Polyelectrolyte functionalized lamellar graphene oxide membranes on polypropylene support for organic solvent nanofiltration
We have reported, for the first time, a straightforward and eco-friendly approach to molecularly design graphene oxide (GO) nanosheets on robust hydrophobic polypropylene (PP) supports with excellent adhesion and superior separation performance for organic solvent nanofiltration (OSN) of dye/ethanol...
Saved in:
Published in | Carbon (New York) Vol. 122; pp. 604 - 613 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.10.2017
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We have reported, for the first time, a straightforward and eco-friendly approach to molecularly design graphene oxide (GO) nanosheets on robust hydrophobic polypropylene (PP) supports with excellent adhesion and superior separation performance for organic solvent nanofiltration (OSN) of dye/ethanol mixtures. The approach consists of (1) grafting the PP surface with polyethylene glycol (PEG) with the aid of argon plasma (TPP), (2) a pressure-assisted filtration of GO dispersion and (3) functionalization by various polyelectrolytes. We find that the TPP/GO membrane modified by hyperbranched polyethylenimine (HPEI) on its outmost layer has high rejections toward cationic dyes. It has a rejection of 95% toward Alcian blue with a high permeance of 14.9 L m−2 h−1 bar−1. Similarly, it exhibits excellent anionic dye/ethanol separation if it is modified by poly(styrenesulfonate) (PSS) on its outmost layer. It shows a rejection up to 97% toward Rose bengal with a total permeance of 3.1 L m−2 h−1 bar−1. Experimental results confirm that both molecular sieving and electrostatic repulsion play critical factors for GO based membranes to separate dye/organic solvent mixtures. This work may not only widen the selection of membrane support materials for GO deposition but also provide useful insights for developing GO based membranes for OSN.
[Display omitted] |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2017.07.011 |