Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers
Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biologica...
Saved in:
Published in | Non-coding RNA research Vol. 9; no. 4; pp. 1351 - 1362 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.12.2024
KeAi Communications Co., Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2468-0540 2468-0540 |
DOI | 10.1016/j.ncrna.2024.07.003 |
Cover
Loading…
Abstract | Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction.
In prostate cancer (PCa), non-coding RNAs (ncRNAs) are transferred from donor cells to recipient cells via exosomes and involved in gene expression through various mechanisms. Due to the regulative effects of exosomal ncRNAs on physiological and pathological processes, they are potential biomarkers and promising therapeutic tools in PCa. [Display omitted] |
---|---|
AbstractList | Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction. Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction.Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction. Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs (ncRNAs), such as microRNAs, long non-coding RNAs and circular RNAs, frequently exhibit dysregulation and substantially impact the biological behavior of PCa. Compared with circulating ncRNAs, ncRNAs loaded into exosomes are more stable because of protection by the lipid bilayer. Furthermore, exosomal ncRNAs facilitate the intercellular transfer of molecules and information. Increasing evidence suggests that exosomal ncRNAs hold promising potential in the progression, diagnosis and prognosis of PCa. This review aims to discuss the functions of exosomal ncRNAs in PCa, evaluate their possible applications as clinical biomarkers and therapeutic targets, and provide a comprehensive overview of the ncRNAs regulatory network in PCa. We also identified ncRNAs that can be utilized as biomarkers for diagnosis, staging, grading and prognosis assessment in PCa. This review offers researchers a fresh perspective on the functions of exosomal ncRNAs in PCa and provides additional options for its diagnosis, progression monitoring, and prognostic prediction. In prostate cancer (PCa), non-coding RNAs (ncRNAs) are transferred from donor cells to recipient cells via exosomes and involved in gene expression through various mechanisms. Due to the regulative effects of exosomal ncRNAs on physiological and pathological processes, they are potential biomarkers and promising therapeutic tools in PCa. [Display omitted] |
Author | Zheng, Ji Chen, Ming Wang, Binpan Tang, Xiaoqi Li, Yongxing Chang, Kai |
Author_xml | – sequence: 1 givenname: Yongxing surname: Li fullname: Li, Yongxing organization: Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China – sequence: 2 givenname: Xiaoqi surname: Tang fullname: Tang, Xiaoqi organization: Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China – sequence: 3 givenname: Binpan surname: Wang fullname: Wang, Binpan organization: Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China – sequence: 4 givenname: Ming surname: Chen fullname: Chen, Ming email: chming1971@126.com organization: Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China – sequence: 5 givenname: Ji surname: Zheng fullname: Zheng, Ji email: jizheng023@aliyun.com organization: Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, PR China – sequence: 6 givenname: Kai surname: Chang fullname: Chang, Kai email: changkai0203@tmmu.edu.cn organization: Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39247145$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1rFTEUxQep2Fr7FwiSpZsZbz5mkhFclIfWQlUQXbkI-bhT8pyXPJN5Rf_7pu-1Ii66SgjnnHvzO8-bo5giNs1LCh0FOrxZd9HlaDoGTHQgOwD-pDlhYlAt9AKO_rkfN2elrAGAKjYMg3jWHPORCUlFf9L8WO1yxriQ2URfnNkiSRPB36mkjZlJndq65EO8Jl8_nxcSItnmVBazIHEmOsxvyafkd7NZUi6kZhAbqjP_xFxeNE8nMxc8uz9Pm-8f3n9bfWyvvlxcrs6vWickLK3spWRUqJEO3oG0MIFzjllLrRi5mtRkGWUD805wpgYcvZBoOeu9scYpwU-by0OuT2attznU-X90MkHvH1K-1iYvwc2op0FAL9VomLfCMKPGmq0qQ-EceOA16_Uhq37z1w7LojehOJwrHky7ojkFBpJx3lfpq3vpzm7Q_x38ALcKxoPAVWQl46RdqORCiks2YdYU9F2Xeq33Xeq7LjVIDfs9-H_eh_jHXe8OLqy4bwJmXVzAWpMPGd1SeYRH_bfSn7e7 |
CitedBy_id | crossref_primary_10_3390_cancers17060940 crossref_primary_10_3390_biomedicines12102322 crossref_primary_10_1093_biolre_ioae170 crossref_primary_10_1155_sci_8883585 |
Cites_doi | 10.1002/pros.23376 10.1158/0008-5472.CAN-12-2968 10.3390/ijms221810107 10.1159/000488620 10.1371/journal.pone.0055527 10.1016/j.stem.2010.11.013 10.1371/journal.pone.0157566 10.1038/s41556-018-0040-4 10.3389/fcell.2021.644397 10.1172/JCI86505 10.1186/1471-2407-7-64 10.1080/21655979.2022.2037367 10.1016/S1534-5807(04)00075-9 10.1016/j.bbagrm.2014.02.016 10.3389/fonc.2018.00222 10.1038/nrurol.2017.144 10.3390/cancers11091276 10.1155/2022/8058770 10.1186/s12943-018-0831-z 10.1073/pnas.1717363115 10.1186/s12951-022-01264-5 10.1002/jcp.29784 10.1038/nrc.2017.99 10.1261/rna.035667.112 10.1002/ctm2.493 10.1038/s41392-020-00359-5 10.1016/j.mam.2017.11.010 10.1186/s12935-020-01563-7 10.1016/j.cell.2019.10.017 10.1002/pros.23101 10.1186/s13046-020-01761-1 10.1177/09636897211052977 10.1093/nar/gkr828 10.1002/pros.24029 10.3892/ijo.2015.3043 10.4149/neo_2020_191130N1234 10.1161/CIRCRESAHA.117.305990 10.1002/pros.22848 10.1210/endrev/bnab002 10.3322/caac.21708 10.1038/onc.2017.240 10.1371/journal.pone.0019139 10.1038/ncomms11150 10.1002/stem.1619 10.1158/2159-8290.CD-21-1059 10.1038/nature09677 10.1016/j.bbcan.2019.04.004 10.1080/21655979.2021.2009416 10.1038/s42003-020-01642-5 10.1016/j.bios.2015.09.053 10.3727/096504017X14882829077237 10.1186/s13046-019-1488-1 10.1158/0008-5472.CAN-09-1448 10.1002/ctm2.426 10.1038/bjc.2011.595 10.1038/mt.2012.180 10.1016/j.biopha.2019.109109 10.1016/j.devcel.2021.03.020 10.1161/CIRCULATIONAHA.120.045765 10.3390/biom11121829 10.1016/j.bbrc.2018.05.157 10.1038/s41585-022-00622-0 10.1016/j.canlet.2017.09.010 10.1016/j.jconrel.2022.01.026 10.1016/j.ymthe.2019.09.001 10.1038/onc.2013.7 10.1016/S0092-8674(00)81683-9 10.1074/jbc.M203569200 10.3390/ijms23031626 10.1038/s41585-021-00524-7 10.1038/srep24922 10.1016/j.bbrc.2019.05.120 10.1016/j.bios.2019.111749 10.1002/pros.20870 10.1158/1078-0432.CCR-15-3107 10.1007/s10528-021-10160-w 10.1016/j.jbiotec.2017.07.029 10.3390/ijms21165840 10.3122/jabfm.16.2.95 10.3390/genes11121495 10.3390/cancers13164075 10.1186/s13046-014-0072-y 10.1016/j.ab.2021.114336 10.1186/s12943-018-0897-7 10.1158/0008-5472.CAN-10-1791 10.3389/fcell.2020.599494 10.1155/2022/7616696 10.1126/science.aau6977 10.1080/15384101.2015.1041689 10.1007/s12195-016-0457-4 10.1038/s41467-017-01196-x 10.1371/journal.pone.0159490 10.1038/cddis.2010.85 10.1158/0008-5472.CAN-14-0404 10.1016/j.eururo.2014.07.035 10.1016/j.bbalip.2013.04.011 10.1158/0008-5472.CAN-17-2069 10.1002/jgm.3376 10.1371/journal.pone.0051655 10.18632/oncotarget.22014 10.1002/jcp.28374 10.3390/ijms23031285 10.1016/j.bbrc.2009.03.077 10.1074/jbc.C114.617662 10.3390/pharmaceutics12060545 10.3390/genes8020071 10.3390/ijms17111784 10.4149/neo_2018_180427N279 10.1242/dev.095448 10.1186/s13046-021-01843-8 10.1111/j.1742-4658.2008.06697.x 10.1146/annurev-pathol-020117-043854 10.1007/s13277-014-2006-x 10.1080/15384101.2021.1992853 10.1007/s12038-021-00190-2 10.18632/oncotarget.5920 10.1177/1533033820972342 10.1016/j.critrevonc.2019.102860 10.1016/j.cellsig.2021.110126 10.1161/ATVBAHA.111.243733 10.1186/s12943-017-0742-4 10.1038/s12276-020-0431-z 10.1002/cncr.32176 10.1038/srep43500 10.1038/s41598-018-26050-y 10.1186/s13046-017-0528-y 10.18632/aging.103377 10.1186/s12885-017-3737-z 10.1038/nrc3792 10.1016/j.bios.2021.113504 10.1186/s12943-019-1002-6 10.1111/cyt.12661 10.1186/s13048-020-0609-y 10.1038/s12276-018-0150-x 10.1007/s11306-019-1550-1 10.1158/1541-7786.MCR-17-0321 10.1002/jcb.28239 10.1080/14728222.2017.1369044 10.1016/j.prp.2020.153182 10.1016/S0140-6736(18)31694-5 10.1038/s41598-018-27180-z 10.1038/cdd.2014.232 10.1007/s00604-020-4143-9 10.2147/OTT.S272869 10.1186/1476-4598-9-258 10.1038/s41585-021-00561-2 10.1186/s13045-019-0739-0 10.1002/advs.202003505 10.1186/s12943-020-01235-0 10.1038/s41585-022-00638-6 10.1016/j.neo.2018.01.011 10.1016/j.cell.2011.02.013 10.3390/ijms23116339 10.1172/JCI65344 10.1007/978-3-319-95693-0_6 10.1002/jev2.12056 10.7150/thno.44567 10.1038/s41419-020-2671-1 10.1002/pros.23295 10.1186/1471-2407-11-31 10.1038/s41598-020-62140-6 10.1038/s41585-022-00588-z 10.1038/cdd.2014.213 10.1186/1478-811X-11-88 10.1016/S0140-6736(18)32279-7 10.1186/s12943-019-0991-5 10.1016/S0140-6736(21)00950-8 10.1370/afm.2205 10.1002/jcp.21241 10.1126/sciadv.aba5714 10.1038/cr.2015.82 10.1097/CM9.0000000000002108 10.1038/s41419-021-04421-0 10.18632/oncotarget.1884 10.1038/aps.2017.178 10.1186/s12943-017-0726-4 10.1186/s12935-020-01686-x 10.3892/ijo.2020.5064 10.2147/DDDT.S300376 10.1021/acsomega.4c02652 10.1186/s12943-019-1041-z 10.2147/CMAR.S272140 10.1186/s12943-021-01396-6 |
ContentType | Journal Article |
Copyright | 2024 The Authors 2024 The Authors. |
Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 DOA |
DOI | 10.1016/j.ncrna.2024.07.003 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2468-0540 |
EndPage | 1362 |
ExternalDocumentID | oai_doaj_org_article_f6405789a2db4a2a89b2180244cc0d03 39247145 10_1016_j_ncrna_2024_07_003 S2468054024001239 |
Genre | Journal Article Review |
GroupedDBID | 0R~ 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ACGFS ADBBV ADVLN AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE NCXOZ OK1 ROL RPM SSZ AAYWO AAYXX CITATION NPM 7X8 |
ID | FETCH-LOGICAL-c470t-75772148916dc07b0f0ccc2bb1b4938f8fb21262dc43286e9d47eb325dabac843 |
IEDL.DBID | DOA |
ISSN | 2468-0540 |
IngestDate | Wed Aug 27 01:27:17 EDT 2025 Fri Jul 11 00:25:43 EDT 2025 Mon Jul 21 06:04:54 EDT 2025 Tue Jul 01 02:39:37 EDT 2025 Thu Apr 24 22:51:42 EDT 2025 Sat Dec 21 16:00:41 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Biomarkers Non-coding RNAs Exosomes Prostate cancer Modulators |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. 2024 The Authors. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-75772148916dc07b0f0ccc2bb1b4938f8fb21262dc43286e9d47eb325dabac843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/f6405789a2db4a2a89b2180244cc0d03 |
PMID | 39247145 |
PQID | 3102072335 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f6405789a2db4a2a89b2180244cc0d03 proquest_miscellaneous_3102072335 pubmed_primary_39247145 crossref_citationtrail_10_1016_j_ncrna_2024_07_003 crossref_primary_10_1016_j_ncrna_2024_07_003 elsevier_sciencedirect_doi_10_1016_j_ncrna_2024_07_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2024 2024-12-00 2024-Dec 20241201 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: December 2024 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Non-coding RNA research |
PublicationTitleAlternate | Noncoding RNA Res |
PublicationYear | 2024 |
Publisher | Elsevier B.V KeAi Communications Co., Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co., Ltd |
References | Chen, Lai, Jan (bib56) 2013; 123 Wei, Batagov, Schinelli (bib37) 2017; 8 Zhou, Chen, He, Zheng, Xue (bib70) 2020; 13 Endzelins, Berger, Melne (bib53) 2017; 17 Ali, Du Feu, Oliveira (bib18) 2022; 19 Sulzmaier, Jean, Schlaepfer (bib73) 2014; 14 Tian, Liang, Shi, Zhao (bib140) 2022; 2022 He, Zhang, Han (bib126) 2014; 33 Hanahan (bib43) 2022; 12 Arroyo A, Salloum-Asfar, Perez-Sanchez (bib49) 2017; 7 Tang, Liu, Wang (bib133) 2019; 42 Li, He, Guo (bib196) 2022; 20 Yu, Sui, Fan (bib119) 2021; 10 Ghosh, Pandey, Dey (bib167) 2019; 30 Wang, Liu, Ma (bib17) 2019; 18 Peck, Oberst, Bouker, Bowden, Burbelo (bib75) 2002; 277 Li, Dong, Wang (bib175) 2020; 67 Zhang, Zhao, Ding (bib94) 2020; 39 Guan, Peng, Fang (bib77) 2020; 235 Albino, Falcione, Uboldi (bib104) 2021; 4 Wang, Xiao, Pan, Chen, Yang (bib66) 2022; 2022 Zhang, Freitas, Kim (bib33) 2018; 20 Kim, Shim, Han (bib188) 2021; 192 Huang, Wu, Jing (bib197) 2022; 343 Li, Li, Sha, Sun, Huang (bib67) 2009; 383 Rebello, Pearson, Hannan, Furic (bib136) 2017; 8 Abd Elmageed, Yang, Thomas (bib101) 2014; 32 Yang, Wang, Gong (bib84) 2020; 5 Khan, Nickoloff, Abramova (bib191) 2015; 117 Thomsen, Bakiri, Hasenfuss (bib78) 2015; 22 Bryzgunova, Zaripov, Skvortsova (bib172) 2016; 11 Li, Ma, Wang (bib176) 2016; 9 Ribas, Ni, Haffner (bib124) 2009; 69 Yang, Han, Zhang (bib198) 2020; 142 Guo, Wang, Jia (bib183) 2020; 8 Hanahan, Weinberg (bib44) 2011; 144 Ge, Yu, Li (bib137) 2021; 40 Li, Li, Diao (bib171) 2021; 13 Lang, Yin, Lin (bib62) 2021; 11 Tonini, D'Andrilli, Fucito, Gaspa, Bagella (bib89) 2008; 214 Ding, Wu, Chu (bib92) 2011; 470 Ye, Li, Ma (bib108) 2017; 8 Shtam, Kovalev, Varfolomeeva (bib193) 2013; 11 Su, Xiao, Ma (bib39) 2019; 18 Aslan, Maralbashi, Salari (bib46) 2019; 234 Bhagirath, Yang, Bucay (bib98) 2018; 78 Pulliam, Goli, Awad (bib3) 2022; 19 Rodriguez, Bajo-Santos, Hessvik (bib170) 2017; 16 Hasegawa, Glavich, Pahuski (bib88) 2018; 16 Bryant, Pawlowski, Catto (bib177) 2012; 106 Lamichhane, Jeyaram, Patel (bib194) 2016; 9 Mistry, Cable (bib10) 2003; 16 Chandran, Ma, Dhir (bib146) 2007; 7 Zhang, Yu (bib11) 2019; 1871 Li, Tang, Deng (bib169) 2024; 9 Zhang, Li, Han (bib68) 2019; 66 Shang, Gu, Wang (bib58) 2020; 19 Kato, Goto, Matsushita (bib100) 2015; 47 Graham, Odero-Marah, Chung (bib118) 2009; 69 Clay, Halloran (bib115) 2013; 140 Jiang, Mo, Guo (bib74) 2019; 38 Wang, Yang, Li (bib135) 2018; 40 Guo, Lu, Yang (bib148) 2022; 2022 Ramalinga, Roy, Srivastava (bib151) 2015; 6 Ohno, Takanashi, Sudo (bib195) 2013; 21 Au Yeung, Co, Tsuruga (bib60) 2016; 7 Zhang, Liang, Yue (bib95) 2020; 57 Arenas-Gallo, Owiredu, Weinstein (bib5) 2022; 19 Tang, Wang, Zhou (bib13) 2020; 187 Pinsky, Black, Daugherty (bib9) 2019; 125 Jiang, Zhang, Liu, Gu, Wu (bib69) 2017; 25 Foreman, Marquez, Dolgert (bib4) 2018; 392 Peraldo-Neia, Migliardi, Mello-Grand (bib96) 2011; 11 Mezzasoma, Costanzi, Scarpelli, Talesa, Bellezza (bib106) 2019; 11 Jeong, Jin, Park (bib91) 2012; 40 Byrne, Frost, Chen, Bright (bib162) 2014; 35 Liu, Gong, Sun, Li (bib144) 2014; 1839 Isin, Uysaler, Ozgur (bib181) 2015; 6 Teng, Fussenegger (bib20) 2020; 8 Wang, Wang, Zhu (bib99) 2019; 117 Rodriguez-Nieves, Patalano, Almanza, Gharaee-Kermani, Macoska (bib120) 2016; 11 Li, Zhang, Xiang (bib132) 2020; 10 Mo, Huang, Zhuang (bib145) 2021; 11 Zhang, He, Xue (bib164) 2011; 71 Sun, Yang, Zhou (bib16) 2018; 17 Huang, Yuan, Liang (bib184) 2015; 67 Tao, Zhou, Yuan (bib32) 2019; 15 Rong, Xu, Hu (bib107) 2020; 20 Lei, Liang, Wang, Liu, Wang (bib111) 2019; 23 Cho, Yang, Rhee (bib189) 2019; 146 Costanzi, Romani, Scarpelli, Bellezza (bib55) 2020; 11 Jin, Zhang, Liu (bib159) 2014; 74 Cheng, Zhang, Qing (bib31) 2020; 13 Xia, Dong, Li (bib2) 2022; 135 Coradduzza, Cruciani, Arru (bib125) 2022; 23 Ahadi, Brennan, Kennedy, Hutvagner, Tran (bib180) 2016; 6 Odero-Marah, Hawsawi, Henderson, Sweeney (bib158) 2018; 1095 Vlaeminck-Guillem (bib24) 2018; 8 Li, Zheng, Bao (bib41) 2015; 25 Wang, Ji, Wang (bib179) 2018; 46 Yamayoshi, Oyama, Kishimoto (bib199) 2020; 12 Fedele, Singh, Zerlanko, Iozzo, Languino (bib25) 2015; 290 Wa, Li, Lin (bib93) 2018; 39 Liu, Zhang, Jiang (bib80) 2017; 16 Bhatnagar, Li, Padi (bib123) 2010; 1 Konoshenko, Bryzgunova, Laktionov (bib166) 2021; 1876 Zhang, Chen, Wang, Ahmad, Liu (bib72) 2015; 14 Ma, Bai, Zhang (bib86) 2020; 11 Li, Ji, Lyu (bib178) 2021; 13 Sun, Shi, Yang (bib15) 2018; 17 Thakur, Parra, Motallebnejad, Brocchi, Chen (bib21) 2022 Birner, Egger, Merkel, Kenner (bib79) 2015; 22 Pascal, Wang, Zhong (bib129) 2018; 20 Jiang, Chen, He, Wang (bib61) 2022; 13 Filella, Foj (bib12) 2016; 17 Dai, Gao (bib65) 2021; 21 Kalluri, LeBleu (bib22) 2020; 367 Foj, Ferrer, Serra (bib51) 2017; 77 Lin, Chiu, Banerjee (bib122) 2013; 73 Vinik, Ortega, Mills (bib28) 2020; 6 Shan, Gu, Zhou (bib130) 2020; 52 Ding, Zhu, Jin (bib138) 2021; 9 Tang, Liu, Li, Wang (bib150) 2021; 46 Li, An, Liu (bib110) 2019; 17 Xu, Qin, An (bib173) 2017; 77 Zhu, Zhang, Hu (bib57) 2020; 10 Wang, Su, Zhong (bib185) 2020; 8 Naji, Randhawa, Sohani (bib168) 2018; 16 Li, Lin, Jiang, Yu (bib192) 2018; 39 Sung, Parent, Weaver (bib82) 2021; 56 Zhang, Li, Zhang, Shen, Gui (bib161) 2021; 15 Sandhu, Moore, Chiong (bib7) 2021; 398 Jeck, Sorrentino, Wang (bib40) 2013; 19 Corcoran, Rani, O'Driscoll (bib131) 2014; 74 Wu, Woo, Seo, Kwon (bib156) 2021; 22 Zhang, Liu, Yang, Wang, Xing (bib157) 2022; 24 Tripathi, Popescu, Zimonjic (bib109) 2014; 33 Desai, McManus, Sharifi (bib147) 2021; 42 Pardo, Villalobos-Labra, Sobrevia, Toledo, Sobrevia (bib83) 2018; 60 Nan, Wang, Yang, Chen (bib87) 2020; 216 Hashimoto, Ochi, Sunamura (bib113) 2018; 115 Wang, Ni, Beretov (bib14) 2020; 145 Liao, Chen, Li (bib155) 2021; 20 Dallavalle, Albino, Civenni (bib105) 2016; 126 Zou, Dai, Deng, Su, Liu (bib116) 2021; 30 Disease (bib8) 2018; 392 Brzozowski, Bond, Jankowski (bib26) 2018; 8 Baniwal, Khalid, Gabet (bib112) 2010; 9 Slack, Chinnaiyan (bib38) 2019; 179 Mashouri, Yousefi, Aref (bib27) 2019; 18 Cao, Xu, Zhao (bib127) 2019; 515 Tang, Guo, Gao (bib42) 2021; 20 Lukacs, Memarzadeh, Wu, Witte (bib152) 2010; 7 Rowena, Pirone, Nelson, Bhadriraju, Chen (bib114) 2004; 6 Yang, Liu, Liu, Cao (bib165) 2021; 9 Ummanni, Teller, Junker (bib163) 2008; 275 Wei, Zhou, Li (bib186) 2016; 77 Bansal, Bartucci, Yusuff (bib160) 2016; 22 Bullock, Silva, Kanlikilicer-Unaldi (bib36) 2015; 1 Samsonov, Shtam, Burdakov (bib52) 2016; 76 Murillo-Garzon, Kypta (bib149) 2017; 14 Liu, Li, Chen (bib54) 2011; 6 Furesi, de Jesus Domingues, Alexopoulou (bib117) 2022; 23 Ding, Wang, Yang (bib63) 2022; 13 Chen, Wang, Xu (bib142) 2020; 10 Wang, Chen, Shi (bib90) 2020; 80 Wani, Kaul, Mavuduru, Kakkar, Bhatia (bib174) 2017; 259 Llorente, Skotland, Sylvanne (bib29) 2013; 1831 Jiang, Song, Wu (bib153) 2013; 8 Holroyd, Delacroix, Larsen (bib50) 2012; 32 Luo, Zhao, Cheng (bib30) 2018; 50 Van Poppel, Albreht, Basu (bib6) 2022; 19 Mittal (bib97) 2018; 13 Chappell, Candido, Abrams (bib128) 2020; 12 Li, Hu, Shi (bib139) 2021; 20 Hu, Afradiasbagharani, Lu (bib76) 2021; 11 Li, Sun, Chen (bib154) 2020; 121 Hanahan, Weinberg (bib45) 2000; 100 Wang, Liu, Zeng (bib187) 2021; 630 Wu (bib182) 2022; 60 Zheng, Chen, Yuan (bib59) 2017; 36 Lin, Nikolic, Yang (bib71) 2018; 8 Guo, Cui, Ji (bib102) 2017; 36 Heidegger, Kern, Ofer, Klocker, Massoner (bib64) 2014; 5 Bertoli, Panio, Cava (bib85) 2022; 23 El-Sayed, Daher, Destouches (bib121) 2017; 410 Prigol, Rode, Silva, Cisilotto, Creczynski-Pasa (bib48) 2021; 87 Siegel, Miller, Fuchs, Jemal (bib1) 2022; 72 Wang, Zhu, Meng (bib34) 2019; 27 Jiang, Zhao, Chen (bib143) 2021; 12 Baures, Dariane, Tika (bib19) 2022; 19 Xiao, Cheng, Chiang (bib190) 2016; 6 Mathivanan, Fahner, Reid, Simpson (bib23) 2012; 40 Anastasiadou, Jacob, Slack (bib35) 2018; 18 Olejarz, Kubiak-Tomaszewska, Chrzanowska, Lorenc (bib47) 2020; 21 Kim, Lee, Shin (bib134) 2017; 21 Yang, Wang, Li (bib141) 2018; 502 Sheth, Jajoo, Kaur (bib103) 2012; 7 Wu, Zhou, Lv, Zhu, Tang (bib81) 2019; 12 Jiang (10.1016/j.ncrna.2024.07.003_bib61) 2022; 13 Liao (10.1016/j.ncrna.2024.07.003_bib155) 2021; 20 Lukacs (10.1016/j.ncrna.2024.07.003_bib152) 2010; 7 Li (10.1016/j.ncrna.2024.07.003_bib154) 2020; 121 Graham (10.1016/j.ncrna.2024.07.003_bib118) 2009; 69 Jiang (10.1016/j.ncrna.2024.07.003_bib153) 2013; 8 Xiao (10.1016/j.ncrna.2024.07.003_bib190) 2016; 6 Desai (10.1016/j.ncrna.2024.07.003_bib147) 2021; 42 Ahadi (10.1016/j.ncrna.2024.07.003_bib180) 2016; 6 Bullock (10.1016/j.ncrna.2024.07.003_bib36) 2015; 1 Hanahan (10.1016/j.ncrna.2024.07.003_bib44) 2011; 144 Shang (10.1016/j.ncrna.2024.07.003_bib58) 2020; 19 Chen (10.1016/j.ncrna.2024.07.003_bib142) 2020; 10 Lei (10.1016/j.ncrna.2024.07.003_bib111) 2019; 23 Olejarz (10.1016/j.ncrna.2024.07.003_bib47) 2020; 21 Costanzi (10.1016/j.ncrna.2024.07.003_bib55) 2020; 11 Hanahan (10.1016/j.ncrna.2024.07.003_bib45) 2000; 100 Bhatnagar (10.1016/j.ncrna.2024.07.003_bib123) 2010; 1 Furesi (10.1016/j.ncrna.2024.07.003_bib117) 2022; 23 Li (10.1016/j.ncrna.2024.07.003_bib169) 2024; 9 Jin (10.1016/j.ncrna.2024.07.003_bib159) 2014; 74 Holroyd (10.1016/j.ncrna.2024.07.003_bib50) 2012; 32 Sulzmaier (10.1016/j.ncrna.2024.07.003_bib73) 2014; 14 Albino (10.1016/j.ncrna.2024.07.003_bib104) 2021; 4 Ribas (10.1016/j.ncrna.2024.07.003_bib124) 2009; 69 Li (10.1016/j.ncrna.2024.07.003_bib196) 2022; 20 Li (10.1016/j.ncrna.2024.07.003_bib139) 2021; 20 Ali (10.1016/j.ncrna.2024.07.003_bib18) 2022; 19 Shan (10.1016/j.ncrna.2024.07.003_bib130) 2020; 52 Guo (10.1016/j.ncrna.2024.07.003_bib148) 2022; 2022 Zhang (10.1016/j.ncrna.2024.07.003_bib68) 2019; 66 Aslan (10.1016/j.ncrna.2024.07.003_bib46) 2019; 234 Disease (10.1016/j.ncrna.2024.07.003_bib8) 2018; 392 Lamichhane (10.1016/j.ncrna.2024.07.003_bib194) 2016; 9 Mittal (10.1016/j.ncrna.2024.07.003_bib97) 2018; 13 Au Yeung (10.1016/j.ncrna.2024.07.003_bib60) 2016; 7 Thakur (10.1016/j.ncrna.2024.07.003_bib21) 2022 Liu (10.1016/j.ncrna.2024.07.003_bib144) 2014; 1839 Bansal (10.1016/j.ncrna.2024.07.003_bib160) 2016; 22 Bertoli (10.1016/j.ncrna.2024.07.003_bib85) 2022; 23 Birner (10.1016/j.ncrna.2024.07.003_bib79) 2015; 22 Li (10.1016/j.ncrna.2024.07.003_bib175) 2020; 67 Wang (10.1016/j.ncrna.2024.07.003_bib34) 2019; 27 Yang (10.1016/j.ncrna.2024.07.003_bib198) 2020; 142 Peraldo-Neia (10.1016/j.ncrna.2024.07.003_bib96) 2011; 11 Slack (10.1016/j.ncrna.2024.07.003_bib38) 2019; 179 Ramalinga (10.1016/j.ncrna.2024.07.003_bib151) 2015; 6 Xu (10.1016/j.ncrna.2024.07.003_bib173) 2017; 77 Xia (10.1016/j.ncrna.2024.07.003_bib2) 2022; 135 Samsonov (10.1016/j.ncrna.2024.07.003_bib52) 2016; 76 Mistry (10.1016/j.ncrna.2024.07.003_bib10) 2003; 16 Van Poppel (10.1016/j.ncrna.2024.07.003_bib6) 2022; 19 Arenas-Gallo (10.1016/j.ncrna.2024.07.003_bib5) 2022; 19 Liu (10.1016/j.ncrna.2024.07.003_bib54) 2011; 6 Luo (10.1016/j.ncrna.2024.07.003_bib30) 2018; 50 Tripathi (10.1016/j.ncrna.2024.07.003_bib109) 2014; 33 Wang (10.1016/j.ncrna.2024.07.003_bib14) 2020; 145 Abd Elmageed (10.1016/j.ncrna.2024.07.003_bib101) 2014; 32 Zhang (10.1016/j.ncrna.2024.07.003_bib164) 2011; 71 Guo (10.1016/j.ncrna.2024.07.003_bib183) 2020; 8 Naji (10.1016/j.ncrna.2024.07.003_bib168) 2018; 16 El-Sayed (10.1016/j.ncrna.2024.07.003_bib121) 2017; 410 Tian (10.1016/j.ncrna.2024.07.003_bib140) 2022; 2022 Wang (10.1016/j.ncrna.2024.07.003_bib17) 2019; 18 Corcoran (10.1016/j.ncrna.2024.07.003_bib131) 2014; 74 Sun (10.1016/j.ncrna.2024.07.003_bib15) 2018; 17 Mathivanan (10.1016/j.ncrna.2024.07.003_bib23) 2012; 40 Rowena (10.1016/j.ncrna.2024.07.003_bib114) 2004; 6 Foj (10.1016/j.ncrna.2024.07.003_bib51) 2017; 77 Li (10.1016/j.ncrna.2024.07.003_bib178) 2021; 13 Tang (10.1016/j.ncrna.2024.07.003_bib150) 2021; 46 Wu (10.1016/j.ncrna.2024.07.003_bib81) 2019; 12 Vlaeminck-Guillem (10.1016/j.ncrna.2024.07.003_bib24) 2018; 8 Heidegger (10.1016/j.ncrna.2024.07.003_bib64) 2014; 5 Wang (10.1016/j.ncrna.2024.07.003_bib135) 2018; 40 Foreman (10.1016/j.ncrna.2024.07.003_bib4) 2018; 392 Prigol (10.1016/j.ncrna.2024.07.003_bib48) 2021; 87 Wang (10.1016/j.ncrna.2024.07.003_bib99) 2019; 117 Pardo (10.1016/j.ncrna.2024.07.003_bib83) 2018; 60 Mo (10.1016/j.ncrna.2024.07.003_bib145) 2021; 11 Wang (10.1016/j.ncrna.2024.07.003_bib187) 2021; 630 Kato (10.1016/j.ncrna.2024.07.003_bib100) 2015; 47 Wei (10.1016/j.ncrna.2024.07.003_bib186) 2016; 77 Rong (10.1016/j.ncrna.2024.07.003_bib107) 2020; 20 Yu (10.1016/j.ncrna.2024.07.003_bib119) 2021; 10 Rodriguez-Nieves (10.1016/j.ncrna.2024.07.003_bib120) 2016; 11 Ummanni (10.1016/j.ncrna.2024.07.003_bib163) 2008; 275 Guan (10.1016/j.ncrna.2024.07.003_bib77) 2020; 235 Huang (10.1016/j.ncrna.2024.07.003_bib184) 2015; 67 Zhu (10.1016/j.ncrna.2024.07.003_bib57) 2020; 10 Yang (10.1016/j.ncrna.2024.07.003_bib141) 2018; 502 Nan (10.1016/j.ncrna.2024.07.003_bib87) 2020; 216 Wani (10.1016/j.ncrna.2024.07.003_bib174) 2017; 259 Odero-Marah (10.1016/j.ncrna.2024.07.003_bib158) 2018; 1095 Wu (10.1016/j.ncrna.2024.07.003_bib156) 2021; 22 Sandhu (10.1016/j.ncrna.2024.07.003_bib7) 2021; 398 Clay (10.1016/j.ncrna.2024.07.003_bib115) 2013; 140 Rebello (10.1016/j.ncrna.2024.07.003_bib136) 2017; 8 Tonini (10.1016/j.ncrna.2024.07.003_bib89) 2008; 214 Zhang (10.1016/j.ncrna.2024.07.003_bib161) 2021; 15 Ge (10.1016/j.ncrna.2024.07.003_bib137) 2021; 40 Zheng (10.1016/j.ncrna.2024.07.003_bib59) 2017; 36 Yang (10.1016/j.ncrna.2024.07.003_bib84) 2020; 5 Brzozowski (10.1016/j.ncrna.2024.07.003_bib26) 2018; 8 Sheth (10.1016/j.ncrna.2024.07.003_bib103) 2012; 7 Dai (10.1016/j.ncrna.2024.07.003_bib65) 2021; 21 Hashimoto (10.1016/j.ncrna.2024.07.003_bib113) 2018; 115 Hanahan (10.1016/j.ncrna.2024.07.003_bib43) 2022; 12 Cao (10.1016/j.ncrna.2024.07.003_bib127) 2019; 515 Peck (10.1016/j.ncrna.2024.07.003_bib75) 2002; 277 Mezzasoma (10.1016/j.ncrna.2024.07.003_bib106) 2019; 11 Llorente (10.1016/j.ncrna.2024.07.003_bib29) 2013; 1831 Kim (10.1016/j.ncrna.2024.07.003_bib134) 2017; 21 Ye (10.1016/j.ncrna.2024.07.003_bib108) 2017; 8 Guo (10.1016/j.ncrna.2024.07.003_bib102) 2017; 36 Wei (10.1016/j.ncrna.2024.07.003_bib37) 2017; 8 Rodriguez (10.1016/j.ncrna.2024.07.003_bib170) 2017; 16 Lin (10.1016/j.ncrna.2024.07.003_bib71) 2018; 8 Lang (10.1016/j.ncrna.2024.07.003_bib62) 2021; 11 Tang (10.1016/j.ncrna.2024.07.003_bib13) 2020; 187 Bryant (10.1016/j.ncrna.2024.07.003_bib177) 2012; 106 Ghosh (10.1016/j.ncrna.2024.07.003_bib167) 2019; 30 Tao (10.1016/j.ncrna.2024.07.003_bib32) 2019; 15 Jiang (10.1016/j.ncrna.2024.07.003_bib74) 2019; 38 Sun (10.1016/j.ncrna.2024.07.003_bib16) 2018; 17 Pascal (10.1016/j.ncrna.2024.07.003_bib129) 2018; 20 Arroyo A (10.1016/j.ncrna.2024.07.003_bib49) 2017; 7 He (10.1016/j.ncrna.2024.07.003_bib126) 2014; 33 Wang (10.1016/j.ncrna.2024.07.003_bib90) 2020; 80 Huang (10.1016/j.ncrna.2024.07.003_bib197) 2022; 343 Jiang (10.1016/j.ncrna.2024.07.003_bib69) 2017; 25 Murillo-Garzon (10.1016/j.ncrna.2024.07.003_bib149) 2017; 14 Baures (10.1016/j.ncrna.2024.07.003_bib19) 2022; 19 Li (10.1016/j.ncrna.2024.07.003_bib132) 2020; 10 Kalluri (10.1016/j.ncrna.2024.07.003_bib22) 2020; 367 Ding (10.1016/j.ncrna.2024.07.003_bib92) 2011; 470 Ding (10.1016/j.ncrna.2024.07.003_bib63) 2022; 13 Tang (10.1016/j.ncrna.2024.07.003_bib42) 2021; 20 Jeck (10.1016/j.ncrna.2024.07.003_bib40) 2013; 19 Ohno (10.1016/j.ncrna.2024.07.003_bib195) 2013; 21 Zou (10.1016/j.ncrna.2024.07.003_bib116) 2021; 30 Cho (10.1016/j.ncrna.2024.07.003_bib189) 2019; 146 Dallavalle (10.1016/j.ncrna.2024.07.003_bib105) 2016; 126 Chandran (10.1016/j.ncrna.2024.07.003_bib146) 2007; 7 Lin (10.1016/j.ncrna.2024.07.003_bib122) 2013; 73 Li (10.1016/j.ncrna.2024.07.003_bib41) 2015; 25 Mashouri (10.1016/j.ncrna.2024.07.003_bib27) 2019; 18 Jiang (10.1016/j.ncrna.2024.07.003_bib143) 2021; 12 Hu (10.1016/j.ncrna.2024.07.003_bib76) 2021; 11 Zhang (10.1016/j.ncrna.2024.07.003_bib33) 2018; 20 Li (10.1016/j.ncrna.2024.07.003_bib110) 2019; 17 Wang (10.1016/j.ncrna.2024.07.003_bib179) 2018; 46 Vinik (10.1016/j.ncrna.2024.07.003_bib28) 2020; 6 Baniwal (10.1016/j.ncrna.2024.07.003_bib112) 2010; 9 Konoshenko (10.1016/j.ncrna.2024.07.003_bib166) 2021; 1876 Wang (10.1016/j.ncrna.2024.07.003_bib66) 2022; 2022 Wu (10.1016/j.ncrna.2024.07.003_bib182) 2022; 60 Liu (10.1016/j.ncrna.2024.07.003_bib80) 2017; 16 Ding (10.1016/j.ncrna.2024.07.003_bib138) 2021; 9 Li (10.1016/j.ncrna.2024.07.003_bib176) 2016; 9 Pulliam (10.1016/j.ncrna.2024.07.003_bib3) 2022; 19 Zhou (10.1016/j.ncrna.2024.07.003_bib70) 2020; 13 Bryzgunova (10.1016/j.ncrna.2024.07.003_bib172) 2016; 11 Endzelins (10.1016/j.ncrna.2024.07.003_bib53) 2017; 17 Li (10.1016/j.ncrna.2024.07.003_bib192) 2018; 39 Wa (10.1016/j.ncrna.2024.07.003_bib93) 2018; 39 Yamayoshi (10.1016/j.ncrna.2024.07.003_bib199) 2020; 12 Chappell (10.1016/j.ncrna.2024.07.003_bib128) 2020; 12 Byrne (10.1016/j.ncrna.2024.07.003_bib162) 2014; 35 Filella (10.1016/j.ncrna.2024.07.003_bib12) 2016; 17 Li (10.1016/j.ncrna.2024.07.003_bib67) 2009; 383 Ma (10.1016/j.ncrna.2024.07.003_bib86) 2020; 11 Su (10.1016/j.ncrna.2024.07.003_bib39) 2019; 18 Tang (10.1016/j.ncrna.2024.07.003_bib133) 2019; 42 Hasegawa (10.1016/j.ncrna.2024.07.003_bib88) 2018; 16 Li (10.1016/j.ncrna.2024.07.003_bib171) 2021; 13 Thomsen (10.1016/j.ncrna.2024.07.003_bib78) 2015; 22 Chen (10.1016/j.ncrna.2024.07.003_bib56) 2013; 123 Zhang (10.1016/j.ncrna.2024.07.003_bib11) 2019; 1871 Khan (10.1016/j.ncrna.2024.07.003_bib191) 2015; 117 Shtam (10.1016/j.ncrna.2024.07.003_bib193) 2013; 11 Fedele (10.1016/j.ncrna.2024.07.003_bib25) 2015; 290 Kim (10.1016/j.ncrna.2024.07.003_bib188) 2021; 192 Teng (10.1016/j.ncrna.2024.07.003_bib20) 2020; 8 Jeong (10.1016/j.ncrna.2024.07.003_bib91) 2012; 40 Siegel (10.1016/j.ncrna.2024.07.003_bib1) 2022; 72 Yang (10.1016/j.ncrna.2024.07.003_bib165) 2021; 9 Cheng (10.1016/j.ncrna.2024.07.003_bib31) 2020; 13 Anastasiadou (10.1016/j.ncrna.2024.07.003_bib35) 2018; 18 Zhang (10.1016/j.ncrna.2024.07.003_bib94) 2020; 39 Isin (10.1016/j.ncrna.2024.07.003_bib181) 2015; 6 Bhagirath (10.1016/j.ncrna.2024.07.003_bib98) 2018; 78 Sung (10.1016/j.ncrna.2024.07.003_bib82) 2021; 56 Zhang (10.1016/j.ncrna.2024.07.003_bib72) 2015; 14 Zhang (10.1016/j.ncrna.2024.07.003_bib95) 2020; 57 Zhang (10.1016/j.ncrna.2024.07.003_bib157) 2022; 24 Pinsky (10.1016/j.ncrna.2024.07.003_bib9 |
References_xml | – volume: 22 start-page: 574 year: 2015 end-page: 582 ident: bib78 article-title: Loss of JUNB/AP-1 promotes invasive prostate cancer publication-title: Cell Death Differ. – volume: 234 start-page: 16885 year: 2019 end-page: 16903 ident: bib46 article-title: Tumor-derived exosomes: implication in angiogenesis and antiangiogenesis cancer therapy publication-title: J. Cell. Physiol. – volume: 1 start-page: 53 year: 2015 end-page: 68 ident: bib36 article-title: Exosomal non-coding RNAs: diagnostic, prognostic and therapeutic applications in cancer publication-title: Noncoding RNA – volume: 13 year: 2021 ident: bib178 article-title: A novel urine exosomal lncRNA assay to improve the detection of prostate cancer at initial biopsy: a retrospective multicenter diagnostic feasibility study publication-title: Cancers – volume: 9 start-page: 19723 year: 2024 end-page: 19731 ident: bib169 article-title: Dumbbell dual-hairpin triggered DNA nanonet assembly for cascade-amplified sensing of exosomal MicroRNA publication-title: ACS Omega – volume: 40 start-page: 1697 year: 2012 end-page: 1704 ident: bib91 article-title: Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt publication-title: Int. J. Oncol. – volume: 8 start-page: 71 year: 2017 ident: bib136 article-title: Therapeutic approaches targeting MYC-driven prostate cancer publication-title: Genes – volume: 19 start-page: 141 year: 2013 end-page: 157 ident: bib40 article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats publication-title: RNA – volume: 6 start-page: 168 year: 2015 ident: bib181 article-title: Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease publication-title: Front. Genet. – volume: 74 start-page: 4183 year: 2014 end-page: 4195 ident: bib159 article-title: miRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor-initiating cells publication-title: Cancer Res. – volume: 17 start-page: 82 year: 2018 ident: bib16 article-title: Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment publication-title: Mol. Cancer – volume: 142 start-page: 556 year: 2020 end-page: 574 ident: bib198 article-title: Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models publication-title: Circulation – volume: 32 start-page: 704 year: 2012 end-page: 711 ident: bib50 article-title: Tissue factor pathway inhibitor blocks angiogenesis via its carboxyl terminus publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 19 start-page: 201 year: 2022 end-page: 218 ident: bib19 article-title: Prostate luminal progenitor cells: from mouse to human, from health to disease publication-title: Nat. Rev. Urol. – year: 2022 ident: bib21 article-title: Exosomes: small vesicles with big roles in cancer, vaccine development, and therapeutics publication-title: Bioact. Mater. – volume: 67 start-page: 33 year: 2015 end-page: 41 ident: bib184 article-title: Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer publication-title: Eur. Urol. – volume: 8 start-page: 8822 year: 2018 ident: bib26 article-title: Extracellular vesicles with altered tetraspanin CD9 and CD151 levels confer increased prostate cell motility and invasion publication-title: Sci. Rep. – volume: 11 year: 2016 ident: bib172 article-title: Comparative study of extracellular vesicles from the urine of healthy individuals and prostate cancer patients publication-title: PLoS One – volume: 1095 start-page: 101 year: 2018 end-page: 110 ident: bib158 article-title: Epithelial-mesenchymal transition (EMT) and prostate cancer publication-title: Adv. Exp. Med. Biol. – volume: 77 start-page: 416 year: 2016 end-page: 420 ident: bib186 article-title: Coupling hybridization chain reaction with catalytic hairpin assembly enables non-enzymatic and sensitive fluorescent detection of microRNA cancer biomarkers publication-title: Biosens. Bioelectron. – volume: 6 year: 2016 ident: bib180 article-title: Long non-coding RNAs harboring miRNA seed regions are enriched in prostate cancer exosomes publication-title: Sci. Rep. – volume: 46 start-page: 532 year: 2018 end-page: 545 ident: bib179 article-title: Tumor-derived exosomal long noncoding RNAs as promising diagnostic biomarkers for prostate cancer publication-title: Cell. Physiol. Biochem. – volume: 27 start-page: 1718 year: 2019 end-page: 1725 ident: bib34 article-title: ncRNA-encoded peptides or proteins and cancer publication-title: Mol. Ther. – volume: 4 start-page: 119 year: 2021 ident: bib104 article-title: Circulating extracellular vesicles release oncogenic miR-424 in experimental models and patients with aggressive prostate cancer publication-title: Commun. Biol. – volume: 32 start-page: 983 year: 2014 end-page: 997 ident: bib101 article-title: Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes publication-title: Stem Cell. – volume: 6 year: 2020 ident: bib28 article-title: Proteomic analysis of circulating extracellular vesicles publication-title: Sci. Adv. – volume: 192 year: 2021 ident: bib188 article-title: Hydrogel-based hybridization chain reaction (HCR) for detection of urinary exosomal miRNAs as a diagnostic tool of prostate cancer publication-title: Biosens. Bioelectron. – volume: 117 year: 2019 ident: bib99 article-title: Prostate carcinoma cell-derived exosomal MicroRNA-26a modulates the metastasis and tumor growth of prostate carcinoma publication-title: Biomed. Pharmacother. – volume: 6 year: 2016 ident: bib190 article-title: Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy publication-title: Sci. Rep. – volume: 60 start-page: 81 year: 2018 end-page: 91 ident: bib83 article-title: Extracellular vesicles in obesity and diabetes mellitus publication-title: Mol. Aspect. Med. – volume: 66 start-page: 203 year: 2019 end-page: 210 ident: bib68 article-title: Skullcapflavone I inhibits proliferation of human colorectal cancer cells via down-regulation of miR-107 expression publication-title: Neoplasma – volume: 13 start-page: 395 year: 2018 end-page: 412 ident: bib97 article-title: Epithelial mesenchymal transition in tumor metastasis publication-title: Annu. Rev. Pathol. – volume: 19 start-page: 367 year: 2022 end-page: 380 ident: bib3 article-title: Regulation and role of CAMKK2 in prostate cancer publication-title: Nat. Rev. Urol. – volume: 18 start-page: 90 year: 2019 ident: bib39 article-title: Circular RNAs in Cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers publication-title: Mol. Cancer – volume: 16 start-page: 149 year: 2018 end-page: 154 ident: bib168 article-title: Digital rectal examination for prostate cancer screening in primary care: a systematic review and meta-analysis publication-title: Ann. Fam. Med. – volume: 52 start-page: 1809 year: 2020 end-page: 1822 ident: bib130 article-title: Cancer-associated fibroblast-secreted exosomal miR-423-5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-beta signaling pathway publication-title: Exp. Mol. Med. – volume: 33 start-page: 72 year: 2014 ident: bib126 article-title: Reciprocal regulation of PCGEM1 and miR-145 promote proliferation of LNCaP prostate cancer cells publication-title: J. Exp. Clin. Cancer Res. – volume: 11 start-page: e493 year: 2021 ident: bib145 article-title: LncRNA nuclear-enriched abundant transcript 1 shuttled by prostate cancer cells-secreted exosomes initiates osteoblastic phenotypes in the bone metastatic microenvironment via miR-205-5p/runt-related transcription factor 2/splicing factor proline- and glutamine-rich/polypyrimidine tract-binding protein 2 axis publication-title: Clin. Transl. Med. – volume: 46 start-page: 69 year: 2021 ident: bib150 article-title: Exosomal circRNA HIPK3 knockdown inhibited cell proliferation and metastasis in prostate cancer by regulating miR-212/BMI-1 pathway publication-title: J. Biosci. – volume: 77 start-page: 573 year: 2017 end-page: 583 ident: bib51 article-title: Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis publication-title: Prostate – volume: 13 start-page: 2004 year: 2022 end-page: 2016 ident: bib61 article-title: Human bone marrow mesenchymal stem cells-derived exosomes attenuated prostate cancer progression via the miR-99b-5p/IGF1R axis publication-title: Bioengineered – volume: 19 start-page: 101 year: 2022 end-page: 115 ident: bib18 article-title: Prostate zones and cancer: lost in transition? publication-title: Nat. Rev. Urol. – volume: 216 year: 2020 ident: bib87 article-title: circCRKL suppresses the progression of prostate cancer cells by regulating the miR-141/KLF5 axis publication-title: Pathol. Res. Pract. – volume: 78 start-page: 1833 year: 2018 end-page: 1844 ident: bib98 article-title: microRNA-1246 is an exosomal biomarker for aggressive prostate cancer publication-title: Cancer Res. – volume: 38 start-page: 495 year: 2019 ident: bib74 article-title: Human bone marrow mesenchymal stem cells-derived microRNA-205-containing exosomes impede the progression of prostate cancer through suppression of RHPN2 publication-title: J. Exp. Clin. Cancer Res. – volume: 235 start-page: 9729 year: 2020 end-page: 9742 ident: bib77 article-title: Tumor-associated macrophages promote prostate cancer progression via exosome-mediated miR-95 transfer publication-title: J. Cell. Physiol. – volume: 470 start-page: 269 year: 2011 end-page: 273 ident: bib92 article-title: SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression publication-title: Nature – volume: 392 start-page: 2052 year: 2018 end-page: 2090 ident: bib4 article-title: Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories publication-title: Lancet – volume: 630 year: 2021 ident: bib187 article-title: Determination of miRNA derived from exosomes of prostate cancer via toehold-aided cyclic amplification combined with HRP enzyme catalysis and magnetic nanoparticles publication-title: Anal. Biochem. – volume: 10 year: 2020 ident: bib142 article-title: Long non-coding RNA SNHG1 regulates the Wnt/beta-catenin and PI3K/AKT/mTOR signaling pathways via EZH2 to affect the proliferation, apoptosis, and autophagy of prostate cancer cell publication-title: Front. Oncol. – volume: 14 start-page: 598 year: 2014 end-page: 610 ident: bib73 article-title: FAK in cancer: mechanistic findings and clinical applications publication-title: Nat. Rev. Cancer – volume: 2022 year: 2022 ident: bib66 article-title: Integrative analysis of bulk RNA-Seq and single-cell RNA-Seq unveils the characteristics of the immune microenvironment and prognosis signature in prostate cancer publication-title: J. Oncol. – volume: 1871 start-page: 455 year: 2019 end-page: 468 ident: bib11 article-title: Exosomes in cancer development, metastasis, and immunity publication-title: Biochim. Biophys. Acta Rev. Canc – volume: 11 year: 2020 ident: bib55 article-title: Extracellular vesicles-mediated transfer of miRNA let-7b from PC3 cells to macrophages publication-title: Genes – volume: 12 start-page: 1129 year: 2021 ident: bib143 article-title: Exosomal long noncoding RNA HOXD-AS1 promotes prostate cancer metastasis via miR-361-5p/FOXM1 axis publication-title: Cell Death Dis. – volume: 20 start-page: 351 year: 2018 end-page: 363 ident: bib129 article-title: EAF2 and p53 Co-regulate STAT3 activation in prostate cancer publication-title: Neoplasia – volume: 23 year: 2022 ident: bib85 article-title: Secreted miR-153 controls proliferation and invasion of higher Gleason score prostate cancer publication-title: Int. J. Mol. Sci. – volume: 11 year: 2016 ident: bib120 article-title: CXCL12/CXCR4 Axis activation mediates prostate myofibroblast phenoconversion through non-canonical EGFR/MEK/ERK signaling publication-title: PLoS One – volume: 11 year: 2019 ident: bib106 article-title: Extracellular vesicles from human advanced-stage prostate cancer cells modify the inflammatory response of microenvironment-residing cells publication-title: Cancers – volume: 22 start-page: 522 year: 2015 end-page: 523 ident: bib79 article-title: JunB and PTEN in prostate cancer: 'loss is nothing else than change' publication-title: Cell Death Differ. – volume: 125 start-page: 2965 year: 2019 end-page: 2974 ident: bib9 article-title: Metastatic prostate cancer at diagnosis and through progression in the prostate, lung, colorectal, and ovarian cancer screening trial publication-title: Cancer – volume: 20 year: 2021 ident: bib155 article-title: LncRNA BLACAT1 promotes proliferation, migration and invasion of prostate cancer cells via regulating miR-29a-3p/DVL3 Axis publication-title: Technol. Cancer Res. Treat. – volume: 13 start-page: 11595 year: 2020 end-page: 11606 ident: bib70 article-title: Functional implication of exosomal miR-217 and miR-23b-3p in the progression of prostate cancer publication-title: OncoTargets Ther. – volume: 80 start-page: 977 year: 2020 end-page: 985 ident: bib90 article-title: Resveratrol inhibits the tumor migration and invasion by upregulating TET1 and reducing TIMP2/3 methylation in prostate carcinoma cells publication-title: Prostate – volume: 30 start-page: 138 year: 2019 end-page: 143 ident: bib167 article-title: Liquid biopsy: a new avenue in pathology publication-title: Cytopathology – volume: 2022 year: 2022 ident: bib148 article-title: Exosomal LINC01213 plays a role in the transition of androgen-dependent prostate cancer cells into androgen-independent manners publication-title: J. Oncol. – volume: 23 year: 2022 ident: bib117 article-title: Exosomal miRNAs from prostate cancer impair osteoblast function in mice publication-title: Int. J. Mol. Sci. – volume: 275 start-page: 5703 year: 2008 end-page: 5713 ident: bib163 article-title: Altered expression of tumor protein D52 regulates apoptosis and migration of prostate cancer cells publication-title: FEBS J. – volume: 21 year: 2020 ident: bib47 article-title: Exosomes in angiogenesis and anti-angiogenic therapy in cancers publication-title: Int. J. Mol. Sci. – volume: 69 start-page: 7165 year: 2009 end-page: 7169 ident: bib124 article-title: miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth publication-title: Cancer Res. – volume: 8 year: 2020 ident: bib183 article-title: The identification of plasma exosomal miR-423-3p as a potential predictive biomarker for prostate cancer castration-resistance development by plasma exosomal miRNA sequencing publication-title: Front. Cell Dev. Biol. – volume: 11 start-page: e426 year: 2021 ident: bib62 article-title: m(6) A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization publication-title: Clin. Transl. Med. – volume: 117 start-page: 52 year: 2015 end-page: 64 ident: bib191 article-title: Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction publication-title: Circ. Res. – volume: 8 start-page: 94834 year: 2017 end-page: 94849 ident: bib108 article-title: Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer publication-title: Oncotarget – volume: 1839 start-page: 297 year: 2014 end-page: 305 ident: bib144 article-title: FOXM1 and androgen receptor co-regulate CDC6 gene transcription and DNA replication in prostate cancer cells publication-title: Biochim. Biophys. Acta – volume: 367 year: 2020 ident: bib22 article-title: The biology, function, and biomedical applications of exosomes publication-title: Science – volume: 145 year: 2020 ident: bib14 article-title: Exosomal microRNAs as liquid biopsy biomarkers in prostate cancer publication-title: Crit. Rev. Oncol. Hematol. – volume: 21 start-page: 185 year: 2013 end-page: 191 ident: bib195 article-title: Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells publication-title: Mol. Ther. – volume: 74 start-page: 1320 year: 2014 end-page: 1334 ident: bib131 article-title: miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression publication-title: Prostate – volume: 8 start-page: 222 year: 2018 ident: bib24 article-title: Extracellular vesicles in prostate cancer carcinogenesis, diagnosis, and management publication-title: Front. Oncol. – volume: 290 start-page: 4545 year: 2015 end-page: 4551 ident: bib25 article-title: The alphavbeta6 integrin is transferred intercellularly via exosomes publication-title: J. Biol. Chem. – volume: 502 start-page: 262 year: 2018 end-page: 268 ident: bib141 article-title: The long non-coding RNA PCSEAT exhibits an oncogenic property in prostate cancer and functions as a competing endogenous RNA that associates with EZH2 publication-title: Biochem. Biophys. Res. Commun. – volume: 42 start-page: 1307 year: 2019 end-page: 1318 ident: bib133 article-title: Transcriptional regulation of FoxM1 by HIF-1alpha mediates hypoxia-induced EMT in prostate cancer publication-title: Oncol. Rep. – volume: 10 start-page: 5313 year: 2020 ident: bib57 article-title: Extracellular vesicles derived from human adipose-derived stem cells promote the exogenous angiogenesis of fat grafts via the let-7/AGO1/VEGF signalling pathway publication-title: Sci. Rep. – volume: 135 start-page: 584 year: 2022 end-page: 590 ident: bib2 article-title: Cancer statistics in China and United States, 2022: profiles, trends, and determinants publication-title: Chinese Med J – volume: 17 start-page: 4463 year: 2019 end-page: 4473 ident: bib110 article-title: Exosomes from LNCaP cells promote osteoblast activity through miR-375 transfer publication-title: Oncol. Lett. – volume: 12 start-page: 31 year: 2022 end-page: 46 ident: bib43 article-title: Hallmarks of cancer: new dimensions publication-title: Cancer Discov. – volume: 56 start-page: 1861 year: 2021 end-page: 1874 ident: bib82 article-title: Extracellular vesicles: critical players during cell migration publication-title: Dev. Cell – volume: 140 start-page: 3198 year: 2013 end-page: 3209 ident: bib115 article-title: Rho activation is apically restricted by Arhgap1 in neural crest cells and drives epithelial-to-mesenchymal transition publication-title: Development – volume: 106 start-page: 768 year: 2012 end-page: 774 ident: bib177 article-title: Changes in circulating microRNA levels associated with prostate cancer publication-title: Br. J. Cancer – volume: 19 start-page: 562 year: 2022 end-page: 572 ident: bib6 article-title: Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future publication-title: Nat. Rev. Urol. – volume: 14 start-page: 683 year: 2017 end-page: 696 ident: bib149 article-title: WNT signalling in prostate cancer publication-title: Nat. Rev. Urol. – volume: 16 start-page: 669 year: 2018 end-page: 681 ident: bib88 article-title: Characterization and evidence of the miR-888 cluster as a novel cancer network in prostate publication-title: Mol. Cancer Res. – volume: 87 year: 2021 ident: bib48 article-title: Pro-angiogenic effect of PC-3 exosomes in endothelial cells in vitro publication-title: Cell. Signal. – volume: 7 year: 2012 ident: bib103 article-title: Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway publication-title: PLoS One – volume: 7 start-page: 64 year: 2007 ident: bib146 article-title: Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process publication-title: BMC Cancer – volume: 71 start-page: 2193 year: 2011 end-page: 2202 ident: bib164 article-title: PrLZ protects prostate cancer cells from apoptosis induced by androgen deprivation via the activation of Stat3/Bcl-2 pathway publication-title: Cancer Res. – volume: 123 start-page: 1057 year: 2013 end-page: 1067 ident: bib56 article-title: Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis publication-title: J. Clin. Invest. – volume: 11 year: 2021 ident: bib76 article-title: Morphometric analysis of rat prostate development: roles of MEK/ERK and Rho signaling pathways in prostatic morphogenesis publication-title: Biomolecules – volume: 7 start-page: 682 year: 2010 end-page: 693 ident: bib152 article-title: Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation publication-title: Cell Stem Cell – volume: 10 start-page: 7656 year: 2020 end-page: 7670 ident: bib132 article-title: TGF-Beta causes docetaxel resistance in prostate cancer via the induction of Bcl-2 by acetylated KLF5 and protein stabilization publication-title: Theranostics – volume: 9 start-page: 258 year: 2010 ident: bib112 article-title: Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis publication-title: Mol. Cancer – volume: 8 year: 2020 ident: bib185 article-title: An eight-CircRNA assessment model for predicting biochemical recurrence in prostate cancer publication-title: Front. Cell Dev. Biol. – volume: 277 start-page: 43924 year: 2002 end-page: 43932 ident: bib75 article-title: The RhoA-binding protein, rhophilin-2, regulates actin cytoskeleton organization publication-title: J. Biol. Chem. – volume: 47 start-page: 710 year: 2015 end-page: 718 ident: bib100 article-title: MicroRNA-26a/b directly regulate La-related protein 1 and inhibit cancer cell invasion in prostate cancer publication-title: Int. J. Oncol. – volume: 20 start-page: 470 year: 2020 ident: bib107 article-title: Inhibition of let-7b-5p contributes to an anti-tumorigenic macrophage phenotype through the SOCS1/STAT pathway in prostate cancer publication-title: Cancer Cell Int. – volume: 21 start-page: 145 year: 2021 ident: bib65 article-title: Inhibition of cancer cell-derived exosomal microRNA-183 suppresses cell growth and metastasis in prostate cancer by upregulating TPM1 publication-title: Cancer Cell Int. – volume: 25 start-page: 1409 year: 2017 end-page: 1419 ident: bib69 article-title: MicroRNA-107 promotes proliferation, migration, and invasion of osteosarcoma cells by targeting tropomyosin 1 publication-title: Oncol. Res. – volume: 42 start-page: 354 year: 2021 end-page: 373 ident: bib147 article-title: Hormonal therapy for prostate cancer publication-title: Endocr. Rev. – volume: 9 start-page: 139 year: 2016 end-page: 148 ident: bib176 article-title: Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients publication-title: OncoTargets Ther. – volume: 21 start-page: 911 year: 2017 end-page: 920 ident: bib134 article-title: Implications of Bcl-2 and its interplay with other molecules and signaling pathways in prostate cancer progression publication-title: Expert Opin. Ther. Targets – volume: 25 start-page: 981 year: 2015 end-page: 984 ident: bib41 article-title: Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis publication-title: Cell Res. – volume: 392 start-page: 1789 year: 2018 end-page: 1858 ident: bib8 article-title: Incidence Injury and Collaborators Prevalence, Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 publication-title: Lancet – volume: 6 year: 2011 ident: bib54 article-title: MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression publication-title: PLoS One – volume: 40 start-page: 59 year: 2021 ident: bib137 article-title: USP16 regulates castration-resistant prostate cancer cell proliferation by deubiquitinating and stablizing c-Myc publication-title: J. Exp. Clin. Cancer Res. – volume: 1876 year: 2021 ident: bib166 article-title: miRNAs and androgen deprivation therapy for prostate cancer publication-title: Biochim. Biophys. Acta Rev. Canc – volume: 77 start-page: 1167 year: 2017 end-page: 1175 ident: bib173 article-title: MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method publication-title: Prostate – volume: 343 start-page: 107 year: 2022 end-page: 117 ident: bib197 article-title: Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy publication-title: J. Contr. Release – volume: 410 start-page: 100 year: 2017 end-page: 111 ident: bib121 article-title: Extracellular vesicles released by mesenchymal-like prostate carcinoma cells modulate EMT state of recipient epithelial-like carcinoma cells through regulation of AR signaling publication-title: Cancer Lett. – volume: 179 start-page: 1033 year: 2019 end-page: 1055 ident: bib38 article-title: The role of non-coding RNAs in oncology publication-title: Cell – volume: 72 start-page: 7 year: 2022 end-page: 33 ident: bib1 article-title: Cancer statistics publication-title: Ca-Cancer J. Clin. – volume: 6 start-page: 34446 year: 2015 end-page: 34457 ident: bib151 article-title: MicroRNA-212 negatively regulates starvation induced autophagy in prostate cancer cells by inhibiting SIRT1 and is a modulator of angiogenesis and cellular senescence publication-title: Oncotarget – volume: 214 start-page: 295 year: 2008 end-page: 300 ident: bib89 article-title: Importance of Ezh2 polycomb protein in tumorigenesis process interfering with the pathway of growth suppressive key elements publication-title: J. Cell. Physiol. – volume: 8 start-page: 1145 year: 2017 ident: bib37 article-title: Coding and noncoding landscape of extracellular RNA released by human glioma stem cells publication-title: Nat. Commun. – volume: 115 start-page: 2204 year: 2018 end-page: 2209 ident: bib113 article-title: Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 20 start-page: 50 year: 2022 ident: bib196 article-title: Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer publication-title: J. Nanobiotechnol. – volume: 17 year: 2016 ident: bib12 article-title: Prostate cancer detection and prognosis: from prostate specific antigen (PSA) to exosomal biomarkers publication-title: Int. J. Mol. Sci. – volume: 17 start-page: 147 year: 2018 ident: bib15 article-title: Effect of exosomal miRNA on cancer biology and clinical applications publication-title: Mol. Cancer – volume: 7 year: 2017 ident: bib49 article-title: Regulation of TFPIalpha expression by miR-27a/b-3p in human endothelial cells under normal conditions and in response to androgens publication-title: Sci. Rep. – volume: 8 start-page: 7820 year: 2018 ident: bib71 article-title: MicroRNAs as potential therapeutics to enhance chemosensitivity in advanced prostate cancer publication-title: Sci. Rep. – volume: 5 start-page: 2723 year: 2014 end-page: 2735 ident: bib64 article-title: Oncogenic functions of IGF1R and INSR in prostate cancer include enhanced tumor growth, cell migration and angiogenesis publication-title: Oncotarget – volume: 20 start-page: 99 year: 2021 ident: bib42 article-title: Exosome-derived noncoding RNAs in gastric cancer: functions and clinical applications publication-title: Mol. Cancer – volume: 100 start-page: 57 year: 2000 end-page: 70 ident: bib45 article-title: The hallmarks of cancer publication-title: Cell – volume: 13 start-page: 6293 year: 2022 end-page: 6308 ident: bib63 article-title: Circular RNA midline-1 (circMID1) promotes proliferation, migration, invasion and glycolysis in prostate cancer publication-title: Bioengineered – volume: 57 start-page: 540 year: 2020 end-page: 549 ident: bib95 article-title: MicroRNA-137 regulates hypoxia-mediated migration and epithelial-mesenchymal transition in prostate cancer by targeting LGR4 via the EGFR/ERK signaling pathway publication-title: Int. J. Oncol. – volume: 18 start-page: 75 year: 2019 ident: bib27 article-title: Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance publication-title: Mol. Cancer – volume: 12 start-page: 53 year: 2019 ident: bib81 article-title: Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression publication-title: J. Hematol. Oncol. – volume: 8 year: 2020 ident: bib20 article-title: Shedding light on extracellular vesicle biogenesis and bioengineering publication-title: Adv. Sci. – volume: 17 start-page: 730 year: 2017 ident: bib53 article-title: Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients publication-title: BMC Cancer – volume: 12 start-page: 10194 year: 2020 end-page: 10210 ident: bib128 article-title: Influences of TP53 and the anti-aging DDR1 receptor in controlling Raf/MEK/ERK and PI3K/Akt expression and chemotherapeutic drug sensitivity in prostate cancer cell lines publication-title: Aging (Albany NY) – volume: 16 start-page: 156 year: 2017 ident: bib170 article-title: Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes publication-title: Mol. Cancer – volume: 13 start-page: 9 year: 2020 ident: bib31 article-title: Proteomic and lipidomic analysis of exosomes derived from ovarian cancer cells and ovarian surface epithelial cells publication-title: J. Ovarian Res. – volume: 12 year: 2020 ident: bib199 article-title: Development of antibody-oligonucleotide complexes for targeting exosomal MicroRNA publication-title: Pharmaceutics – volume: 6 start-page: 483 year: 2004 end-page: 495 ident: bib114 article-title: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment publication-title: Dev. Cell – volume: 39 start-page: 542 year: 2018 end-page: 551 ident: bib192 article-title: Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools publication-title: Acta Pharmacol. Sin. – volume: 16 start-page: 176 year: 2017 ident: bib80 article-title: Factors involved in cancer metastasis: a better understanding to "seed and soil" hypothesis publication-title: Mol. Cancer – volume: 39 start-page: 81 year: 2018 end-page: 90 ident: bib93 article-title: Downregulation of miR-19a-3p promotes invasion, migration and bone metastasis via activating TGF-beta signaling in prostate cancer publication-title: Oncol. Rep. – volume: 9 start-page: 315 year: 2016 end-page: 324 ident: bib194 article-title: Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication publication-title: Cell. Mol. Bioeng. – volume: 187 start-page: 172 year: 2020 ident: bib13 article-title: Strand displacement-triggered G-quadruplex/rolling circle amplification strategy for the ultra-sensitive electrochemical sensing of exosomal microRNAs publication-title: Mikrochim. Acta – volume: 23 start-page: 11043 year: 2019 end-page: 11050 ident: bib111 article-title: Teriparatide alleviates osteoporosis by promoting osteogenic differentiation of hMSCs via miR-375/RUNX2 axis publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 73 start-page: 1232 year: 2013 end-page: 1244 ident: bib122 article-title: Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression publication-title: Cancer Res. – volume: 1 start-page: e105 year: 2010 ident: bib123 article-title: Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells publication-title: Cell Death Dis. – volume: 8 year: 2013 ident: bib153 article-title: Bmi-1 promotes glioma angiogenesis by activating NF-kappaB signaling publication-title: PLoS One – volume: 2022 year: 2022 ident: bib140 article-title: Exosomal CXCL14 contributes to M2 macrophage polarization through NF-kappaB signaling in prostate cancer publication-title: Oxid. Med. Cell. Longev. – volume: 50 start-page: 1 year: 2018 end-page: 10 ident: bib30 article-title: The implications of signaling lipids in cancer metastasis publication-title: Exp. Mol. Med. – volume: 15 start-page: 86 year: 2019 ident: bib32 article-title: Metabolomics identifies serum and exosomes metabolite markers of pancreatic cancer publication-title: Metabolomics – volume: 18 start-page: 116 year: 2019 ident: bib17 article-title: Exosomal circRNAs: biogenesis, effect and application in human diseases publication-title: Mol. Cancer – volume: 11 start-page: 466 year: 2020 ident: bib86 article-title: KLF5 inhibits STAT3 activity and tumor metastasis in prostate cancer by suppressing IGF1 transcription cooperatively with HDAC1 publication-title: Cell Death Dis. – volume: 383 start-page: 280 year: 2009 end-page: 285 ident: bib67 article-title: MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells publication-title: Biochem. Biophys. Res. Commun. – volume: 40 start-page: D1241 year: 2012 end-page: D1244 ident: bib23 article-title: ExoCarta 2012: database of exosomal proteins, RNA and lipids publication-title: Nucleic Acids Res. – volume: 40 start-page: 2814 year: 2018 end-page: 2825 ident: bib135 article-title: Long non-coding RNA MYU promotes prostate cancer proliferation by mediating the miR-184/c-Myc axis publication-title: Oncol. Rep. – volume: 36 start-page: 6336 year: 2017 end-page: 6347 ident: bib102 article-title: miR-302/367/LATS2/YAP pathway is essential for prostate tumor-propagating cells and promotes the development of castration resistance publication-title: Oncogene – volume: 14 start-page: 2142 year: 2015 end-page: 2148 ident: bib72 article-title: Inhibition of Plk1 represses androgen signaling pathway in castration-resistant prostate cancer publication-title: Cell Cycle – volume: 22 year: 2021 ident: bib156 article-title: Inhibition of BMI-1 induces apoptosis through downregulation of DUB3-mediated Mcl-1 stabilization publication-title: Int. J. Mol. Sci. – volume: 146 year: 2019 ident: bib189 article-title: Simultaneous multiplexed detection of exosomal microRNAs and surface proteins for prostate cancer diagnosis publication-title: Biosens. Bioelectron. – volume: 19 start-page: 547 year: 2022 end-page: 561 ident: bib5 article-title: Race and prostate cancer: genomic landscape publication-title: Nat. Rev. Urol. – volume: 76 start-page: 68 year: 2016 end-page: 79 ident: bib52 article-title: Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA analysis: application for prostate cancer diagnostic publication-title: Prostate – volume: 11 start-page: 31 year: 2011 ident: bib96 article-title: Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer publication-title: BMC Cancer – volume: 30 year: 2021 ident: bib116 article-title: Exosomal miR-1275 secreted by prostate cancer cells modulates osteoblast proliferation and activity by targeting the SIRT2/RUNX2 cascade publication-title: Cell Transplant. – volume: 10 year: 2021 ident: bib119 article-title: Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1-5p publication-title: J. Extracell. Vesicles – volume: 19 start-page: 117 year: 2020 ident: bib58 article-title: Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-beta1 axis publication-title: Mol. Cancer – volume: 67 start-page: 1314 year: 2020 end-page: 1318 ident: bib175 article-title: Plasma exosomal miR-125a-5p and miR-141-5p as non-invasive biomarkers for prostate cancer publication-title: Neoplasma – volume: 69 start-page: 168 year: 2009 end-page: 180 ident: bib118 article-title: PI3K/Akt-dependent transcriptional regulation and activation of BMP-2-Smad signaling by NF-kappaB in metastatic prostate cancer cells publication-title: Prostate – volume: 13 start-page: 25 year: 2021 end-page: 35 ident: bib171 article-title: Identification of urinary exosomal miRNAs for the non-invasive diagnosis of prostate cancer publication-title: Cancer Manag. Res. – volume: 36 start-page: 53 year: 2017 ident: bib59 article-title: Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells publication-title: J. Exp. Clin. Cancer Res. – volume: 18 start-page: 5 year: 2018 end-page: 18 ident: bib35 article-title: Non-coding RNA networks in cancer publication-title: Nat. Rev. Cancer – volume: 259 start-page: 135 year: 2017 end-page: 139 ident: bib174 article-title: Urinary-exosomal miR-2909: a novel pathognomonic trait of prostate cancer severity publication-title: J. Biotechnol. – volume: 11 start-page: 88 year: 2013 ident: bib193 article-title: Exosomes are natural carriers of exogenous siRNA to human cells in vitro publication-title: Cell Commun. Signal. – volume: 22 start-page: 6176 year: 2016 end-page: 6191 ident: bib160 article-title: BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer publication-title: Clin. Cancer Res. – volume: 9 year: 2021 ident: bib165 article-title: Androgen receptor-related non-coding RNAs in prostate cancer publication-title: Front. Cell Dev. Biol. – volume: 60 start-page: 1346 year: 2022 end-page: 1361 ident: bib182 article-title: Circ_0044516 enriches the level of SARM1 as a miR-330-5p sponge to regulate cell malignant behaviors and tumorigenesis of prostate cancer publication-title: Biochem. Genet. – volume: 15 start-page: 1835 year: 2021 end-page: 1849 ident: bib161 article-title: Exosomal circ-XIAP promotes docetaxel resistance in prostate cancer by regulating miR-1182/TPD52 Axis publication-title: Drug Des. Dev. Ther. – volume: 35 start-page: 7369 year: 2014 end-page: 7382 ident: bib162 article-title: Tumor protein D52 (TPD52) and cancer-oncogene understudy or understudied oncogene? publication-title: Tumour Biol. – volume: 7 year: 2016 ident: bib60 article-title: Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1 publication-title: Nat. Commun. – volume: 24 year: 2022 ident: bib157 article-title: Inhibition of circ_0081234 reduces prostate cancer tumor growth and metastasis via the miR-1/MAP 3 K1 axis publication-title: J. Gene Med. – volume: 398 start-page: 1075 year: 2021 end-page: 1090 ident: bib7 article-title: Prostate cancer publication-title: Lancet – volume: 126 start-page: 4585 year: 2016 end-page: 4602 ident: bib105 article-title: MicroRNA-424 impairs ubiquitination to activate STAT3 and promote prostate tumor progression publication-title: J. Clin. Invest. – volume: 20 start-page: 2531 year: 2021 end-page: 2546 ident: bib139 article-title: Exosomal lncAY927529 enhances prostate cancer cell proliferation and invasion through regulating bone microenvironment publication-title: Cell Cycle – volume: 121 start-page: 2118 year: 2020 end-page: 2126 ident: bib154 article-title: Exosome circ_0044516 promotes prostate cancer cell proliferation and metastasis as a potential biomarker publication-title: J. Cell. Biochem. – volume: 1831 start-page: 1302 year: 2013 end-page: 1309 ident: bib29 article-title: Molecular lipidomics of exosomes released by PC-3 prostate cancer cells publication-title: Biochim. Biophys. Acta – volume: 39 start-page: 282 year: 2020 ident: bib94 article-title: Loss of exosomal miR-146a-5p from cancer-associated fibroblasts after androgen deprivation therapy contributes to prostate cancer metastasis publication-title: J. Exp. Clin. Cancer Res. – volume: 20 start-page: 332 year: 2018 end-page: 343 ident: bib33 article-title: Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation publication-title: Nat. Cell Biol. – volume: 16 start-page: 95 year: 2003 end-page: 101 ident: bib10 article-title: Meta-analysis of prostate-specific antigen and digital rectal examination as screening tests for prostate carcinoma publication-title: J. Am. Board Fam. Pract. – volume: 9 year: 2021 ident: bib138 article-title: Circular RNA circ_0057558 controls prostate cancer cell proliferation through regulating miR-206/USP33/c-Myc Axis publication-title: Front. Cell Dev. Biol. – volume: 144 start-page: 646 year: 2011 end-page: 674 ident: bib44 article-title: Hallmarks of cancer: the next generation publication-title: Cell – volume: 5 start-page: 242 year: 2020 ident: bib84 article-title: Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression publication-title: Signal Transduct. Targeted Ther. – volume: 23 year: 2022 ident: bib125 article-title: Role of miRNA-145, 148, and 185 and stem cells in prostate cancer publication-title: Int. J. Mol. Sci. – volume: 515 start-page: 345 year: 2019 end-page: 351 ident: bib127 article-title: Exosome-derived miR-27a produced by PSC-27 cells contributes to prostate cancer chemoresistance through p53 publication-title: Biochem. Biophys. Res. Commun. – volume: 33 start-page: 724 year: 2014 end-page: 733 ident: bib109 article-title: DLC1 induces expression of E-cadherin in prostate cancer cells through Rho pathway and suppresses invasion publication-title: Oncogene – volume: 77 start-page: 1167 issue: 10 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib173 article-title: MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method publication-title: Prostate doi: 10.1002/pros.23376 – volume: 73 start-page: 1232 issue: 3 year: 2013 ident: 10.1016/j.ncrna.2024.07.003_bib122 article-title: Epigenetic repression of miR-31 disrupts androgen receptor homeostasis and contributes to prostate cancer progression publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-2968 – volume: 22 issue: 18 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib156 article-title: Inhibition of BMI-1 induces apoptosis through downregulation of DUB3-mediated Mcl-1 stabilization publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms221810107 – volume: 46 start-page: 532 issue: 2 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib179 article-title: Tumor-derived exosomal long noncoding RNAs as promising diagnostic biomarkers for prostate cancer publication-title: Cell. Physiol. Biochem. doi: 10.1159/000488620 – volume: 8 issue: 1 year: 2013 ident: 10.1016/j.ncrna.2024.07.003_bib153 article-title: Bmi-1 promotes glioma angiogenesis by activating NF-kappaB signaling publication-title: PLoS One doi: 10.1371/journal.pone.0055527 – volume: 17 start-page: 4463 issue: 5 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib110 article-title: Exosomes from LNCaP cells promote osteoblast activity through miR-375 transfer publication-title: Oncol. Lett. – volume: 7 start-page: 682 issue: 6 year: 2010 ident: 10.1016/j.ncrna.2024.07.003_bib152 article-title: Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation publication-title: Cell Stem Cell doi: 10.1016/j.stem.2010.11.013 – volume: 11 issue: 6 year: 2016 ident: 10.1016/j.ncrna.2024.07.003_bib172 article-title: Comparative study of extracellular vesicles from the urine of healthy individuals and prostate cancer patients publication-title: PLoS One doi: 10.1371/journal.pone.0157566 – volume: 20 start-page: 332 issue: 3 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib33 article-title: Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation publication-title: Nat. Cell Biol. doi: 10.1038/s41556-018-0040-4 – volume: 9 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib138 article-title: Circular RNA circ_0057558 controls prostate cancer cell proliferation through regulating miR-206/USP33/c-Myc Axis publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2021.644397 – volume: 126 start-page: 4585 issue: 12 year: 2016 ident: 10.1016/j.ncrna.2024.07.003_bib105 article-title: MicroRNA-424 impairs ubiquitination to activate STAT3 and promote prostate tumor progression publication-title: J. Clin. Invest. doi: 10.1172/JCI86505 – volume: 9 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib165 article-title: Androgen receptor-related non-coding RNAs in prostate cancer publication-title: Front. Cell Dev. Biol. – year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib21 article-title: Exosomes: small vesicles with big roles in cancer, vaccine development, and therapeutics publication-title: Bioact. Mater. – volume: 7 start-page: 64 year: 2007 ident: 10.1016/j.ncrna.2024.07.003_bib146 article-title: Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process publication-title: BMC Cancer doi: 10.1186/1471-2407-7-64 – volume: 13 start-page: 6293 issue: 3 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib63 article-title: Circular RNA midline-1 (circMID1) promotes proliferation, migration, invasion and glycolysis in prostate cancer publication-title: Bioengineered doi: 10.1080/21655979.2022.2037367 – volume: 6 start-page: 483 issue: 4 year: 2004 ident: 10.1016/j.ncrna.2024.07.003_bib114 article-title: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment publication-title: Dev. Cell doi: 10.1016/S1534-5807(04)00075-9 – volume: 1839 start-page: 297 issue: 4 year: 2014 ident: 10.1016/j.ncrna.2024.07.003_bib144 article-title: FOXM1 and androgen receptor co-regulate CDC6 gene transcription and DNA replication in prostate cancer cells publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2014.02.016 – volume: 8 start-page: 222 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib24 article-title: Extracellular vesicles in prostate cancer carcinogenesis, diagnosis, and management publication-title: Front. Oncol. doi: 10.3389/fonc.2018.00222 – volume: 14 start-page: 683 issue: 11 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib149 article-title: WNT signalling in prostate cancer publication-title: Nat. Rev. Urol. doi: 10.1038/nrurol.2017.144 – volume: 11 issue: 9 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib106 article-title: Extracellular vesicles from human advanced-stage prostate cancer cells modify the inflammatory response of microenvironment-residing cells publication-title: Cancers doi: 10.3390/cancers11091276 – volume: 2022 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib148 article-title: Exosomal LINC01213 plays a role in the transition of androgen-dependent prostate cancer cells into androgen-independent manners publication-title: J. Oncol. doi: 10.1155/2022/8058770 – volume: 17 start-page: 82 issue: 1 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib16 article-title: Emerging role of exosome-derived long non-coding RNAs in tumor microenvironment publication-title: Mol. Cancer doi: 10.1186/s12943-018-0831-z – volume: 115 start-page: 2204 issue: 9 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib113 article-title: Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1717363115 – volume: 20 start-page: 50 issue: 1 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib196 article-title: Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-022-01264-5 – volume: 235 start-page: 9729 issue: 12 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib77 article-title: Tumor-associated macrophages promote prostate cancer progression via exosome-mediated miR-95 transfer publication-title: J. Cell. Physiol. doi: 10.1002/jcp.29784 – volume: 18 start-page: 5 issue: 1 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib35 article-title: Non-coding RNA networks in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2017.99 – volume: 9 start-page: 139 year: 2016 ident: 10.1016/j.ncrna.2024.07.003_bib176 article-title: Exosomal microRNA-141 is upregulated in the serum of prostate cancer patients publication-title: OncoTargets Ther. – volume: 19 start-page: 141 issue: 2 year: 2013 ident: 10.1016/j.ncrna.2024.07.003_bib40 article-title: Circular RNAs are abundant, conserved, and associated with ALU repeats publication-title: RNA doi: 10.1261/rna.035667.112 – volume: 11 start-page: e493 issue: 8 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib145 publication-title: Clin. Transl. Med. doi: 10.1002/ctm2.493 – volume: 5 start-page: 242 issue: 1 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib84 article-title: Exosome-mediated metabolic reprogramming: the emerging role in tumor microenvironment remodeling and its influence on cancer progression publication-title: Signal Transduct. Targeted Ther. doi: 10.1038/s41392-020-00359-5 – volume: 60 start-page: 81 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib83 article-title: Extracellular vesicles in obesity and diabetes mellitus publication-title: Mol. Aspect. Med. doi: 10.1016/j.mam.2017.11.010 – volume: 20 start-page: 470 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib107 article-title: Inhibition of let-7b-5p contributes to an anti-tumorigenic macrophage phenotype through the SOCS1/STAT pathway in prostate cancer publication-title: Cancer Cell Int. doi: 10.1186/s12935-020-01563-7 – volume: 179 start-page: 1033 issue: 5 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib38 article-title: The role of non-coding RNAs in oncology publication-title: Cell doi: 10.1016/j.cell.2019.10.017 – volume: 76 start-page: 68 issue: 1 year: 2016 ident: 10.1016/j.ncrna.2024.07.003_bib52 article-title: Lectin-induced agglutination method of urinary exosomes isolation followed by mi-RNA analysis: application for prostate cancer diagnostic publication-title: Prostate doi: 10.1002/pros.23101 – volume: 39 start-page: 282 issue: 1 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib94 article-title: Loss of exosomal miR-146a-5p from cancer-associated fibroblasts after androgen deprivation therapy contributes to prostate cancer metastasis publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-020-01761-1 – volume: 30 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib116 article-title: Exosomal miR-1275 secreted by prostate cancer cells modulates osteoblast proliferation and activity by targeting the SIRT2/RUNX2 cascade publication-title: Cell Transplant. doi: 10.1177/09636897211052977 – volume: 40 start-page: D1241 issue: Database issue year: 2012 ident: 10.1016/j.ncrna.2024.07.003_bib23 article-title: ExoCarta 2012: database of exosomal proteins, RNA and lipids publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr828 – volume: 80 start-page: 977 issue: 12 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib90 article-title: Resveratrol inhibits the tumor migration and invasion by upregulating TET1 and reducing TIMP2/3 methylation in prostate carcinoma cells publication-title: Prostate doi: 10.1002/pros.24029 – volume: 39 start-page: 81 issue: 1 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib93 article-title: Downregulation of miR-19a-3p promotes invasion, migration and bone metastasis via activating TGF-beta signaling in prostate cancer publication-title: Oncol. Rep. – volume: 47 start-page: 710 issue: 2 year: 2015 ident: 10.1016/j.ncrna.2024.07.003_bib100 article-title: MicroRNA-26a/b directly regulate La-related protein 1 and inhibit cancer cell invasion in prostate cancer publication-title: Int. J. Oncol. doi: 10.3892/ijo.2015.3043 – volume: 67 start-page: 1314 issue: 6 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib175 article-title: Plasma exosomal miR-125a-5p and miR-141-5p as non-invasive biomarkers for prostate cancer publication-title: Neoplasma doi: 10.4149/neo_2020_191130N1234 – volume: 40 start-page: 2814 issue: 5 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib135 article-title: Long non-coding RNA MYU promotes prostate cancer proliferation by mediating the miR-184/c-Myc axis publication-title: Oncol. Rep. – volume: 117 start-page: 52 issue: 1 year: 2015 ident: 10.1016/j.ncrna.2024.07.003_bib191 article-title: Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.305990 – volume: 74 start-page: 1320 issue: 13 year: 2014 ident: 10.1016/j.ncrna.2024.07.003_bib131 article-title: miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression publication-title: Prostate doi: 10.1002/pros.22848 – volume: 42 start-page: 354 issue: 3 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib147 article-title: Hormonal therapy for prostate cancer publication-title: Endocr. Rev. doi: 10.1210/endrev/bnab002 – volume: 72 start-page: 7 issue: 1 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib1 article-title: Cancer statistics publication-title: Ca-Cancer J. Clin. doi: 10.3322/caac.21708 – volume: 36 start-page: 6336 issue: 45 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib102 article-title: miR-302/367/LATS2/YAP pathway is essential for prostate tumor-propagating cells and promotes the development of castration resistance publication-title: Oncogene doi: 10.1038/onc.2017.240 – volume: 6 issue: 4 year: 2011 ident: 10.1016/j.ncrna.2024.07.003_bib54 article-title: MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression publication-title: PLoS One doi: 10.1371/journal.pone.0019139 – volume: 7 year: 2016 ident: 10.1016/j.ncrna.2024.07.003_bib60 article-title: Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1 publication-title: Nat. Commun. doi: 10.1038/ncomms11150 – volume: 32 start-page: 983 issue: 4 year: 2014 ident: 10.1016/j.ncrna.2024.07.003_bib101 article-title: Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes publication-title: Stem Cell. doi: 10.1002/stem.1619 – volume: 12 start-page: 31 issue: 1 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib43 article-title: Hallmarks of cancer: new dimensions publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-21-1059 – volume: 470 start-page: 269 issue: 7333 year: 2011 ident: 10.1016/j.ncrna.2024.07.003_bib92 article-title: SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression publication-title: Nature doi: 10.1038/nature09677 – volume: 1871 start-page: 455 issue: 2 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib11 article-title: Exosomes in cancer development, metastasis, and immunity publication-title: Biochim. Biophys. Acta Rev. Canc doi: 10.1016/j.bbcan.2019.04.004 – volume: 13 start-page: 2004 issue: 2 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib61 article-title: Human bone marrow mesenchymal stem cells-derived exosomes attenuated prostate cancer progression via the miR-99b-5p/IGF1R axis publication-title: Bioengineered doi: 10.1080/21655979.2021.2009416 – volume: 4 start-page: 119 issue: 1 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib104 article-title: Circulating extracellular vesicles release oncogenic miR-424 in experimental models and patients with aggressive prostate cancer publication-title: Commun. Biol. doi: 10.1038/s42003-020-01642-5 – volume: 77 start-page: 416 year: 2016 ident: 10.1016/j.ncrna.2024.07.003_bib186 article-title: Coupling hybridization chain reaction with catalytic hairpin assembly enables non-enzymatic and sensitive fluorescent detection of microRNA cancer biomarkers publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.09.053 – volume: 25 start-page: 1409 issue: 8 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib69 article-title: MicroRNA-107 promotes proliferation, migration, and invasion of osteosarcoma cells by targeting tropomyosin 1 publication-title: Oncol. Res. doi: 10.3727/096504017X14882829077237 – volume: 38 start-page: 495 issue: 1 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib74 article-title: Human bone marrow mesenchymal stem cells-derived microRNA-205-containing exosomes impede the progression of prostate cancer through suppression of RHPN2 publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-019-1488-1 – volume: 69 start-page: 7165 issue: 18 year: 2009 ident: 10.1016/j.ncrna.2024.07.003_bib124 article-title: miR-21: an androgen receptor-regulated microRNA that promotes hormone-dependent and hormone-independent prostate cancer growth publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-1448 – volume: 11 start-page: e426 issue: 6 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib62 article-title: m(6) A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization publication-title: Clin. Transl. Med. doi: 10.1002/ctm2.426 – volume: 106 start-page: 768 issue: 4 year: 2012 ident: 10.1016/j.ncrna.2024.07.003_bib177 article-title: Changes in circulating microRNA levels associated with prostate cancer publication-title: Br. J. Cancer doi: 10.1038/bjc.2011.595 – volume: 21 start-page: 185 issue: 1 year: 2013 ident: 10.1016/j.ncrna.2024.07.003_bib195 article-title: Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells publication-title: Mol. Ther. doi: 10.1038/mt.2012.180 – volume: 117 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib99 article-title: Prostate carcinoma cell-derived exosomal MicroRNA-26a modulates the metastasis and tumor growth of prostate carcinoma publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2019.109109 – volume: 56 start-page: 1861 issue: 13 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib82 article-title: Extracellular vesicles: critical players during cell migration publication-title: Dev. Cell doi: 10.1016/j.devcel.2021.03.020 – volume: 142 start-page: 556 issue: 6 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib198 article-title: Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.045765 – volume: 11 issue: 12 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib76 article-title: Morphometric analysis of rat prostate development: roles of MEK/ERK and Rho signaling pathways in prostatic morphogenesis publication-title: Biomolecules doi: 10.3390/biom11121829 – volume: 502 start-page: 262 issue: 2 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib141 article-title: The long non-coding RNA PCSEAT exhibits an oncogenic property in prostate cancer and functions as a competing endogenous RNA that associates with EZH2 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.05.157 – volume: 19 start-page: 547 issue: 9 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib5 article-title: Race and prostate cancer: genomic landscape publication-title: Nat. Rev. Urol. doi: 10.1038/s41585-022-00622-0 – volume: 410 start-page: 100 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib121 article-title: Extracellular vesicles released by mesenchymal-like prostate carcinoma cells modulate EMT state of recipient epithelial-like carcinoma cells through regulation of AR signaling publication-title: Cancer Lett. doi: 10.1016/j.canlet.2017.09.010 – volume: 343 start-page: 107 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib197 article-title: Engineered exosome as targeted lncRNA MEG3 delivery vehicles for osteosarcoma therapy publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2022.01.026 – volume: 27 start-page: 1718 issue: 10 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib34 article-title: ncRNA-encoded peptides or proteins and cancer publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2019.09.001 – volume: 42 start-page: 1307 issue: 4 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib133 article-title: Transcriptional regulation of FoxM1 by HIF-1alpha mediates hypoxia-induced EMT in prostate cancer publication-title: Oncol. Rep. – volume: 33 start-page: 724 issue: 6 year: 2014 ident: 10.1016/j.ncrna.2024.07.003_bib109 article-title: DLC1 induces expression of E-cadherin in prostate cancer cells through Rho pathway and suppresses invasion publication-title: Oncogene doi: 10.1038/onc.2013.7 – volume: 100 start-page: 57 issue: 1 year: 2000 ident: 10.1016/j.ncrna.2024.07.003_bib45 article-title: The hallmarks of cancer publication-title: Cell doi: 10.1016/S0092-8674(00)81683-9 – volume: 277 start-page: 43924 issue: 46 year: 2002 ident: 10.1016/j.ncrna.2024.07.003_bib75 article-title: The RhoA-binding protein, rhophilin-2, regulates actin cytoskeleton organization publication-title: J. Biol. Chem. doi: 10.1074/jbc.M203569200 – volume: 23 issue: 3 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib125 article-title: Role of miRNA-145, 148, and 185 and stem cells in prostate cancer publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23031626 – volume: 6 start-page: 168 year: 2015 ident: 10.1016/j.ncrna.2024.07.003_bib181 article-title: Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease publication-title: Front. Genet. – volume: 19 start-page: 101 issue: 2 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib18 article-title: Prostate zones and cancer: lost in transition? publication-title: Nat. Rev. Urol. doi: 10.1038/s41585-021-00524-7 – volume: 6 year: 2016 ident: 10.1016/j.ncrna.2024.07.003_bib180 article-title: Long non-coding RNAs harboring miRNA seed regions are enriched in prostate cancer exosomes publication-title: Sci. Rep. doi: 10.1038/srep24922 – volume: 515 start-page: 345 issue: 2 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib127 article-title: Exosome-derived miR-27a produced by PSC-27 cells contributes to prostate cancer chemoresistance through p53 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.05.120 – volume: 23 start-page: 11043 issue: 24 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib111 article-title: Teriparatide alleviates osteoporosis by promoting osteogenic differentiation of hMSCs via miR-375/RUNX2 axis publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 146 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib189 article-title: Simultaneous multiplexed detection of exosomal microRNAs and surface proteins for prostate cancer diagnosis publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111749 – volume: 69 start-page: 168 issue: 2 year: 2009 ident: 10.1016/j.ncrna.2024.07.003_bib118 article-title: PI3K/Akt-dependent transcriptional regulation and activation of BMP-2-Smad signaling by NF-kappaB in metastatic prostate cancer cells publication-title: Prostate doi: 10.1002/pros.20870 – volume: 22 start-page: 6176 issue: 24 year: 2016 ident: 10.1016/j.ncrna.2024.07.003_bib160 article-title: BMI-1 targeting interferes with patient-derived tumor-initiating cell survival and tumor growth in prostate cancer publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-3107 – volume: 60 start-page: 1346 issue: 4 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib182 article-title: Circ_0044516 enriches the level of SARM1 as a miR-330-5p sponge to regulate cell malignant behaviors and tumorigenesis of prostate cancer publication-title: Biochem. Genet. doi: 10.1007/s10528-021-10160-w – volume: 259 start-page: 135 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib174 article-title: Urinary-exosomal miR-2909: a novel pathognomonic trait of prostate cancer severity publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2017.07.029 – volume: 21 issue: 16 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib47 article-title: Exosomes in angiogenesis and anti-angiogenic therapy in cancers publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21165840 – volume: 16 start-page: 95 issue: 2 year: 2003 ident: 10.1016/j.ncrna.2024.07.003_bib10 article-title: Meta-analysis of prostate-specific antigen and digital rectal examination as screening tests for prostate carcinoma publication-title: J. Am. Board Fam. Pract. doi: 10.3122/jabfm.16.2.95 – volume: 11 issue: 12 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib55 article-title: Extracellular vesicles-mediated transfer of miRNA let-7b from PC3 cells to macrophages publication-title: Genes doi: 10.3390/genes11121495 – volume: 13 issue: 16 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib178 article-title: A novel urine exosomal lncRNA assay to improve the detection of prostate cancer at initial biopsy: a retrospective multicenter diagnostic feasibility study publication-title: Cancers doi: 10.3390/cancers13164075 – volume: 33 start-page: 72 issue: 1 year: 2014 ident: 10.1016/j.ncrna.2024.07.003_bib126 article-title: Reciprocal regulation of PCGEM1 and miR-145 promote proliferation of LNCaP prostate cancer cells publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-014-0072-y – volume: 630 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib187 article-title: Determination of miRNA derived from exosomes of prostate cancer via toehold-aided cyclic amplification combined with HRP enzyme catalysis and magnetic nanoparticles publication-title: Anal. Biochem. doi: 10.1016/j.ab.2021.114336 – volume: 17 start-page: 147 issue: 1 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib15 article-title: Effect of exosomal miRNA on cancer biology and clinical applications publication-title: Mol. Cancer doi: 10.1186/s12943-018-0897-7 – volume: 71 start-page: 2193 issue: 6 year: 2011 ident: 10.1016/j.ncrna.2024.07.003_bib164 article-title: PrLZ protects prostate cancer cells from apoptosis induced by androgen deprivation via the activation of Stat3/Bcl-2 pathway publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-1791 – volume: 8 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib185 article-title: An eight-CircRNA assessment model for predicting biochemical recurrence in prostate cancer publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.599494 – volume: 2022 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib140 article-title: Exosomal CXCL14 contributes to M2 macrophage polarization through NF-kappaB signaling in prostate cancer publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2022/7616696 – volume: 367 issue: 6478 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib22 article-title: The biology, function, and biomedical applications of exosomes publication-title: Science doi: 10.1126/science.aau6977 – volume: 14 start-page: 2142 issue: 13 year: 2015 ident: 10.1016/j.ncrna.2024.07.003_bib72 article-title: Inhibition of Plk1 represses androgen signaling pathway in castration-resistant prostate cancer publication-title: Cell Cycle doi: 10.1080/15384101.2015.1041689 – volume: 9 start-page: 315 issue: 3 year: 2016 ident: 10.1016/j.ncrna.2024.07.003_bib194 article-title: Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication publication-title: Cell. Mol. Bioeng. doi: 10.1007/s12195-016-0457-4 – volume: 8 start-page: 1145 issue: 1 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib37 article-title: Coding and noncoding landscape of extracellular RNA released by human glioma stem cells publication-title: Nat. Commun. doi: 10.1038/s41467-017-01196-x – volume: 11 issue: 7 year: 2016 ident: 10.1016/j.ncrna.2024.07.003_bib120 article-title: CXCL12/CXCR4 Axis activation mediates prostate myofibroblast phenoconversion through non-canonical EGFR/MEK/ERK signaling publication-title: PLoS One doi: 10.1371/journal.pone.0159490 – volume: 1 start-page: e105 issue: 12 year: 2010 ident: 10.1016/j.ncrna.2024.07.003_bib123 article-title: Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells publication-title: Cell Death Dis. doi: 10.1038/cddis.2010.85 – volume: 74 start-page: 4183 issue: 15 year: 2014 ident: 10.1016/j.ncrna.2024.07.003_bib159 article-title: miRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor-initiating cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-0404 – volume: 67 start-page: 33 issue: 1 year: 2015 ident: 10.1016/j.ncrna.2024.07.003_bib184 article-title: Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer publication-title: Eur. Urol. doi: 10.1016/j.eururo.2014.07.035 – volume: 1831 start-page: 1302 issue: 7 year: 2013 ident: 10.1016/j.ncrna.2024.07.003_bib29 article-title: Molecular lipidomics of exosomes released by PC-3 prostate cancer cells publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2013.04.011 – volume: 78 start-page: 1833 issue: 7 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib98 article-title: microRNA-1246 is an exosomal biomarker for aggressive prostate cancer publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-2069 – volume: 24 issue: 8 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib157 article-title: Inhibition of circ_0081234 reduces prostate cancer tumor growth and metastasis via the miR-1/MAP 3 K1 axis publication-title: J. Gene Med. doi: 10.1002/jgm.3376 – volume: 7 issue: 12 year: 2012 ident: 10.1016/j.ncrna.2024.07.003_bib103 article-title: Resveratrol reduces prostate cancer growth and metastasis by inhibiting the Akt/MicroRNA-21 pathway publication-title: PLoS One doi: 10.1371/journal.pone.0051655 – volume: 8 start-page: 94834 issue: 55 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib108 article-title: Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer publication-title: Oncotarget doi: 10.18632/oncotarget.22014 – volume: 234 start-page: 16885 issue: 10 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib46 article-title: Tumor-derived exosomes: implication in angiogenesis and antiangiogenesis cancer therapy publication-title: J. Cell. Physiol. doi: 10.1002/jcp.28374 – volume: 23 issue: 3 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib117 article-title: Exosomal miRNAs from prostate cancer impair osteoblast function in mice publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23031285 – volume: 383 start-page: 280 issue: 3 year: 2009 ident: 10.1016/j.ncrna.2024.07.003_bib67 article-title: MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2009.03.077 – volume: 290 start-page: 4545 issue: 8 year: 2015 ident: 10.1016/j.ncrna.2024.07.003_bib25 article-title: The alphavbeta6 integrin is transferred intercellularly via exosomes publication-title: J. Biol. Chem. doi: 10.1074/jbc.C114.617662 – volume: 12 issue: 6 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib199 article-title: Development of antibody-oligonucleotide complexes for targeting exosomal MicroRNA publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12060545 – volume: 8 start-page: 71 issue: 2 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib136 article-title: Therapeutic approaches targeting MYC-driven prostate cancer publication-title: Genes doi: 10.3390/genes8020071 – volume: 17 issue: 11 year: 2016 ident: 10.1016/j.ncrna.2024.07.003_bib12 article-title: Prostate cancer detection and prognosis: from prostate specific antigen (PSA) to exosomal biomarkers publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms17111784 – volume: 66 start-page: 203 issue: 2 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib68 article-title: Skullcapflavone I inhibits proliferation of human colorectal cancer cells via down-regulation of miR-107 expression publication-title: Neoplasma doi: 10.4149/neo_2018_180427N279 – volume: 140 start-page: 3198 issue: 15 year: 2013 ident: 10.1016/j.ncrna.2024.07.003_bib115 article-title: Rho activation is apically restricted by Arhgap1 in neural crest cells and drives epithelial-to-mesenchymal transition publication-title: Development doi: 10.1242/dev.095448 – volume: 40 start-page: 59 issue: 1 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib137 article-title: USP16 regulates castration-resistant prostate cancer cell proliferation by deubiquitinating and stablizing c-Myc publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-021-01843-8 – volume: 275 start-page: 5703 issue: 22 year: 2008 ident: 10.1016/j.ncrna.2024.07.003_bib163 article-title: Altered expression of tumor protein D52 regulates apoptosis and migration of prostate cancer cells publication-title: FEBS J. doi: 10.1111/j.1742-4658.2008.06697.x – volume: 13 start-page: 395 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib97 article-title: Epithelial mesenchymal transition in tumor metastasis publication-title: Annu. Rev. Pathol. doi: 10.1146/annurev-pathol-020117-043854 – volume: 35 start-page: 7369 issue: 8 year: 2014 ident: 10.1016/j.ncrna.2024.07.003_bib162 article-title: Tumor protein D52 (TPD52) and cancer-oncogene understudy or understudied oncogene? publication-title: Tumour Biol. doi: 10.1007/s13277-014-2006-x – volume: 20 start-page: 2531 issue: 23 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib139 article-title: Exosomal lncAY927529 enhances prostate cancer cell proliferation and invasion through regulating bone microenvironment publication-title: Cell Cycle doi: 10.1080/15384101.2021.1992853 – volume: 46 start-page: 69 issue: 3 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib150 article-title: Exosomal circRNA HIPK3 knockdown inhibited cell proliferation and metastasis in prostate cancer by regulating miR-212/BMI-1 pathway publication-title: J. Biosci. doi: 10.1007/s12038-021-00190-2 – volume: 6 start-page: 34446 issue: 33 year: 2015 ident: 10.1016/j.ncrna.2024.07.003_bib151 article-title: MicroRNA-212 negatively regulates starvation induced autophagy in prostate cancer cells by inhibiting SIRT1 and is a modulator of angiogenesis and cellular senescence publication-title: Oncotarget doi: 10.18632/oncotarget.5920 – volume: 20 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib155 article-title: LncRNA BLACAT1 promotes proliferation, migration and invasion of prostate cancer cells via regulating miR-29a-3p/DVL3 Axis publication-title: Technol. Cancer Res. Treat. doi: 10.1177/1533033820972342 – volume: 145 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib14 article-title: Exosomal microRNAs as liquid biopsy biomarkers in prostate cancer publication-title: Crit. Rev. Oncol. Hematol. doi: 10.1016/j.critrevonc.2019.102860 – volume: 87 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib48 article-title: Pro-angiogenic effect of PC-3 exosomes in endothelial cells in vitro publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2021.110126 – volume: 32 start-page: 704 issue: 3 year: 2012 ident: 10.1016/j.ncrna.2024.07.003_bib50 article-title: Tissue factor pathway inhibitor blocks angiogenesis via its carboxyl terminus publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.111.243733 – volume: 16 start-page: 176 issue: 1 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib80 article-title: Factors involved in cancer metastasis: a better understanding to "seed and soil" hypothesis publication-title: Mol. Cancer doi: 10.1186/s12943-017-0742-4 – volume: 52 start-page: 1809 issue: 11 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib130 article-title: Cancer-associated fibroblast-secreted exosomal miR-423-5p promotes chemotherapy resistance in prostate cancer by targeting GREM2 through the TGF-beta signaling pathway publication-title: Exp. Mol. Med. doi: 10.1038/s12276-020-0431-z – volume: 125 start-page: 2965 issue: 17 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib9 article-title: Metastatic prostate cancer at diagnosis and through progression in the prostate, lung, colorectal, and ovarian cancer screening trial publication-title: Cancer doi: 10.1002/cncr.32176 – volume: 7 issue: 1 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib49 article-title: Regulation of TFPIalpha expression by miR-27a/b-3p in human endothelial cells under normal conditions and in response to androgens publication-title: Sci. Rep. doi: 10.1038/srep43500 – volume: 8 start-page: 7820 issue: 1 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib71 article-title: MicroRNAs as potential therapeutics to enhance chemosensitivity in advanced prostate cancer publication-title: Sci. Rep. doi: 10.1038/s41598-018-26050-y – volume: 36 start-page: 53 issue: 1 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib59 article-title: Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-017-0528-y – volume: 12 start-page: 10194 issue: 11 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib128 article-title: Influences of TP53 and the anti-aging DDR1 receptor in controlling Raf/MEK/ERK and PI3K/Akt expression and chemotherapeutic drug sensitivity in prostate cancer cell lines publication-title: Aging (Albany NY) doi: 10.18632/aging.103377 – volume: 17 start-page: 730 issue: 1 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib53 article-title: Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients publication-title: BMC Cancer doi: 10.1186/s12885-017-3737-z – volume: 14 start-page: 598 issue: 9 year: 2014 ident: 10.1016/j.ncrna.2024.07.003_bib73 article-title: FAK in cancer: mechanistic findings and clinical applications publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3792 – volume: 192 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib188 article-title: Hydrogel-based hybridization chain reaction (HCR) for detection of urinary exosomal miRNAs as a diagnostic tool of prostate cancer publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113504 – volume: 18 start-page: 90 issue: 1 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib39 article-title: Circular RNAs in Cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers publication-title: Mol. Cancer doi: 10.1186/s12943-019-1002-6 – volume: 30 start-page: 138 issue: 2 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib167 article-title: Liquid biopsy: a new avenue in pathology publication-title: Cytopathology doi: 10.1111/cyt.12661 – volume: 13 start-page: 9 issue: 1 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib31 article-title: Proteomic and lipidomic analysis of exosomes derived from ovarian cancer cells and ovarian surface epithelial cells publication-title: J. Ovarian Res. doi: 10.1186/s13048-020-0609-y – volume: 50 start-page: 1 issue: 9 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib30 article-title: The implications of signaling lipids in cancer metastasis publication-title: Exp. Mol. Med. doi: 10.1038/s12276-018-0150-x – volume: 15 start-page: 86 issue: 6 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib32 article-title: Metabolomics identifies serum and exosomes metabolite markers of pancreatic cancer publication-title: Metabolomics doi: 10.1007/s11306-019-1550-1 – volume: 16 start-page: 669 issue: 4 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib88 article-title: Characterization and evidence of the miR-888 cluster as a novel cancer network in prostate publication-title: Mol. Cancer Res. doi: 10.1158/1541-7786.MCR-17-0321 – volume: 121 start-page: 2118 issue: 3 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib154 article-title: Exosome circ_0044516 promotes prostate cancer cell proliferation and metastasis as a potential biomarker publication-title: J. Cell. Biochem. doi: 10.1002/jcb.28239 – volume: 21 start-page: 911 issue: 9 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib134 article-title: Implications of Bcl-2 and its interplay with other molecules and signaling pathways in prostate cancer progression publication-title: Expert Opin. Ther. Targets doi: 10.1080/14728222.2017.1369044 – volume: 216 issue: 11 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib87 article-title: circCRKL suppresses the progression of prostate cancer cells by regulating the miR-141/KLF5 axis publication-title: Pathol. Res. Pract. doi: 10.1016/j.prp.2020.153182 – volume: 392 start-page: 2052 issue: 10159 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib4 article-title: Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories publication-title: Lancet doi: 10.1016/S0140-6736(18)31694-5 – volume: 8 start-page: 8822 issue: 1 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib26 article-title: Extracellular vesicles with altered tetraspanin CD9 and CD151 levels confer increased prostate cell motility and invasion publication-title: Sci. Rep. doi: 10.1038/s41598-018-27180-z – volume: 22 start-page: 522 issue: 4 year: 2015 ident: 10.1016/j.ncrna.2024.07.003_bib79 article-title: JunB and PTEN in prostate cancer: 'loss is nothing else than change' publication-title: Cell Death Differ. doi: 10.1038/cdd.2014.232 – volume: 187 start-page: 172 issue: 3 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib13 article-title: Strand displacement-triggered G-quadruplex/rolling circle amplification strategy for the ultra-sensitive electrochemical sensing of exosomal microRNAs publication-title: Mikrochim. Acta doi: 10.1007/s00604-020-4143-9 – volume: 13 start-page: 11595 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib70 article-title: Functional implication of exosomal miR-217 and miR-23b-3p in the progression of prostate cancer publication-title: OncoTargets Ther. doi: 10.2147/OTT.S272869 – volume: 9 start-page: 258 issue: 1 year: 2010 ident: 10.1016/j.ncrna.2024.07.003_bib112 article-title: Runx2 transcriptome of prostate cancer cells: insights into invasiveness and bone metastasis publication-title: Mol. Cancer doi: 10.1186/1476-4598-9-258 – volume: 10 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib142 article-title: Long non-coding RNA SNHG1 regulates the Wnt/beta-catenin and PI3K/AKT/mTOR signaling pathways via EZH2 to affect the proliferation, apoptosis, and autophagy of prostate cancer cell publication-title: Front. Oncol. – volume: 19 start-page: 201 issue: 4 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib19 article-title: Prostate luminal progenitor cells: from mouse to human, from health to disease publication-title: Nat. Rev. Urol. doi: 10.1038/s41585-021-00561-2 – volume: 12 start-page: 53 issue: 1 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib81 article-title: Exosome-mediated communication in the tumor microenvironment contributes to hepatocellular carcinoma development and progression publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-019-0739-0 – volume: 8 issue: 1 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib20 article-title: Shedding light on extracellular vesicle biogenesis and bioengineering publication-title: Adv. Sci. doi: 10.1002/advs.202003505 – volume: 19 start-page: 117 issue: 1 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib58 article-title: Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-beta1 axis publication-title: Mol. Cancer doi: 10.1186/s12943-020-01235-0 – volume: 19 start-page: 562 issue: 9 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib6 article-title: Serum PSA-based early detection of prostate cancer in Europe and globally: past, present and future publication-title: Nat. Rev. Urol. doi: 10.1038/s41585-022-00638-6 – volume: 20 start-page: 351 issue: 4 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib129 article-title: EAF2 and p53 Co-regulate STAT3 activation in prostate cancer publication-title: Neoplasia doi: 10.1016/j.neo.2018.01.011 – volume: 144 start-page: 646 issue: 5 year: 2011 ident: 10.1016/j.ncrna.2024.07.003_bib44 article-title: Hallmarks of cancer: the next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 23 issue: 11 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib85 article-title: Secreted miR-153 controls proliferation and invasion of higher Gleason score prostate cancer publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23116339 – volume: 123 start-page: 1057 issue: 3 year: 2013 ident: 10.1016/j.ncrna.2024.07.003_bib56 article-title: Hypoxia-responsive miRNAs target argonaute 1 to promote angiogenesis publication-title: J. Clin. Invest. doi: 10.1172/JCI65344 – volume: 1095 start-page: 101 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib158 article-title: Epithelial-mesenchymal transition (EMT) and prostate cancer publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-95693-0_6 – volume: 6 year: 2016 ident: 10.1016/j.ncrna.2024.07.003_bib190 article-title: Exosomal miR-10a derived from amniotic fluid stem cells preserves ovarian follicles after chemotherapy publication-title: Sci. Rep. – volume: 10 issue: 3 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib119 article-title: Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1-5p publication-title: J. Extracell. Vesicles doi: 10.1002/jev2.12056 – volume: 10 start-page: 7656 issue: 17 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib132 article-title: TGF-Beta causes docetaxel resistance in prostate cancer via the induction of Bcl-2 by acetylated KLF5 and protein stabilization publication-title: Theranostics doi: 10.7150/thno.44567 – volume: 11 start-page: 466 issue: 6 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib86 article-title: KLF5 inhibits STAT3 activity and tumor metastasis in prostate cancer by suppressing IGF1 transcription cooperatively with HDAC1 publication-title: Cell Death Dis. doi: 10.1038/s41419-020-2671-1 – volume: 77 start-page: 573 issue: 6 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib51 article-title: Exosomal and non-exosomal urinary miRNAs in prostate cancer detection and prognosis publication-title: Prostate doi: 10.1002/pros.23295 – volume: 11 start-page: 31 year: 2011 ident: 10.1016/j.ncrna.2024.07.003_bib96 article-title: Epidermal Growth Factor Receptor (EGFR) mutation analysis, gene expression profiling and EGFR protein expression in primary prostate cancer publication-title: BMC Cancer doi: 10.1186/1471-2407-11-31 – volume: 10 start-page: 5313 issue: 1 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib57 article-title: Extracellular vesicles derived from human adipose-derived stem cells promote the exogenous angiogenesis of fat grafts via the let-7/AGO1/VEGF signalling pathway publication-title: Sci. Rep. doi: 10.1038/s41598-020-62140-6 – volume: 19 start-page: 367 issue: 6 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib3 article-title: Regulation and role of CAMKK2 in prostate cancer publication-title: Nat. Rev. Urol. doi: 10.1038/s41585-022-00588-z – volume: 40 start-page: 1697 issue: 5 year: 2012 ident: 10.1016/j.ncrna.2024.07.003_bib91 article-title: Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt publication-title: Int. J. Oncol. – volume: 22 start-page: 574 issue: 4 year: 2015 ident: 10.1016/j.ncrna.2024.07.003_bib78 article-title: Loss of JUNB/AP-1 promotes invasive prostate cancer publication-title: Cell Death Differ. doi: 10.1038/cdd.2014.213 – volume: 11 start-page: 88 year: 2013 ident: 10.1016/j.ncrna.2024.07.003_bib193 article-title: Exosomes are natural carriers of exogenous siRNA to human cells in vitro publication-title: Cell Commun. Signal. doi: 10.1186/1478-811X-11-88 – volume: 392 start-page: 1789 issue: 10159 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib8 publication-title: Lancet doi: 10.1016/S0140-6736(18)32279-7 – volume: 1876 issue: 2 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib166 article-title: miRNAs and androgen deprivation therapy for prostate cancer publication-title: Biochim. Biophys. Acta Rev. Canc – volume: 18 start-page: 75 issue: 1 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib27 article-title: Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance publication-title: Mol. Cancer doi: 10.1186/s12943-019-0991-5 – volume: 398 start-page: 1075 issue: 10305 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib7 article-title: Prostate cancer publication-title: Lancet doi: 10.1016/S0140-6736(21)00950-8 – volume: 8 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib183 article-title: The identification of plasma exosomal miR-423-3p as a potential predictive biomarker for prostate cancer castration-resistance development by plasma exosomal miRNA sequencing publication-title: Front. Cell Dev. Biol. – volume: 16 start-page: 149 issue: 2 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib168 article-title: Digital rectal examination for prostate cancer screening in primary care: a systematic review and meta-analysis publication-title: Ann. Fam. Med. doi: 10.1370/afm.2205 – volume: 214 start-page: 295 issue: 2 year: 2008 ident: 10.1016/j.ncrna.2024.07.003_bib89 article-title: Importance of Ezh2 polycomb protein in tumorigenesis process interfering with the pathway of growth suppressive key elements publication-title: J. Cell. Physiol. doi: 10.1002/jcp.21241 – volume: 6 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib28 article-title: Proteomic analysis of circulating extracellular vesicles publication-title: Sci. Adv. doi: 10.1126/sciadv.aba5714 – volume: 25 start-page: 981 issue: 8 year: 2015 ident: 10.1016/j.ncrna.2024.07.003_bib41 article-title: Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis publication-title: Cell Res. doi: 10.1038/cr.2015.82 – volume: 135 start-page: 584 issue: 5 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib2 article-title: Cancer statistics in China and United States, 2022: profiles, trends, and determinants publication-title: Chinese Med J doi: 10.1097/CM9.0000000000002108 – volume: 12 start-page: 1129 issue: 12 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib143 article-title: Exosomal long noncoding RNA HOXD-AS1 promotes prostate cancer metastasis via miR-361-5p/FOXM1 axis publication-title: Cell Death Dis. doi: 10.1038/s41419-021-04421-0 – volume: 1 start-page: 53 issue: 1 year: 2015 ident: 10.1016/j.ncrna.2024.07.003_bib36 article-title: Exosomal non-coding RNAs: diagnostic, prognostic and therapeutic applications in cancer publication-title: Noncoding RNA – volume: 5 start-page: 2723 issue: 9 year: 2014 ident: 10.1016/j.ncrna.2024.07.003_bib64 article-title: Oncogenic functions of IGF1R and INSR in prostate cancer include enhanced tumor growth, cell migration and angiogenesis publication-title: Oncotarget doi: 10.18632/oncotarget.1884 – volume: 39 start-page: 542 issue: 4 year: 2018 ident: 10.1016/j.ncrna.2024.07.003_bib192 article-title: Exosomal cargo-loading and synthetic exosome-mimics as potential therapeutic tools publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2017.178 – volume: 16 start-page: 156 issue: 1 year: 2017 ident: 10.1016/j.ncrna.2024.07.003_bib170 article-title: Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes publication-title: Mol. Cancer doi: 10.1186/s12943-017-0726-4 – volume: 21 start-page: 145 issue: 1 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib65 article-title: Inhibition of cancer cell-derived exosomal microRNA-183 suppresses cell growth and metastasis in prostate cancer by upregulating TPM1 publication-title: Cancer Cell Int. doi: 10.1186/s12935-020-01686-x – volume: 2022 year: 2022 ident: 10.1016/j.ncrna.2024.07.003_bib66 article-title: Integrative analysis of bulk RNA-Seq and single-cell RNA-Seq unveils the characteristics of the immune microenvironment and prognosis signature in prostate cancer publication-title: J. Oncol. – volume: 57 start-page: 540 issue: 2 year: 2020 ident: 10.1016/j.ncrna.2024.07.003_bib95 article-title: MicroRNA-137 regulates hypoxia-mediated migration and epithelial-mesenchymal transition in prostate cancer by targeting LGR4 via the EGFR/ERK signaling pathway publication-title: Int. J. Oncol. doi: 10.3892/ijo.2020.5064 – volume: 15 start-page: 1835 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib161 article-title: Exosomal circ-XIAP promotes docetaxel resistance in prostate cancer by regulating miR-1182/TPD52 Axis publication-title: Drug Des. Dev. Ther. doi: 10.2147/DDDT.S300376 – volume: 9 start-page: 19723 issue: 17 year: 2024 ident: 10.1016/j.ncrna.2024.07.003_bib169 article-title: Dumbbell dual-hairpin triggered DNA nanonet assembly for cascade-amplified sensing of exosomal MicroRNA publication-title: ACS Omega doi: 10.1021/acsomega.4c02652 – volume: 18 start-page: 116 issue: 1 year: 2019 ident: 10.1016/j.ncrna.2024.07.003_bib17 article-title: Exosomal circRNAs: biogenesis, effect and application in human diseases publication-title: Mol. Cancer doi: 10.1186/s12943-019-1041-z – volume: 13 start-page: 25 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib171 article-title: Identification of urinary exosomal miRNAs for the non-invasive diagnosis of prostate cancer publication-title: Cancer Manag. Res. doi: 10.2147/CMAR.S272140 – volume: 20 start-page: 99 issue: 1 year: 2021 ident: 10.1016/j.ncrna.2024.07.003_bib42 article-title: Exosome-derived noncoding RNAs in gastric cancer: functions and clinical applications publication-title: Mol. Cancer doi: 10.1186/s12943-021-01396-6 |
SSID | ssj0001826664 |
Score | 2.3270283 |
SecondaryResourceType | review_article |
Snippet | Prostate cancer (PCa) has the highest frequency of diagnosis among solid tumors and ranks second as the primary cause of cancer-related deaths. Non-coding RNAs... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1351 |
SubjectTerms | Biomarkers Exosomes Modulators Non-coding RNAs Prostate cancer |
Title | Current landscape of exosomal non-coding RNAs in prostate cancer: Modulators and biomarkers |
URI | https://dx.doi.org/10.1016/j.ncrna.2024.07.003 https://www.ncbi.nlm.nih.gov/pubmed/39247145 https://www.proquest.com/docview/3102072335 https://doaj.org/article/f6405789a2db4a2a89b2180244cc0d03 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PSx0xEA7Fk5fij7Y-tZKC9ORiTLLJbm-vUhFBD6WC4CEkkw0odVfePqH97zuT3X3Yg_bS65LNDjOzzDfJzDeMHaLLhphEKEQjdYH43xc1VFCIVDeQypNYK2pOvrwy59f64qa8eTbqi2rCBnrgQXHHyRCkqGovY9Be-qoOkljLtAYQceD5xJj3LJnKpyuImo3RE81QLuhqAW2DGaHUma5zGpM1hqLM2P9XRHoJcebIc7bB3o6Qkc8HUTfZm6bdYtvzFtPlh9_8M89FnPl0fJvdjnxLPLfwUnET7xJvfnV994B7YK5fQEfhin-_mvf8ruWP1PaBgJMD2X_xhV92kUZ6dYue4x6c-vOphGfRv2PXZ99-nJ4X4_yEArQVy8KWCJ0x3UEEGEHYIJIAABnCSdC1qlKVUJXSyAhayco0ddQWc2tZRh88VFq9Z2soV7PDOKZh1lgQAi2gjbfeq4S5VaVC7W0wfsbkpEoHI7k4zbj46aYqsnuX9e9I_07QpbeasaPVS48Dt8bry7-SjVZLiRg7P0B3caO7uH-5y4yZycJuxBgDdsCt7l7_-qfJHxz-gXSt4tume-odAmQprFSqnLEPg6OsZET0idFfl7v_Q_Y9tk4CDcU0-2xtuXhqPiIkWoaD7P1_APaWB4U |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current+landscape+of+exosomal+non-coding+RNAs+in+prostate+cancer%3A+Modulators+and+biomarkers&rft.jtitle=Non-coding+RNA+research&rft.au=Li%2C+Yongxing&rft.au=Tang%2C+Xiaoqi&rft.au=Wang%2C+Binpan&rft.au=Chen%2C+Ming&rft.date=2024-12-01&rft.issn=2468-0540&rft.eissn=2468-0540&rft.volume=9&rft.issue=4&rft.spage=1351&rft.epage=1362&rft_id=info:doi/10.1016%2Fj.ncrna.2024.07.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ncrna_2024_07_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-0540&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-0540&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-0540&client=summon |