz0uiVdg4EcLViDoZ-1BzEOGgNtdYAYjCDEYJ1bmVki3oEp4zkKAFZy9pOnpKvB9_6tPst5mI3PgNOkwsYt9kK2fe6M50Qb0AlY0poLiv6-QndrjY42Dn5jUs7-7zRCvw8AJBizglHW4N6_H1Jzk-WM7tP0K7t_wTtPkF7SLDq9Qv984jXlWcHJdatPnhMew4D4OBTjcoO0b_q8Q9NMr1- |
CitedBy_id | crossref_primary_10_1016_j_jhazmat_2021_126910 crossref_primary_10_1007_s10311_023_01688_x crossref_primary_10_1016_j_chemosphere_2021_133239 crossref_primary_10_1016_j_jenvman_2024_122741 crossref_primary_10_1016_j_scitotenv_2024_171563 crossref_primary_10_1016_j_scitotenv_2024_173586 crossref_primary_10_3390_w12092633 crossref_primary_10_1007_s00767_022_00533_2 crossref_primary_10_1016_j_envres_2025_121128 crossref_primary_10_1016_j_scitotenv_2024_174270 crossref_primary_10_1016_j_nantod_2024_102409 crossref_primary_10_3390_su14127024 crossref_primary_10_1016_j_jhazmat_2023_133056 crossref_primary_10_3390_agronomy14061193 crossref_primary_10_1002_ldr_5115 crossref_primary_10_1016_j_envadv_2022_100227 crossref_primary_10_1021_acs_est_4c10405 crossref_primary_10_1016_j_envc_2025_101080 crossref_primary_10_3390_molecules25235518 crossref_primary_10_1016_j_watres_2024_122463 crossref_primary_10_1021_acs_est_1c05614 crossref_primary_10_1016_j_impact_2021_100295 crossref_primary_10_1016_j_ecoenv_2024_116366 crossref_primary_10_1016_j_jhazmat_2021_125410 crossref_primary_10_1016_j_envpol_2020_115828 crossref_primary_10_1016_j_ecoenv_2024_117332 crossref_primary_10_1016_j_watres_2022_119443 crossref_primary_10_1016_j_advwatres_2023_104507 crossref_primary_10_1016_j_chemosphere_2021_131965 crossref_primary_10_1007_s10311_023_01577_3 crossref_primary_10_3390_w14213586 crossref_primary_10_1016_j_jhazmat_2020_123415 crossref_primary_10_1016_j_scitotenv_2023_169638 crossref_primary_10_3390_nano14060529 crossref_primary_10_1007_s44169_023_00031_3 crossref_primary_10_1016_j_scitotenv_2024_173194 crossref_primary_10_1007_s11440_022_01767_3 crossref_primary_10_1016_j_envpol_2025_126026 crossref_primary_10_1016_j_scitotenv_2023_161867 crossref_primary_10_1016_j_jcis_2024_12_186 crossref_primary_10_1016_j_scitotenv_2022_157790 crossref_primary_10_1002_ldr_5103 crossref_primary_10_1016_j_envpol_2023_121804 crossref_primary_10_1016_j_envpol_2022_120456 crossref_primary_10_1016_j_jhazmat_2024_135867 crossref_primary_10_3389_fenvs_2022_1114940 crossref_primary_10_1016_j_clay_2023_106868 crossref_primary_10_1016_j_envpol_2022_120978 crossref_primary_10_1007_s10661_024_12962_y crossref_primary_10_1016_j_microc_2024_111884 crossref_primary_10_1016_j_geothermics_2023_102784 crossref_primary_10_1016_j_jhazmat_2023_132416 crossref_primary_10_3390_ijms26052207 crossref_primary_10_3390_su16219395 crossref_primary_10_1016_j_envpol_2022_119474 crossref_primary_10_1016_j_scitotenv_2021_151831 crossref_primary_10_1016_j_scitotenv_2022_155619 crossref_primary_10_1016_j_chemosphere_2020_127854 crossref_primary_10_1021_acs_est_1c08503 crossref_primary_10_1016_j_geoderma_2025_117229 crossref_primary_10_1021_acs_jafc_1c07849 crossref_primary_10_1007_s11270_024_07690_5 crossref_primary_10_1016_j_jhazmat_2021_126455 crossref_primary_10_1016_j_jhazmat_2021_127787 crossref_primary_10_1016_j_jenvman_2022_115510 crossref_primary_10_1016_j_cej_2023_141568 crossref_primary_10_1016_j_scitotenv_2021_147115 crossref_primary_10_1016_j_marpolbul_2022_114317 crossref_primary_10_1016_j_scitotenv_2024_178298 crossref_primary_10_1007_s11270_025_07751_3 crossref_primary_10_1016_j_envpol_2022_120788 crossref_primary_10_1016_j_scitotenv_2020_141378 crossref_primary_10_1016_j_scitotenv_2022_158099 crossref_primary_10_1016_j_scitotenv_2022_157168 crossref_primary_10_1007_s11368_022_03266_0 crossref_primary_10_1016_j_impact_2023_100473 crossref_primary_10_1016_j_scitotenv_2024_171658 crossref_primary_10_1111_sum_12709 crossref_primary_10_1016_j_heliyon_2023_e18464 crossref_primary_10_1016_j_chemosphere_2021_130214 crossref_primary_10_3389_fpls_2022_1027608 crossref_primary_10_3390_ijms23179860 crossref_primary_10_1039_D1EN00381J crossref_primary_10_1111_gwmr_12633 crossref_primary_10_1007_s11270_022_05837_w crossref_primary_10_1016_j_jes_2024_03_042 crossref_primary_10_3390_molecules27051744 crossref_primary_10_1016_j_envpol_2021_117098 crossref_primary_10_1016_j_scitotenv_2020_141368 crossref_primary_10_1016_j_scitotenv_2023_163237 crossref_primary_10_1016_j_gsd_2023_101036 crossref_primary_10_1016_j_scitotenv_2022_157576 crossref_primary_10_1016_j_scitotenv_2023_166189 crossref_primary_10_1080_26395940_2024_2308116 crossref_primary_10_1007_s11270_021_05125_z crossref_primary_10_1007_s41742_024_00698_z crossref_primary_10_1016_j_watres_2022_118978 crossref_primary_10_1360_SSC_2024_0064 crossref_primary_10_1016_j_jclepro_2024_143877 crossref_primary_10_1007_s11356_023_29640_0 crossref_primary_10_1016_j_envpol_2024_125143 crossref_primary_10_1016_j_scitotenv_2021_148982 crossref_primary_10_1016_j_scitotenv_2024_175204 crossref_primary_10_1021_acsestwater_3c00645 crossref_primary_10_1021_acsestwater_0c00130 crossref_primary_10_1016_j_jhazmat_2024_135153 crossref_primary_10_1016_j_envpol_2023_121862 crossref_primary_10_1016_j_scp_2024_101544 crossref_primary_10_1007_s11270_021_05469_6 crossref_primary_10_1016_j_jhazmat_2021_127806 crossref_primary_10_1007_s10653_023_01664_y crossref_primary_10_1016_j_envint_2021_106708 crossref_primary_10_1007_s00425_023_04069_4 crossref_primary_10_1016_j_jhazmat_2022_130266 crossref_primary_10_1016_j_trac_2022_116889 crossref_primary_10_3390_ijerph182010629 crossref_primary_10_1021_acsestengg_3c00615 crossref_primary_10_1016_j_envpol_2021_116552 crossref_primary_10_1002_jpln_202200136 crossref_primary_10_5194_soil_8_31_2022 crossref_primary_10_1016_j_hazadv_2023_100345 crossref_primary_10_1016_j_impact_2023_100474 crossref_primary_10_1016_j_watres_2025_123129 crossref_primary_10_1016_j_jhazmat_2022_129834 crossref_primary_10_1016_j_jes_2024_07_007 crossref_primary_10_1016_j_jenvman_2024_120918 crossref_primary_10_1016_j_earscirev_2025_105108 crossref_primary_10_1016_j_watres_2021_117407 crossref_primary_10_1016_j_scitotenv_2023_169709 crossref_primary_10_1016_j_scitotenv_2025_178693 crossref_primary_10_1016_j_jhazmat_2023_132572 crossref_primary_10_1016_j_chemosphere_2022_136968 crossref_primary_10_1016_j_jhazmat_2022_130012 crossref_primary_10_1016_j_jhazmat_2024_133487 crossref_primary_10_1016_j_jhazmat_2022_129312 crossref_primary_10_1016_j_jconhyd_2024_104398 crossref_primary_10_1016_j_jhazmat_2021_127870 crossref_primary_10_1016_j_scitotenv_2023_163294 crossref_primary_10_1016_j_heliyon_2024_e38738 crossref_primary_10_1016_j_jhazmat_2022_129155 crossref_primary_10_1016_j_jconhyd_2023_104215 crossref_primary_10_1016_j_scitotenv_2022_155657 crossref_primary_10_1016_j_chemosphere_2022_136091 crossref_primary_10_1021_acs_est_1c07574 crossref_primary_10_1007_s10311_022_01479_w crossref_primary_10_1016_j_jhydrol_2021_126960 crossref_primary_10_3390_agronomy13030701 crossref_primary_10_1016_j_scitotenv_2021_149338 crossref_primary_10_1016_j_envpol_2024_123542 crossref_primary_10_1016_j_envres_2023_115383 crossref_primary_10_1007_s11270_022_05630_9 crossref_primary_10_1016_j_jhazmat_2021_127903 crossref_primary_10_1016_j_envpol_2024_125047 crossref_primary_10_1016_j_jhazmat_2022_130084 crossref_primary_10_1016_j_chemosphere_2022_134354 crossref_primary_10_1016_j_chemosphere_2022_135322 crossref_primary_10_1016_j_envpol_2021_117585 crossref_primary_10_1021_acs_est_0c06839 crossref_primary_10_1016_j_jhazmat_2023_132269 crossref_primary_10_1016_j_jhazmat_2024_134640 crossref_primary_10_1016_j_watres_2021_117016 crossref_primary_10_1061_JGGEFK_GTENG_13047 crossref_primary_10_1016_j_chemosphere_2022_136658 crossref_primary_10_1016_j_eehl_2022_10_001 crossref_primary_10_1016_j_chemosphere_2021_131628 crossref_primary_10_1016_j_jhazmat_2021_127614 crossref_primary_10_1016_j_scitotenv_2024_176405 crossref_primary_10_1016_j_ecoenv_2023_115597 crossref_primary_10_3390_environments10050070 crossref_primary_10_1016_j_jcis_2023_09_090 crossref_primary_10_1016_j_scitotenv_2021_146752 crossref_primary_10_1016_j_envpol_2023_122323 crossref_primary_10_1016_j_apsoil_2022_104426 crossref_primary_10_1021_acsomega_4c04083 crossref_primary_10_3390_polym13234129 crossref_primary_10_1016_j_jhazmat_2025_137805 crossref_primary_10_1016_j_scitotenv_2023_163832 crossref_primary_10_1007_s13205_022_03361_6 crossref_primary_10_1016_j_chemosphere_2022_135730 crossref_primary_10_1016_j_scitotenv_2020_140355 crossref_primary_10_1016_j_cej_2021_131870 crossref_primary_10_1016_j_scitotenv_2023_165611 crossref_primary_10_1016_j_envpol_2024_124758 crossref_primary_10_1016_j_scitotenv_2021_152507 crossref_primary_10_1016_j_scitotenv_2023_166783 crossref_primary_10_1680_jenge_20_00179 crossref_primary_10_1016_j_fct_2022_113521 crossref_primary_10_1016_j_jhazmat_2021_125550 crossref_primary_10_1016_j_ecoenv_2024_116066 crossref_primary_10_1038_s41598_024_78480_6 |
Cites_doi | 10.1021/es203784u 10.1021/cr60234a002 10.1021/acs.est.7b05559 10.1016/j.clay.2006.05.009 10.1016/j.envpol.2018.05.008 10.1016/j.envpol.2019.03.092 10.1016/j.scitotenv.2017.08.086 10.1016/j.coesh.2017.10.006 10.1016/j.chemosphere.2018.01.052 10.1021/acs.est.6b00183 10.1016/j.envpol.2018.02.042 10.1016/j.envpol.2018.11.055 10.1029/2002WR001340 10.1021/es960053+ 10.1016/j.watres.2018.10.071 10.1016/j.watres.2012.02.049 10.1111/gcb.14020 10.1021/es2045458 10.1016/j.scitotenv.2013.05.089 10.1016/j.jconhyd.2005.09.006 10.1016/j.colsurfa.2012.03.004 10.1016/j.watres.2018.07.007 10.1016/j.scitotenv.2014.09.095 10.1016/0095-8522(55)90030-1 10.1016/j.watres.2007.03.030 10.1016/j.aquatox.2018.04.015 10.1111/ejss.12118 10.1098/rstb.2008.0304 10.1038/s41598-017-01594-7 10.1016/j.scitotenv.2018.06.004 10.1016/j.jcis.2011.12.059 10.1021/acs.est.7b05211 10.2136/vzj2015.01.0007 10.1016/j.scitotenv.2019.03.102 10.1021/acs.estlett.7b00187 10.1021/es901927y 10.1016/j.jconhyd.2019.03.009 10.1021/acs.est.7b06003 10.1016/j.colsurfa.2014.05.075 10.1016/j.scitotenv.2016.05.041 10.1016/j.jhydrol.2014.09.053 10.1021/acs.est.7b05062 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2019.136065 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 31865085 10_1016_j_scitotenv_2019_136065 S0048969719360619 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-7b7aac2c16b0acd8f71c2fd77cb0a7cc2d9d92205ab934e7fca6931e3ce040453 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 12:14:57 EDT 2025 Fri Jul 11 02:38:58 EDT 2025 Wed Feb 19 02:31:34 EST 2025 Tue Jul 01 03:35:25 EDT 2025 Thu Apr 24 22:58:44 EDT 2025 Fri Feb 23 02:47:21 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | pH Soils Minerals Transport Retention Nanoplastics |
Language | English |
License | Copyright © 2019 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-7b7aac2c16b0acd8f71c2fd77cb0a7cc2d9d92205ab934e7fca6931e3ce040453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1307-4626 0000-0003-3769-0191 0000-0002-4526-9287 |
PMID | 31865085 |
PQID | 2330062713 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2388759522 proquest_miscellaneous_2330062713 pubmed_primary_31865085 crossref_citationtrail_10_1016_j_scitotenv_2019_136065 crossref_primary_10_1016_j_scitotenv_2019_136065 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_136065 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-10 |
PublicationDateYYYYMMDD | 2020-03-10 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Fisher-Power, Cheng (bb0075) 2018; 52 Quevedo, Tufenkji (bb0145) 2012; 46 Scheurer, Bigalke (bb0160) 2018; 52 Alimi, Farner Budarz, Hernandez, Tufenkji (bb0005) 2018; 52 Bradford, Torkzaban, Walker (bb0030) 2007; 41 da Costa, Santos, Duarte, Rocha-Santos (bb0050) 2016; 566-567 Liu, Ma, Zhu, Xia, Qi, Yao, Guo, Ji, Chen (bb0120) 2018; 52 Hurley, Nizzetto (bb0085) 2018; 1 Wu, Jiang, Lin, Ouyang (bb0200) 2019; 245 Bradford, Yates, Bettahar, Simunek (bb0025) 2002; 38 de Souza Machado, Kloas, Zarfl, Hempel, Rillig (bb0055) 2017; 24 Rillig, Ziersch, Hempel (bb0150) 2017; 7 Wang, Bradford, Harvey, Gao, Cang, Zhou (bb0185) 2012; 46 Jiang, Tong, Lu, Kim (bb0100) 2012; 401 Lyu, Liu, Sun, Ji, Gao, Wu (bb0130) 2019; 225 Dong, Zhang, Qiu, Yang, Wang, Zhang (bb0070) 2019; 148 Israelachvili (bb0090) 1992 Zhang, Isaacson, Rattanaudompol, Powell, Bouchard (bb0215) 2012; 46 Wang, Su, Zhang, Hao, Cang, Wang, Zhou (bb0190) 2014; 519 Lu, Zhang, Deng, Jiang, Zhao, Geng, Ding, Ren (bb0125) 2016; 50 Sun, Shijirbaatar, Fang, Owens, Lin, Zhang (bb0170) 2015; 505 Zhang, Liu (bb0210) 2018; 642 Bläsing, Amelung (bb0015) 2018; 612 Sasidharan, Torkzaban, Bradford, Dillon, Cook (bb0155) 2014; 457 Bradford, Bettahar (bb0020) 2006; 82 Derjaguin, Landau (bb0060) 1941; 14 Hernandez, Yousefi, Tufenkji (bb0080) 2017; 4 Yu, Liu, Wu, Chen, Lv, Zhao (bb0205) 2018; 200 Andrady, Neal (bb0010) 2009; 364 Tombacz, Szekeres (bb0175) 2006; 34 Verwey, Overbeek (bb0180) 1955; 10 Cai, Hu, Shi, Ye, Zhang, Kim (bb0035) 2018; 197 Chae, An (bb0040) 2018; 240 Jaisi, Elimelech (bb0095) 2009; 43 Johnson, Sun, Elimelech (bb0105) 1996; 30 O'Connor, Pan, Shen, Song, Jin, Wu, Hou (bb0135) 2019; 249 Wang, Jaisi, Yan, Jin, Zhou (bb0195) 2015; 14 Cornelis, Pang, Doolette, Kirby, McLaughlin (bb0045) 2013; 463-464 Zhu, Chen, Li, He, Brookes, Xu (bb0220) 2014; 65 Li, Liu, Gao, Abdurahman, Dai, Zeng (bb0115) 2018; 237 Dong, Qiu, Zhang, Yang, Wei (bb0065) 2018; 143 Parks (bb0140) 1965; 65 Song, Yang, Chen, Zhao, Zhao, Ruan, Wang, Yang (bb0165) 2019; 669 Kim, Phenrat, Tilton, Lowry (bb0110) 2012; 370 Zhang (10.1016/j.scitotenv.2019.136065_bb0210) 2018; 642 Song (10.1016/j.scitotenv.2019.136065_bb0165) 2019; 669 Israelachvili (10.1016/j.scitotenv.2019.136065_bb0090) 1992 Cornelis (10.1016/j.scitotenv.2019.136065_bb0045) 2013; 463-464 Derjaguin (10.1016/j.scitotenv.2019.136065_bb0060) 1941; 14 Fisher-Power (10.1016/j.scitotenv.2019.136065_bb0075) 2018; 52 Bradford (10.1016/j.scitotenv.2019.136065_bb0020) 2006; 82 Dong (10.1016/j.scitotenv.2019.136065_bb0070) 2019; 148 Zhang (10.1016/j.scitotenv.2019.136065_bb0215) 2012; 46 da Costa (10.1016/j.scitotenv.2019.136065_bb0050) 2016; 566-567 O'Connor (10.1016/j.scitotenv.2019.136065_bb0135) 2019; 249 Johnson (10.1016/j.scitotenv.2019.136065_bb0105) 1996; 30 Wu (10.1016/j.scitotenv.2019.136065_bb0200) 2019; 245 de Souza Machado (10.1016/j.scitotenv.2019.136065_bb0055) 2017; 24 Liu (10.1016/j.scitotenv.2019.136065_bb0120) 2018; 52 Li (10.1016/j.scitotenv.2019.136065_bb0115) 2018; 237 Wang (10.1016/j.scitotenv.2019.136065_bb0190) 2014; 519 Zhu (10.1016/j.scitotenv.2019.136065_bb0220) 2014; 65 Cai (10.1016/j.scitotenv.2019.136065_bb0035) 2018; 197 Chae (10.1016/j.scitotenv.2019.136065_bb0040) 2018; 240 Scheurer (10.1016/j.scitotenv.2019.136065_bb0160) 2018; 52 Sasidharan (10.1016/j.scitotenv.2019.136065_bb0155) 2014; 457 Yu (10.1016/j.scitotenv.2019.136065_bb0205) 2018; 200 Dong (10.1016/j.scitotenv.2019.136065_bb0065) 2018; 143 Jaisi (10.1016/j.scitotenv.2019.136065_bb0095) 2009; 43 Wang (10.1016/j.scitotenv.2019.136065_bb0195) 2015; 14 Tombacz (10.1016/j.scitotenv.2019.136065_bb0175) 2006; 34 Alimi (10.1016/j.scitotenv.2019.136065_bb0005) 2018; 52 Lu (10.1016/j.scitotenv.2019.136065_bb0125) 2016; 50 Kim (10.1016/j.scitotenv.2019.136065_bb0110) 2012; 370 Jiang (10.1016/j.scitotenv.2019.136065_bb0100) 2012; 401 Bradford (10.1016/j.scitotenv.2019.136065_bb0030) 2007; 41 Hurley (10.1016/j.scitotenv.2019.136065_bb0085) 2018; 1 Sun (10.1016/j.scitotenv.2019.136065_bb0170) 2015; 505 Bläsing (10.1016/j.scitotenv.2019.136065_bb0015) 2018; 612 Andrady (10.1016/j.scitotenv.2019.136065_bb0010) 2009; 364 Bradford (10.1016/j.scitotenv.2019.136065_bb0025) 2002; 38 Parks (10.1016/j.scitotenv.2019.136065_bb0140) 1965; 65 Verwey (10.1016/j.scitotenv.2019.136065_bb0180) 1955; 10 Quevedo (10.1016/j.scitotenv.2019.136065_bb0145) 2012; 46 Rillig (10.1016/j.scitotenv.2019.136065_bb0150) 2017; 7 Hernandez (10.1016/j.scitotenv.2019.136065_bb0080) 2017; 4 Lyu (10.1016/j.scitotenv.2019.136065_bb0130) 2019; 225 Wang (10.1016/j.scitotenv.2019.136065_bb0185) 2012; 46 |
References_xml | – volume: 249 start-page: 527 year: 2019 end-page: 534 ident: bb0135 article-title: Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles publication-title: Environ. Pollut. – volume: 4 start-page: 280 year: 2017 end-page: 285 ident: bb0080 article-title: Are there nanoplastics in your personal care products? publication-title: Environ. Sci. Technol. Lett. – volume: 566-567 start-page: 15 year: 2016 end-page: 26 ident: bb0050 article-title: (Nano)plastics in the environment - sources, fates and effects publication-title: Sci. Total Environ. – volume: 225 year: 2019 ident: bb0130 article-title: Transport and retention of perfluorooctanoic acid (PFOA) in natural soils: importance of soil organic matter and mineral contents, and solution ionic strength publication-title: J. Contam. Hydrol. – volume: 52 start-page: 2677 year: 2018 end-page: 2685 ident: bb0120 article-title: Polystyrene nanoplastics-enhanced contaminant transport: role of irreversible adsorption in glassy polymeric domain publication-title: Environ. Sci. Technol. – volume: 52 start-page: 1704 year: 2018 end-page: 1724 ident: bb0005 article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport publication-title: Environ. Sci. Technol. – volume: 43 start-page: 9161 year: 2009 end-page: 9166 ident: bb0095 article-title: Single-walled carbon nanotubes exhibit limited transport in soil columns publication-title: Environ. Sci. Technol. – volume: 237 start-page: 126 year: 2018 end-page: 132 ident: bb0115 article-title: Aggregation kinetics of microplastics in aquatic environment: complex roles of electrolytes, pH, and natural organic matter publication-title: Environ. Pollut. – volume: 401 start-page: 29 year: 2012 end-page: 37 ident: bb0100 article-title: Transport and deposition of ZnO nanoparticles in saturated porous media publication-title: Colloids and Surfaces Colloid Surf. A-Physicochem. Eng. Asp. – volume: 65 start-page: 206 year: 2014 end-page: 217 ident: bb0220 article-title: Aggregation kinetics of natural soil nanoparticles in different electrolytes publication-title: Eur. J. Soil Sci. – volume: 14 year: 2015 ident: bb0195 article-title: Transport and retention of polyvinylpyrrolidone-coated silver nanoparticles in natural soils publication-title: Vadose Zone J. – volume: 24 start-page: 1405 year: 2017 end-page: 1416 ident: bb0055 article-title: Microplastics as an emerging threat to terrestrial ecosystems publication-title: Glob. Change Biol. – volume: 38 start-page: 63 year: 2002 end-page: 61-63-12 ident: bb0025 article-title: Physical factors affecting the transport and fate of colloids in saturated porous media publication-title: Water Resour. Res. – volume: 50 start-page: 4054 year: 2016 end-page: 4060 ident: bb0125 article-title: Uptake and accumulation of polystyrene microplastics in Zebrafish (Danio rerio) and toxic effects in liver publication-title: Environ. Sci. Technol. – volume: 65 start-page: 177 year: 1965 end-page: 198 ident: bb0140 article-title: Isoelectric points of solid oxides solid hydroxides and aqueous hydroxo complex systems publication-title: Chem. Rev. – volume: 41 start-page: 3012 year: 2007 end-page: 3024 ident: bb0030 article-title: Coupling of physical and chemical mechanisms of colloid straining in saturated porous media publication-title: Water Res. – volume: 457 start-page: 169 year: 2014 end-page: 179 ident: bb0155 article-title: Coupled effects of hydrodynamic and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media publication-title: Colloid Surf. A-Physicochem. Eng. Asp. – volume: 148 start-page: 469 year: 2019 end-page: 478 ident: bb0070 article-title: Cotransport of nanoplastics (NPs) with fullerene (C publication-title: Water Res. – volume: 240 start-page: 387 year: 2018 end-page: 395 ident: bb0040 article-title: Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review publication-title: Environ. Pollut. – volume: 46 start-page: 4449 year: 2012 end-page: 4457 ident: bb0145 article-title: Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand publication-title: Environ. Sci. Technol. – volume: 245 start-page: 836 year: 2019 end-page: 843 ident: bb0200 article-title: Effect of salinity and humic acid on the aggregation and toxicity of polystyrene nanoplastics with different functional groups and charges publication-title: Environ. Pollut. – volume: 197 start-page: 142 year: 2018 end-page: 151 ident: bb0035 article-title: Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics publication-title: Chemosphere – volume: 46 start-page: 2738 year: 2012 end-page: 2745 ident: bb0185 article-title: Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand publication-title: Environ. Sci. Technol. – volume: 642 start-page: 12 year: 2018 end-page: 20 ident: bb0210 article-title: The distribution of microplastics in soil aggregate fractions in southwestern China publication-title: Sci. Total Environ. – volume: 52 start-page: 3591 year: 2018 end-page: 3598 ident: bb0160 article-title: Microplastics in Swiss floodplain soils publication-title: Environ. Sci. Technol. – volume: 519 start-page: 1677 year: 2014 end-page: 1687 ident: bb0190 article-title: Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (Ultisol) publication-title: J. Hydrol. – volume: 463-464 start-page: 120 year: 2013 end-page: 130 ident: bb0045 article-title: Transport of silver nanoparticles in saturated columns of natural soils publication-title: Sci. Total Environ. – volume: 52 start-page: 2668 year: 2018 end-page: 2676 ident: bb0075 article-title: Nanoscale titanium dioxide (nTiO publication-title: Environ. Sci. Technol. – volume: 30 start-page: 3284 year: 1996 end-page: 3293 ident: bb0105 article-title: Colloid transport in geochemically heterogeneous porous media: modeling and measurements publication-title: Environ. Sci. Technol. – volume: 10 start-page: 224 year: 1955 end-page: 225 ident: bb0180 article-title: Theory of the stability of lyophobic colloids publication-title: J. Colloid Science. – volume: 34 start-page: 105 year: 2006 end-page: 124 ident: bb0175 article-title: Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite publication-title: Appl. Clay Sci. – volume: 1 start-page: 6 year: 2018 end-page: 11 ident: bb0085 article-title: Fate and occurrence of micro(nano)plastics in soils: knowledge gaps and possible risks publication-title: Curr. Opi. Environ. Sci. Health. – volume: 505 start-page: 189 year: 2015 end-page: 198 ident: bb0170 article-title: Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns publication-title: Sci. Total Environ. – volume: 364 start-page: 1977 year: 2009 end-page: 1984 ident: bb0010 article-title: Applications and societal benefits of plastics publication-title: Philos. Trans. R. Soc. B-Biol. Sci. – volume: 200 start-page: 28 year: 2018 end-page: 36 ident: bb0205 article-title: Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver publication-title: Aquat. Toxicol. – volume: 14 start-page: 633 year: 1941 end-page: 662 ident: bb0060 article-title: Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes publication-title: Acta Physicochim. – volume: 143 start-page: 518 year: 2018 end-page: 526 ident: bb0065 article-title: Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater publication-title: Water Res. – volume: 46 start-page: 2992 year: 2012 end-page: 3004 ident: bb0215 article-title: Fullerene nanoparticles exhibit greater retention in freshwater sediment than in model porous media publication-title: Water Res. – volume: 612 start-page: 422 year: 2018 end-page: 435 ident: bb0015 article-title: Plastics in soil: analytical methods and possible sources publication-title: Sci. Total Environ. – year: 1992 ident: bb0090 article-title: Intermolecular and Surface Forces – volume: 370 start-page: 1 year: 2012 end-page: 10 ident: bb0110 article-title: Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 1362 year: 2017 ident: bb0150 article-title: Microplastic transport in soil by earthworms publication-title: Sci. Rep. – volume: 669 start-page: 120 year: 2019 end-page: 128 ident: bb0165 article-title: Fate and transport of nanoplastics in complex natural aquifer media: effect of particle size and surface functionalization publication-title: Sci. Total Environ. – volume: 82 start-page: 99 year: 2006 end-page: 117 ident: bb0020 article-title: Concentration dependent transport of colloids in saturated porous media publication-title: J. Contam. Hydrol. – volume: 46 start-page: 2738 year: 2012 ident: 10.1016/j.scitotenv.2019.136065_bb0185 article-title: Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand publication-title: Environ. Sci. Technol. doi: 10.1021/es203784u – volume: 65 start-page: 177 year: 1965 ident: 10.1016/j.scitotenv.2019.136065_bb0140 article-title: Isoelectric points of solid oxides solid hydroxides and aqueous hydroxo complex systems publication-title: Chem. Rev. doi: 10.1021/cr60234a002 – volume: 52 start-page: 1704 year: 2018 ident: 10.1016/j.scitotenv.2019.136065_bb0005 article-title: Microplastics and nanoplastics in aquatic environments: aggregation, deposition, and enhanced contaminant transport publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05559 – volume: 34 start-page: 105 year: 2006 ident: 10.1016/j.scitotenv.2019.136065_bb0175 article-title: Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2006.05.009 – volume: 240 start-page: 387 year: 2018 ident: 10.1016/j.scitotenv.2019.136065_bb0040 article-title: Current research trends on plastic pollution and ecological impacts on the soil ecosystem: a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.05.008 – volume: 249 start-page: 527 year: 2019 ident: 10.1016/j.scitotenv.2019.136065_bb0135 article-title: Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.03.092 – volume: 612 start-page: 422 year: 2018 ident: 10.1016/j.scitotenv.2019.136065_bb0015 article-title: Plastics in soil: analytical methods and possible sources publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.086 – volume: 1 start-page: 6 year: 2018 ident: 10.1016/j.scitotenv.2019.136065_bb0085 article-title: Fate and occurrence of micro(nano)plastics in soils: knowledge gaps and possible risks publication-title: Curr. Opi. Environ. Sci. Health. doi: 10.1016/j.coesh.2017.10.006 – volume: 197 start-page: 142 year: 2018 ident: 10.1016/j.scitotenv.2019.136065_bb0035 article-title: Effects of inorganic ions and natural organic matter on the aggregation of nanoplastics publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.01.052 – volume: 50 start-page: 4054 year: 2016 ident: 10.1016/j.scitotenv.2019.136065_bb0125 article-title: Uptake and accumulation of polystyrene microplastics in Zebrafish (Danio rerio) and toxic effects in liver publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00183 – volume: 237 start-page: 126 year: 2018 ident: 10.1016/j.scitotenv.2019.136065_bb0115 article-title: Aggregation kinetics of microplastics in aquatic environment: complex roles of electrolytes, pH, and natural organic matter publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.02.042 – volume: 245 start-page: 836 year: 2019 ident: 10.1016/j.scitotenv.2019.136065_bb0200 article-title: Effect of salinity and humic acid on the aggregation and toxicity of polystyrene nanoplastics with different functional groups and charges publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.11.055 – volume: 38 start-page: 63 year: 2002 ident: 10.1016/j.scitotenv.2019.136065_bb0025 article-title: Physical factors affecting the transport and fate of colloids in saturated porous media publication-title: Water Resour. Res. doi: 10.1029/2002WR001340 – volume: 30 start-page: 3284 year: 1996 ident: 10.1016/j.scitotenv.2019.136065_bb0105 article-title: Colloid transport in geochemically heterogeneous porous media: modeling and measurements publication-title: Environ. Sci. Technol. doi: 10.1021/es960053+ – volume: 148 start-page: 469 year: 2019 ident: 10.1016/j.scitotenv.2019.136065_bb0070 article-title: Cotransport of nanoplastics (NPs) with fullerene (C60) in saturated sand: effect of NPs/C60 ratio and seawater salinity publication-title: Water Res. doi: 10.1016/j.watres.2018.10.071 – volume: 46 start-page: 2992 year: 2012 ident: 10.1016/j.scitotenv.2019.136065_bb0215 article-title: Fullerene nanoparticles exhibit greater retention in freshwater sediment than in model porous media publication-title: Water Res. doi: 10.1016/j.watres.2012.02.049 – volume: 24 start-page: 1405 year: 2017 ident: 10.1016/j.scitotenv.2019.136065_bb0055 article-title: Microplastics as an emerging threat to terrestrial ecosystems publication-title: Glob. Change Biol. doi: 10.1111/gcb.14020 – volume: 46 start-page: 4449 year: 2012 ident: 10.1016/j.scitotenv.2019.136065_bb0145 article-title: Mobility of functionalized quantum dots and a model polystyrene nanoparticle in saturated quartz sand and loamy sand publication-title: Environ. Sci. Technol. doi: 10.1021/es2045458 – volume: 463-464 start-page: 120 year: 2013 ident: 10.1016/j.scitotenv.2019.136065_bb0045 article-title: Transport of silver nanoparticles in saturated columns of natural soils publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.05.089 – volume: 82 start-page: 99 year: 2006 ident: 10.1016/j.scitotenv.2019.136065_bb0020 article-title: Concentration dependent transport of colloids in saturated porous media publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2005.09.006 – volume: 401 start-page: 29 year: 2012 ident: 10.1016/j.scitotenv.2019.136065_bb0100 article-title: Transport and deposition of ZnO nanoparticles in saturated porous media publication-title: Colloids and Surfaces Colloid Surf. A-Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2012.03.004 – volume: 143 start-page: 518 year: 2018 ident: 10.1016/j.scitotenv.2019.136065_bb0065 article-title: Size-dependent transport and retention of micron-sized plastic spheres in natural sand saturated with seawater publication-title: Water Res. doi: 10.1016/j.watres.2018.07.007 – volume: 505 start-page: 189 year: 2015 ident: 10.1016/j.scitotenv.2019.136065_bb0170 article-title: Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2014.09.095 – volume: 10 start-page: 224 year: 1955 ident: 10.1016/j.scitotenv.2019.136065_bb0180 article-title: Theory of the stability of lyophobic colloids publication-title: J. Colloid Science. doi: 10.1016/0095-8522(55)90030-1 – year: 1992 ident: 10.1016/j.scitotenv.2019.136065_bb0090 – volume: 14 start-page: 633 year: 1941 ident: 10.1016/j.scitotenv.2019.136065_bb0060 article-title: Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes publication-title: Acta Physicochim. – volume: 41 start-page: 3012 year: 2007 ident: 10.1016/j.scitotenv.2019.136065_bb0030 article-title: Coupling of physical and chemical mechanisms of colloid straining in saturated porous media publication-title: Water Res. doi: 10.1016/j.watres.2007.03.030 – volume: 200 start-page: 28 year: 2018 ident: 10.1016/j.scitotenv.2019.136065_bb0205 article-title: Accumulation of polystyrene microplastics in juvenile Eriocheir sinensis and oxidative stress effects in the liver publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2018.04.015 – volume: 65 start-page: 206 year: 2014 ident: 10.1016/j.scitotenv.2019.136065_bb0220 article-title: Aggregation kinetics of natural soil nanoparticles in different electrolytes publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12118 – volume: 364 start-page: 1977 year: 2009 ident: 10.1016/j.scitotenv.2019.136065_bb0010 article-title: Applications and societal benefits of plastics publication-title: Philos. Trans. R. Soc. B-Biol. Sci. doi: 10.1098/rstb.2008.0304 – volume: 7 start-page: 1362 year: 2017 ident: 10.1016/j.scitotenv.2019.136065_bb0150 article-title: Microplastic transport in soil by earthworms publication-title: Sci. Rep. doi: 10.1038/s41598-017-01594-7 – volume: 642 start-page: 12 year: 2018 ident: 10.1016/j.scitotenv.2019.136065_bb0210 article-title: The distribution of microplastics in soil aggregate fractions in southwestern China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.06.004 – volume: 370 start-page: 1 year: 2012 ident: 10.1016/j.scitotenv.2019.136065_bb0110 article-title: Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.12.059 – volume: 52 start-page: 2677 year: 2018 ident: 10.1016/j.scitotenv.2019.136065_bb0120 article-title: Polystyrene nanoplastics-enhanced contaminant transport: role of irreversible adsorption in glassy polymeric domain publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05211 – volume: 14 year: 2015 ident: 10.1016/j.scitotenv.2019.136065_bb0195 article-title: Transport and retention of polyvinylpyrrolidone-coated silver nanoparticles in natural soils publication-title: Vadose Zone J. doi: 10.2136/vzj2015.01.0007 – volume: 669 start-page: 120 year: 2019 ident: 10.1016/j.scitotenv.2019.136065_bb0165 article-title: Fate and transport of nanoplastics in complex natural aquifer media: effect of particle size and surface functionalization publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.03.102 – volume: 4 start-page: 280 year: 2017 ident: 10.1016/j.scitotenv.2019.136065_bb0080 article-title: Are there nanoplastics in your personal care products? publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.7b00187 – volume: 43 start-page: 9161 year: 2009 ident: 10.1016/j.scitotenv.2019.136065_bb0095 article-title: Single-walled carbon nanotubes exhibit limited transport in soil columns publication-title: Environ. Sci. Technol. doi: 10.1021/es901927y – volume: 225 year: 2019 ident: 10.1016/j.scitotenv.2019.136065_bb0130 article-title: Transport and retention of perfluorooctanoic acid (PFOA) in natural soils: importance of soil organic matter and mineral contents, and solution ionic strength publication-title: J. Contam. Hydrol. doi: 10.1016/j.jconhyd.2019.03.009 – volume: 52 start-page: 3591 year: 2018 ident: 10.1016/j.scitotenv.2019.136065_bb0160 article-title: Microplastics in Swiss floodplain soils publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b06003 – volume: 457 start-page: 169 year: 2014 ident: 10.1016/j.scitotenv.2019.136065_bb0155 article-title: Coupled effects of hydrodynamic and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media publication-title: Colloid Surf. A-Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2014.05.075 – volume: 566-567 start-page: 15 year: 2016 ident: 10.1016/j.scitotenv.2019.136065_bb0050 article-title: (Nano)plastics in the environment - sources, fates and effects publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.05.041 – volume: 519 start-page: 1677 year: 2014 ident: 10.1016/j.scitotenv.2019.136065_bb0190 article-title: Laboratory assessment of the mobility of water-dispersed engineered nanoparticles in a red soil (Ultisol) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.09.053 – volume: 52 start-page: 2668 year: 2018 ident: 10.1016/j.scitotenv.2019.136065_bb0075 article-title: Nanoscale titanium dioxide (nTiO2) transport in natural sediments: importance of soil organic matter and Fe/Al oxyhydroxides publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b05062 |
SSID | ssj0000781 |
Score | 2.671917 |
Snippet | Nanoplastics as emerging pollutants have caused growing concerns and posed potential threats to the environment. Nonetheless, only few studies investigated... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 136065 |
SubjectTerms | aluminum aluminum oxide calcium cations desert soils electrostatic interactions groundwater ionic strength iron Minerals Nanoplastics pollutants polystyrenes Retention risk sodium soil minerals soil pH soil physical properties Soils Transport |
Title | Transport of polystyrene nanoplastics in natural soils: Effect of soil properties, ionic strength and cation type |
URI | https://dx.doi.org/10.1016/j.scitotenv.2019.136065 https://www.ncbi.nlm.nih.gov/pubmed/31865085 https://www.proquest.com/docview/2330062713 https://www.proquest.com/docview/2388759522 |
Volume | 707 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEA6lIggielo9f5QIPrp2L9lsLn0rpeX0sA9isW8hO5vVkyO7dreFvvRvd2aze6Wg9sGnZZckhMxk5tvJzBfG3pW5doiiTTLzRidZoSCZm9IkxVz6HITxpr-S5fNJvjjNPp2psy12ONbCUFrlYPujTe-t9fBlb1jNvWa1ohrfbG5yoxGCIArvqT-zTJOWf7i-SfMgMpt4yowbG1vfyvHCcbsasekl5XgZSvlKycv82UP9DYH2nuj4MXs0QEh-EGf5hG35MGH346WSVxO2c3RTu4bNhs3bTtjDGKLjsfLoKfu1ITbndcWben3VUkg6eB5cqBuE1UThzFeB9-yfOFZbr9btPo-Mx9SJPvCG4vnnRMz6nlN0FzgVoITv3Q_uQsljTJBTrPcZOz0--nq4SIYbGBLIdNolutDOgYBZXqQOynmlZyCqUmvAdw0gSpQrleq6wsjM6wpcbuTMS_BoHDIld9h2qIN_wbgQBqTy0qkqzUCBEQX6ToACEEAVRk1ZPq66hYGenG7JWNsxD-2n3YjLkrhsFNeUpZuOTWTouLvL_ihWe0vZLPqRuzu_HRXB4lak8xUXfH3RWiEllaTib_-_2qBVVwZR75Q9j1q0mTWaV8LL6uX_TO8VeyAoJNCnHL5m2935hX-DuKkrdvuNscvuHXxcLk7oufzybfkbRX8crA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQSQrBQWJ5GghuhifNwXIkDglZb-ji1Um_GmTiwaOWEJgXthT_FH2QmTraqBPSAeksiT-R4xjNfxvNg7GWZSYMoWgWRVTJIihSCXJUqKPLYZiCUVX1LloPDbHacfDxJT9bYrzEXhsIqB93vdXqvrYcnm8NqbjbzOeX4JrnKlEQIgig8UkNk5Z5d_sD_tvbt7gdk8ishdraP3s-CobVAAIkMu0AW0hgQEGVFaKDMKxmBqEopAe8lgChxwpSDagoVJ1ZWYDIVRzYGi1KfUKsI1PvX8CKntglvfp7HlVD1HH-sjZoEp3chqAw_pKsRDH-noDJFMWYhmbU_m8S_Qd7e9O3cYbcHzMrf-WW5y9asm7DrvovlcsI2ts-T5XDYoC3aCbvlfYLcpzrdY99WldR5XfGmXixb8oE7y51xdYM4nmpG87njfblRfFdbzxftFvcllomIHvCGDhBOqRLsa07uZOCU8eI-d1-4cSX3TkhOzuX77PhK-LLB1l3t7EPGhVAQpzY2aRUmkIISBRprgAIQsRUqnbJsXHUNQz10asux0GPg21e9YpcmdmnPrikLV4SNLwlyOcnWyFZ9Qbo1Gq7LiV-MgqBx79OBjnG2Pmu1iGPKgZVR_K8xaEZShTB7yh54KVrNGvU5AfT00f9M7zm7MTs62Nf7u4d7j9lNQf6IPt7xCVvvTs_sUwRtXfGs3yScfbrqXfkbAJRYIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transport+of+polystyrene+nanoplastics+in+natural+soils%3A+Effect+of+soil+properties%2C+ionic+strength+and+cation+type&rft.jtitle=The+Science+of+the+total+environment&rft.au=Wu%2C+Xiaoli&rft.au=Lyu%2C+Xueyan&rft.au=Li%2C+Zhengyu&rft.au=Gao%2C+Bin&rft.date=2020-03-10&rft.issn=0048-9697&rft.volume=707&rft.spage=136065&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.136065&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2019_136065 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |