Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2

Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering 1 , a long-time subject of theoretical investigations 1 – 3 . Intrinsic,...

Full description

Saved in:
Bibliographic Details
Published inNature nanotechnology Vol. 14; no. 7; pp. 674 - 678
Main Authors Avsar, Ahmet, Ciarrocchi, Alberto, Pizzochero, Michele, Unuchek, Dmitrii, Yazyev, Oleg V., Kis, Andras
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2019
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1748-3387
1748-3395
1748-3395
DOI10.1038/s41565-019-0467-1

Cover

Loading…
Abstract Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering 1 , a long-time subject of theoretical investigations 1 – 3 . Intrinsic, two-dimensional (2D) magnetic materials 4 – 7 are attracting increasing attention for their unique properties, which include layer-dependent magnetism 4 and electric field modulation 6 . Yet, to induce magnetism into otherwise non-magnetic 2D materials remains a challenge. Here we investigate magneto-transport properties of ultrathin PtSe 2 crystals and demonstrate an unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or antiferromagnetic ground-state orderings that depends on the number of layers in this ultrathin material. The change in the device resistance on the application of a ~25 mT magnetic field is as high as 400 Ω with a magnetoresistance value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange couplings across ultrathin films of PtSe 2 are responsible for the observed layer-dependent magnetism. Given the existence of such unavoidable growth-related vacancies in 2D materials 8 , 9 , these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked. Magneto-transport measurements on thin metallic crystals of the transition metal dichalcogenide PtSe 2 show signatures of ferro- and antiferromagnetic order depending on the number of layers and first-principles calculations suggest Pt vacancies at the surface as a plausible cause.
AbstractList Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering1, a long-time subject of theoretical investigations1–3. Intrinsic, two-dimensional (2D) magnetic materials4–7 are attracting increasing attention for their unique properties, which include layer-dependent magnetism4 and electric field modulation6. Yet, to induce magnetism into otherwise non-magnetic 2D materials remains a challenge. Here we investigate magneto-transport properties of ultrathin PtSe2 crystals and demonstrate an unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or antiferromagnetic ground-state orderings that depends on the number of layers in this ultrathin material. The change in the device resistance on the application of a ~25 mT magnetic field is as high as 400 Ω with a magnetoresistance value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange couplings across ultrathin films of PtSe2 are responsible for the observed layer-dependent magnetism. Given the existence of such unavoidable growth-related vacancies in 2D materials8,9, these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked.
Defects are ubiquitous in solids, often introducing new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering, 1 a long-time subject of theoretical investigations. 1 – 3 Intrinsic, two-dimensional (2D) magnetic materials 4 – 7 are attracting increasing attention for their unique properties including layer-dependent magnetism 4 and electric field modulation 6 . Yet, inducing magnetism into otherwise non-magnetic 2D materials remains a challenge. Here, we investigate magneto-transport properties of ultrathin PtSe 2 crystals and demonstrate unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or anti-ferromagnetic ground state orderings depending on the number of layers in this ultra-thin material. The change in the device resistance upon application of a ~ 25 mT magnetic field is as high as 400 Ω with a magnetoresistance (MR) value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange couplings across ultra-thin films of PtSe 2 are responsible for the observed layer-dependent magnetism. Considering the existence of such unavoidable growth-related vacancies in 2D materials, 8 , 9 these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked.
Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering 1 , a long-time subject of theoretical investigations 1 – 3 . Intrinsic, two-dimensional (2D) magnetic materials 4 – 7 are attracting increasing attention for their unique properties, which include layer-dependent magnetism 4 and electric field modulation 6 . Yet, to induce magnetism into otherwise non-magnetic 2D materials remains a challenge. Here we investigate magneto-transport properties of ultrathin PtSe 2 crystals and demonstrate an unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or antiferromagnetic ground-state orderings that depends on the number of layers in this ultrathin material. The change in the device resistance on the application of a ~25 mT magnetic field is as high as 400 Ω with a magnetoresistance value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange couplings across ultrathin films of PtSe 2 are responsible for the observed layer-dependent magnetism. Given the existence of such unavoidable growth-related vacancies in 2D materials 8 , 9 , these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked. Magneto-transport measurements on thin metallic crystals of the transition metal dichalcogenide PtSe 2 show signatures of ferro- and antiferromagnetic order depending on the number of layers and first-principles calculations suggest Pt vacancies at the surface as a plausible cause.
Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering1, a long-time subject of theoretical investigations1-3. Intrinsic, two-dimensional (2D) magnetic materials4-7 are attracting increasing attention for their unique properties, which include layer-dependent magnetism4 and electric field modulation6. Yet, to induce magnetism into otherwise non-magnetic 2D materials remains a challenge. Here we investigate magneto-transport properties of ultrathin PtSe2 crystals and demonstrate an unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or antiferromagnetic ground-state orderings that depends on the number of layers in this ultrathin material. The change in the device resistance on the application of a ~25 mT magnetic field is as high as 400 Ω with a magnetoresistance value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange couplings across ultrathin films of PtSe2 are responsible for the observed layer-dependent magnetism. Given the existence of such unavoidable growth-related vacancies in 2D materials8,9, these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked.Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering1, a long-time subject of theoretical investigations1-3. Intrinsic, two-dimensional (2D) magnetic materials4-7 are attracting increasing attention for their unique properties, which include layer-dependent magnetism4 and electric field modulation6. Yet, to induce magnetism into otherwise non-magnetic 2D materials remains a challenge. Here we investigate magneto-transport properties of ultrathin PtSe2 crystals and demonstrate an unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or antiferromagnetic ground-state orderings that depends on the number of layers in this ultrathin material. The change in the device resistance on the application of a ~25 mT magnetic field is as high as 400 Ω with a magnetoresistance value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange couplings across ultrathin films of PtSe2 are responsible for the observed layer-dependent magnetism. Given the existence of such unavoidable growth-related vacancies in 2D materials8,9, these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked.
Author Yazyev, Oleg V.
Avsar, Ahmet
Ciarrocchi, Alberto
Unuchek, Dmitrii
Kis, Andras
Pizzochero, Michele
AuthorAffiliation 3 Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland
2 Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland
1 Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland
AuthorAffiliation_xml – name: 3 Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland
– name: 1 Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland
– name: 2 Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland
Author_xml – sequence: 1
  givenname: Ahmet
  surname: Avsar
  fullname: Avsar, Ahmet
  email: ahmet.avsar@epfl.ch
  organization: Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 2
  givenname: Alberto
  orcidid: 0000-0002-9816-8826
  surname: Ciarrocchi
  fullname: Ciarrocchi, Alberto
  organization: Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 3
  givenname: Michele
  surname: Pizzochero
  fullname: Pizzochero, Michele
  organization: Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 4
  givenname: Dmitrii
  orcidid: 0000-0003-2590-2644
  surname: Unuchek
  fullname: Unuchek, Dmitrii
  organization: Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 5
  givenname: Oleg V.
  orcidid: 0000-0001-7281-3199
  surname: Yazyev
  fullname: Yazyev, Oleg V.
  organization: Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL)
– sequence: 6
  givenname: Andras
  orcidid: 0000-0002-3426-7702
  surname: Kis
  fullname: Kis, Andras
  email: andras.kis@epfl.ch
  organization: Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL)
BookMark eNp9kUuLFTEQhYOMOA_9Ae4a3LiwNZVHJ9kIMo4PGFBQ1yGdrr6TIZ2MnbQw_95c7qg4oKsqqO-cquKckqOUExLyFOhLoFy_KgLkIHsKpqdiUD08ICeghO45N_Lod6_VMTkt5ZpSyQwTj8gxB0YN03BCLt7ijL52IU2bx-lFF90trv2Spy26ilO3uF3CGsrSkG6LdXX1qnULVhdj8N3n-gXZY_JwdrHgk7t6Rr69u_h6_qG__PT-4_mby94LRWuvFHMC3cRASq_ZoKgXI589gucUlKHAEAYFnEoupnHe84NXwziPAmdh-Bl5ffC92cYFJ4-p3RPtzRoWt97a7IL9e5LCld3lH3ZQSijDmsHzO4M1f9-wVLuE4jFGlzBvxTImmGZGS9nQZ_fQ67ytqb3XKAlUgTa6UepA-TWXsuJsfaiuhrzfH6IFavdR2UNUtkVl91FZaEq4p_z1xv807KApjU07XP_c9G_RT89zpgI
CitedBy_id crossref_primary_10_1088_1674_4926_43_8_081001
crossref_primary_10_1007_s12274_022_5016_9
crossref_primary_10_1103_RevModPhys_92_021003
crossref_primary_10_1016_j_jallcom_2021_162025
crossref_primary_10_1021_acsenergylett_2c01810
crossref_primary_10_1016_j_jmmm_2022_169893
crossref_primary_10_1002_adma_202201209
crossref_primary_10_1021_acsomega_0c01859
crossref_primary_10_1002_adfm_202308681
crossref_primary_10_1002_smll_202401670
crossref_primary_10_1103_PhysRevB_104_134109
crossref_primary_10_1002_wcms_1545
crossref_primary_10_1021_acs_nanolett_3c00113
crossref_primary_10_1021_acsphotonics_2c00307
crossref_primary_10_1016_j_jtice_2025_106073
crossref_primary_10_1088_1742_6596_1951_1_012016
crossref_primary_10_1021_acsami_4c20815
crossref_primary_10_1021_acsnano_1c05738
crossref_primary_10_1016_j_matpr_2020_05_405
crossref_primary_10_1002_adma_202000693
crossref_primary_10_1002_adma_202005465
crossref_primary_10_1021_acs_jpcc_0c01873
crossref_primary_10_1002_adfm_202105722
crossref_primary_10_1002_adfm_202412771
crossref_primary_10_1007_s11433_021_1746_5
crossref_primary_10_1088_1361_6463_acf589
crossref_primary_10_1007_s12274_020_3020_5
crossref_primary_10_1088_1361_6463_adbcba
crossref_primary_10_1088_1402_4896_ad49e5
crossref_primary_10_1002_pssr_202200348
crossref_primary_10_1021_acsnano_1c06736
crossref_primary_10_1039_D1NR02967C
crossref_primary_10_1134_S1063782624601766
crossref_primary_10_1021_acs_jpcc_4c00814
crossref_primary_10_1021_acs_nanolett_4c00472
crossref_primary_10_1088_2053_1583_ab9f91
crossref_primary_10_1016_j_surfrep_2021_100523
crossref_primary_10_1063_5_0159455
crossref_primary_10_1039_D3NR06661D
crossref_primary_10_1021_acsami_0c18150
crossref_primary_10_1016_j_matt_2022_11_017
crossref_primary_10_1021_acs_jpclett_0c01813
crossref_primary_10_1021_acsnano_2c03322
crossref_primary_10_1088_1742_6596_2710_1_012008
crossref_primary_10_1021_acsnano_4c08160
crossref_primary_10_1021_acsnano_4c14168
crossref_primary_10_1021_acs_chemrev_1c00497
crossref_primary_10_1038_s41535_020_00261_x
crossref_primary_10_1021_jacs_5c00033
crossref_primary_10_1088_2053_1583_ac166b
crossref_primary_10_1016_j_nantod_2021_101338
crossref_primary_10_1002_aelm_202100030
crossref_primary_10_1021_acsami_3c16448
crossref_primary_10_1016_j_physb_2024_416413
crossref_primary_10_1016_j_apsusc_2021_149013
crossref_primary_10_1063_5_0214167
crossref_primary_10_1103_PhysRevB_110_184427
crossref_primary_10_35848_1882_0786_acd35f
crossref_primary_10_1021_acsnano_2c04303
crossref_primary_10_1039_D4TC02542C
crossref_primary_10_1088_1361_6528_ac1a94
crossref_primary_10_1021_acsnano_1c00373
crossref_primary_10_1063_5_0245793
crossref_primary_10_1002_adma_202004469
crossref_primary_10_1088_1361_6528_ac17fd
crossref_primary_10_1039_D2CS00931E
crossref_primary_10_1002_smm2_1031
crossref_primary_10_1088_1674_1056_ac6eed
crossref_primary_10_1103_PhysRevB_107_184419
crossref_primary_10_1002_advs_202201272
crossref_primary_10_1038_s41598_022_14780_z
crossref_primary_10_1063_5_0025884
crossref_primary_10_1007_s12274_021_3979_6
crossref_primary_10_1021_acsestwater_4c00478
crossref_primary_10_1002_adfm_202315831
crossref_primary_10_1002_cphc_202400971
crossref_primary_10_1002_adfm_202316446
crossref_primary_10_1103_PhysRevB_105_L041402
crossref_primary_10_1039_D0NR05897A
crossref_primary_10_1088_1361_648X_abe64c
crossref_primary_10_1002_lpor_202100594
crossref_primary_10_1039_D3NR02466K
crossref_primary_10_1103_PhysRevB_103_024436
crossref_primary_10_1088_1402_4896_ad80e3
crossref_primary_10_1088_2053_1583_ad70c6
crossref_primary_10_1021_acs_jpcc_3c02396
crossref_primary_10_1088_2053_1583_acf0d1
crossref_primary_10_1016_j_physleta_2020_126684
crossref_primary_10_1039_D0CP03884A
crossref_primary_10_1016_j_apsusc_2022_155475
crossref_primary_10_1002_adfm_201904932
crossref_primary_10_1038_s41467_023_40492_7
crossref_primary_10_1088_1361_6528_acf672
crossref_primary_10_3390_condmat5020042
crossref_primary_10_1021_acsnano_0c09666
crossref_primary_10_1007_s12274_023_6195_8
crossref_primary_10_1002_aenm_202102359
crossref_primary_10_1021_acs_jpcc_5c00296
crossref_primary_10_1002_inf2_12282
crossref_primary_10_1016_j_spmi_2021_107125
crossref_primary_10_1038_s41699_024_00472_x
crossref_primary_10_1021_acsami_1c18189
crossref_primary_10_1038_s41699_020_00175_z
crossref_primary_10_1103_PhysRevB_110_085432
crossref_primary_10_1038_s41467_023_36301_w
crossref_primary_10_1103_PhysRevMaterials_5_083403
crossref_primary_10_1002_adfm_202410402
crossref_primary_10_1021_acs_nanolett_5c00253
crossref_primary_10_1088_1361_648X_ac00da
crossref_primary_10_1021_acs_langmuir_4c02588
crossref_primary_10_1016_j_apsusc_2024_161598
crossref_primary_10_1088_2053_1583_abb3ba
crossref_primary_10_1007_s12274_021_3360_9
crossref_primary_10_1021_acsami_1c23411
crossref_primary_10_1021_acsnano_1c09150
crossref_primary_10_1093_nsr_nwac173
crossref_primary_10_1007_s12274_020_3047_7
crossref_primary_10_1039_D3NR05983A
crossref_primary_10_1103_PhysRevB_103_125409
crossref_primary_10_1038_s41535_021_00382_x
crossref_primary_10_1038_s41467_020_18521_6
crossref_primary_10_1002_adma_202411765
crossref_primary_10_1103_PhysRevResearch_5_013054
crossref_primary_10_1515_nanoph_2019_0557
crossref_primary_10_1088_1361_648X_ad271b
crossref_primary_10_1021_acs_jpcc_9b08868
crossref_primary_10_1002_adfm_202203555
crossref_primary_10_1002_aelm_202100559
crossref_primary_10_1021_acsami_0c00116
crossref_primary_10_1088_2053_1583_ab7cab
crossref_primary_10_1002_adma_202303098
crossref_primary_10_1002_ange_201914886
crossref_primary_10_1039_D2RA06588F
crossref_primary_10_1088_1402_4896_acaa0e
crossref_primary_10_1016_j_matchemphys_2022_126155
crossref_primary_10_1002_adma_202005607
crossref_primary_10_1016_j_apmt_2023_101926
crossref_primary_10_1038_s41928_020_0427_7
crossref_primary_10_1039_D0MH01863E
crossref_primary_10_3390_app14093592
crossref_primary_10_1103_PhysRevB_110_205403
crossref_primary_10_1039_D4NA00465E
crossref_primary_10_1002_adma_202004070
crossref_primary_10_1002_anie_201914886
crossref_primary_10_1016_j_vacuum_2020_109720
crossref_primary_10_1002_adma_202305044
crossref_primary_10_1002_adfm_202110428
crossref_primary_10_1002_andp_201900452
crossref_primary_10_1021_accountsmr_1c00092
crossref_primary_10_1016_j_scib_2024_07_025
crossref_primary_10_1007_s11664_019_07701_w
crossref_primary_10_1063_5_0049623
crossref_primary_10_3390_coatings12020122
crossref_primary_10_1021_acsnano_3c07752
crossref_primary_10_1021_acsnano_0c10250
crossref_primary_10_1021_jacs_4c11075
crossref_primary_10_1088_1674_1056_ac2808
crossref_primary_10_1088_2515_7639_ac92a8
crossref_primary_10_1002_sstr_202300222
crossref_primary_10_1002_advs_202102911
crossref_primary_10_3389_fchem_2021_676438
crossref_primary_10_7498_aps_71_20220301
crossref_primary_10_1016_j_commatsci_2024_113339
crossref_primary_10_1038_s41699_021_00276_3
crossref_primary_10_1016_j_ijhydene_2020_01_066
crossref_primary_10_1021_acsnano_0c03940
crossref_primary_10_1088_1361_6528_ac0d7c
crossref_primary_10_1038_s41598_022_22113_3
crossref_primary_10_1039_D4NR03203A
crossref_primary_10_1039_D0CP05053A
crossref_primary_10_1002_adfm_202312165
crossref_primary_10_1039_D2CP00379A
crossref_primary_10_1002_adma_202106674
crossref_primary_10_1021_acsnano_1c02971
crossref_primary_10_1088_2053_1583_ac606f
crossref_primary_10_1007_s40843_021_1966_6
crossref_primary_10_1038_s41467_024_49618_x
crossref_primary_10_1039_D3CP05032G
crossref_primary_10_1088_1674_1056_ad5538
crossref_primary_10_1002_adma_201908498
crossref_primary_10_1002_smll_202401770
crossref_primary_10_1088_1361_6463_ab7ca3
crossref_primary_10_1016_j_mssp_2024_109144
crossref_primary_10_1002_apxr_202300070
crossref_primary_10_1021_acsami_3c09792
crossref_primary_10_1039_D2CP02384A
crossref_primary_10_1016_j_apsusc_2022_155999
crossref_primary_10_1021_acs_chemmater_1c02163
crossref_primary_10_1021_acs_jpcc_0c07113
crossref_primary_10_1016_j_apsusc_2019_144620
crossref_primary_10_1039_C9NR07995E
crossref_primary_10_1021_acsnano_0c04499
crossref_primary_10_1103_PhysRevB_104_064446
crossref_primary_10_3390_molecules25204847
crossref_primary_10_1021_acsnano_2c12879
crossref_primary_10_1038_s41467_022_30414_4
crossref_primary_10_1038_s41563_022_01245_x
crossref_primary_10_1007_s40820_020_00515_0
crossref_primary_10_1103_PhysRevB_103_144403
crossref_primary_10_1063_5_0039979
crossref_primary_10_3788_COL202422_091301
Cites_doi 10.1103/PhysRevB.99.045438
10.1103/PhysRevApplied.5.044003
10.1103/PhysRevB.75.125408
10.1038/s41467-018-03436-0
10.1103/PhysRevLett.74.3273
10.1088/0953-8984/14/11/302
10.1002/adma.201604230
10.1038/nnano.2014.214
10.1126/science.aar3617
10.1103/PhysRevLett.114.016603
10.1126/science.aar4851
10.1038/s41467-018-03935-0
10.1103/PhysRevB.49.3962
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.54.11169
10.1103/PhysRev.96.99
10.1038/nphys4141
10.1143/PTP.16.45
10.1103/PhysRevB.71.064411
10.1038/nature22060
10.1016/j.mattod.2018.05.003
10.1103/PhysRev.106.893
10.1021/nl4007479
10.1038/s41586-018-0626-9
10.1103/PhysRevLett.119.127403
10.1103/PhysRevB.91.054426
10.1103/PhysRevB.96.125102
10.1038/nphys1095
10.1109/TMAG.2013.2255867
10.1038/s41565-018-0063-9
10.1103/PhysRevB.59.1758
10.1126/sciadv.aat3672
10.1063/1.4955468
10.1103/PhysRevB.96.245402
10.1063/1.3318261
10.1038/nature22391
10.1021/acsomega.7b01619
10.1103/PhysRevLett.96.107203
10.1103/RevModPhys.76.323
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
Copyright Nature Publishing Group Jul 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: Copyright Nature Publishing Group Jul 2019
DBID AAYXX
CITATION
3V.
7QO
7U5
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
L6V
L7M
LK8
M0S
M1P
M7P
M7S
P5Z
P62
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1038/s41565-019-0467-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1748-3395
EndPage 678
ExternalDocumentID PMC6774792
10_1038_s41565_019_0467_1
GroupedDBID ---
-~X
0R~
123
29M
39C
3V.
4.4
53G
5BI
5M7
5S5
6OB
70F
7X7
88E
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFLOW
AFRAH
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
L6V
LK8
M1P
M7P
M7S
MM.
NNMJJ
O9-
ODYON
P2P
P62
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7QO
7U5
7XB
8FD
8FK
AZQEC
DWQXO
F28
FR3
GNUQQ
K9.
L7M
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c470t-772a4ead2155c82670c4b3fce1c30179012e167130534dbf772a6c76bfb4ef493
IEDL.DBID BENPR
ISSN 1748-3387
1748-3395
IngestDate Thu Aug 21 14:11:01 EDT 2025
Thu Sep 04 21:36:56 EDT 2025
Fri Jul 25 08:55:11 EDT 2025
Thu Apr 24 22:50:25 EDT 2025
Tue Jul 01 01:56:29 EDT 2025
Fri Feb 21 02:41:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-772a4ead2155c82670c4b3fce1c30179012e167130534dbf772a6c76bfb4ef493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2590-2644
0000-0001-7281-3199
0000-0002-3426-7702
0000-0002-9816-8826
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6774792
PMID 31209281
PQID 2251071898
PQPubID 546299
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6774792
proquest_miscellaneous_2242829855
proquest_journals_2251071898
crossref_citationtrail_10_1038_s41565_019_0467_1
crossref_primary_10_1038_s41565_019_0467_1
springer_journals_10_1038_s41565_019_0467_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature nanotechnology
PublicationTitleAbbrev Nat. Nanotechnol
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Song (CR20) 2018; 360
Yang, Kimura, Otani (CR34) 2008; 4
Yazyev, Helm (CR2) 2007; 75
Guguchia (CR12) 2018; 4
Zhang (CR25) 2017; 96
Esquinazi, Hergert, Spemann, Setzer, Ernst (CR1) 2013; 49
Han, Kawakami, Gmitra, Fabian (CR30) 2014; 9
Klein (CR21) 2018; 360
Huang (CR4) 2017; 546
Bonilla (CR7) 2018; 13
Scharf, Xu, Matos-Abiague, Žutić (CR33) 2017; 119
Zhou (CR8) 2013; 13
Zhao (CR17) 2017; 29
Leven, Dumpich (CR18) 2005; 71
Wen (CR31) 2016; 5
Clark (CR26) 2019; 99
Žutić, Matos-Abiague, Scharf, Dery, Belashchenko (CR32) 2019; 22
Zhang (CR14) 2016; 120
Kresse, Furthmüller (CR38) 1996; 54
Ciarrocchi, Avsar, Ovchinnikov, Kis (CR16) 2018; 9
Soler (CR40) 2002; 14
Wang, Tang, Sachs, Barlas, Shi (CR11) 2015; 114
Kasuya (CR23) 1956; 16
Yosida (CR24) 1957; 106
Gong (CR5) 2017; 546
Osorio-Guillén, Lany, Barabash, Zunger (CR3) 2006; 96
CR9
Gao (CR13) 2017; 2
Huang, Kief, Mankey, Willis (CR19) 1994; 49
Avsar (CR36) 2017; 13
Pizzochero, Yazyev (CR27) 2017; 96
Kresse, Joubert (CR39) 1999; 59
Krasheninnikov, Nordlund (CR15) 2010; 107
Žutić, Fabian, Das Sarma (CR29) 2004; 76
Hardy (CR10) 2015; 91
Yu (CR28) 2018; 9
Moodera, Kinder, Wong, Meservey (CR35) 1995; 74
Deng (CR6) 2018; 563
Ruderman, Kittel (CR22) 1954; 96
Perdew, Burke, Ernzerhof (CR37) 1996; 77
X Yu (467_CR28) 2018; 9
G Kresse (467_CR38) 1996; 54
B Huang (467_CR4) 2017; 546
DR Klein (467_CR21) 2018; 360
M Pizzochero (467_CR27) 2017; 96
J Osorio-Guillén (467_CR3) 2006; 96
B Leven (467_CR18) 2005; 71
MA Ruderman (467_CR22) 1954; 96
W Zhang (467_CR14) 2016; 120
W Zhou (467_CR8) 2013; 13
JM Soler (467_CR40) 2002; 14
JS Moodera (467_CR35) 1995; 74
F Huang (467_CR19) 1994; 49
OJ Clark (467_CR26) 2019; 99
B Scharf (467_CR33) 2017; 119
G Kresse (467_CR39) 1999; 59
T Song (467_CR20) 2018; 360
W Han (467_CR30) 2014; 9
T Yang (467_CR34) 2008; 4
A Ciarrocchi (467_CR16) 2018; 9
Y Deng (467_CR6) 2018; 563
AV Krasheninnikov (467_CR15) 2010; 107
Y Zhao (467_CR17) 2017; 29
A Avsar (467_CR36) 2017; 13
I Žutić (467_CR29) 2004; 76
JP Perdew (467_CR37) 1996; 77
H Wen (467_CR31) 2016; 5
Z Guguchia (467_CR12) 2018; 4
K Yosida (467_CR24) 1957; 106
WJ Hardy (467_CR10) 2015; 91
I Žutić (467_CR32) 2019; 22
K Zhang (467_CR25) 2017; 96
P Esquinazi (467_CR1) 2013; 49
C Gong (467_CR5) 2017; 546
Z Wang (467_CR11) 2015; 114
M Bonilla (467_CR7) 2018; 13
467_CR9
J Gao (467_CR13) 2017; 2
T Kasuya (467_CR23) 1956; 16
OV Yazyev (467_CR2) 2007; 75
References_xml – volume: 99
  start-page: 045438
  year: 2019
  ident: CR26
  article-title: Dual quantum confinement and anisotropic spin splitting in the multivalley semimetal PtSe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.045438
– volume: 5
  start-page: 044003
  year: 2016
  ident: CR31
  article-title: Experimental demonstration of XOR operation in graphene magnetologic gates at room temperature
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.5.044003
– volume: 75
  start-page: 125408
  year: 2007
  ident: CR2
  article-title: Defect-induced magnetism in graphene
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.125408
– volume: 9
  year: 2018
  ident: CR16
  article-title: Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03436-0
– volume: 74
  start-page: 3273
  year: 1995
  end-page: 3276
  ident: CR35
  article-title: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.3273
– volume: 14
  start-page: 2745
  year: 2002
  ident: CR40
  article-title: The SIESTA method for ab initio order- materials simulation
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/11/302
– volume: 29
  start-page: 1604230
  year: 2017
  ident: CR17
  article-title: High-electron-mobility and air-stable 2D layered PtSe FETs
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604230
– volume: 9
  start-page: 794
  year: 2014
  end-page: 807
  ident: CR30
  article-title: Graphene spintronics
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.214
– volume: 360
  start-page: 1218
  year: 2018
  end-page: 1222
  ident: CR21
  article-title: Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling
  publication-title: Science
  doi: 10.1126/science.aar3617
– volume: 114
  start-page: 016603
  year: 2015
  ident: CR11
  article-title: Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.016603
– volume: 360
  start-page: 1214
  year: 2018
  end-page: 1218
  ident: CR20
  article-title: Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures
  publication-title: Science
  doi: 10.1126/science.aar4851
– volume: 9
  year: 2018
  ident: CR28
  article-title: Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03935-0
– volume: 49
  start-page: 3962
  year: 1994
  end-page: 3971
  ident: CR19
  article-title: Magnetism in the few-monolayers limit: a surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co–Ni alloys on Cu(100) and Cu(111)
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.3962
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR37
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR38
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 96
  start-page: 99
  year: 1954
  end-page: 102
  ident: CR22
  article-title: Indirect exchange coupling of nuclear magnetic moments by conduction electrons
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.96.99
– volume: 13
  start-page: 888
  year: 2017
  end-page: 893
  ident: CR36
  article-title: Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4141
– volume: 16
  start-page: 45
  year: 1956
  end-page: 57
  ident: CR23
  article-title: A theory of metallic ferro- and antiferromagnetism on Zener’s model
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.16.45
– volume: 71
  start-page: 064411
  year: 2005
  ident: CR18
  article-title: Resistance behavior and magnetization reversal analysis of individual Co nanowires
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.064411
– volume: 546
  start-page: 265
  year: 2017
  end-page: 269
  ident: CR5
  article-title: Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
  publication-title: Nature
  doi: 10.1038/nature22060
– volume: 22
  start-page: 85
  year: 2019
  end-page: 107
  ident: CR32
  article-title: Proximitized materials
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.05.003
– volume: 106
  start-page: 893
  year: 1957
  end-page: 898
  ident: CR24
  article-title: Magnetic properties of Cu–Mn alloys
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.106.893
– volume: 13
  start-page: 2615
  year: 2013
  end-page: 2622
  ident: CR8
  article-title: Intrinsic structural defects in monolayer molybdenum disulfide
  publication-title: Nano Lett.
  doi: 10.1021/nl4007479
– volume: 563
  start-page: 94
  year: 2018
  end-page: 99
  ident: CR6
  article-title: Gate-tunable room-temperature ferromagnetism in two-dimensional Fe GeTe
  publication-title: Nature
  doi: 10.1038/s41586-018-0626-9
– volume: 119
  start-page: 127403
  year: 2017
  ident: CR33
  article-title: Magnetic proximity effects in transition-metal dichalcogenides: converting excitons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.127403
– volume: 91
  start-page: 054426
  year: 2015
  ident: CR10
  article-title: Very large magnetoresistance in Fe TaS single crystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.054426
– ident: CR9
– volume: 96
  start-page: 125102
  year: 2017
  ident: CR25
  article-title: Experimental evidence for type-II Dirac semimetal in PtSe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.125102
– volume: 4
  start-page: 851
  year: 2008
  end-page: 854
  ident: CR34
  article-title: Giant spin-accumulation signal and pure spin–current-induced reversible magnetization switching
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1095
– volume: 49
  start-page: 4668
  year: 2013
  end-page: 4674
  ident: CR1
  article-title: Defect-induced magnetism in solids
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2013.2255867
– volume: 13
  start-page: 289
  year: 2018
  end-page: 293
  ident: CR7
  article-title: Strong room-temperature ferromagnetism in VSe monolayers on van der Waals substrates
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0063-9
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR39
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 4
  start-page: eaat3672
  year: 2018
  ident: CR12
  article-title: Magnetism in semiconducting molybdenum dichalcogenides
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat3672
– volume: 120
  start-page: 013904
  year: 2016
  ident: CR14
  article-title: Magnetism and magnetocrystalline anisotropy in single-layer PtSe : interplay between strain and vacancy
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4955468
– volume: 96
  start-page: 245402
  year: 2017
  ident: CR27
  article-title: Point defects in the 1T′ and 2H phases of single-layer MoS : a comparative first-principles study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.245402
– volume: 107
  start-page: 071301
  year: 2010
  ident: CR15
  article-title: Ion and electron irradiation-induced effects in nanostructured materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3318261
– volume: 546
  start-page: 270
  year: 2017
  end-page: 273
  ident: CR4
  article-title: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
  publication-title: Nature
  doi: 10.1038/nature22391
– volume: 2
  start-page: 8640
  year: 2017
  end-page: 8648
  ident: CR13
  article-title: Structure, stability, and kinetics of vacancy defects in monolayer PtSe : a first-principles study
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b01619
– volume: 96
  start-page: 107203
  year: 2006
  ident: CR3
  article-title: Magnetism without magnetic ions: percolation, exchange, and formation energies of magnetism-promoting intrinsic defects in CaO
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.107203
– volume: 76
  start-page: 323
  year: 2004
  end-page: 410
  ident: CR29
  article-title: Spintronics: fundamentals and applications
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.76.323
– volume: 96
  start-page: 245402
  year: 2017
  ident: 467_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.245402
– volume: 13
  start-page: 2615
  year: 2013
  ident: 467_CR8
  publication-title: Nano Lett.
  doi: 10.1021/nl4007479
– volume: 119
  start-page: 127403
  year: 2017
  ident: 467_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.127403
– volume: 546
  start-page: 265
  year: 2017
  ident: 467_CR5
  publication-title: Nature
  doi: 10.1038/nature22060
– volume: 16
  start-page: 45
  year: 1956
  ident: 467_CR23
  publication-title: Prog. Theor. Phys.
  doi: 10.1143/PTP.16.45
– volume: 29
  start-page: 1604230
  year: 2017
  ident: 467_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604230
– volume: 77
  start-page: 3865
  year: 1996
  ident: 467_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 76
  start-page: 323
  year: 2004
  ident: 467_CR29
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.76.323
– volume: 96
  start-page: 107203
  year: 2006
  ident: 467_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.107203
– volume: 546
  start-page: 270
  year: 2017
  ident: 467_CR4
  publication-title: Nature
  doi: 10.1038/nature22391
– volume: 91
  start-page: 054426
  year: 2015
  ident: 467_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.054426
– volume: 59
  start-page: 1758
  year: 1999
  ident: 467_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 99
  start-page: 045438
  year: 2019
  ident: 467_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.045438
– volume: 13
  start-page: 888
  year: 2017
  ident: 467_CR36
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4141
– volume: 120
  start-page: 013904
  year: 2016
  ident: 467_CR14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4955468
– volume: 360
  start-page: 1218
  year: 2018
  ident: 467_CR21
  publication-title: Science
  doi: 10.1126/science.aar3617
– ident: 467_CR9
– volume: 4
  start-page: 851
  year: 2008
  ident: 467_CR34
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1095
– volume: 96
  start-page: 125102
  year: 2017
  ident: 467_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.125102
– volume: 4
  start-page: eaat3672
  year: 2018
  ident: 467_CR12
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat3672
– volume: 96
  start-page: 99
  year: 1954
  ident: 467_CR22
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.96.99
– volume: 74
  start-page: 3273
  year: 1995
  ident: 467_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.74.3273
– volume: 9
  year: 2018
  ident: 467_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03935-0
– volume: 9
  start-page: 794
  year: 2014
  ident: 467_CR30
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.214
– volume: 54
  start-page: 11169
  year: 1996
  ident: 467_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 106
  start-page: 893
  year: 1957
  ident: 467_CR24
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.106.893
– volume: 13
  start-page: 289
  year: 2018
  ident: 467_CR7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0063-9
– volume: 2
  start-page: 8640
  year: 2017
  ident: 467_CR13
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b01619
– volume: 563
  start-page: 94
  year: 2018
  ident: 467_CR6
  publication-title: Nature
  doi: 10.1038/s41586-018-0626-9
– volume: 114
  start-page: 016603
  year: 2015
  ident: 467_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.016603
– volume: 9
  year: 2018
  ident: 467_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03436-0
– volume: 22
  start-page: 85
  year: 2019
  ident: 467_CR32
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.05.003
– volume: 5
  start-page: 044003
  year: 2016
  ident: 467_CR31
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.5.044003
– volume: 49
  start-page: 3962
  year: 1994
  ident: 467_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.49.3962
– volume: 75
  start-page: 125408
  year: 2007
  ident: 467_CR2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.125408
– volume: 71
  start-page: 064411
  year: 2005
  ident: 467_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.064411
– volume: 14
  start-page: 2745
  year: 2002
  ident: 467_CR40
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/14/11/302
– volume: 49
  start-page: 4668
  year: 2013
  ident: 467_CR1
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2013.2255867
– volume: 360
  start-page: 1214
  year: 2018
  ident: 467_CR20
  publication-title: Science
  doi: 10.1126/science.aar4851
– volume: 107
  start-page: 071301
  year: 2010
  ident: 467_CR15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3318261
SSID ssj0052924
Score 2.6561804
Snippet Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal...
Defects are ubiquitous in solids, often introducing new properties that are absent in pristine materials. One of the opportunities offered by these crystal...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 674
SubjectTerms 639/766/1130/2798
639/925/357/997
Antiferromagnetism
Chemistry and Materials Science
Couplings
Crystal defects
Crystals
Electric fields
Electrical measurement
Ferromagnetism
First principles
Letter
Magnetic fields
Magnetic properties
Magnetism
Magnetoresistance
Magnetoresistivity
Materials Science
Nanotechnology
Nanotechnology and Microengineering
Thin films
Transport properties
Two dimensional materials
Vacancies
Title Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2
URI https://link.springer.com/article/10.1038/s41565-019-0467-1
https://www.proquest.com/docview/2251071898
https://www.proquest.com/docview/2242829855
https://pubmed.ncbi.nlm.nih.gov/PMC6774792
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9gUeEJ-iMKog8QRYi2M7dp_QCi0TEtUETOpblDhnVqlNB03_f-7SpKWT2EsUyY5s-b5-57vcAbwNBAN8onPhgimExsQIp7QR0mMcF7JU3vCPwt9m6cWV_jo38_bCbdOmVXY6sVHU5drzHfkZ8R15KtKN3Meb34K7RnF0tW2hcQJ9UsHO9KA_nswuv3e62CSjXVtbq50gZ8x2cU3lzjbsunDiGgcHSFvIY8t0gJu3kyVvRUwbQzR9BA9bBBmd70j-GO5h9QQe_FNX8ClMPiNnaUTkbxPlyg_RMidkLVbrkpt1YRmt8l8V1ovNiqZE2yVXqL2mtxUSFF8ufHRZ_8DkGVxNJz8_XYi2X4Lw2sY1A-VcE2eQFTee3AYbe12o4FF6xYJHtghlSl4pCZ4ui8DzU2_TIhQagx6p59Cr1hW-gIiAQ5AqELawSqMvc5Q2R6sUeSA6oBlA3J1V5tti4tzTYpk1QW3lst3xZnS8GR9vJgfwbv_Jza6Sxl2TTzsCZK1QbbIDCwzgzX6YxIFjHHmF6y3P0Rwbdoa2aI8It1-UC2ofj1SL66awdkpY2I6SAbzvSHxY_L9bfXn3Vl_B_aThMc7wPYVe_WeLrwnH1MUQTuzc0tNNvwyhfz4dj2fDloH_ArwR8mo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9N2wPwgPgUhQFBghfAWhzbcfqAELBOHduqCTZpbyFxzqxSmw6aCvFP8Tdyl4-WTmJve4tkR7Hufj7_Lne-A3jpiQa4SGci8SYXGiMjEqWNkA7DMJeFcoYvCh-N4uGp_nxmzjbgT3cXhtMqO5tYG-pi5vgf-Q7hjjwVmfST9xc_BHeN4uhq10KjgcUB_v5FLtv83f4u6fdVFO0NTj4NRdtVQDhtw4rpZKZJfnTWGUfk2oZO58o7lE4xPMlio4zJdyN46iL3PD92Ns59rtFrLr5EJn-LaEafdtHWx8Ho-Etn-03Ub9roWp0Icv5sF0dVyc6cXSVOlONgBFknuX4Srujt5eTMSxHa-uDbuwO3W8YafGggdhc2sLwHt_6pY3gfBrvIWSEB-feElOJtMMmIyYvprODmYFgE0-x7idV4PqUpwWLCFXHP6WmKRP0nYxccV18xegCn1yLJh7BZzkp8BAERFS-VJy5jlUZXZChthlYp8ni0R9ODsJNV6tri5dxDY5LWQXSVpI14UxJvyuJNZQ9eL1-5aCp3XDV5u1NA2m7iebqCXA9eLIdp-3FMJStxtuA5mmPRiaEl2jXFLT_KBbzXR8rxeV3IOybubftRD950Kl59_L9LfXz1Up_DjeHJ0WF6uD86eAI3oxpvnF28DZvVzwU-JQ5V5c9a4Abw7br3yl-dWisH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnYTgAY0vURgQJHgBrCaxHacPCAFttTGoKmDS3rLEObNKbbrRVIh_jb-Ou3y0dBJ721skO4p1_vnud7nzHcALRzTAhioVsdOZUBhqEUulRWDR97Mgl1bzReEv4-jgWH060Sc78Ke9C8Npla1OrBR1vrD8j7xHuCNPJYj7cc81aRGTwejd-YXgDlIcaW3badQQOcLfv8h9W749HNBevwzD0fD7xwPRdBgQVhm_ZGqZKpIl2T1tiWgb36pMOouBlQxV0t4YROTHEVRVnjmeH1kTZS5T6BQXYiL1v2vIKsYd2P0wHE--tnZAh_26pa5RsSBH0LQxVRn3luw2cdIcByZIUwXbVnFDdS8nal6K1lZGcLQHtxv26r2v4XYHdrC4C7f-qWl4D4YD5AwRj3x9Qk3-xpulxOrFfJFzozDMvXn6o8ByupzTFG814-q4Z_Q0R3IDZlPrTcpvGN6H42uR5APoFIsCH4JHpMUF0hGvMVKhzVMMTIpGSvJ-lEPdBb-VVWKbQubcT2OWVAF1GSe1eBMSb8LiTYIuvFq_cl5X8bhq8n67AUlzoJfJBn5deL4epqPI8ZW0wMWK5yiOS8ealmi2Nm79US7mvT1STM-qot4R8XDTD7vwut3izcf_u9RHVy_1GdygM5J8PhwfPYabYQU3TjTeh075c4VPiE6V2dMGtx6cXvdR-QuAFy8z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+induced%2C+layer-modulated+magnetism+in+ultrathin+metallic+PtSe2&rft.jtitle=Nature+nanotechnology&rft.au=Avsar%2C+Ahmet&rft.au=Ciarrocchi%2C+Alberto&rft.au=Pizzochero%2C+Michele&rft.au=Unuchek%2C+Dmitrii&rft.date=2019-07-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=14&rft.issue=7&rft.spage=674&rft.epage=678&rft_id=info:doi/10.1038%2Fs41565-019-0467-1&rft_id=info%3Apmid%2F31209281&rft.externalDocID=PMC6774792
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon