Nrf2 signaling attenuates epithelial-to-mesenchymal transition and renal interstitial fibrosis via PI3K/Akt signaling pathways

Nrf2 constitutes a therapeutic reference point for renal fibrosis and chronic kidney diseases. Nrf2-related signaling pathways are recognized to temper endothelial-to-mesenchymal transition (EMT) in fibrotic tissue. Nevertheless, the mechanism by which Nrf2 mitigates renal interstitial fibrosis is i...

Full description

Saved in:
Bibliographic Details
Published inExperimental and molecular pathology Vol. 111; p. 104296
Main Authors Wang, Jun, Zhu, Haobo, Huang, Liqu, Zhu, Xiaojiang, Sha, Jintong, Li, Guogen, Ma, Geng, Zhang, Wei, Gu, Min, Guo, Yunfei
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nrf2 constitutes a therapeutic reference point for renal fibrosis and chronic kidney diseases. Nrf2-related signaling pathways are recognized to temper endothelial-to-mesenchymal transition (EMT) in fibrotic tissue. Nevertheless, the mechanism by which Nrf2 mitigates renal interstitial fibrosis is imprecise. The relationship between Nrf2 and renal interstitial fibrosis was investigated using the unilateral ureteral obstruction (UUO) model of Nrf2−/− mice. The mice were separated into four groups, based on the treatment and intervention: Nrf2−/− + UUO, Nrf2−/− + Sham, WT + UUO and WT + Sham. Histological examination of renal tissue following the hematoxylin-eosin and Masson staining was carried out, as well as immunohistochemical staining. Additionally, to confirm the in vivo discoveries, in vitro experiments with HK-2 cells were also performed. The Nrf2−/− + UUO group showed more severe renal interstitial fibrosis compared to the WT + UUO, Nrf2−/− + Sham and WT + Sham groups. Furthermore, the manifestations of α-SMA and Fibronectin significantly increased, and the manifestation of E-cadherin considerably decreased in kidney tissues from the group of Nrf2−/− + UUO, compared to the WT + UUO group. The Nrf2 protein level significantly decreased in HK-2 cells, in reaction to the TGF-β1 concentration. In addition, the overexpression of Nrf2 presented contradictory results. What is more, the PI3K/Akt signaling pathway was discovered to be activated in the proteins extracted from cultured cells, and treated with Nrf2 siRNA and kidney tissues from the Nrf2−/− + UUO group. The results we obtained demonstrate that Nrf2 signaling pathway may perhaps offset the development of EMT, prompted by TGF-β1 and renal interstitial fibrosis. Likewise, the anti-fibrotic effect of Nrf2 was imparted by the inactivation of PI3K/Akt signaling. From our discoveries, we deliver new insight related to the prevention and treatment of kidney fibrosis.
AbstractList Nrf2 constitutes a therapeutic reference point for renal fibrosis and chronic kidney diseases. Nrf2-related signaling pathways are recognized to temper endothelial-to-mesenchymal transition (EMT) in fibrotic tissue. Nevertheless, the mechanism by which Nrf2 mitigates renal interstitial fibrosis is imprecise. The relationship between Nrf2 and renal interstitial fibrosis was investigated using the unilateral ureteral obstruction (UUO) model of Nrf2−/− mice. The mice were separated into four groups, based on the treatment and intervention: Nrf2−/− + UUO, Nrf2−/− + Sham, WT + UUO and WT + Sham. Histological examination of renal tissue following the hematoxylin-eosin and Masson staining was carried out, as well as immunohistochemical staining. Additionally, to confirm the in vivo discoveries, in vitro experiments with HK-2 cells were also performed. The Nrf2−/− + UUO group showed more severe renal interstitial fibrosis compared to the WT + UUO, Nrf2−/− + Sham and WT + Sham groups. Furthermore, the manifestations of α-SMA and Fibronectin significantly increased, and the manifestation of E-cadherin considerably decreased in kidney tissues from the group of Nrf2−/− + UUO, compared to the WT + UUO group. The Nrf2 protein level significantly decreased in HK-2 cells, in reaction to the TGF-β1 concentration. In addition, the overexpression of Nrf2 presented contradictory results. What is more, the PI3K/Akt signaling pathway was discovered to be activated in the proteins extracted from cultured cells, and treated with Nrf2 siRNA and kidney tissues from the Nrf2−/− + UUO group. The results we obtained demonstrate that Nrf2 signaling pathway may perhaps offset the development of EMT, prompted by TGF-β1 and renal interstitial fibrosis. Likewise, the anti-fibrotic effect of Nrf2 was imparted by the inactivation of PI3K/Akt signaling. From our discoveries, we deliver new insight related to the prevention and treatment of kidney fibrosis.
Nrf2 constitutes a therapeutic reference point for renal fibrosis and chronic kidney diseases. Nrf2-related signaling pathways are recognized to temper endothelial-to-mesenchymal transition (EMT) in fibrotic tissue. Nevertheless, the mechanism by which Nrf2 mitigates renal interstitial fibrosis is imprecise.BACKGROUNDNrf2 constitutes a therapeutic reference point for renal fibrosis and chronic kidney diseases. Nrf2-related signaling pathways are recognized to temper endothelial-to-mesenchymal transition (EMT) in fibrotic tissue. Nevertheless, the mechanism by which Nrf2 mitigates renal interstitial fibrosis is imprecise.The relationship between Nrf2 and renal interstitial fibrosis was investigated using the unilateral ureteral obstruction (UUO) model of Nrf2-/- mice. The mice were separated into four groups, based on the treatment and intervention: Nrf2-/- + UUO, Nrf2-/- + Sham, WT + UUO and WT + Sham. Histological examination of renal tissue following the hematoxylin-eosin and Masson staining was carried out, as well as immunohistochemical staining. Additionally, to confirm the in vivo discoveries, in vitro experiments with HK-2 cells were also performed.METHODSThe relationship between Nrf2 and renal interstitial fibrosis was investigated using the unilateral ureteral obstruction (UUO) model of Nrf2-/- mice. The mice were separated into four groups, based on the treatment and intervention: Nrf2-/- + UUO, Nrf2-/- + Sham, WT + UUO and WT + Sham. Histological examination of renal tissue following the hematoxylin-eosin and Masson staining was carried out, as well as immunohistochemical staining. Additionally, to confirm the in vivo discoveries, in vitro experiments with HK-2 cells were also performed.The Nrf2-/- + UUO group showed more severe renal interstitial fibrosis compared to the WT + UUO, Nrf2-/- + Sham and WT + Sham groups. Furthermore, the manifestations of α-SMA and Fibronectin significantly increased, and the manifestation of E-cadherin considerably decreased in kidney tissues from the group of Nrf2-/- + UUO, compared to the WT + UUO group. The Nrf2 protein level significantly decreased in HK-2 cells, in reaction to the TGF-β1 concentration. In addition, the overexpression of Nrf2 presented contradictory results. What is more, the PI3K/Akt signaling pathway was discovered to be activated in the proteins extracted from cultured cells, and treated with Nrf2 siRNA and kidney tissues from the Nrf2-/- + UUO group.RESULTSThe Nrf2-/- + UUO group showed more severe renal interstitial fibrosis compared to the WT + UUO, Nrf2-/- + Sham and WT + Sham groups. Furthermore, the manifestations of α-SMA and Fibronectin significantly increased, and the manifestation of E-cadherin considerably decreased in kidney tissues from the group of Nrf2-/- + UUO, compared to the WT + UUO group. The Nrf2 protein level significantly decreased in HK-2 cells, in reaction to the TGF-β1 concentration. In addition, the overexpression of Nrf2 presented contradictory results. What is more, the PI3K/Akt signaling pathway was discovered to be activated in the proteins extracted from cultured cells, and treated with Nrf2 siRNA and kidney tissues from the Nrf2-/- + UUO group.The results we obtained demonstrate that Nrf2 signaling pathway may perhaps offset the development of EMT, prompted by TGF-β1 and renal interstitial fibrosis. Likewise, the anti-fibrotic effect of Nrf2 was imparted by the inactivation of PI3K/Akt signaling. From our discoveries, we deliver new insight related to the prevention and treatment of kidney fibrosis.CONCLUSIONSThe results we obtained demonstrate that Nrf2 signaling pathway may perhaps offset the development of EMT, prompted by TGF-β1 and renal interstitial fibrosis. Likewise, the anti-fibrotic effect of Nrf2 was imparted by the inactivation of PI3K/Akt signaling. From our discoveries, we deliver new insight related to the prevention and treatment of kidney fibrosis.
Nrf2 constitutes a therapeutic reference point for renal fibrosis and chronic kidney diseases. Nrf2-related signaling pathways are recognized to temper endothelial-to-mesenchymal transition (EMT) in fibrotic tissue. Nevertheless, the mechanism by which Nrf2 mitigates renal interstitial fibrosis is imprecise. The relationship between Nrf2 and renal interstitial fibrosis was investigated using the unilateral ureteral obstruction (UUO) model of Nrf2 mice. The mice were separated into four groups, based on the treatment and intervention: Nrf2  + UUO, Nrf2  + Sham, WT + UUO and WT + Sham. Histological examination of renal tissue following the hematoxylin-eosin and Masson staining was carried out, as well as immunohistochemical staining. Additionally, to confirm the in vivo discoveries, in vitro experiments with HK-2 cells were also performed. The Nrf2  + UUO group showed more severe renal interstitial fibrosis compared to the WT + UUO, Nrf2  + Sham and WT + Sham groups. Furthermore, the manifestations of α-SMA and Fibronectin significantly increased, and the manifestation of E-cadherin considerably decreased in kidney tissues from the group of Nrf2  + UUO, compared to the WT + UUO group. The Nrf2 protein level significantly decreased in HK-2 cells, in reaction to the TGF-β1 concentration. In addition, the overexpression of Nrf2 presented contradictory results. What is more, the PI3K/Akt signaling pathway was discovered to be activated in the proteins extracted from cultured cells, and treated with Nrf2 siRNA and kidney tissues from the Nrf2  + UUO group. The results we obtained demonstrate that Nrf2 signaling pathway may perhaps offset the development of EMT, prompted by TGF-β1 and renal interstitial fibrosis. Likewise, the anti-fibrotic effect of Nrf2 was imparted by the inactivation of PI3K/Akt signaling. From our discoveries, we deliver new insight related to the prevention and treatment of kidney fibrosis.
ArticleNumber 104296
Author Zhu, Haobo
Huang, Liqu
Guo, Yunfei
Zhang, Wei
Li, Guogen
Wang, Jun
Gu, Min
Zhu, Xiaojiang
Sha, Jintong
Ma, Geng
Author_xml – sequence: 1
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  organization: Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
– sequence: 2
  givenname: Haobo
  surname: Zhu
  fullname: Zhu, Haobo
  organization: Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
– sequence: 3
  givenname: Liqu
  surname: Huang
  fullname: Huang, Liqu
  organization: Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
– sequence: 4
  givenname: Xiaojiang
  surname: Zhu
  fullname: Zhu, Xiaojiang
  organization: Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
– sequence: 5
  givenname: Jintong
  surname: Sha
  fullname: Sha, Jintong
  organization: Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
– sequence: 6
  givenname: Guogen
  surname: Li
  fullname: Li, Guogen
  organization: Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
– sequence: 7
  givenname: Geng
  surname: Ma
  fullname: Ma, Geng
  organization: Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
– sequence: 8
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
– sequence: 9
  givenname: Min
  surname: Gu
  fullname: Gu, Min
  email: njmuwzj1990@hotmail.com
  organization: Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
– sequence: 10
  givenname: Yunfei
  surname: Guo
  fullname: Guo, Yunfei
  email: guozhaooso@163.com.cn
  organization: Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31449784$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vEzEQxS1URNPCJ0BCe-Sy6YzXSbwHDlXFn4oKOMDZmnjHjcOud7GdQi58dhzSSohD52LN6P1m5PfOxEkYAwvxEmGOgMuL7XzPv4ZpLgHbMlGyXT4RM4R2WUOrFidiBoCqVhrgVJyltAWAFlA-E6cNKtWutJqJ35-ik1Xyt4F6H24rypnDjjKniiefN9x76us81gMnDnazH6ivcqSQfPZjqCh0VeQCVz5kjimXcWmcX8cx-VTdeaq-XDcfLy6_53_OTJQ3P2mfnounjvrEL-7fc_Ht3duvVx_qm8_vr68ub2qrVpDrFTruEJ0DWiCBc46QbCnuqLENNU5rkIqAUTu7cFrhain1eom2CHXTnIvXx71THH_sOGUz-GS57ynwuEtGSo0IstWySF_dS3frgTszRT9Q3JsHz4qgPQps-WKK7Iz1mQ5uFF98bxDMIR-zNX_zMYd8zDGfwjb_sQ_rH6feHCkuFt15jiZZX9Lgzke22XSjf5T_A5hVrh4
CitedBy_id crossref_primary_10_3389_fmolb_2021_707461
crossref_primary_10_1186_s43094_024_00757_4
crossref_primary_10_1016_j_exer_2024_109823
crossref_primary_10_1016_j_fbio_2024_103656
crossref_primary_10_25259_Cytojournal_62_2024
crossref_primary_10_3389_fcell_2021_580754
crossref_primary_10_1016_j_fct_2022_112892
crossref_primary_10_3389_fphar_2022_873023
crossref_primary_10_1093_burnst_tkac011
crossref_primary_10_3390_antiox9111134
crossref_primary_10_23876_j_krcp_23_156
crossref_primary_10_7717_peerj_16042
crossref_primary_10_1002_ptr_8460
crossref_primary_10_1016_j_labinv_2022_100016
crossref_primary_10_1007_s00210_019_01801_4
crossref_primary_10_1016_j_freeradbiomed_2021_05_034
crossref_primary_10_3389_fimmu_2024_1304167
crossref_primary_10_3390_antiox13121454
crossref_primary_10_1016_j_intimp_2021_108323
crossref_primary_10_3390_cancers14174316
crossref_primary_10_1093_jpp_rgab097
crossref_primary_10_3892_etm_2021_10924
crossref_primary_10_3390_molecules30010020
crossref_primary_10_1016_j_biopha_2023_116094
crossref_primary_10_3390_ijms24076017
crossref_primary_10_1007_s12033_023_00697_z
crossref_primary_10_1177_09603271231215499
crossref_primary_10_1186_s12951_022_01435_4
crossref_primary_10_3389_fnins_2024_1416522
crossref_primary_10_1007_s10528_024_10830_5
crossref_primary_10_1016_j_heliyon_2023_e23535
crossref_primary_10_1016_j_jep_2023_117242
crossref_primary_10_1007_s43440_024_00578_5
crossref_primary_10_1155_2022_2265725
crossref_primary_10_1038_s41419_023_05778_0
crossref_primary_10_1089_jmf_2022_K_0152
crossref_primary_10_7717_peerj_10926
crossref_primary_10_3390_antiox11061112
crossref_primary_10_3389_fimmu_2025_1458341
crossref_primary_10_1016_j_jff_2025_106729
crossref_primary_10_1111_febs_16382
crossref_primary_10_1007_s11255_024_03989_8
crossref_primary_10_1155_2022_3920664
crossref_primary_10_1021_acs_jafc_1c06223
Cites_doi 10.18632/oncotarget.14747
10.3390/ijms17081327
10.1016/S0140-6736(68)90589-8
10.1152/ajprenal.00701.2010
10.1016/j.biopha.2015.01.032
10.2353/ajpath.2006.051113
10.1097/01.ASN.0000077411.98742.54
10.1097/01.ASN.0000106015.29070.E7
10.1371/journal.pone.0045870
10.1681/ASN.2008050513
10.1172/JCI0215518
10.1016/j.freeradbiomed.2016.11.015
10.3109/08923973.2015.1127382
10.1111/j.1532-849X.1995.tb00351.x
10.7150/ijms.13187
10.1016/j.taap.2016.05.009
10.1016/j.freeradbiomed.2010.01.021
10.1002/jbm.a.34902
10.5487/TR.2017.33.1.001
10.1093/ndt/15.suppl_6.44
10.1371/journal.pone.0093265
10.1007/s12272-014-0380-y
10.1016/S0002-9440(10)62518-7
10.1016/j.biopha.2017.02.052
10.3892/mmr.2014.2941
10.12659/AOT.899931
10.1016/j.pharep.2016.12.011
10.1016/j.ejphar.2017.02.021
10.1016/j.freeradbiomed.2011.02.029
10.1101/gad.13.1.76
10.3892/mmr.2015.3556
10.1016/j.kint.2016.09.030
10.18632/oncotarget.13931
10.1155/2016/4693801
10.1038/nrd.2015.13
10.3748/wjg.v23.i7.1203
10.1111/j.1476-5381.2010.01095.x
10.1146/annurev-pharmtox-011112-140320
10.1159/000147748
10.1172/JCI200320530
10.1038/ki.1996.303
ContentType Journal Article
Copyright 2019 The Authors
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 The Authors
– notice: Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.yexmp.2019.104296
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
EISSN 1096-0945
ExternalDocumentID 31449784
10_1016_j_yexmp_2019_104296
S0014480019301169
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29G
3O-
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFRF
ABGSF
ABJNI
ABLVK
ABMAC
ABMZM
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HDY
HLW
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LCYCR
LG5
LX2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SBG
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UHS
UNMZH
WUQ
X7M
XPP
ZGI
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c470t-71fed11ff0a51a0fffa1acccceda3c3a3f88024a0e18fc5f8417628b61ca1a833
IEDL.DBID .~1
ISSN 0014-4800
1096-0945
IngestDate Sun Aug 24 04:06:05 EDT 2025
Wed Feb 19 02:31:29 EST 2025
Tue Jul 01 01:56:49 EDT 2025
Thu Apr 24 23:11:11 EDT 2025
Fri Feb 23 02:40:39 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nrf2
Epithelial-to-mesenchymal transition
Kidney fibrosis
Language English
License This is an open access article under the CC BY license.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-71fed11ff0a51a0fffa1acccceda3c3a3f88024a0e18fc5f8417628b61ca1a833
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0014480019301169
PMID 31449784
PQID 2281102982
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2281102982
pubmed_primary_31449784
crossref_citationtrail_10_1016_j_yexmp_2019_104296
crossref_primary_10_1016_j_yexmp_2019_104296
elsevier_sciencedirect_doi_10_1016_j_yexmp_2019_104296
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Experimental and molecular pathology
PublicationTitleAlternate Exp Mol Pathol
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Krajka-Kuzniak, Paluszczak, Baer-Dubowska (bb0070) 2016; 69
Ma (bb0090) 2013; 53
Yang, Shi, Wu, Li, Zhang, Li (bb0185) 2017; 23
Xu, Kong (bb0180) 2017; 89
Yu, Strutz, Kipnis, White (bb0190) 1995; 4
Ha, Lee (bb0020) 2003; 14
Iwano, Plieth, Danoff, Xue, Okada, Neilson (bb0045) 2002; 110
Han, Chen, Gu, Shan, Zou, Liu (bb0025) 2017; 8
Sakai, Chun, Duffield, Lagares, Wada, Luster (bb0135) 2017; 91
Oh, Kim, Choi, Kim, Jeong, Bae (bb0105) 2012; 7
Zeisberg, Potenta, Sugimoto, Zeisberg, Kalluri (bb0200) 2008; 19
Marcucci, Stassi, De Maria (bb0100) 2016; 15
Okada, Inoue, Suzuki, Strutz, Neilson (bb0110) 2000; 15
Truong, Petrusevska, Yang, Gurpinar, Shappell, Lechago (bb0155) 1996; 50
Geismann, Arlt, Sebens, Schafer (bb0015) 2014; 7
Arellano-Buendia, Tostado-Gonzalez, Garcia-Arroyo, Cristobal-Garcia, Loredo-Mendoza, Tapia (bb0005) 2016; 2016
Kay, Kim, Ryu, Sung, Hwang, Kim (bb0060) 2011; 163
Wang, Liu, Su, Zhou, Sun, Du (bb0165) 2015; 70
Kang, Hyun (bb0055) 2017; 33
Wang, Han, Tao, Wang, Liu, Zhou (bb0170) 2016; 21
Zeisberg, Bonner, Maeshima, Colorado, Muller, Strutz (bb0195) 2001; 159
Lopez-Guisa, Rassa, Cai, Collins, Eddy (bb0085) 2011; 300
Zhang, He, Liang, Jiang, Liang, Chi (bb0210) 2016; 17
Wang, Ka, Lee, Park, Bae (bb0175) 2017; 799
Ryoo, Shin, Kang, Kwak (bb0130) 2015; 38
Soranno, Lu, Weber, Rai, Burdick (bb0145) 2014; 102
Hay (bb0030) 1995; 154
Sutariya, Jhonsa, Saraf (bb0150) 2016; 38
Chen, Xie, Huang, Gong, Zhu, Chen (bb0010) 2017; 102
Ma, Battelli, Hubbs (bb0095) 2006; 168
Zou, Gu, Cui, Lu, Gu (bb0220) 2017; 15
Qin, Yin, Yang, Zhang, Liu, Huang (bb0115) 2016; 304
Landolt, Eikrem, Strauss, Scherer, Lovett, Beisland (bb0075) 2017; 5
Zhang, Wei, Liu, Wang, He, Huang (bb0215) 2017; 8
Kalluri, Neilson (bb0050) 2003; 112
Shin, Park, Jung, Choi, Kim, Kim (bb0140) 2010; 48
Risdon, Sloper, De Wardener (bb0120) 1968; 2
Kim, Kim, Yoon, Chung, Choi, Park (bb0065) 2015; 12
Tsai, Ka, Chao, Chang, Lin, Li (bb0160) 2011; 50
He, Wang, Jia, Cui, Lu, Hu (bb0035) 2015; 11
Liu (bb0080) 2004; 15
Itoh, Wakabayashi, Katoh, Ishii, Igarashi, Engel (bb0040) 1999; 13
Ryoo, Ha, Kwak (bb0125) 2014; 9
Zhang, Liang, Guo, Liang, Jiang, Li (bb0205) 2015; 12
Sutariya (10.1016/j.yexmp.2019.104296_bb0150) 2016; 38
Ha (10.1016/j.yexmp.2019.104296_bb0020) 2003; 14
Truong (10.1016/j.yexmp.2019.104296_bb0155) 1996; 50
Kim (10.1016/j.yexmp.2019.104296_bb0065) 2015; 12
Zhang (10.1016/j.yexmp.2019.104296_bb0205) 2015; 12
Ma (10.1016/j.yexmp.2019.104296_bb0090) 2013; 53
Oh (10.1016/j.yexmp.2019.104296_bb0105) 2012; 7
Kay (10.1016/j.yexmp.2019.104296_bb0060) 2011; 163
Wang (10.1016/j.yexmp.2019.104296_bb0170) 2016; 21
Ryoo (10.1016/j.yexmp.2019.104296_bb0125) 2014; 9
Tsai (10.1016/j.yexmp.2019.104296_bb0160) 2011; 50
Lopez-Guisa (10.1016/j.yexmp.2019.104296_bb0085) 2011; 300
Marcucci (10.1016/j.yexmp.2019.104296_bb0100) 2016; 15
Shin (10.1016/j.yexmp.2019.104296_bb0140) 2010; 48
Hay (10.1016/j.yexmp.2019.104296_bb0030) 1995; 154
Wang (10.1016/j.yexmp.2019.104296_bb0165) 2015; 70
Han (10.1016/j.yexmp.2019.104296_bb0025) 2017; 8
Iwano (10.1016/j.yexmp.2019.104296_bb0045) 2002; 110
Wang (10.1016/j.yexmp.2019.104296_bb0175) 2017; 799
Risdon (10.1016/j.yexmp.2019.104296_bb0120) 1968; 2
Arellano-Buendia (10.1016/j.yexmp.2019.104296_bb0005) 2016; 2016
Chen (10.1016/j.yexmp.2019.104296_bb0010) 2017; 102
Yang (10.1016/j.yexmp.2019.104296_bb0185) 2017; 23
Sakai (10.1016/j.yexmp.2019.104296_bb0135) 2017; 91
Zeisberg (10.1016/j.yexmp.2019.104296_bb0195) 2001; 159
Ryoo (10.1016/j.yexmp.2019.104296_bb0130) 2015; 38
He (10.1016/j.yexmp.2019.104296_bb0035) 2015; 11
Qin (10.1016/j.yexmp.2019.104296_bb0115) 2016; 304
Kalluri (10.1016/j.yexmp.2019.104296_bb0050) 2003; 112
Krajka-Kuzniak (10.1016/j.yexmp.2019.104296_bb0070) 2016; 69
Geismann (10.1016/j.yexmp.2019.104296_bb0015) 2014; 7
Kang (10.1016/j.yexmp.2019.104296_bb0055) 2017; 33
Zhang (10.1016/j.yexmp.2019.104296_bb0210) 2016; 17
Okada (10.1016/j.yexmp.2019.104296_bb0110) 2000; 15
Liu (10.1016/j.yexmp.2019.104296_bb0080) 2004; 15
Yu (10.1016/j.yexmp.2019.104296_bb0190) 1995; 4
Itoh (10.1016/j.yexmp.2019.104296_bb0040) 1999; 13
Zhang (10.1016/j.yexmp.2019.104296_bb0215) 2017; 8
Zou (10.1016/j.yexmp.2019.104296_bb0220) 2017; 15
Xu (10.1016/j.yexmp.2019.104296_bb0180) 2017; 89
Ma (10.1016/j.yexmp.2019.104296_bb0095) 2006; 168
Zeisberg (10.1016/j.yexmp.2019.104296_bb0200) 2008; 19
Landolt (10.1016/j.yexmp.2019.104296_bb0075) 2017; 5
Soranno (10.1016/j.yexmp.2019.104296_bb0145) 2014; 102
References_xml – volume: 2
  start-page: 363
  year: 1968
  end-page: 366
  ident: bb0120
  article-title: Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis
  publication-title: Lancet.
– volume: 9
  year: 2014
  ident: bb0125
  article-title: Inhibitory role of the KEAP1-NRF2 pathway in TGFbeta1-stimulated renal epithelial transition to fibroblastic cells: a modulatory effect on SMAD signaling
  publication-title: PLoS ONE
– volume: 102
  start-page: 2173
  year: 2014
  end-page: 2180
  ident: bb0145
  article-title: Immunotherapy with injectable hydrogels to treat obstructive nephropathy
  publication-title: J. Biomed. Mater. Res. A
– volume: 15
  start-page: 448
  year: 2017
  end-page: 452
  ident: bb0220
  article-title: CXC chemokine receptor type 4 antagonism ameliorated allograft fibrosis in rat kidney transplant model
  publication-title: Exp. Clin. Transplant.
– volume: 304
  start-page: 1
  year: 2016
  end-page: 8
  ident: bb0115
  article-title: Sinomenine attenuates renal fibrosis through Nrf2-mediated inhibition of oxidative stress and TGFbeta signaling
  publication-title: Toxicol. Appl. Pharmacol.
– volume: 15
  start-page: 1
  year: 2004
  end-page: 12
  ident: bb0080
  article-title: Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention
  publication-title: J. Am. Soc. Nephrol.
– volume: 8
  start-page: 3773
  year: 2017
  end-page: 3780
  ident: bb0215
  article-title: Melatonin protects against arsenic trioxide-induced liver injury by the upregulation of Nrf2 expression through the activation of PI3K/AKT pathway
  publication-title: Oncotarget.
– volume: 4
  start-page: 251
  year: 1995
  end-page: 255
  ident: bb0190
  article-title: Effect of dynamic loading methods on cement film thickness in vitro
  publication-title: J. Prosthodont.
– volume: 70
  start-page: 260
  year: 2015
  end-page: 267
  ident: bb0165
  article-title: Epigallocatechin-3-gallate attenuates transforming growth factor-beta1 induced epithelial-mesenchymal transition via Nrf2 regulation in renal tubular epithelial cells
  publication-title: Biomed. Pharmacother.
– volume: 300
  start-page: F1244
  year: 2011
  end-page: F1254
  ident: bb0085
  article-title: Vitronectin accumulates in the interstitium but minimally impacts fibrogenesis in experimental chronic kidney disease
  publication-title: Am. J. Physiol. Ren. Physiol.
– volume: 33
  start-page: 1
  year: 2017
  end-page: 5
  ident: bb0055
  article-title: Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance
  publication-title: Toxicol. Res.
– volume: 799
  start-page: 201
  year: 2017
  end-page: 210
  ident: bb0175
  article-title: Butein induction of HO-1 by p38 MAPK/Nrf2 pathway in adipocytes attenuates high-fat diet induced adipose hypertrophy in mice
  publication-title: Eur. J. Pharmacol.
– volume: 159
  start-page: 1313
  year: 2001
  end-page: 1321
  ident: bb0195
  article-title: Renal fibrosis: collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation
  publication-title: Am. J. Pathol.
– volume: 89
  start-page: 991
  year: 2017
  end-page: 1004
  ident: bb0180
  article-title: Bixin ameliorates high fat diet-induced cardiac injury in mice through inflammation and oxidative stress suppression
  publication-title: Biomed. Pharmacother.
– volume: 50
  start-page: 200
  year: 1996
  end-page: 207
  ident: bb0155
  article-title: Cell apoptosis and proliferation in experimental chronic obstructive uropathy
  publication-title: Kidney Int.
– volume: 21
  start-page: 775
  year: 2016
  end-page: 783
  ident: bb0170
  article-title: Transforming growth factor-beta1 induces endothelial-to-mesenchymal transition via Akt signaling pathway in renal transplant recipients with chronic allograft dysfunction
  publication-title: Ann. Transplant.
– volume: 112
  start-page: 1776
  year: 2003
  end-page: 1784
  ident: bb0050
  article-title: Epithelial-mesenchymal transition and its implications for fibrosis
  publication-title: J. Clin. Invest.
– volume: 50
  start-page: 1503
  year: 2011
  end-page: 1516
  ident: bb0160
  article-title: Antroquinonol reduces oxidative stress by enhancing the Nrf2 signaling pathway and inhibits inflammation and sclerosis in focal segmental glomerulosclerosis mice
  publication-title: Free Radic. Biol. Med.
– volume: 163
  start-page: 1653
  year: 2011
  end-page: 1665
  ident: bb0060
  article-title: Nrf2-mediated liver protection by sauchinone, an antioxidant lignan, from acetaminophen toxicity through the PKCdelta-GSK3beta pathway
  publication-title: Br. J. Pharmacol.
– volume: 15
  start-page: 44
  year: 2000
  end-page: 46
  ident: bb0110
  article-title: Epithelial-mesenchymal transformation of renal tubular epithelial cells in vitro and in vivo
  publication-title: Nephrol. Dial. Transplant.
– volume: 168
  start-page: 1960
  year: 2006
  end-page: 1974
  ident: bb0095
  article-title: Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2
  publication-title: Am. J. Pathol.
– volume: 7
  year: 2012
  ident: bb0105
  article-title: Dimethylfumarate attenuates renal fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-beta/Smad signaling
  publication-title: PLoS ONE
– volume: 91
  start-page: 628
  year: 2017
  end-page: 641
  ident: bb0135
  article-title: Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor
  publication-title: Kidney Int.
– volume: 23
  start-page: 1203
  year: 2017
  end-page: 1214
  ident: bb0185
  article-title: Caffeic acid phenethyl ester up-regulates antioxidant levels in hepatic stellate cell line T6 via an Nrf2-mediated mitogen activated protein kinases pathway
  publication-title: World J. Gastroenterol.
– volume: 102
  start-page: 77
  year: 2017
  end-page: 86
  ident: bb0010
  article-title: Connexin43 regulates high glucose-induced expression of fibronectin, ICAM-1 and TGF-beta1 via Nrf2/ARE pathway in glomerular mesangial cells
  publication-title: Free Radic. Biol. Med.
– volume: 17
  year: 2016
  ident: bb0210
  article-title: Protective effects of berberine on renal injury in streptozotocin (STZ)-induced diabetic mice
  publication-title: Int. J. Mol. Sci.
– volume: 13
  start-page: 76
  year: 1999
  end-page: 86
  ident: bb0040
  article-title: Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain
  publication-title: Genes Dev.
– volume: 12
  start-page: 1347
  year: 2015
  end-page: 1355
  ident: bb0205
  article-title: Curcumin protects renal tubular epithelial cells from high glucose-induced epithelial-to-mesenchymal transition through Nrf2-mediated upregulation of heme oxygenase-1
  publication-title: Mol. Med. Rep.
– volume: 2016
  year: 2016
  ident: bb0005
  article-title: Anti-inflammatory therapy modulates Nrf2-Keap1 in kidney from rats with diabetes
  publication-title: Oxidative Med. Cell. Longev.
– volume: 14
  start-page: S246
  year: 2003
  end-page: S249
  ident: bb0020
  article-title: Reactive oxygen species and matrix remodeling in diabetic kidney
  publication-title: J. Am. Soc. Nephrol.
– volume: 15
  start-page: 311
  year: 2016
  end-page: 325
  ident: bb0100
  article-title: Epithelial-mesenchymal transition: a new target in anticancer drug discovery
  publication-title: Nat. Rev. Drug Discov.
– volume: 5
  year: 2017
  ident: bb0075
  article-title: Clear cell renal cell carcinoma is linked to epithelial-to-mesenchymal transition and to fibrosis
  publication-title: Phys. Rep.
– volume: 38
  start-page: 272
  year: 2015
  end-page: 281
  ident: bb0130
  article-title: Involvement of Nrf2-GSH signaling in TGFbeta1-stimulated epithelial-to-mesenchymal transition changes in rat renal tubular cells
  publication-title: Arch. Pharm. Res.
– volume: 7
  start-page: 1497
  year: 2014
  end-page: 1518
  ident: bb0015
  article-title: Cytoprotection "gone astray": Nrf2 and its role in cancer
  publication-title: Onco Targets Ther.
– volume: 53
  start-page: 401
  year: 2013
  end-page: 426
  ident: bb0090
  article-title: Role of nrf2 in oxidative stress and toxicity
  publication-title: Annu. Rev. Pharmacol. Toxicol.
– volume: 110
  start-page: 341
  year: 2002
  end-page: 350
  ident: bb0045
  article-title: Evidence that fibroblasts derive from epithelium during tissue fibrosis
  publication-title: J. Clin. Invest.
– volume: 38
  start-page: 39
  year: 2016
  end-page: 49
  ident: bb0150
  article-title: TGF-beta: the connecting link between nephropathy and fibrosis
  publication-title: Immunopharmacol. Immunotoxicol.
– volume: 8
  start-page: 14680
  year: 2017
  end-page: 14692
  ident: bb0025
  article-title: Cytoprotective effect of chlorogenic acid against hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells through PI3K/Akt-mediated Nrf2/HO-1 signaling pathway
  publication-title: Oncotarget.
– volume: 154
  start-page: 8
  year: 1995
  end-page: 20
  ident: bb0030
  article-title: An overview of epithelio-mesenchymal transformation
  publication-title: Acta Anat.
– volume: 12
  start-page: 891
  year: 2015
  end-page: 904
  ident: bb0065
  article-title: Fimasartan, a novel angiotensin-receptor blocker, protects against renal inflammation and fibrosis in mice with unilateral ureteral obstruction: the possible role of Nrf2
  publication-title: Int. J. Med. Sci.
– volume: 11
  start-page: 2199
  year: 2015
  end-page: 2206
  ident: bb0035
  article-title: Calcium ions promote primary renal epithelial cell differentiation into cells with bone-associated phenotypes via transforming growth factor-beta1-induced epithelial-mesenchymal transition in idiopathic hypercalciuria patients
  publication-title: Mol. Med. Rep.
– volume: 69
  start-page: 393
  year: 2016
  end-page: 402
  ident: bb0070
  article-title: The Nrf2-ARE signaling pathway: an update on its regulation and possible role in cancer prevention and treatment
  publication-title: Pharmacol. Rep.
– volume: 48
  start-page: 1051
  year: 2010
  end-page: 1063
  ident: bb0140
  article-title: The NRF2-heme oxygenase-1 system modulates cyclosporin A-induced epithelial-mesenchymal transition and renal fibrosis
  publication-title: Free Radic. Biol. Med.
– volume: 19
  start-page: 2282
  year: 2008
  end-page: 2287
  ident: bb0200
  article-title: Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition
  publication-title: J. Am. Soc. Nephrol.
– volume: 8
  start-page: 14680
  issue: 9
  year: 2017
  ident: 10.1016/j.yexmp.2019.104296_bb0025
  article-title: Cytoprotective effect of chlorogenic acid against hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells through PI3K/Akt-mediated Nrf2/HO-1 signaling pathway
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.14747
– volume: 17
  issue: 8
  year: 2016
  ident: 10.1016/j.yexmp.2019.104296_bb0210
  article-title: Protective effects of berberine on renal injury in streptozotocin (STZ)-induced diabetic mice
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms17081327
– volume: 7
  start-page: 1497
  year: 2014
  ident: 10.1016/j.yexmp.2019.104296_bb0015
  article-title: Cytoprotection "gone astray": Nrf2 and its role in cancer
  publication-title: Onco Targets Ther.
– volume: 5
  issue: 11
  year: 2017
  ident: 10.1016/j.yexmp.2019.104296_bb0075
  article-title: Clear cell renal cell carcinoma is linked to epithelial-to-mesenchymal transition and to fibrosis
  publication-title: Phys. Rep.
– volume: 2
  start-page: 363
  issue: 7564
  year: 1968
  ident: 10.1016/j.yexmp.2019.104296_bb0120
  article-title: Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(68)90589-8
– volume: 300
  start-page: F1244
  issue: 5
  year: 2011
  ident: 10.1016/j.yexmp.2019.104296_bb0085
  article-title: Vitronectin accumulates in the interstitium but minimally impacts fibrogenesis in experimental chronic kidney disease
  publication-title: Am. J. Physiol. Ren. Physiol.
  doi: 10.1152/ajprenal.00701.2010
– volume: 70
  start-page: 260
  year: 2015
  ident: 10.1016/j.yexmp.2019.104296_bb0165
  article-title: Epigallocatechin-3-gallate attenuates transforming growth factor-beta1 induced epithelial-mesenchymal transition via Nrf2 regulation in renal tubular epithelial cells
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2015.01.032
– volume: 168
  start-page: 1960
  issue: 6
  year: 2006
  ident: 10.1016/j.yexmp.2019.104296_bb0095
  article-title: Multiorgan autoimmune inflammation, enhanced lymphoproliferation, and impaired homeostasis of reactive oxygen species in mice lacking the antioxidant-activated transcription factor Nrf2
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2006.051113
– volume: 14
  start-page: S246
  issue: 8 Suppl 3
  year: 2003
  ident: 10.1016/j.yexmp.2019.104296_bb0020
  article-title: Reactive oxygen species and matrix remodeling in diabetic kidney
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1097/01.ASN.0000077411.98742.54
– volume: 15
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.yexmp.2019.104296_bb0080
  article-title: Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1097/01.ASN.0000106015.29070.E7
– volume: 7
  issue: 10
  year: 2012
  ident: 10.1016/j.yexmp.2019.104296_bb0105
  article-title: Dimethylfumarate attenuates renal fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-beta/Smad signaling
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0045870
– volume: 19
  start-page: 2282
  issue: 12
  year: 2008
  ident: 10.1016/j.yexmp.2019.104296_bb0200
  article-title: Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition
  publication-title: J. Am. Soc. Nephrol.
  doi: 10.1681/ASN.2008050513
– volume: 110
  start-page: 341
  issue: 3
  year: 2002
  ident: 10.1016/j.yexmp.2019.104296_bb0045
  article-title: Evidence that fibroblasts derive from epithelium during tissue fibrosis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0215518
– volume: 102
  start-page: 77
  year: 2017
  ident: 10.1016/j.yexmp.2019.104296_bb0010
  article-title: Connexin43 regulates high glucose-induced expression of fibronectin, ICAM-1 and TGF-beta1 via Nrf2/ARE pathway in glomerular mesangial cells
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.11.015
– volume: 38
  start-page: 39
  issue: 1
  year: 2016
  ident: 10.1016/j.yexmp.2019.104296_bb0150
  article-title: TGF-beta: the connecting link between nephropathy and fibrosis
  publication-title: Immunopharmacol. Immunotoxicol.
  doi: 10.3109/08923973.2015.1127382
– volume: 4
  start-page: 251
  issue: 4
  year: 1995
  ident: 10.1016/j.yexmp.2019.104296_bb0190
  article-title: Effect of dynamic loading methods on cement film thickness in vitro
  publication-title: J. Prosthodont.
  doi: 10.1111/j.1532-849X.1995.tb00351.x
– volume: 12
  start-page: 891
  issue: 11
  year: 2015
  ident: 10.1016/j.yexmp.2019.104296_bb0065
  article-title: Fimasartan, a novel angiotensin-receptor blocker, protects against renal inflammation and fibrosis in mice with unilateral ureteral obstruction: the possible role of Nrf2
  publication-title: Int. J. Med. Sci.
  doi: 10.7150/ijms.13187
– volume: 304
  start-page: 1
  year: 2016
  ident: 10.1016/j.yexmp.2019.104296_bb0115
  article-title: Sinomenine attenuates renal fibrosis through Nrf2-mediated inhibition of oxidative stress and TGFbeta signaling
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2016.05.009
– volume: 48
  start-page: 1051
  issue: 8
  year: 2010
  ident: 10.1016/j.yexmp.2019.104296_bb0140
  article-title: The NRF2-heme oxygenase-1 system modulates cyclosporin A-induced epithelial-mesenchymal transition and renal fibrosis
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2010.01.021
– volume: 102
  start-page: 2173
  issue: 7
  year: 2014
  ident: 10.1016/j.yexmp.2019.104296_bb0145
  article-title: Immunotherapy with injectable hydrogels to treat obstructive nephropathy
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.34902
– volume: 33
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.yexmp.2019.104296_bb0055
  article-title: Oxidative stress, Nrf2, and epigenetic modification contribute to anticancer drug resistance
  publication-title: Toxicol. Res.
  doi: 10.5487/TR.2017.33.1.001
– volume: 15
  start-page: 44
  issue: Suppl. 6
  year: 2000
  ident: 10.1016/j.yexmp.2019.104296_bb0110
  article-title: Epithelial-mesenchymal transformation of renal tubular epithelial cells in vitro and in vivo
  publication-title: Nephrol. Dial. Transplant.
  doi: 10.1093/ndt/15.suppl_6.44
– volume: 9
  issue: 4
  year: 2014
  ident: 10.1016/j.yexmp.2019.104296_bb0125
  article-title: Inhibitory role of the KEAP1-NRF2 pathway in TGFbeta1-stimulated renal epithelial transition to fibroblastic cells: a modulatory effect on SMAD signaling
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0093265
– volume: 38
  start-page: 272
  issue: 2
  year: 2015
  ident: 10.1016/j.yexmp.2019.104296_bb0130
  article-title: Involvement of Nrf2-GSH signaling in TGFbeta1-stimulated epithelial-to-mesenchymal transition changes in rat renal tubular cells
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/s12272-014-0380-y
– volume: 159
  start-page: 1313
  issue: 4
  year: 2001
  ident: 10.1016/j.yexmp.2019.104296_bb0195
  article-title: Renal fibrosis: collagen composition and assembly regulates epithelial-mesenchymal transdifferentiation
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)62518-7
– volume: 89
  start-page: 991
  year: 2017
  ident: 10.1016/j.yexmp.2019.104296_bb0180
  article-title: Bixin ameliorates high fat diet-induced cardiac injury in mice through inflammation and oxidative stress suppression
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.02.052
– volume: 11
  start-page: 2199
  issue: 3
  year: 2015
  ident: 10.1016/j.yexmp.2019.104296_bb0035
  article-title: Calcium ions promote primary renal epithelial cell differentiation into cells with bone-associated phenotypes via transforming growth factor-beta1-induced epithelial-mesenchymal transition in idiopathic hypercalciuria patients
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2014.2941
– volume: 21
  start-page: 775
  year: 2016
  ident: 10.1016/j.yexmp.2019.104296_bb0170
  article-title: Transforming growth factor-beta1 induces endothelial-to-mesenchymal transition via Akt signaling pathway in renal transplant recipients with chronic allograft dysfunction
  publication-title: Ann. Transplant.
  doi: 10.12659/AOT.899931
– volume: 69
  start-page: 393
  issue: 3
  year: 2016
  ident: 10.1016/j.yexmp.2019.104296_bb0070
  article-title: The Nrf2-ARE signaling pathway: an update on its regulation and possible role in cancer prevention and treatment
  publication-title: Pharmacol. Rep.
  doi: 10.1016/j.pharep.2016.12.011
– volume: 799
  start-page: 201
  year: 2017
  ident: 10.1016/j.yexmp.2019.104296_bb0175
  article-title: Butein induction of HO-1 by p38 MAPK/Nrf2 pathway in adipocytes attenuates high-fat diet induced adipose hypertrophy in mice
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2017.02.021
– volume: 50
  start-page: 1503
  issue: 11
  year: 2011
  ident: 10.1016/j.yexmp.2019.104296_bb0160
  article-title: Antroquinonol reduces oxidative stress by enhancing the Nrf2 signaling pathway and inhibits inflammation and sclerosis in focal segmental glomerulosclerosis mice
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.02.029
– volume: 13
  start-page: 76
  issue: 1
  year: 1999
  ident: 10.1016/j.yexmp.2019.104296_bb0040
  article-title: Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.1.76
– volume: 12
  start-page: 1347
  issue: 1
  year: 2015
  ident: 10.1016/j.yexmp.2019.104296_bb0205
  article-title: Curcumin protects renal tubular epithelial cells from high glucose-induced epithelial-to-mesenchymal transition through Nrf2-mediated upregulation of heme oxygenase-1
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2015.3556
– volume: 91
  start-page: 628
  issue: 3
  year: 2017
  ident: 10.1016/j.yexmp.2019.104296_bb0135
  article-title: Lysophosphatidic acid signaling through its receptor initiates profibrotic epithelial cell fibroblast communication mediated by epithelial cell derived connective tissue growth factor
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2016.09.030
– volume: 8
  start-page: 3773
  issue: 3
  year: 2017
  ident: 10.1016/j.yexmp.2019.104296_bb0215
  article-title: Melatonin protects against arsenic trioxide-induced liver injury by the upregulation of Nrf2 expression through the activation of PI3K/AKT pathway
  publication-title: Oncotarget.
  doi: 10.18632/oncotarget.13931
– volume: 2016
  year: 2016
  ident: 10.1016/j.yexmp.2019.104296_bb0005
  article-title: Anti-inflammatory therapy modulates Nrf2-Keap1 in kidney from rats with diabetes
  publication-title: Oxidative Med. Cell. Longev.
  doi: 10.1155/2016/4693801
– volume: 15
  start-page: 448
  issue: 4
  year: 2017
  ident: 10.1016/j.yexmp.2019.104296_bb0220
  article-title: CXC chemokine receptor type 4 antagonism ameliorated allograft fibrosis in rat kidney transplant model
  publication-title: Exp. Clin. Transplant.
– volume: 15
  start-page: 311
  issue: 5
  year: 2016
  ident: 10.1016/j.yexmp.2019.104296_bb0100
  article-title: Epithelial-mesenchymal transition: a new target in anticancer drug discovery
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2015.13
– volume: 23
  start-page: 1203
  issue: 7
  year: 2017
  ident: 10.1016/j.yexmp.2019.104296_bb0185
  article-title: Caffeic acid phenethyl ester up-regulates antioxidant levels in hepatic stellate cell line T6 via an Nrf2-mediated mitogen activated protein kinases pathway
  publication-title: World J. Gastroenterol.
  doi: 10.3748/wjg.v23.i7.1203
– volume: 163
  start-page: 1653
  issue: 8
  year: 2011
  ident: 10.1016/j.yexmp.2019.104296_bb0060
  article-title: Nrf2-mediated liver protection by sauchinone, an antioxidant lignan, from acetaminophen toxicity through the PKCdelta-GSK3beta pathway
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/j.1476-5381.2010.01095.x
– volume: 53
  start-page: 401
  year: 2013
  ident: 10.1016/j.yexmp.2019.104296_bb0090
  article-title: Role of nrf2 in oxidative stress and toxicity
  publication-title: Annu. Rev. Pharmacol. Toxicol.
  doi: 10.1146/annurev-pharmtox-011112-140320
– volume: 154
  start-page: 8
  issue: 1
  year: 1995
  ident: 10.1016/j.yexmp.2019.104296_bb0030
  article-title: An overview of epithelio-mesenchymal transformation
  publication-title: Acta Anat.
  doi: 10.1159/000147748
– volume: 112
  start-page: 1776
  issue: 12
  year: 2003
  ident: 10.1016/j.yexmp.2019.104296_bb0050
  article-title: Epithelial-mesenchymal transition and its implications for fibrosis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI200320530
– volume: 50
  start-page: 200
  issue: 1
  year: 1996
  ident: 10.1016/j.yexmp.2019.104296_bb0155
  article-title: Cell apoptosis and proliferation in experimental chronic obstructive uropathy
  publication-title: Kidney Int.
  doi: 10.1038/ki.1996.303
SSID ssj0009012
Score 2.4723697
Snippet Nrf2 constitutes a therapeutic reference point for renal fibrosis and chronic kidney diseases. Nrf2-related signaling pathways are recognized to temper...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104296
SubjectTerms Animals
Cadherins - genetics
Cadherins - metabolism
Disease Models, Animal
Epithelial-Mesenchymal Transition
Epithelial-to-mesenchymal transition
Fibronectins - genetics
Fibronectins - metabolism
Fibrosis - etiology
Fibrosis - metabolism
Fibrosis - pathology
Fibrosis - prevention & control
Kidney Diseases - etiology
Kidney Diseases - metabolism
Kidney Diseases - pathology
Kidney Diseases - prevention & control
Kidney fibrosis
Mice
Mice, Knockout
NF-E2-Related Factor 2 - physiology
Nrf2
Phosphatidylinositol 3-Kinases - genetics
Phosphatidylinositol 3-Kinases - metabolism
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
Signal Transduction
Transforming Growth Factor beta1 - genetics
Transforming Growth Factor beta1 - metabolism
Ureteral Obstruction - etiology
Ureteral Obstruction - metabolism
Ureteral Obstruction - pathology
Ureteral Obstruction - prevention & control
Title Nrf2 signaling attenuates epithelial-to-mesenchymal transition and renal interstitial fibrosis via PI3K/Akt signaling pathways
URI https://dx.doi.org/10.1016/j.yexmp.2019.104296
https://www.ncbi.nlm.nih.gov/pubmed/31449784
https://www.proquest.com/docview/2281102982
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5VrQRcUCmvUKiMxJEl68fueo9RRJUSNUKIit4sr2OLlGYTJZu2ufS3M7OPAhL0wF72IXttecaesfzNNwDvvPZFsIWPcqVtpPIUn2KL80pameZFPC0Sih0-naSjM_XpPDnfgWEXC0Owynbtb9b0erVuv_Tb0ewvZzOK8cXNgCYfhZQ0pSA-pTLS8g-3v2AeaO8axnCuIirdMQ_VGK-tv5kTaSXP6axTEHP_363Tv7zP2god78Pj1n1kg6aHT2DHlwfwcNhlbTuAB6ftYflTuJ2sgmAE0LAUc86ISbPckG_J_JJCMS5R96JqEc0pAsl9387xzxXZrhrGxWw5ZStPzRGnxIpABViBBdxgL9azNbuaWfb5RI77gx_Vb81QjuNru10_g7Pjj1-Ho6hNtxA5lcVVlPHgp5yHENuE2ziEYLl1ePmplQ5lF3CuC2Vjz3VwSdCK40qqi5Q7LKilfA675aL0L4GFNGRZUojEqVxlwlqvnVRBuiKJA-dZD0Q3zMa1XOSUEuPSdKCzC1PLxpBsTCObHry_q7RsqDjuL5528jN_aJRBY3F_xbedtA0Kjw5QbOkXm7URQqO3JHItevCiUYO7nkhURtyRq1f_2-whPKK3BirzGnar1ca_QYenKo5qjT6CvcHJeDSh-_jLt_FPNJEEbw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-NTmK8oDG-CgyMxCNRY8dJnMeqYmrpWvGwSXuzHNcWHWtatelGX_jbucvHxiTYA3mKYl9s-c53Z_nudwCfnHK5N7kLMqlMILME30KD-yoyUZLl4SyPKXd4Mk2G5_LrRXyxB4M2F4bCKhvdX-v0Sls3X3rNavZW8znl-OJhQJGPQkKaZI9gn9Cp4g7s90fj4fQOezfkNWg4lwERtOBDVZjXzv1cEG4lz-i6UxB4_98N1L8c0MoQnRzC08aDZP16ks9gzxVHcDBoC7cdweNJc1_-HH5N114witEwlHbOCEyz2JJ7ydyKsjGuUPyCchksKAnJft8t8M8lma8qkouZYsbWjoYjWIk1xRUgAfN4xl5u5ht2PTfs2yga9_o_yj-GoTLHN2a3eQHnJ1_OBsOgqbgQWJmGZZBy72acex-amJvQe2-4sfi4mYksss_jdhfShI4rb2OvJEdlqvKEW-yoougldIpl4V4D84lP0zgXsZWZTIUxTtlI-sjmceg5T7sg2mXWtoEjp6oYV7qNO7vUFW808UbXvOnC51uiVY3G8XD3pOWfvidUGu3Fw4QfW25rZB7doZjCLbcbLYRCh0lkSnThVS0GtzOJUB7xUC7f_O-wH-BgeDY51aej6fgtPKGWOnLmHXTK9dYdo_9T5u8b-f4N6wAFfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nrf2+signaling+attenuates+epithelial-to-mesenchymal+transition+and+renal+interstitial+fibrosis+via+PI3K%2FAkt+signaling+pathways&rft.jtitle=Experimental+and+molecular+pathology&rft.au=Wang%2C+Jun&rft.au=Zhu%2C+Haobo&rft.au=Huang%2C+Liqu&rft.au=Zhu%2C+Xiaojiang&rft.date=2019-12-01&rft.issn=1096-0945&rft.eissn=1096-0945&rft.volume=111&rft.spage=104296&rft_id=info:doi/10.1016%2Fj.yexmp.2019.104296&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4800&client=summon