Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2
Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering 1 , a long-time subject of theoretical investigations 1 – 3 . Intrinsic,...
Saved in:
Published in | Nature nanotechnology Vol. 14; no. 7; pp. 674 - 678 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1748-3387 1748-3395 1748-3395 |
DOI | 10.1038/s41565-019-0467-1 |
Cover
Loading…
Abstract | Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering
1
, a long-time subject of theoretical investigations
1
–
3
. Intrinsic, two-dimensional (2D) magnetic materials
4
–
7
are attracting increasing attention for their unique properties, which include layer-dependent magnetism
4
and electric field modulation
6
. Yet, to induce magnetism into otherwise non-magnetic 2D materials remains a challenge. Here we investigate magneto-transport properties of ultrathin PtSe
2
crystals and demonstrate an unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or antiferromagnetic ground-state orderings that depends on the number of layers in this ultrathin material. The change in the device resistance on the application of a ~25 mT magnetic field is as high as 400 Ω with a magnetoresistance value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange couplings across ultrathin films of PtSe
2
are responsible for the observed layer-dependent magnetism. Given the existence of such unavoidable growth-related vacancies in 2D materials
8
,
9
, these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked.
Magneto-transport measurements on thin metallic crystals of the transition metal dichalcogenide PtSe
2
show signatures of ferro- and antiferromagnetic order depending on the number of layers and first-principles calculations suggest Pt vacancies at the surface as a plausible cause. |
---|---|
AbstractList | Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering1, a long-time subject of theoretical investigations1–3. Intrinsic, two-dimensional (2D) magnetic materials4–7 are attracting increasing attention for their unique properties, which include layer-dependent magnetism4 and electric field modulation6. Yet, to induce magnetism into otherwise non-magnetic 2D materials remains a challenge. Here we investigate magneto-transport properties of ultrathin PtSe2 crystals and demonstrate an unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or antiferromagnetic ground-state orderings that depends on the number of layers in this ultrathin material. The change in the device resistance on the application of a ~25 mT magnetic field is as high as 400 Ω with a magnetoresistance value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange couplings across ultrathin films of PtSe2 are responsible for the observed layer-dependent magnetism. Given the existence of such unavoidable growth-related vacancies in 2D materials8,9, these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked. Defects are ubiquitous in solids, often introducing new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering, 1 a long-time subject of theoretical investigations. 1 – 3 Intrinsic, two-dimensional (2D) magnetic materials 4 – 7 are attracting increasing attention for their unique properties including layer-dependent magnetism 4 and electric field modulation 6 . Yet, inducing magnetism into otherwise non-magnetic 2D materials remains a challenge. Here, we investigate magneto-transport properties of ultrathin PtSe 2 crystals and demonstrate unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or anti-ferromagnetic ground state orderings depending on the number of layers in this ultra-thin material. The change in the device resistance upon application of a ~ 25 mT magnetic field is as high as 400 Ω with a magnetoresistance (MR) value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange couplings across ultra-thin films of PtSe 2 are responsible for the observed layer-dependent magnetism. Considering the existence of such unavoidable growth-related vacancies in 2D materials, 8 , 9 these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked. Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering 1 , a long-time subject of theoretical investigations 1 – 3 . Intrinsic, two-dimensional (2D) magnetic materials 4 – 7 are attracting increasing attention for their unique properties, which include layer-dependent magnetism 4 and electric field modulation 6 . Yet, to induce magnetism into otherwise non-magnetic 2D materials remains a challenge. Here we investigate magneto-transport properties of ultrathin PtSe 2 crystals and demonstrate an unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or antiferromagnetic ground-state orderings that depends on the number of layers in this ultrathin material. The change in the device resistance on the application of a ~25 mT magnetic field is as high as 400 Ω with a magnetoresistance value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman–Kittel–Kasuya–Yosida (RKKY) exchange couplings across ultrathin films of PtSe 2 are responsible for the observed layer-dependent magnetism. Given the existence of such unavoidable growth-related vacancies in 2D materials 8 , 9 , these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked. Magneto-transport measurements on thin metallic crystals of the transition metal dichalcogenide PtSe 2 show signatures of ferro- and antiferromagnetic order depending on the number of layers and first-principles calculations suggest Pt vacancies at the surface as a plausible cause. Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering1, a long-time subject of theoretical investigations1-3. Intrinsic, two-dimensional (2D) magnetic materials4-7 are attracting increasing attention for their unique properties, which include layer-dependent magnetism4 and electric field modulation6. Yet, to induce magnetism into otherwise non-magnetic 2D materials remains a challenge. Here we investigate magneto-transport properties of ultrathin PtSe2 crystals and demonstrate an unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or antiferromagnetic ground-state orderings that depends on the number of layers in this ultrathin material. The change in the device resistance on the application of a ~25 mT magnetic field is as high as 400 Ω with a magnetoresistance value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange couplings across ultrathin films of PtSe2 are responsible for the observed layer-dependent magnetism. Given the existence of such unavoidable growth-related vacancies in 2D materials8,9, these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked.Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal imperfections is an extrinsically induced long-range magnetic ordering1, a long-time subject of theoretical investigations1-3. Intrinsic, two-dimensional (2D) magnetic materials4-7 are attracting increasing attention for their unique properties, which include layer-dependent magnetism4 and electric field modulation6. Yet, to induce magnetism into otherwise non-magnetic 2D materials remains a challenge. Here we investigate magneto-transport properties of ultrathin PtSe2 crystals and demonstrate an unexpected magnetism. Our electrical measurements show the existence of either ferromagnetic or antiferromagnetic ground-state orderings that depends on the number of layers in this ultrathin material. The change in the device resistance on the application of a ~25 mT magnetic field is as high as 400 Ω with a magnetoresistance value of 5%. Our first-principles calculations suggest that surface magnetism induced by the presence of Pt vacancies and the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange couplings across ultrathin films of PtSe2 are responsible for the observed layer-dependent magnetism. Given the existence of such unavoidable growth-related vacancies in 2D materials8,9, these findings can expand the range of 2D ferromagnets into materials that would otherwise be overlooked. |
Author | Yazyev, Oleg V. Avsar, Ahmet Ciarrocchi, Alberto Unuchek, Dmitrii Kis, Andras Pizzochero, Michele |
AuthorAffiliation | 3 Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland 2 Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland 1 Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland |
AuthorAffiliation_xml | – name: 3 Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland – name: 1 Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland – name: 2 Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH 1015, Switzerland |
Author_xml | – sequence: 1 givenname: Ahmet surname: Avsar fullname: Avsar, Ahmet email: ahmet.avsar@epfl.ch organization: Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 2 givenname: Alberto orcidid: 0000-0002-9816-8826 surname: Ciarrocchi fullname: Ciarrocchi, Alberto organization: Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 3 givenname: Michele surname: Pizzochero fullname: Pizzochero, Michele organization: Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 4 givenname: Dmitrii orcidid: 0000-0003-2590-2644 surname: Unuchek fullname: Unuchek, Dmitrii organization: Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 5 givenname: Oleg V. orcidid: 0000-0001-7281-3199 surname: Yazyev fullname: Yazyev, Oleg V. organization: Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL) – sequence: 6 givenname: Andras orcidid: 0000-0002-3426-7702 surname: Kis fullname: Kis, Andras email: andras.kis@epfl.ch organization: Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) |
BookMark | eNp9kUuLFTEQhYOMOA_9Ae4a3LiwNZVHJ9kIMo4PGFBQ1yGdrr6TIZ2MnbQw_95c7qg4oKsqqO-cquKckqOUExLyFOhLoFy_KgLkIHsKpqdiUD08ICeghO45N_Lod6_VMTkt5ZpSyQwTj8gxB0YN03BCLt7ijL52IU2bx-lFF90trv2Spy26ilO3uF3CGsrSkG6LdXX1qnULVhdj8N3n-gXZY_JwdrHgk7t6Rr69u_h6_qG__PT-4_mby94LRWuvFHMC3cRASq_ZoKgXI589gucUlKHAEAYFnEoupnHe84NXwziPAmdh-Bl5ffC92cYFJ4-p3RPtzRoWt97a7IL9e5LCld3lH3ZQSijDmsHzO4M1f9-wVLuE4jFGlzBvxTImmGZGS9nQZ_fQ67ytqb3XKAlUgTa6UepA-TWXsuJsfaiuhrzfH6IFavdR2UNUtkVl91FZaEq4p_z1xv807KApjU07XP_c9G_RT89zpgI |
CitedBy_id | crossref_primary_10_1088_1674_4926_43_8_081001 crossref_primary_10_1007_s12274_022_5016_9 crossref_primary_10_1103_RevModPhys_92_021003 crossref_primary_10_1016_j_jallcom_2021_162025 crossref_primary_10_1021_acsenergylett_2c01810 crossref_primary_10_1016_j_jmmm_2022_169893 crossref_primary_10_1002_adma_202201209 crossref_primary_10_1021_acsomega_0c01859 crossref_primary_10_1002_adfm_202308681 crossref_primary_10_1002_smll_202401670 crossref_primary_10_1103_PhysRevB_104_134109 crossref_primary_10_1002_wcms_1545 crossref_primary_10_1021_acs_nanolett_3c00113 crossref_primary_10_1021_acsphotonics_2c00307 crossref_primary_10_1016_j_jtice_2025_106073 crossref_primary_10_1088_1742_6596_1951_1_012016 crossref_primary_10_1021_acsami_4c20815 crossref_primary_10_1021_acsnano_1c05738 crossref_primary_10_1016_j_matpr_2020_05_405 crossref_primary_10_1002_adma_202000693 crossref_primary_10_1002_adma_202005465 crossref_primary_10_1021_acs_jpcc_0c01873 crossref_primary_10_1002_adfm_202105722 crossref_primary_10_1002_adfm_202412771 crossref_primary_10_1007_s11433_021_1746_5 crossref_primary_10_1088_1361_6463_acf589 crossref_primary_10_1007_s12274_020_3020_5 crossref_primary_10_1088_1361_6463_adbcba crossref_primary_10_1088_1402_4896_ad49e5 crossref_primary_10_1002_pssr_202200348 crossref_primary_10_1021_acsnano_1c06736 crossref_primary_10_1039_D1NR02967C crossref_primary_10_1134_S1063782624601766 crossref_primary_10_1021_acs_jpcc_4c00814 crossref_primary_10_1021_acs_nanolett_4c00472 crossref_primary_10_1088_2053_1583_ab9f91 crossref_primary_10_1016_j_surfrep_2021_100523 crossref_primary_10_1063_5_0159455 crossref_primary_10_1039_D3NR06661D crossref_primary_10_1021_acsami_0c18150 crossref_primary_10_1016_j_matt_2022_11_017 crossref_primary_10_1021_acs_jpclett_0c01813 crossref_primary_10_1021_acsnano_2c03322 crossref_primary_10_1088_1742_6596_2710_1_012008 crossref_primary_10_1021_acsnano_4c08160 crossref_primary_10_1021_acsnano_4c14168 crossref_primary_10_1021_acs_chemrev_1c00497 crossref_primary_10_1038_s41535_020_00261_x crossref_primary_10_1021_jacs_5c00033 crossref_primary_10_1088_2053_1583_ac166b crossref_primary_10_1016_j_nantod_2021_101338 crossref_primary_10_1002_aelm_202100030 crossref_primary_10_1021_acsami_3c16448 crossref_primary_10_1016_j_physb_2024_416413 crossref_primary_10_1016_j_apsusc_2021_149013 crossref_primary_10_1063_5_0214167 crossref_primary_10_1103_PhysRevB_110_184427 crossref_primary_10_35848_1882_0786_acd35f crossref_primary_10_1021_acsnano_2c04303 crossref_primary_10_1039_D4TC02542C crossref_primary_10_1088_1361_6528_ac1a94 crossref_primary_10_1021_acsnano_1c00373 crossref_primary_10_1063_5_0245793 crossref_primary_10_1002_adma_202004469 crossref_primary_10_1088_1361_6528_ac17fd crossref_primary_10_1039_D2CS00931E crossref_primary_10_1002_smm2_1031 crossref_primary_10_1088_1674_1056_ac6eed crossref_primary_10_1103_PhysRevB_107_184419 crossref_primary_10_1002_advs_202201272 crossref_primary_10_1038_s41598_022_14780_z crossref_primary_10_1063_5_0025884 crossref_primary_10_1007_s12274_021_3979_6 crossref_primary_10_1021_acsestwater_4c00478 crossref_primary_10_1002_adfm_202315831 crossref_primary_10_1002_cphc_202400971 crossref_primary_10_1002_adfm_202316446 crossref_primary_10_1103_PhysRevB_105_L041402 crossref_primary_10_1039_D0NR05897A crossref_primary_10_1088_1361_648X_abe64c crossref_primary_10_1002_lpor_202100594 crossref_primary_10_1039_D3NR02466K crossref_primary_10_1103_PhysRevB_103_024436 crossref_primary_10_1088_1402_4896_ad80e3 crossref_primary_10_1088_2053_1583_ad70c6 crossref_primary_10_1021_acs_jpcc_3c02396 crossref_primary_10_1088_2053_1583_acf0d1 crossref_primary_10_1016_j_physleta_2020_126684 crossref_primary_10_1039_D0CP03884A crossref_primary_10_1016_j_apsusc_2022_155475 crossref_primary_10_1002_adfm_201904932 crossref_primary_10_1038_s41467_023_40492_7 crossref_primary_10_1088_1361_6528_acf672 crossref_primary_10_3390_condmat5020042 crossref_primary_10_1021_acsnano_0c09666 crossref_primary_10_1007_s12274_023_6195_8 crossref_primary_10_1002_aenm_202102359 crossref_primary_10_1021_acs_jpcc_5c00296 crossref_primary_10_1002_inf2_12282 crossref_primary_10_1016_j_spmi_2021_107125 crossref_primary_10_1038_s41699_024_00472_x crossref_primary_10_1021_acsami_1c18189 crossref_primary_10_1038_s41699_020_00175_z crossref_primary_10_1103_PhysRevB_110_085432 crossref_primary_10_1038_s41467_023_36301_w crossref_primary_10_1103_PhysRevMaterials_5_083403 crossref_primary_10_1002_adfm_202410402 crossref_primary_10_1021_acs_nanolett_5c00253 crossref_primary_10_1088_1361_648X_ac00da crossref_primary_10_1021_acs_langmuir_4c02588 crossref_primary_10_1016_j_apsusc_2024_161598 crossref_primary_10_1088_2053_1583_abb3ba crossref_primary_10_1007_s12274_021_3360_9 crossref_primary_10_1021_acsami_1c23411 crossref_primary_10_1021_acsnano_1c09150 crossref_primary_10_1093_nsr_nwac173 crossref_primary_10_1007_s12274_020_3047_7 crossref_primary_10_1039_D3NR05983A crossref_primary_10_1103_PhysRevB_103_125409 crossref_primary_10_1038_s41535_021_00382_x crossref_primary_10_1038_s41467_020_18521_6 crossref_primary_10_1002_adma_202411765 crossref_primary_10_1103_PhysRevResearch_5_013054 crossref_primary_10_1515_nanoph_2019_0557 crossref_primary_10_1088_1361_648X_ad271b crossref_primary_10_1021_acs_jpcc_9b08868 crossref_primary_10_1002_adfm_202203555 crossref_primary_10_1002_aelm_202100559 crossref_primary_10_1021_acsami_0c00116 crossref_primary_10_1088_2053_1583_ab7cab crossref_primary_10_1002_adma_202303098 crossref_primary_10_1002_ange_201914886 crossref_primary_10_1039_D2RA06588F crossref_primary_10_1088_1402_4896_acaa0e crossref_primary_10_1016_j_matchemphys_2022_126155 crossref_primary_10_1002_adma_202005607 crossref_primary_10_1016_j_apmt_2023_101926 crossref_primary_10_1038_s41928_020_0427_7 crossref_primary_10_1039_D0MH01863E crossref_primary_10_3390_app14093592 crossref_primary_10_1103_PhysRevB_110_205403 crossref_primary_10_1039_D4NA00465E crossref_primary_10_1002_adma_202004070 crossref_primary_10_1002_anie_201914886 crossref_primary_10_1016_j_vacuum_2020_109720 crossref_primary_10_1002_adma_202305044 crossref_primary_10_1002_adfm_202110428 crossref_primary_10_1002_andp_201900452 crossref_primary_10_1021_accountsmr_1c00092 crossref_primary_10_1016_j_scib_2024_07_025 crossref_primary_10_1007_s11664_019_07701_w crossref_primary_10_1063_5_0049623 crossref_primary_10_3390_coatings12020122 crossref_primary_10_1021_acsnano_3c07752 crossref_primary_10_1021_acsnano_0c10250 crossref_primary_10_1021_jacs_4c11075 crossref_primary_10_1088_1674_1056_ac2808 crossref_primary_10_1088_2515_7639_ac92a8 crossref_primary_10_1002_sstr_202300222 crossref_primary_10_1002_advs_202102911 crossref_primary_10_3389_fchem_2021_676438 crossref_primary_10_7498_aps_71_20220301 crossref_primary_10_1016_j_commatsci_2024_113339 crossref_primary_10_1038_s41699_021_00276_3 crossref_primary_10_1016_j_ijhydene_2020_01_066 crossref_primary_10_1021_acsnano_0c03940 crossref_primary_10_1088_1361_6528_ac0d7c crossref_primary_10_1038_s41598_022_22113_3 crossref_primary_10_1039_D4NR03203A crossref_primary_10_1039_D0CP05053A crossref_primary_10_1002_adfm_202312165 crossref_primary_10_1039_D2CP00379A crossref_primary_10_1002_adma_202106674 crossref_primary_10_1021_acsnano_1c02971 crossref_primary_10_1088_2053_1583_ac606f crossref_primary_10_1007_s40843_021_1966_6 crossref_primary_10_1038_s41467_024_49618_x crossref_primary_10_1039_D3CP05032G crossref_primary_10_1088_1674_1056_ad5538 crossref_primary_10_1002_adma_201908498 crossref_primary_10_1002_smll_202401770 crossref_primary_10_1088_1361_6463_ab7ca3 crossref_primary_10_1016_j_mssp_2024_109144 crossref_primary_10_1002_apxr_202300070 crossref_primary_10_1021_acsami_3c09792 crossref_primary_10_1039_D2CP02384A crossref_primary_10_1016_j_apsusc_2022_155999 crossref_primary_10_1021_acs_chemmater_1c02163 crossref_primary_10_1021_acs_jpcc_0c07113 crossref_primary_10_1016_j_apsusc_2019_144620 crossref_primary_10_1039_C9NR07995E crossref_primary_10_1021_acsnano_0c04499 crossref_primary_10_1103_PhysRevB_104_064446 crossref_primary_10_3390_molecules25204847 crossref_primary_10_1021_acsnano_2c12879 crossref_primary_10_1038_s41467_022_30414_4 crossref_primary_10_1038_s41563_022_01245_x crossref_primary_10_1007_s40820_020_00515_0 crossref_primary_10_1103_PhysRevB_103_144403 crossref_primary_10_1063_5_0039979 crossref_primary_10_3788_COL202422_091301 |
Cites_doi | 10.1103/PhysRevB.99.045438 10.1103/PhysRevApplied.5.044003 10.1103/PhysRevB.75.125408 10.1038/s41467-018-03436-0 10.1103/PhysRevLett.74.3273 10.1088/0953-8984/14/11/302 10.1002/adma.201604230 10.1038/nnano.2014.214 10.1126/science.aar3617 10.1103/PhysRevLett.114.016603 10.1126/science.aar4851 10.1038/s41467-018-03935-0 10.1103/PhysRevB.49.3962 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.54.11169 10.1103/PhysRev.96.99 10.1038/nphys4141 10.1143/PTP.16.45 10.1103/PhysRevB.71.064411 10.1038/nature22060 10.1016/j.mattod.2018.05.003 10.1103/PhysRev.106.893 10.1021/nl4007479 10.1038/s41586-018-0626-9 10.1103/PhysRevLett.119.127403 10.1103/PhysRevB.91.054426 10.1103/PhysRevB.96.125102 10.1038/nphys1095 10.1109/TMAG.2013.2255867 10.1038/s41565-018-0063-9 10.1103/PhysRevB.59.1758 10.1126/sciadv.aat3672 10.1063/1.4955468 10.1103/PhysRevB.96.245402 10.1063/1.3318261 10.1038/nature22391 10.1021/acsomega.7b01619 10.1103/PhysRevLett.96.107203 10.1103/RevModPhys.76.323 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 Copyright Nature Publishing Group Jul 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: Copyright Nature Publishing Group Jul 2019 |
DBID | AAYXX CITATION 3V. 7QO 7U5 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO F28 FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. L6V L7M LK8 M0S M1P M7P M7S P5Z P62 P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
DOI | 10.1038/s41565-019-0467-1 |
DatabaseName | CrossRef ProQuest Central (Corporate) Biotechnology Research Abstracts Solid State and Superconductivity Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1748-3395 |
EndPage | 678 |
ExternalDocumentID | PMC6774792 10_1038_s41565_019_0467_1 |
GroupedDBID | --- -~X 0R~ 123 29M 39C 3V. 4.4 53G 5BI 5M7 5S5 6OB 70F 7X7 88E 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ACBWK ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AEUYN AFANA AFBBN AFKRA AFLOW AFRAH AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ I-F KB. L6V LK8 M1P M7P M7S MM. NNMJJ O9- ODYON P2P P62 PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7QO 7U5 7XB 8FD 8FK AZQEC DWQXO F28 FR3 GNUQQ K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c470t-772a4ead2155c82670c4b3fce1c30179012e167130534dbf772a6c76bfb4ef493 |
IEDL.DBID | BENPR |
ISSN | 1748-3387 1748-3395 |
IngestDate | Thu Aug 21 14:11:01 EDT 2025 Thu Sep 04 21:36:56 EDT 2025 Fri Jul 25 08:55:11 EDT 2025 Thu Apr 24 22:50:25 EDT 2025 Tue Jul 01 01:56:29 EDT 2025 Fri Feb 21 02:41:49 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-772a4ead2155c82670c4b3fce1c30179012e167130534dbf772a6c76bfb4ef493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2590-2644 0000-0001-7281-3199 0000-0002-3426-7702 0000-0002-9816-8826 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6774792 |
PMID | 31209281 |
PQID | 2251071898 |
PQPubID | 546299 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6774792 proquest_miscellaneous_2242829855 proquest_journals_2251071898 crossref_citationtrail_10_1038_s41565_019_0467_1 crossref_primary_10_1038_s41565_019_0467_1 springer_journals_10_1038_s41565_019_0467_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature nanotechnology |
PublicationTitleAbbrev | Nat. Nanotechnol |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Song (CR20) 2018; 360 Yang, Kimura, Otani (CR34) 2008; 4 Yazyev, Helm (CR2) 2007; 75 Guguchia (CR12) 2018; 4 Zhang (CR25) 2017; 96 Esquinazi, Hergert, Spemann, Setzer, Ernst (CR1) 2013; 49 Han, Kawakami, Gmitra, Fabian (CR30) 2014; 9 Klein (CR21) 2018; 360 Huang (CR4) 2017; 546 Bonilla (CR7) 2018; 13 Scharf, Xu, Matos-Abiague, Žutić (CR33) 2017; 119 Zhou (CR8) 2013; 13 Zhao (CR17) 2017; 29 Leven, Dumpich (CR18) 2005; 71 Wen (CR31) 2016; 5 Clark (CR26) 2019; 99 Žutić, Matos-Abiague, Scharf, Dery, Belashchenko (CR32) 2019; 22 Zhang (CR14) 2016; 120 Kresse, Furthmüller (CR38) 1996; 54 Ciarrocchi, Avsar, Ovchinnikov, Kis (CR16) 2018; 9 Soler (CR40) 2002; 14 Wang, Tang, Sachs, Barlas, Shi (CR11) 2015; 114 Kasuya (CR23) 1956; 16 Yosida (CR24) 1957; 106 Gong (CR5) 2017; 546 Osorio-Guillén, Lany, Barabash, Zunger (CR3) 2006; 96 CR9 Gao (CR13) 2017; 2 Huang, Kief, Mankey, Willis (CR19) 1994; 49 Avsar (CR36) 2017; 13 Pizzochero, Yazyev (CR27) 2017; 96 Kresse, Joubert (CR39) 1999; 59 Krasheninnikov, Nordlund (CR15) 2010; 107 Žutić, Fabian, Das Sarma (CR29) 2004; 76 Hardy (CR10) 2015; 91 Yu (CR28) 2018; 9 Moodera, Kinder, Wong, Meservey (CR35) 1995; 74 Deng (CR6) 2018; 563 Ruderman, Kittel (CR22) 1954; 96 Perdew, Burke, Ernzerhof (CR37) 1996; 77 X Yu (467_CR28) 2018; 9 G Kresse (467_CR38) 1996; 54 B Huang (467_CR4) 2017; 546 DR Klein (467_CR21) 2018; 360 M Pizzochero (467_CR27) 2017; 96 J Osorio-Guillén (467_CR3) 2006; 96 B Leven (467_CR18) 2005; 71 MA Ruderman (467_CR22) 1954; 96 W Zhang (467_CR14) 2016; 120 W Zhou (467_CR8) 2013; 13 JM Soler (467_CR40) 2002; 14 JS Moodera (467_CR35) 1995; 74 F Huang (467_CR19) 1994; 49 OJ Clark (467_CR26) 2019; 99 B Scharf (467_CR33) 2017; 119 G Kresse (467_CR39) 1999; 59 T Song (467_CR20) 2018; 360 W Han (467_CR30) 2014; 9 T Yang (467_CR34) 2008; 4 A Ciarrocchi (467_CR16) 2018; 9 Y Deng (467_CR6) 2018; 563 AV Krasheninnikov (467_CR15) 2010; 107 Y Zhao (467_CR17) 2017; 29 A Avsar (467_CR36) 2017; 13 I Žutić (467_CR29) 2004; 76 JP Perdew (467_CR37) 1996; 77 H Wen (467_CR31) 2016; 5 Z Guguchia (467_CR12) 2018; 4 K Yosida (467_CR24) 1957; 106 WJ Hardy (467_CR10) 2015; 91 I Žutić (467_CR32) 2019; 22 K Zhang (467_CR25) 2017; 96 P Esquinazi (467_CR1) 2013; 49 C Gong (467_CR5) 2017; 546 Z Wang (467_CR11) 2015; 114 M Bonilla (467_CR7) 2018; 13 467_CR9 J Gao (467_CR13) 2017; 2 T Kasuya (467_CR23) 1956; 16 OV Yazyev (467_CR2) 2007; 75 |
References_xml | – volume: 99 start-page: 045438 year: 2019 ident: CR26 article-title: Dual quantum confinement and anisotropic spin splitting in the multivalley semimetal PtSe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.045438 – volume: 5 start-page: 044003 year: 2016 ident: CR31 article-title: Experimental demonstration of XOR operation in graphene magnetologic gates at room temperature publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.5.044003 – volume: 75 start-page: 125408 year: 2007 ident: CR2 article-title: Defect-induced magnetism in graphene publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.125408 – volume: 9 year: 2018 ident: CR16 article-title: Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide publication-title: Nat. Commun. doi: 10.1038/s41467-018-03436-0 – volume: 74 start-page: 3273 year: 1995 end-page: 3276 ident: CR35 article-title: Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.3273 – volume: 14 start-page: 2745 year: 2002 ident: CR40 article-title: The SIESTA method for ab initio order- materials simulation publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/302 – volume: 29 start-page: 1604230 year: 2017 ident: CR17 article-title: High-electron-mobility and air-stable 2D layered PtSe FETs publication-title: Adv. Mater. doi: 10.1002/adma.201604230 – volume: 9 start-page: 794 year: 2014 end-page: 807 ident: CR30 article-title: Graphene spintronics publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.214 – volume: 360 start-page: 1218 year: 2018 end-page: 1222 ident: CR21 article-title: Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling publication-title: Science doi: 10.1126/science.aar3617 – volume: 114 start-page: 016603 year: 2015 ident: CR11 article-title: Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.016603 – volume: 360 start-page: 1214 year: 2018 end-page: 1218 ident: CR20 article-title: Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures publication-title: Science doi: 10.1126/science.aar4851 – volume: 9 year: 2018 ident: CR28 article-title: Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor publication-title: Nat. Commun. doi: 10.1038/s41467-018-03935-0 – volume: 49 start-page: 3962 year: 1994 end-page: 3971 ident: CR19 article-title: Magnetism in the few-monolayers limit: a surface magneto-optic Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co–Ni alloys on Cu(100) and Cu(111) publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.3962 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR37 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR38 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 96 start-page: 99 year: 1954 end-page: 102 ident: CR22 article-title: Indirect exchange coupling of nuclear magnetic moments by conduction electrons publication-title: Phys. Rev. doi: 10.1103/PhysRev.96.99 – volume: 13 start-page: 888 year: 2017 end-page: 893 ident: CR36 article-title: Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes publication-title: Nat. Phys. doi: 10.1038/nphys4141 – volume: 16 start-page: 45 year: 1956 end-page: 57 ident: CR23 article-title: A theory of metallic ferro- and antiferromagnetism on Zener’s model publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.16.45 – volume: 71 start-page: 064411 year: 2005 ident: CR18 article-title: Resistance behavior and magnetization reversal analysis of individual Co nanowires publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.064411 – volume: 546 start-page: 265 year: 2017 end-page: 269 ident: CR5 article-title: Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals publication-title: Nature doi: 10.1038/nature22060 – volume: 22 start-page: 85 year: 2019 end-page: 107 ident: CR32 article-title: Proximitized materials publication-title: Mater. Today doi: 10.1016/j.mattod.2018.05.003 – volume: 106 start-page: 893 year: 1957 end-page: 898 ident: CR24 article-title: Magnetic properties of Cu–Mn alloys publication-title: Phys. Rev. doi: 10.1103/PhysRev.106.893 – volume: 13 start-page: 2615 year: 2013 end-page: 2622 ident: CR8 article-title: Intrinsic structural defects in monolayer molybdenum disulfide publication-title: Nano Lett. doi: 10.1021/nl4007479 – volume: 563 start-page: 94 year: 2018 end-page: 99 ident: CR6 article-title: Gate-tunable room-temperature ferromagnetism in two-dimensional Fe GeTe publication-title: Nature doi: 10.1038/s41586-018-0626-9 – volume: 119 start-page: 127403 year: 2017 ident: CR33 article-title: Magnetic proximity effects in transition-metal dichalcogenides: converting excitons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.127403 – volume: 91 start-page: 054426 year: 2015 ident: CR10 article-title: Very large magnetoresistance in Fe TaS single crystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.054426 – ident: CR9 – volume: 96 start-page: 125102 year: 2017 ident: CR25 article-title: Experimental evidence for type-II Dirac semimetal in PtSe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.125102 – volume: 4 start-page: 851 year: 2008 end-page: 854 ident: CR34 article-title: Giant spin-accumulation signal and pure spin–current-induced reversible magnetization switching publication-title: Nat. Phys. doi: 10.1038/nphys1095 – volume: 49 start-page: 4668 year: 2013 end-page: 4674 ident: CR1 article-title: Defect-induced magnetism in solids publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2013.2255867 – volume: 13 start-page: 289 year: 2018 end-page: 293 ident: CR7 article-title: Strong room-temperature ferromagnetism in VSe monolayers on van der Waals substrates publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0063-9 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR39 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 4 start-page: eaat3672 year: 2018 ident: CR12 article-title: Magnetism in semiconducting molybdenum dichalcogenides publication-title: Sci. Adv. doi: 10.1126/sciadv.aat3672 – volume: 120 start-page: 013904 year: 2016 ident: CR14 article-title: Magnetism and magnetocrystalline anisotropy in single-layer PtSe : interplay between strain and vacancy publication-title: J. Appl. Phys. doi: 10.1063/1.4955468 – volume: 96 start-page: 245402 year: 2017 ident: CR27 article-title: Point defects in the 1T′ and 2H phases of single-layer MoS : a comparative first-principles study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.245402 – volume: 107 start-page: 071301 year: 2010 ident: CR15 article-title: Ion and electron irradiation-induced effects in nanostructured materials publication-title: J. Appl. Phys. doi: 10.1063/1.3318261 – volume: 546 start-page: 270 year: 2017 end-page: 273 ident: CR4 article-title: Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit publication-title: Nature doi: 10.1038/nature22391 – volume: 2 start-page: 8640 year: 2017 end-page: 8648 ident: CR13 article-title: Structure, stability, and kinetics of vacancy defects in monolayer PtSe : a first-principles study publication-title: ACS Omega doi: 10.1021/acsomega.7b01619 – volume: 96 start-page: 107203 year: 2006 ident: CR3 article-title: Magnetism without magnetic ions: percolation, exchange, and formation energies of magnetism-promoting intrinsic defects in CaO publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.107203 – volume: 76 start-page: 323 year: 2004 end-page: 410 ident: CR29 article-title: Spintronics: fundamentals and applications publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.76.323 – volume: 96 start-page: 245402 year: 2017 ident: 467_CR27 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.245402 – volume: 13 start-page: 2615 year: 2013 ident: 467_CR8 publication-title: Nano Lett. doi: 10.1021/nl4007479 – volume: 119 start-page: 127403 year: 2017 ident: 467_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.127403 – volume: 546 start-page: 265 year: 2017 ident: 467_CR5 publication-title: Nature doi: 10.1038/nature22060 – volume: 16 start-page: 45 year: 1956 ident: 467_CR23 publication-title: Prog. Theor. Phys. doi: 10.1143/PTP.16.45 – volume: 29 start-page: 1604230 year: 2017 ident: 467_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201604230 – volume: 77 start-page: 3865 year: 1996 ident: 467_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 76 start-page: 323 year: 2004 ident: 467_CR29 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.76.323 – volume: 96 start-page: 107203 year: 2006 ident: 467_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.107203 – volume: 546 start-page: 270 year: 2017 ident: 467_CR4 publication-title: Nature doi: 10.1038/nature22391 – volume: 91 start-page: 054426 year: 2015 ident: 467_CR10 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.054426 – volume: 59 start-page: 1758 year: 1999 ident: 467_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 99 start-page: 045438 year: 2019 ident: 467_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.045438 – volume: 13 start-page: 888 year: 2017 ident: 467_CR36 publication-title: Nat. Phys. doi: 10.1038/nphys4141 – volume: 120 start-page: 013904 year: 2016 ident: 467_CR14 publication-title: J. Appl. Phys. doi: 10.1063/1.4955468 – volume: 360 start-page: 1218 year: 2018 ident: 467_CR21 publication-title: Science doi: 10.1126/science.aar3617 – ident: 467_CR9 – volume: 4 start-page: 851 year: 2008 ident: 467_CR34 publication-title: Nat. Phys. doi: 10.1038/nphys1095 – volume: 96 start-page: 125102 year: 2017 ident: 467_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.125102 – volume: 4 start-page: eaat3672 year: 2018 ident: 467_CR12 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat3672 – volume: 96 start-page: 99 year: 1954 ident: 467_CR22 publication-title: Phys. Rev. doi: 10.1103/PhysRev.96.99 – volume: 74 start-page: 3273 year: 1995 ident: 467_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.74.3273 – volume: 9 year: 2018 ident: 467_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03935-0 – volume: 9 start-page: 794 year: 2014 ident: 467_CR30 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.214 – volume: 54 start-page: 11169 year: 1996 ident: 467_CR38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 106 start-page: 893 year: 1957 ident: 467_CR24 publication-title: Phys. Rev. doi: 10.1103/PhysRev.106.893 – volume: 13 start-page: 289 year: 2018 ident: 467_CR7 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0063-9 – volume: 2 start-page: 8640 year: 2017 ident: 467_CR13 publication-title: ACS Omega doi: 10.1021/acsomega.7b01619 – volume: 563 start-page: 94 year: 2018 ident: 467_CR6 publication-title: Nature doi: 10.1038/s41586-018-0626-9 – volume: 114 start-page: 016603 year: 2015 ident: 467_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.016603 – volume: 9 year: 2018 ident: 467_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03436-0 – volume: 22 start-page: 85 year: 2019 ident: 467_CR32 publication-title: Mater. Today doi: 10.1016/j.mattod.2018.05.003 – volume: 5 start-page: 044003 year: 2016 ident: 467_CR31 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.5.044003 – volume: 49 start-page: 3962 year: 1994 ident: 467_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.49.3962 – volume: 75 start-page: 125408 year: 2007 ident: 467_CR2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.125408 – volume: 71 start-page: 064411 year: 2005 ident: 467_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.064411 – volume: 14 start-page: 2745 year: 2002 ident: 467_CR40 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/14/11/302 – volume: 49 start-page: 4668 year: 2013 ident: 467_CR1 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2013.2255867 – volume: 360 start-page: 1214 year: 2018 ident: 467_CR20 publication-title: Science doi: 10.1126/science.aar4851 – volume: 107 start-page: 071301 year: 2010 ident: 467_CR15 publication-title: J. Appl. Phys. doi: 10.1063/1.3318261 |
SSID | ssj0052924 |
Score | 2.6561804 |
Snippet | Defects are ubiquitous in solids and often introduce new properties that are absent in pristine materials. One of the opportunities offered by these crystal... Defects are ubiquitous in solids, often introducing new properties that are absent in pristine materials. One of the opportunities offered by these crystal... |
SourceID | pubmedcentral proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 674 |
SubjectTerms | 639/766/1130/2798 639/925/357/997 Antiferromagnetism Chemistry and Materials Science Couplings Crystal defects Crystals Electric fields Electrical measurement Ferromagnetism First principles Letter Magnetic fields Magnetic properties Magnetism Magnetoresistance Magnetoresistivity Materials Science Nanotechnology Nanotechnology and Microengineering Thin films Transport properties Two dimensional materials Vacancies |
Title | Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2 |
URI | https://link.springer.com/article/10.1038/s41565-019-0467-1 https://www.proquest.com/docview/2251071898 https://www.proquest.com/docview/2242829855 https://pubmed.ncbi.nlm.nih.gov/PMC6774792 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-x9gUeEJ-iMKog8QRYi2M7dp_QCi0TEtUETOpblDhnVqlNB03_f-7SpKWT2EsUyY5s-b5-57vcAbwNBAN8onPhgimExsQIp7QR0mMcF7JU3vCPwt9m6cWV_jo38_bCbdOmVXY6sVHU5drzHfkZ8R15KtKN3Meb34K7RnF0tW2hcQJ9UsHO9KA_nswuv3e62CSjXVtbq50gZ8x2cU3lzjbsunDiGgcHSFvIY8t0gJu3kyVvRUwbQzR9BA9bBBmd70j-GO5h9QQe_FNX8ClMPiNnaUTkbxPlyg_RMidkLVbrkpt1YRmt8l8V1ovNiqZE2yVXqL2mtxUSFF8ufHRZ_8DkGVxNJz8_XYi2X4Lw2sY1A-VcE2eQFTee3AYbe12o4FF6xYJHtghlSl4pCZ4ui8DzU2_TIhQagx6p59Cr1hW-gIiAQ5AqELawSqMvc5Q2R6sUeSA6oBlA3J1V5tti4tzTYpk1QW3lst3xZnS8GR9vJgfwbv_Jza6Sxl2TTzsCZK1QbbIDCwzgzX6YxIFjHHmF6y3P0Rwbdoa2aI8It1-UC2ofj1SL66awdkpY2I6SAbzvSHxY_L9bfXn3Vl_B_aThMc7wPYVe_WeLrwnH1MUQTuzc0tNNvwyhfz4dj2fDloH_ArwR8mo |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9N2wPwgPgUhQFBghfAWhzbcfqAELBOHduqCTZpbyFxzqxSmw6aCvFP8Tdyl4-WTmJve4tkR7Hufj7_Lne-A3jpiQa4SGci8SYXGiMjEqWNkA7DMJeFcoYvCh-N4uGp_nxmzjbgT3cXhtMqO5tYG-pi5vgf-Q7hjjwVmfST9xc_BHeN4uhq10KjgcUB_v5FLtv83f4u6fdVFO0NTj4NRdtVQDhtw4rpZKZJfnTWGUfk2oZO58o7lE4xPMlio4zJdyN46iL3PD92Ns59rtFrLr5EJn-LaEafdtHWx8Ho-Etn-03Ub9roWp0Icv5sF0dVyc6cXSVOlONgBFknuX4Srujt5eTMSxHa-uDbuwO3W8YafGggdhc2sLwHt_6pY3gfBrvIWSEB-feElOJtMMmIyYvprODmYFgE0-x7idV4PqUpwWLCFXHP6WmKRP0nYxccV18xegCn1yLJh7BZzkp8BAERFS-VJy5jlUZXZChthlYp8ni0R9ODsJNV6tri5dxDY5LWQXSVpI14UxJvyuJNZQ9eL1-5aCp3XDV5u1NA2m7iebqCXA9eLIdp-3FMJStxtuA5mmPRiaEl2jXFLT_KBbzXR8rxeV3IOybubftRD950Kl59_L9LfXz1Up_DjeHJ0WF6uD86eAI3oxpvnF28DZvVzwU-JQ5V5c9a4Abw7br3yl-dWisH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9NnYTgAY0vURgQJHgBrCaxHacPCAFttTGoKmDS3rLEObNKbbrRVIh_jb-Ou3y0dBJ721skO4p1_vnud7nzHcALRzTAhioVsdOZUBhqEUulRWDR97Mgl1bzReEv4-jgWH060Sc78Ke9C8Npla1OrBR1vrD8j7xHuCNPJYj7cc81aRGTwejd-YXgDlIcaW3badQQOcLfv8h9W749HNBevwzD0fD7xwPRdBgQVhm_ZGqZKpIl2T1tiWgb36pMOouBlQxV0t4YROTHEVRVnjmeH1kTZS5T6BQXYiL1v2vIKsYd2P0wHE--tnZAh_26pa5RsSBH0LQxVRn3luw2cdIcByZIUwXbVnFDdS8nal6K1lZGcLQHtxv26r2v4XYHdrC4C7f-qWl4D4YD5AwRj3x9Qk3-xpulxOrFfJFzozDMvXn6o8ByupzTFG814-q4Z_Q0R3IDZlPrTcpvGN6H42uR5APoFIsCH4JHpMUF0hGvMVKhzVMMTIpGSvJ-lEPdBb-VVWKbQubcT2OWVAF1GSe1eBMSb8LiTYIuvFq_cl5X8bhq8n67AUlzoJfJBn5deL4epqPI8ZW0wMWK5yiOS8ealmi2Nm79US7mvT1STM-qot4R8XDTD7vwut3izcf_u9RHVy_1GdygM5J8PhwfPYabYQU3TjTeh075c4VPiE6V2dMGtx6cXvdR-QuAFy8z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+induced%2C+layer-modulated+magnetism+in+ultrathin+metallic+PtSe2&rft.jtitle=Nature+nanotechnology&rft.au=Avsar%2C+Ahmet&rft.au=Ciarrocchi%2C+Alberto&rft.au=Pizzochero%2C+Michele&rft.au=Unuchek%2C+Dmitrii&rft.date=2019-07-01&rft.issn=1748-3387&rft.eissn=1748-3395&rft.volume=14&rft.issue=7&rft.spage=674&rft.epage=678&rft_id=info:doi/10.1038%2Fs41565-019-0467-1&rft_id=info%3Apmid%2F31209281&rft.externalDocID=PMC6774792 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3387&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3387&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3387&client=summon |