Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans
Microplastics have been frequently detected in aquatic environments, and there are increasing concerns about potential effects on biota. In this study, zebrafish Danio rerio and nematode Caenorhabditis elegans were used as model organisms for microplastic exposure in freshwater pelagic (i.e. water c...
Saved in:
Published in | The Science of the total environment Vol. 619-620; pp. 1 - 8 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0048-9697 1879-1026 1879-1026 |
DOI | 10.1016/j.scitotenv.2017.11.103 |
Cover
Loading…
Abstract | Microplastics have been frequently detected in aquatic environments, and there are increasing concerns about potential effects on biota. In this study, zebrafish Danio rerio and nematode Caenorhabditis elegans were used as model organisms for microplastic exposure in freshwater pelagic (i.e. water column) and benthic (i.e. sediment) environments. We investigated the toxic effects of five common types of microplastics: polyamides (PA), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS) particles. Results showed no or low lethality in D. rerio after exposure for 10d at 0.001–10.0mgL−1 microplastics. The PA, PE, PP and/or PVC microplastics with ~70μm size caused intestinal damage including cracking of villi and splitting of enterocytes. Exposure to 5.0mgm−2 microplastics for 2d significantly inhibited survival rates, body length and reproduction of C. elegans. Moreover, exposure to microplastics reduced calcium levels but increased expression of the glutathione S-transferase 4 enzyme in the intestine, which indicates intestinal damage and oxidative stress are major effects of microplastic exposure. Among 0.1, 1.0 and 5.0μm sizes of fluorescently labeled PS, 1.0μm particles caused the highest lethality, the maximum accumulation, the lowest Ca2+ level in the intestine and the highest expression of glutathione S-transferase 4 in nematodes. Taken together, these findings suggest that intestinal damage is a key effect of microplastics; and that the toxicity of microplastics is closely dependent on their size, rather than their composition.
[Display omitted]
•Toxicity was comparatively studied on five common types of microplastics (MPs).•MPs with similar size induced intestine enterocyte damages in Danio rerio.•MPs reduced Ca2+ but increased gst-4 expression in intestine of Caenorhabditis elegans.•1.0μm MPs caused stronger toxicity than 0.1 or 5.0μm MPs in Caenorhabditis elegans.•Intestine damages are key effects of pristine MPs mostly dependent on their sizes. |
---|---|
AbstractList | Microplastics have been frequently detected in aquatic environments, and there are increasing concerns about potential effects on biota. In this study, zebrafish Danio rerio and nematode Caenorhabditis elegans were used as model organisms for microplastic exposure in freshwater pelagic (i.e. water column) and benthic (i.e. sediment) environments. We investigated the toxic effects of five common types of microplastics: polyamides (PA), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS) particles. Results showed no or low lethality in D. rerio after exposure for 10d at 0.001–10.0mgL⁻¹ microplastics. The PA, PE, PP and/or PVC microplastics with ~70μm size caused intestinal damage including cracking of villi and splitting of enterocytes. Exposure to 5.0mgm⁻² microplastics for 2d significantly inhibited survival rates, body length and reproduction of C. elegans. Moreover, exposure to microplastics reduced calcium levels but increased expression of the glutathione S-transferase 4 enzyme in the intestine, which indicates intestinal damage and oxidative stress are major effects of microplastic exposure. Among 0.1, 1.0 and 5.0μm sizes of fluorescently labeled PS, 1.0μm particles caused the highest lethality, the maximum accumulation, the lowest Ca²⁺ level in the intestine and the highest expression of glutathione S-transferase 4 in nematodes. Taken together, these findings suggest that intestinal damage is a key effect of microplastics; and that the toxicity of microplastics is closely dependent on their size, rather than their composition. Microplastics have been frequently detected in aquatic environments, and there are increasing concerns about potential effects on biota. In this study, zebrafish Danio rerio and nematode Caenorhabditis elegans were used as model organisms for microplastic exposure in freshwater pelagic (i.e. water column) and benthic (i.e. sediment) environments. We investigated the toxic effects of five common types of microplastics: polyamides (PA), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS) particles. Results showed no or low lethality in D. rerio after exposure for 10d at 0.001-10.0mgL-1 microplastics. The PA, PE, PP and/or PVC microplastics with ~70μm size caused intestinal damage including cracking of villi and splitting of enterocytes. Exposure to 5.0mgm-2 microplastics for 2d significantly inhibited survival rates, body length and reproduction of C. elegans. Moreover, exposure to microplastics reduced calcium levels but increased expression of the glutathione S-transferase 4 enzyme in the intestine, which indicates intestinal damage and oxidative stress are major effects of microplastic exposure. Among 0.1, 1.0 and 5.0μm sizes of fluorescently labeled PS, 1.0μm particles caused the highest lethality, the maximum accumulation, the lowest Ca2+ level in the intestine and the highest expression of glutathione S-transferase 4 in nematodes. Taken together, these findings suggest that intestinal damage is a key effect of microplastics; and that the toxicity of microplastics is closely dependent on their size, rather than their composition.Microplastics have been frequently detected in aquatic environments, and there are increasing concerns about potential effects on biota. In this study, zebrafish Danio rerio and nematode Caenorhabditis elegans were used as model organisms for microplastic exposure in freshwater pelagic (i.e. water column) and benthic (i.e. sediment) environments. We investigated the toxic effects of five common types of microplastics: polyamides (PA), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS) particles. Results showed no or low lethality in D. rerio after exposure for 10d at 0.001-10.0mgL-1 microplastics. The PA, PE, PP and/or PVC microplastics with ~70μm size caused intestinal damage including cracking of villi and splitting of enterocytes. Exposure to 5.0mgm-2 microplastics for 2d significantly inhibited survival rates, body length and reproduction of C. elegans. Moreover, exposure to microplastics reduced calcium levels but increased expression of the glutathione S-transferase 4 enzyme in the intestine, which indicates intestinal damage and oxidative stress are major effects of microplastic exposure. Among 0.1, 1.0 and 5.0μm sizes of fluorescently labeled PS, 1.0μm particles caused the highest lethality, the maximum accumulation, the lowest Ca2+ level in the intestine and the highest expression of glutathione S-transferase 4 in nematodes. Taken together, these findings suggest that intestinal damage is a key effect of microplastics; and that the toxicity of microplastics is closely dependent on their size, rather than their composition. Microplastics have been frequently detected in aquatic environments, and there are increasing concerns about potential effects on biota. In this study, zebrafish Danio rerio and nematode Caenorhabditis elegans were used as model organisms for microplastic exposure in freshwater pelagic (i.e. water column) and benthic (i.e. sediment) environments. We investigated the toxic effects of five common types of microplastics: polyamides (PA), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS) particles. Results showed no or low lethality in D. rerio after exposure for 10d at 0.001-10.0mgL microplastics. The PA, PE, PP and/or PVC microplastics with ~70μm size caused intestinal damage including cracking of villi and splitting of enterocytes. Exposure to 5.0mgm microplastics for 2d significantly inhibited survival rates, body length and reproduction of C. elegans. Moreover, exposure to microplastics reduced calcium levels but increased expression of the glutathione S-transferase 4 enzyme in the intestine, which indicates intestinal damage and oxidative stress are major effects of microplastic exposure. Among 0.1, 1.0 and 5.0μm sizes of fluorescently labeled PS, 1.0μm particles caused the highest lethality, the maximum accumulation, the lowest Ca level in the intestine and the highest expression of glutathione S-transferase 4 in nematodes. Taken together, these findings suggest that intestinal damage is a key effect of microplastics; and that the toxicity of microplastics is closely dependent on their size, rather than their composition. Microplastics have been frequently detected in aquatic environments, and there are increasing concerns about potential effects on biota. In this study, zebrafish Danio rerio and nematode Caenorhabditis elegans were used as model organisms for microplastic exposure in freshwater pelagic (i.e. water column) and benthic (i.e. sediment) environments. We investigated the toxic effects of five common types of microplastics: polyamides (PA), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS) particles. Results showed no or low lethality in D. rerio after exposure for 10d at 0.001–10.0mgL−1 microplastics. The PA, PE, PP and/or PVC microplastics with ~70μm size caused intestinal damage including cracking of villi and splitting of enterocytes. Exposure to 5.0mgm−2 microplastics for 2d significantly inhibited survival rates, body length and reproduction of C. elegans. Moreover, exposure to microplastics reduced calcium levels but increased expression of the glutathione S-transferase 4 enzyme in the intestine, which indicates intestinal damage and oxidative stress are major effects of microplastic exposure. Among 0.1, 1.0 and 5.0μm sizes of fluorescently labeled PS, 1.0μm particles caused the highest lethality, the maximum accumulation, the lowest Ca2+ level in the intestine and the highest expression of glutathione S-transferase 4 in nematodes. Taken together, these findings suggest that intestinal damage is a key effect of microplastics; and that the toxicity of microplastics is closely dependent on their size, rather than their composition. [Display omitted] •Toxicity was comparatively studied on five common types of microplastics (MPs).•MPs with similar size induced intestine enterocyte damages in Danio rerio.•MPs reduced Ca2+ but increased gst-4 expression in intestine of Caenorhabditis elegans.•1.0μm MPs caused stronger toxicity than 0.1 or 5.0μm MPs in Caenorhabditis elegans.•Intestine damages are key effects of pristine MPs mostly dependent on their sizes. |
Author | He, Defu Fu, Zhenhuan Shi, Huahong Raley-Susman, Kathleen M. Liu, Mengting Wu, Siyu Song, Yang Lei, Lili Lu, Shibo |
Author_xml | – sequence: 1 givenname: Lili surname: Lei fullname: Lei, Lili organization: Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China – sequence: 2 givenname: Siyu surname: Wu fullname: Wu, Siyu organization: Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China – sequence: 3 givenname: Shibo surname: Lu fullname: Lu, Shibo organization: Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China – sequence: 4 givenname: Mengting surname: Liu fullname: Liu, Mengting organization: Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China – sequence: 5 givenname: Yang surname: Song fullname: Song, Yang organization: Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China – sequence: 6 givenname: Zhenhuan surname: Fu fullname: Fu, Zhenhuan organization: Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China – sequence: 7 givenname: Huahong surname: Shi fullname: Shi, Huahong organization: State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China – sequence: 8 givenname: Kathleen M. surname: Raley-Susman fullname: Raley-Susman, Kathleen M. organization: Department of Biology, Vassar College, Poughkeepsie, NY 12604, USA – sequence: 9 givenname: Defu orcidid: 0000-0002-0850-0881 surname: He fullname: He, Defu email: dfhe@des.ecnu.edu.cn organization: Lab of Toxicology, School of Ecological and Environmental Sciences, East China Normal University, 500# DongChuan RD, Shanghai 200241, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29136530$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFvEzEQhS1URNPCXwAfuWzwrHfXuwcOVaCAVMQFztbEnm0c7drBdiKVO_-7jtJy4BIfPIf53oz93hW78METY-9ALEFA92G7TMblkMkflrUAtQQoDfmCLaBXQwWi7i7YQoimr4ZuUJfsKqWtKEf18Ipd1gPIrpViwf5-dyaG3YQpO8N3GEuZKHGD-0Tc-Uyl4XHiFme8J47e8pA3FDnaA8XC0DiSyamw_A-tI44ubfgn9C7wSLHcR4mnGXOwxFdIPsQNrq3LLnGa6B59es1ejjglevNUr9mv288_V1-rux9fvq1u7irTKJGrzhqJgnqUSgms28FYGMdeDrInKRtR1ygbrE0rbdu3lkhCO0pQ67YIu17Ia_b-NHcXw-99-ZqeXTI0Tegp7JOui0MdKNnCWRSGrrxJtqIp6NsndL-eyepddDPGB_3scgE-noBidUqRRl3Cw-yCzxHdpEHoY6p6q_-lqo-paoDSkEWv_tM_rzivvDkpqbh6cBSPHHlD1sWSmrbBnZ3xCDk0w7w |
CitedBy_id | crossref_primary_10_1016_j_marpolbul_2021_112954 crossref_primary_10_1021_acs_est_3c01310 crossref_primary_10_1021_acs_est_3c02885 crossref_primary_10_1016_j_watres_2022_119293 crossref_primary_10_1016_j_scitotenv_2022_157260 crossref_primary_10_1016_j_jhazmat_2022_129181 crossref_primary_10_1016_j_micres_2022_127239 crossref_primary_10_1016_j_jhazmat_2025_137898 crossref_primary_10_1016_j_jhazmat_2020_124187 crossref_primary_10_1016_j_jhazmat_2020_125035 crossref_primary_10_1016_j_jenvman_2024_120832 crossref_primary_10_1128_mBio_02155_21 crossref_primary_10_2139_ssrn_4126811 crossref_primary_10_3390_jmse9040433 crossref_primary_10_1007_s00128_021_03348_8 crossref_primary_10_1016_j_envpol_2023_121015 crossref_primary_10_1021_acs_est_3c01566 crossref_primary_10_1007_s10924_020_01688_w crossref_primary_10_1016_j_scitotenv_2019_134131 crossref_primary_10_1016_j_ecoenv_2020_111109 crossref_primary_10_7717_peerj_17641 crossref_primary_10_1016_j_enceco_2025_03_005 crossref_primary_10_1016_j_scitotenv_2018_10_321 crossref_primary_10_1016_j_scitotenv_2020_142427 crossref_primary_10_1016_j_envres_2020_110466 crossref_primary_10_1016_j_cbpc_2023_109585 crossref_primary_10_1016_j_chemosphere_2019_06_196 crossref_primary_10_1007_s00204_024_03875_3 crossref_primary_10_1016_j_jclepro_2022_130766 crossref_primary_10_3389_fphys_2024_1380652 crossref_primary_10_1007_s00128_021_03239_y crossref_primary_10_1021_acs_est_9b05995 crossref_primary_10_1186_s43591_022_00040_4 crossref_primary_10_1063_5_0054075 crossref_primary_10_1016_j_chemosphere_2020_127172 crossref_primary_10_3390_agronomy12102547 crossref_primary_10_3800_pbr_16_109 crossref_primary_10_1016_j_jhazmat_2021_127705 crossref_primary_10_1016_j_chemosphere_2019_124482 crossref_primary_10_1016_j_chemosphere_2023_137864 crossref_primary_10_1016_j_scitotenv_2020_143311 crossref_primary_10_3389_fenvs_2020_00041 crossref_primary_10_1016_j_ecoenv_2022_114157 crossref_primary_10_1016_j_etap_2019_103239 crossref_primary_10_1016_j_quaint_2019_03_028 crossref_primary_10_1016_j_scitotenv_2023_164050 crossref_primary_10_1007_s10311_023_01593_3 crossref_primary_10_1016_j_jhazmat_2021_126843 crossref_primary_10_1038_s41598_022_12776_3 crossref_primary_10_1080_10590501_2019_1699379 crossref_primary_10_1016_j_marpolbul_2023_114684 crossref_primary_10_1007_s10661_024_12493_6 crossref_primary_10_1016_j_chemosphere_2021_129642 crossref_primary_10_1002_wer_70032 crossref_primary_10_1016_j_jenvman_2025_124286 crossref_primary_10_1016_j_aqrep_2021_100974 crossref_primary_10_1111_faf_12528 crossref_primary_10_1007_s10668_023_03565_7 crossref_primary_10_1016_j_envpol_2021_118502 crossref_primary_10_1016_j_etap_2019_03_001 crossref_primary_10_1021_acs_est_1c02300 crossref_primary_10_1016_j_envpol_2023_121068 crossref_primary_10_1016_j_ecoenv_2019_03_088 crossref_primary_10_1016_j_aquatox_2023_106690 crossref_primary_10_1016_j_jhazmat_2022_130382 crossref_primary_10_1016_j_chemosphere_2022_136037 crossref_primary_10_1016_j_envpol_2020_114096 crossref_primary_10_1016_j_jclepro_2022_131889 crossref_primary_10_1016_j_chemosphere_2021_132631 crossref_primary_10_1016_j_trac_2024_118028 crossref_primary_10_1016_j_impact_2023_100474 crossref_primary_10_1016_j_chemosphere_2019_05_115 crossref_primary_10_1016_j_chemosphere_2022_136280 crossref_primary_10_1016_j_envres_2023_115974 crossref_primary_10_1016_j_aquatox_2019_105296 crossref_primary_10_1016_j_marpolbul_2021_112529 crossref_primary_10_1007_s00128_022_03585_5 crossref_primary_10_1021_acs_est_0c05399 crossref_primary_10_1016_j_scitotenv_2023_162912 crossref_primary_10_1016_j_jfca_2025_107274 crossref_primary_10_1016_j_toxlet_2023_08_011 crossref_primary_10_1016_j_scitotenv_2020_138378 crossref_primary_10_1016_j_aqrep_2021_100713 crossref_primary_10_1016_j_aquatox_2024_106977 crossref_primary_10_1016_j_scitotenv_2021_151638 crossref_primary_10_1016_j_aquatox_2024_106975 crossref_primary_10_1007_s11356_018_3408_x crossref_primary_10_1016_j_chemosphere_2022_135198 crossref_primary_10_1016_j_envpol_2019_113137 crossref_primary_10_1016_j_impact_2023_100482 crossref_primary_10_3390_ijms24043928 crossref_primary_10_1007_s11270_021_05379_7 crossref_primary_10_3390_su16104066 crossref_primary_10_2754_avb202190010099 crossref_primary_10_1016_j_marpolbul_2020_111166 crossref_primary_10_1016_j_scitotenv_2023_169787 crossref_primary_10_3390_microplastics2010003 crossref_primary_10_1007_s13762_024_06141_2 crossref_primary_10_1002_ece3_7844 crossref_primary_10_1016_j_scitotenv_2020_143987 crossref_primary_10_3389_fenvs_2020_00083 crossref_primary_10_1016_j_jhazmat_2025_137635 crossref_primary_10_1016_j_scitotenv_2022_157486 crossref_primary_10_1016_j_aquatox_2023_106427 crossref_primary_10_3390_toxics12010009 crossref_primary_10_1016_j_ecolind_2023_111058 crossref_primary_10_1016_j_jenvrad_2018_07_019 crossref_primary_10_1016_j_coesh_2022_100344 crossref_primary_10_1016_j_chemosphere_2021_129686 crossref_primary_10_2139_ssrn_4156269 crossref_primary_10_1016_j_jhazmat_2025_137641 crossref_primary_10_1002_cphc_202300854 crossref_primary_10_1007_s11270_021_05081_8 crossref_primary_10_1016_j_aquatox_2021_105880 crossref_primary_10_3390_ijerph17082808 crossref_primary_10_1016_j_scitotenv_2020_143735 crossref_primary_10_1016_j_scitotenv_2020_143986 crossref_primary_10_1016_j_chemosphere_2023_138502 crossref_primary_10_1016_j_scitotenv_2023_167359 crossref_primary_10_1016_j_envpol_2024_123548 crossref_primary_10_2139_ssrn_3999158 crossref_primary_10_1016_j_scitotenv_2021_150328 crossref_primary_10_1007_s11270_024_07643_y crossref_primary_10_1007_s11356_023_26918_1 crossref_primary_10_1016_j_ecoenv_2018_07_062 crossref_primary_10_1039_D1EN01199E crossref_primary_10_1016_j_fct_2022_113585 crossref_primary_10_1007_s11356_023_27315_4 crossref_primary_10_1016_j_scitotenv_2022_154387 crossref_primary_10_2478_aoas_2024_0022 crossref_primary_10_1016_j_envpol_2024_125505 crossref_primary_10_3390_ijms24044136 crossref_primary_10_1016_j_ecoenv_2024_117604 crossref_primary_10_2139_ssrn_4161671 crossref_primary_10_1016_j_aquatox_2022_106120 crossref_primary_10_1016_j_scitotenv_2020_139677 crossref_primary_10_1016_j_aquatox_2024_107215 crossref_primary_10_1016_j_tice_2021_101512 crossref_primary_10_1016_j_scitotenv_2023_163144 crossref_primary_10_1016_j_jhazmat_2022_129587 crossref_primary_10_1021_acs_est_2c05662 crossref_primary_10_1016_j_biopha_2021_111270 crossref_primary_10_1016_j_marpolbul_2023_115145 crossref_primary_10_1016_j_envpol_2019_113740 crossref_primary_10_1111_gcb_15570 crossref_primary_10_1016_j_hazadv_2022_100046 crossref_primary_10_7841_ksbbj_2024_39_4_97 crossref_primary_10_1080_10934529_2022_2064668 crossref_primary_10_1016_j_envres_2023_116227 crossref_primary_10_1111_1365_2435_13495 crossref_primary_10_1016_j_envpol_2024_124426 crossref_primary_10_1007_s11356_021_17681_2 crossref_primary_10_1002_jat_4034 crossref_primary_10_1007_s10661_022_10539_1 crossref_primary_10_1016_j_scitotenv_2024_172380 crossref_primary_10_1016_j_jhazmat_2019_121271 crossref_primary_10_1016_j_marpolbul_2023_115390 crossref_primary_10_1039_D0EN00991A crossref_primary_10_1016_j_envpol_2022_120978 crossref_primary_10_1016_j_cej_2023_142260 crossref_primary_10_1007_s00128_021_03211_w crossref_primary_10_3389_fmars_2022_851281 crossref_primary_10_1016_j_chemosphere_2024_141568 crossref_primary_10_1016_j_jece_2019_103421 crossref_primary_10_1016_j_ecoenv_2024_116537 crossref_primary_10_1016_j_psep_2025_107020 crossref_primary_10_1590_1519_6984_272524 crossref_primary_10_1016_j_envadv_2023_100444 crossref_primary_10_1111_jfb_15746 crossref_primary_10_1016_j_jenvman_2021_112997 crossref_primary_10_1016_j_scitotenv_2023_165788 crossref_primary_10_25699_SSSB_2022_44_4_001 crossref_primary_10_3390_coatings11101152 crossref_primary_10_1016_j_ecoenv_2021_112775 crossref_primary_10_1016_j_envpol_2019_113760 crossref_primary_10_1016_j_marpolbul_2023_115360 crossref_primary_10_1007_s11270_020_04845_y crossref_primary_10_1016_j_scitotenv_2019_03_016 crossref_primary_10_1016_j_scitotenv_2024_174305 crossref_primary_10_1016_j_scitotenv_2021_147365 crossref_primary_10_1080_10236244_2022_2100772 crossref_primary_10_1016_j_csbj_2022_03_041 crossref_primary_10_1016_j_jenvman_2023_119988 crossref_primary_10_1016_j_scitotenv_2024_174541 crossref_primary_10_1016_j_scitotenv_2021_148217 crossref_primary_10_1016_j_marenvres_2025_106971 crossref_primary_10_3389_ftox_2022_748912 crossref_primary_10_1038_s41598_018_37428_3 crossref_primary_10_1016_j_ecoenv_2021_112523 crossref_primary_10_1016_j_envpol_2021_117255 crossref_primary_10_1007_s00128_024_03951_5 crossref_primary_10_1007_s11270_024_07395_9 crossref_primary_10_1016_j_scitotenv_2023_164687 crossref_primary_10_1016_j_scitotenv_2023_164684 crossref_primary_10_1016_j_scitotenv_2023_164682 crossref_primary_10_1016_j_etap_2023_104212 crossref_primary_10_1016_j_jenvman_2024_123055 crossref_primary_10_1016_j_cbpc_2022_109269 crossref_primary_10_1007_s11356_022_19033_0 crossref_primary_10_1016_j_geodrs_2021_e00462 crossref_primary_10_1111_jiec_13140 crossref_primary_10_1016_j_scitotenv_2024_174112 crossref_primary_10_1016_j_ecoenv_2023_115104 crossref_primary_10_1007_s11356_018_3317_z crossref_primary_10_1016_j_envpol_2018_12_044 crossref_primary_10_3390_antiox8110550 crossref_primary_10_1016_j_mad_2022_111723 crossref_primary_10_3389_fmars_2024_1512802 crossref_primary_10_5194_soil_6_245_2020 crossref_primary_10_1016_j_envpol_2018_12_043 crossref_primary_10_3390_toxics9080179 crossref_primary_10_1016_j_envpol_2022_120769 crossref_primary_10_1016_j_scitotenv_2020_138783 crossref_primary_10_1016_j_chemosphere_2019_125193 crossref_primary_10_1016_j_cofs_2021_04_001 crossref_primary_10_3390_w15010051 crossref_primary_10_1016_j_aqrep_2024_102100 crossref_primary_10_1016_j_chemosphere_2020_126059 crossref_primary_10_1016_j_apsoil_2024_105452 crossref_primary_10_1016_j_envint_2022_107590 crossref_primary_10_1016_j_aquatox_2020_105521 crossref_primary_10_1016_j_scitotenv_2018_03_176 crossref_primary_10_1016_j_scitotenv_2021_146454 crossref_primary_10_1016_j_scitotenv_2021_147784 crossref_primary_10_1016_j_marenvres_2024_106410 crossref_primary_10_1007_s11356_023_26695_x crossref_primary_10_2174_2405520415666220815142148 crossref_primary_10_1016_j_jece_2025_115937 crossref_primary_10_1080_09603123_2019_1689233 crossref_primary_10_1002_etc_5202 crossref_primary_10_3389_fenvs_2021_678574 crossref_primary_10_1007_s11104_024_06858_6 crossref_primary_10_1016_j_envres_2025_121332 crossref_primary_10_1016_j_marpolbul_2023_115591 crossref_primary_10_1039_C9EN01085H crossref_primary_10_1016_j_ecoenv_2024_116730 crossref_primary_10_1186_s12302_020_00327_4 crossref_primary_10_1007_s11356_024_33981_9 crossref_primary_10_1016_j_scitotenv_2021_148888 crossref_primary_10_1016_j_jhazmat_2020_122418 crossref_primary_10_1007_s44169_022_00012_y crossref_primary_10_1016_j_ecoenv_2021_112732 crossref_primary_10_1016_j_chemosphere_2022_135324 crossref_primary_10_3389_fmars_2022_1005820 crossref_primary_10_1016_j_scitotenv_2022_158731 crossref_primary_10_1039_D1EN00835H crossref_primary_10_1016_j_aquatox_2020_105737 crossref_primary_10_1016_j_marpolbul_2020_111552 crossref_primary_10_1061_JHTRBP_HZENG_1377 crossref_primary_10_1039_D1VA00012H crossref_primary_10_3389_fenvs_2024_1390510 crossref_primary_10_1016_j_ecoenv_2018_06_021 crossref_primary_10_1016_j_jhazmat_2024_136418 crossref_primary_10_1016_j_rsma_2021_101728 crossref_primary_10_1016_j_cbpc_2022_109462 crossref_primary_10_1016_j_jhazmat_2024_134478 crossref_primary_10_1016_j_scitotenv_2023_162068 crossref_primary_10_3349_ymj_2023_0048 crossref_primary_10_1016_j_scitotenv_2020_138559 crossref_primary_10_1016_j_scitotenv_2019_04_017 crossref_primary_10_3390_su152316313 crossref_primary_10_1016_j_scitotenv_2022_158503 crossref_primary_10_1016_j_scitotenv_2022_159834 crossref_primary_10_1021_acsami_4c04416 crossref_primary_10_1039_D2RA07098G crossref_primary_10_1007_s10924_022_02519_w crossref_primary_10_1177_0040517521991244 crossref_primary_10_1016_j_eti_2022_102408 crossref_primary_10_1016_j_ecoenv_2019_110118 crossref_primary_10_1016_j_scitotenv_2022_153331 crossref_primary_10_1016_j_aquatox_2021_106004 crossref_primary_10_1016_j_envadv_2024_100593 crossref_primary_10_3389_feart_2023_1289665 crossref_primary_10_1016_j_envpol_2022_119349 crossref_primary_10_1016_j_jhazmat_2021_126074 crossref_primary_10_1016_j_watres_2022_118646 crossref_primary_10_2478_aoas_2025_0028 crossref_primary_10_1016_j_scitotenv_2019_134805 crossref_primary_10_3389_fenvs_2023_1241939 crossref_primary_10_1016_j_scitotenv_2021_147620 crossref_primary_10_1016_j_scitotenv_2021_146534 crossref_primary_10_1016_j_scitotenv_2021_148959 crossref_primary_10_1002_tox_22885 crossref_primary_10_1016_j_envadv_2024_100579 crossref_primary_10_1016_j_scitotenv_2023_161478 crossref_primary_10_1007_s10311_020_00983_1 crossref_primary_10_1007_s10098_024_02738_w crossref_primary_10_1016_j_trac_2023_117484 crossref_primary_10_1016_j_scitotenv_2019_134817 crossref_primary_10_1016_j_rsma_2023_103115 crossref_primary_10_1016_j_jhazmat_2020_123663 crossref_primary_10_1016_j_jhazmat_2024_135893 crossref_primary_10_1016_j_aquatox_2025_107242 crossref_primary_10_3390_w13010056 crossref_primary_10_1016_j_envpol_2020_114593 crossref_primary_10_1016_j_scitotenv_2021_146551 crossref_primary_10_1016_j_jhazmat_2022_129854 crossref_primary_10_3390_w15050928 crossref_primary_10_1016_j_aquatox_2024_107165 crossref_primary_10_1039_D0EN00561D crossref_primary_10_3390_toxics11020127 crossref_primary_10_1080_15287394_2023_2203154 crossref_primary_10_3389_fpubh_2024_1411389 crossref_primary_10_1016_j_marpolbul_2021_113030 crossref_primary_10_1016_j_chemosphere_2022_133990 crossref_primary_10_1016_j_envpol_2022_119576 crossref_primary_10_1016_j_chemosphere_2023_139383 crossref_primary_10_1016_j_ecoenv_2019_109568 crossref_primary_10_1016_j_envint_2022_107644 crossref_primary_10_1016_j_watres_2022_118680 crossref_primary_10_3389_fenvs_2022_999349 crossref_primary_10_1016_j_envpol_2018_07_133 crossref_primary_10_1016_j_jhazmat_2024_133655 crossref_primary_10_1016_j_scitotenv_2023_165404 crossref_primary_10_1016_j_scitotenv_2019_134841 crossref_primary_10_1007_s40726_021_00188_2 crossref_primary_10_1016_j_marpolbul_2019_110795 crossref_primary_10_1080_10934529_2023_2190715 crossref_primary_10_1016_j_marpolbul_2019_110791 crossref_primary_10_1016_j_scitotenv_2024_176807 crossref_primary_10_1134_S1067413620060041 crossref_primary_10_1016_j_ecoenv_2020_110976 crossref_primary_10_1016_j_marpolbul_2022_113712 crossref_primary_10_1016_j_scitotenv_2023_166959 crossref_primary_10_1016_j_aqrep_2022_101423 crossref_primary_10_1016_j_scitotenv_2023_166722 crossref_primary_10_1016_j_hazadv_2024_100487 crossref_primary_10_3390_w17020229 crossref_primary_10_1016_j_chemosphere_2020_128624 crossref_primary_10_1007_s11356_023_25675_5 crossref_primary_10_1016_j_marpolbul_2020_110991 crossref_primary_10_1016_j_jhazmat_2022_128952 crossref_primary_10_1007_s11356_021_13911_9 crossref_primary_10_1016_j_eng_2022_08_009 crossref_primary_10_1016_j_envint_2021_106452 crossref_primary_10_1016_j_scitotenv_2022_153350 crossref_primary_10_1080_02757540_2023_2290183 crossref_primary_10_3390_biology11101470 crossref_primary_10_1007_s44246_023_00057_1 crossref_primary_10_1016_j_scitotenv_2023_166953 crossref_primary_10_1016_j_scitotenv_2019_135918 crossref_primary_10_1016_j_zool_2020_125848 crossref_primary_10_1021_acs_est_9b02971 crossref_primary_10_1039_D0NA00867B crossref_primary_10_1016_j_jwpe_2024_105277 crossref_primary_10_1186_s43591_022_00034_2 crossref_primary_10_1016_j_scitotenv_2021_146994 crossref_primary_10_1016_j_scitotenv_2024_173770 crossref_primary_10_1007_s11356_023_25588_3 crossref_primary_10_1016_j_jhazmat_2023_131185 crossref_primary_10_1002_tqem_70021 crossref_primary_10_1016_j_jhazmat_2021_126482 crossref_primary_10_1016_j_scitotenv_2019_03_181 crossref_primary_10_1016_j_scitotenv_2020_139922 crossref_primary_10_3390_w15152831 crossref_primary_10_1007_s11356_024_32007_8 crossref_primary_10_1111_are_14847 crossref_primary_10_1016_j_etap_2023_104250 crossref_primary_10_3390_toxics11080653 crossref_primary_10_1016_j_scitotenv_2022_153339 crossref_primary_10_1002_ldr_5087 crossref_primary_10_1016_j_scitotenv_2021_150188 crossref_primary_10_1111_2041_210X_13271 crossref_primary_10_1016_j_scitotenv_2018_08_102 crossref_primary_10_1080_03067319_2021_1969382 crossref_primary_10_1016_j_jhazmat_2019_121725 crossref_primary_10_1016_j_marpolbul_2023_114734 crossref_primary_10_1002_masy_202100367 crossref_primary_10_1002_jpln_202200062 crossref_primary_10_1007_s41208_023_00567_0 crossref_primary_10_1093_advances_nmab154 crossref_primary_10_2967_jnumed_120_256982 crossref_primary_10_1016_j_marpolbul_2025_117560 crossref_primary_10_1016_j_envpol_2020_115263 crossref_primary_10_1111_pce_15247 crossref_primary_10_1016_j_jinsphys_2024_104697 crossref_primary_10_1016_j_coesh_2022_100327 crossref_primary_10_1097_MCG_0000000000002085 crossref_primary_10_3390_ani13203263 crossref_primary_10_1016_j_jhazmat_2020_123499 crossref_primary_10_1007_s11356_021_17874_9 crossref_primary_10_1016_j_chemosphere_2019_07_066 crossref_primary_10_1016_j_scitotenv_2024_175096 crossref_primary_10_1016_j_jhazmat_2025_137263 crossref_primary_10_1007_s11270_023_06062_9 crossref_primary_10_1111_sum_70009 crossref_primary_10_15446_caldasia_v46n3_106414 crossref_primary_10_1038_s41598_023_39844_6 crossref_primary_10_1080_10643389_2020_1807450 crossref_primary_10_1016_j_envpol_2021_116860 crossref_primary_10_1016_j_jenvman_2024_123616 crossref_primary_10_1016_j_marpolbul_2022_114434 crossref_primary_10_1016_j_jhazmat_2021_127789 crossref_primary_10_1016_j_watres_2020_116082 crossref_primary_10_1016_j_lfs_2022_120366 crossref_primary_10_1016_j_plaphy_2023_108132 crossref_primary_10_3390_cimb46030168 crossref_primary_10_1016_j_marpolbul_2021_112578 crossref_primary_10_1016_j_ecoenv_2019_109788 crossref_primary_10_1016_j_envint_2024_108679 crossref_primary_10_1016_j_scitotenv_2018_12_422 crossref_primary_10_1016_j_scitotenv_2019_134867 crossref_primary_10_3389_fmars_2024_1150755 crossref_primary_10_1016_j_scitotenv_2020_136862 crossref_primary_10_1016_j_jhazmat_2021_127773 crossref_primary_10_1016_j_scitotenv_2023_168244 crossref_primary_10_1016_j_marpolbul_2021_112343 crossref_primary_10_1016_j_trac_2022_116869 crossref_primary_10_1016_j_watres_2020_116073 crossref_primary_10_1021_acs_est_3c04097 crossref_primary_10_1016_j_envpol_2020_115295 crossref_primary_10_1016_j_ces_2023_119233 crossref_primary_10_18036_estubtdc_656857 crossref_primary_10_1016_j_emcon_2024_100309 crossref_primary_10_1016_j_fsi_2022_06_043 crossref_primary_10_1016_j_scitotenv_2021_151475 crossref_primary_10_1039_C9EN00473D crossref_primary_10_1016_j_jhazmat_2020_123044 crossref_primary_10_1016_j_jhazmat_2021_125347 crossref_primary_10_1016_j_jhazmat_2021_127529 crossref_primary_10_1016_j_scitotenv_2023_163617 crossref_primary_10_2139_ssrn_4009604 crossref_primary_10_1186_s40645_020_00405_4 crossref_primary_10_1016_j_chemosphere_2023_139544 crossref_primary_10_1016_j_scitotenv_2022_155709 crossref_primary_10_1016_j_chemosphere_2021_130178 crossref_primary_10_1016_j_jhazmat_2023_132206 crossref_primary_10_1038_s41598_020_80606_5 crossref_primary_10_1016_j_ecoenv_2024_116153 crossref_primary_10_1016_j_envpol_2020_115463 crossref_primary_10_1016_j_cscee_2023_100494 crossref_primary_10_1016_j_watres_2022_118608 crossref_primary_10_1016_j_toxrep_2022_05_001 crossref_primary_10_1016_j_jhazmat_2021_127751 crossref_primary_10_3390_toxics9100256 crossref_primary_10_2139_ssrn_3935592 crossref_primary_10_1016_j_marpolbul_2021_112127 crossref_primary_10_1016_j_scitotenv_2019_134451 crossref_primary_10_3390_polym13234069 crossref_primary_10_1016_j_marpolbul_2023_114709 crossref_primary_10_1016_j_envpol_2023_121571 crossref_primary_10_2139_ssrn_4117185 crossref_primary_10_1016_j_eti_2023_103250 crossref_primary_10_1016_j_scitotenv_2023_162763 crossref_primary_10_1016_j_scitotenv_2020_144655 crossref_primary_10_1016_j_scitotenv_2023_163853 crossref_primary_10_1016_j_marpolbul_2019_03_019 crossref_primary_10_1016_j_scitotenv_2019_134699 crossref_primary_10_3390_atmos15111380 crossref_primary_10_1021_acs_est_9b01474 crossref_primary_10_1016_j_envpol_2020_114387 crossref_primary_10_1016_j_rsma_2023_102863 crossref_primary_10_1016_j_jhazmat_2021_125321 crossref_primary_10_1007_s11356_022_23827_7 crossref_primary_10_1016_j_jconhyd_2024_104415 crossref_primary_10_1007_s13280_020_01496_5 crossref_primary_10_1016_j_envpol_2024_123816 crossref_primary_10_1016_j_envpol_2020_115241 crossref_primary_10_1111_jwas_13046 crossref_primary_10_1016_j_ecoenv_2022_113785 crossref_primary_10_1016_j_cbd_2021_100834 crossref_primary_10_1016_j_scitotenv_2023_169376 crossref_primary_10_3390_environments7040030 crossref_primary_10_1186_s12302_020_00331_8 crossref_primary_10_1016_j_scitotenv_2021_152350 crossref_primary_10_1016_j_biortech_2022_127202 crossref_primary_10_1016_j_ocecoaman_2024_107418 crossref_primary_10_1016_j_scitotenv_2022_159270 crossref_primary_10_1016_j_scitotenv_2022_159030 crossref_primary_10_1016_j_ecolind_2020_106698 crossref_primary_10_2139_ssrn_4098842 crossref_primary_10_1016_j_chemosphere_2021_130144 crossref_primary_10_3390_molecules27030584 crossref_primary_10_1016_j_jhazmat_2024_133823 crossref_primary_10_1016_j_ecoenv_2024_116184 crossref_primary_10_1016_j_envpol_2020_115255 crossref_primary_10_1007_s11244_024_01927_7 crossref_primary_10_1016_j_scitotenv_2021_147055 crossref_primary_10_1016_j_jconhyd_2025_104514 crossref_primary_10_1016_j_jhazmat_2021_125423 crossref_primary_10_1017_plc_2024_26 crossref_primary_10_1016_j_marpolbul_2021_111986 crossref_primary_10_1016_j_envres_2019_108815 crossref_primary_10_1016_j_chemosphere_2020_128162 crossref_primary_10_1080_10643389_2021_1915035 crossref_primary_10_1007_s40726_020_00171_3 crossref_primary_10_1016_j_marpolbul_2020_111227 crossref_primary_10_3390_app11135768 crossref_primary_10_1007_s11270_024_07731_z crossref_primary_10_1016_j_scitotenv_2022_160308 crossref_primary_10_1016_j_envpol_2021_116471 crossref_primary_10_1186_s40538_021_00278_9 crossref_primary_10_1016_j_envpol_2024_123835 crossref_primary_10_1016_j_envpol_2019_113227 crossref_primary_10_1016_j_jhazmat_2022_129064 crossref_primary_10_1016_j_jhazmat_2019_121560 crossref_primary_10_3389_fenvs_2019_00017 crossref_primary_10_1016_j_jhazmat_2021_125652 crossref_primary_10_2139_ssrn_4168570 crossref_primary_10_1016_j_ecoenv_2023_114564 crossref_primary_10_1016_j_ecoenv_2023_114565 crossref_primary_10_1016_j_enmm_2021_100530 crossref_primary_10_4491_KSEE_2022_44_11_453 crossref_primary_10_3390_membranes14080169 crossref_primary_10_1016_j_scitotenv_2020_144728 crossref_primary_10_1016_j_scitotenv_2019_134254 crossref_primary_10_1016_j_chemosphere_2018_03_145 crossref_primary_10_1016_j_scitotenv_2023_168308 crossref_primary_10_1007_s13762_022_04261_1 crossref_primary_10_1016_j_jhazmat_2022_130051 crossref_primary_10_1016_j_scitotenv_2022_155181 crossref_primary_10_1016_j_aquatox_2023_106595 crossref_primary_10_1016_j_ecoenv_2021_111976 crossref_primary_10_1016_j_emcon_2024_100369 crossref_primary_10_1007_s11270_021_05267_0 crossref_primary_10_1007_s44169_023_00047_9 crossref_primary_10_1016_j_aquatox_2023_106597 crossref_primary_10_1007_s11356_022_21542_x crossref_primary_10_1016_j_scitotenv_2022_160322 crossref_primary_10_1016_j_scitotenv_2022_156068 crossref_primary_10_1016_j_envpol_2021_118647 crossref_primary_10_1039_C8EN00412A crossref_primary_10_1016_j_jenvman_2024_120745 crossref_primary_10_1016_j_ese_2024_100427 crossref_primary_10_1016_j_scitotenv_2024_174254 crossref_primary_10_1007_s11783_021_1429_z crossref_primary_10_1016_j_jenvman_2021_112241 crossref_primary_10_1016_j_envpol_2019_05_037 crossref_primary_10_1016_j_ecoenv_2019_109709 crossref_primary_10_1016_j_chemosphere_2022_136338 crossref_primary_10_1016_j_aquatox_2023_106589 crossref_primary_10_1016_j_scitotenv_2022_159106 crossref_primary_10_1016_j_jhazmat_2019_121586 crossref_primary_10_1016_j_jhazmat_2023_132503 crossref_primary_10_1016_j_scitotenv_2023_164171 crossref_primary_10_1016_j_chemosphere_2021_130979 crossref_primary_10_1016_j_scitotenv_2024_173178 crossref_primary_10_1016_j_eti_2024_103729 crossref_primary_10_3390_metabo12030223 crossref_primary_10_3390_ijerph19095283 crossref_primary_10_1016_j_chemosphere_2022_137439 crossref_primary_10_3390_w14152403 crossref_primary_10_1016_j_chemosphere_2021_131830 crossref_primary_10_1016_j_gsf_2022_101376 crossref_primary_10_1017_plc_2023_9 crossref_primary_10_1016_j_chemosphere_2022_137433 crossref_primary_10_1016_j_chemosphere_2019_05_003 crossref_primary_10_1016_j_marpolbul_2020_111022 crossref_primary_10_3390_metabo13060739 crossref_primary_10_1016_j_jhazmat_2021_125626 crossref_primary_10_1016_j_envpol_2018_09_029 crossref_primary_10_1016_j_scitotenv_2020_141676 crossref_primary_10_1038_s41598_020_69062_3 crossref_primary_10_1021_acs_chemrestox_0c00501 crossref_primary_10_1016_j_ecoenv_2019_01_113 crossref_primary_10_1016_j_chemosphere_2023_139945 crossref_primary_10_1016_j_envpol_2019_113024 crossref_primary_10_1038_s41598_023_32250_y crossref_primary_10_2139_ssrn_4147219 crossref_primary_10_1016_j_chemosphere_2021_129589 crossref_primary_10_3390_foods12183396 crossref_primary_10_1016_j_envres_2022_113370 crossref_primary_10_3390_biom10081106 crossref_primary_10_1016_j_emcon_2024_100325 crossref_primary_10_1016_j_envpol_2023_122018 crossref_primary_10_3389_ftox_2023_1135081 crossref_primary_10_1016_j_cbi_2021_109550 crossref_primary_10_1016_j_ecoenv_2022_114022 crossref_primary_10_1016_j_aquatox_2021_105748 crossref_primary_10_1007_s44169_024_00066_0 crossref_primary_10_3390_toxics12090676 crossref_primary_10_1016_j_ecolind_2024_112792 crossref_primary_10_1016_j_jclepro_2024_141032 crossref_primary_10_1016_j_chemphys_2024_112326 crossref_primary_10_1016_j_aquatox_2023_106540 crossref_primary_10_1016_j_scitotenv_2022_157362 crossref_primary_10_1016_j_envpol_2020_116175 crossref_primary_10_1016_j_envpol_2020_115083 crossref_primary_10_1016_j_envint_2019_02_067 crossref_primary_10_1016_j_jhazmat_2022_129488 crossref_primary_10_1016_j_scitotenv_2024_170924 crossref_primary_10_1016_j_watres_2019_114968 crossref_primary_10_1016_j_chemosphere_2022_134194 crossref_primary_10_1016_j_marpolbul_2021_112661 crossref_primary_10_1016_j_marpolbul_2023_115613 crossref_primary_10_1016_j_chemosphere_2021_132714 crossref_primary_10_3390_environments10050070 crossref_primary_10_1016_j_scitotenv_2019_136214 crossref_primary_10_1016_j_ecoenv_2023_115636 crossref_primary_10_3390_ijerph18062997 crossref_primary_10_1016_j_scitotenv_2020_140349 crossref_primary_10_3390_antiox11020193 crossref_primary_10_1016_j_aquatox_2019_105396 crossref_primary_10_1016_j_envpol_2021_118662 crossref_primary_10_1016_j_ecoenv_2022_114009 crossref_primary_10_1016_j_envpol_2020_115098 crossref_primary_10_1016_j_jhazmat_2022_129490 crossref_primary_10_1016_j_chemosphere_2020_128171 crossref_primary_10_1007_s11356_019_05031_2 crossref_primary_10_1002_eco_2725 crossref_primary_10_1111_raq_12296 crossref_primary_10_1016_j_watres_2017_12_056 crossref_primary_10_1016_j_watres_2020_116797 crossref_primary_10_1016_j_scitotenv_2023_167471 crossref_primary_10_1371_journal_pone_0289473 crossref_primary_10_1016_j_scitotenv_2022_154025 crossref_primary_10_1111_jfd_14018 crossref_primary_10_1016_j_envint_2023_107968 crossref_primary_10_1007_s11356_019_04632_1 crossref_primary_10_1007_s11356_021_15826_x crossref_primary_10_1016_j_scitotenv_2021_149638 crossref_primary_10_3390_toxics12110785 crossref_primary_10_1016_j_watres_2020_115898 crossref_primary_10_1016_j_microc_2023_109036 crossref_primary_10_1016_j_jhazmat_2022_129225 crossref_primary_10_11626_KJEB_2024_42_1_001 crossref_primary_10_2208_jscejj_24_25043 crossref_primary_10_1021_acs_est_2c02033 crossref_primary_10_1039_D1NR00038A crossref_primary_10_1016_j_chemosphere_2021_129704 crossref_primary_10_1016_j_scitotenv_2024_177957 crossref_primary_10_1016_j_scitotenv_2021_147462 crossref_primary_10_1016_j_scitotenv_2022_160954 crossref_primary_10_1016_j_scitotenv_2019_136279 crossref_primary_10_4236_oje_2023_1312057 crossref_primary_10_1111_raq_12435 crossref_primary_10_1016_j_gsd_2023_100962 crossref_primary_10_1016_j_chemosphere_2022_134101 crossref_primary_10_1016_j_soilbio_2023_108940 crossref_primary_10_1038_s41598_025_85291_w crossref_primary_10_1080_15422119_2022_2096071 crossref_primary_10_1016_j_jhazmat_2025_137701 crossref_primary_10_1016_j_scitotenv_2023_165432 crossref_primary_10_1016_j_watres_2020_116731 crossref_primary_10_3390_ma17010173 crossref_primary_10_1016_j_jhazmat_2022_128388 crossref_primary_10_1016_j_chemosphere_2024_142519 crossref_primary_10_3390_app112411921 crossref_primary_10_1016_j_marpolbul_2024_117509 crossref_primary_10_1186_s43591_021_00020_0 crossref_primary_10_1007_s00128_024_03865_2 crossref_primary_10_1021_acs_jafc_1c07849 crossref_primary_10_1016_j_marenvres_2024_106547 crossref_primary_10_1016_j_chemosphere_2022_136969 crossref_primary_10_1016_j_chemosphere_2020_128541 crossref_primary_10_1016_j_envpol_2019_113649 crossref_primary_10_3390_ijms21051727 crossref_primary_10_3389_fmars_2023_1109691 crossref_primary_10_1016_j_chemosphere_2019_04_098 crossref_primary_10_1016_j_chemosphere_2020_127204 crossref_primary_10_1016_j_ecoenv_2023_115274 crossref_primary_10_1111_sum_12709 crossref_primary_10_1002_wer_1327 crossref_primary_10_1016_j_scitotenv_2018_03_075 crossref_primary_10_3389_fenvs_2022_975904 crossref_primary_10_1007_s10661_022_10769_3 crossref_primary_10_1016_j_scitotenv_2018_10_269 crossref_primary_10_1016_j_scitotenv_2021_147007 crossref_primary_10_1016_j_ecoenv_2020_111404 crossref_primary_10_1038_s41598_019_52292_5 crossref_primary_10_1016_j_jhazmat_2020_123828 crossref_primary_10_1039_D0EN00654H crossref_primary_10_1016_j_impact_2019_100204 crossref_primary_10_1016_j_jhazmat_2022_129454 crossref_primary_10_1021_acs_est_9b06583 crossref_primary_10_1016_j_aqrep_2024_102299 crossref_primary_10_1111_gcb_15416 crossref_primary_10_1016_j_trac_2018_10_006 crossref_primary_10_1016_j_envres_2023_116775 crossref_primary_10_3389_falgy_2023_1093800 crossref_primary_10_1016_j_chemosphere_2020_129219 crossref_primary_10_1002_etc_5315 crossref_primary_10_1016_j_enmm_2021_100587 crossref_primary_10_1016_j_jhazmat_2020_123845 crossref_primary_10_1007_s11356_021_15824_z crossref_primary_10_1007_s11356_021_13184_2 crossref_primary_10_1016_j_envadv_2022_100273 crossref_primary_10_1016_j_scitotenv_2021_151909 crossref_primary_10_1016_j_scitotenv_2020_139991 crossref_primary_10_1007_s10499_025_01891_3 crossref_primary_10_1098_rspb_2020_1268 crossref_primary_10_1007_s11356_023_27151_6 crossref_primary_10_1016_j_jhazmat_2022_128332 crossref_primary_10_1016_j_chemosphere_2022_134373 crossref_primary_10_1021_acs_est_1c03119 crossref_primary_10_1016_j_marpolbul_2020_111650 crossref_primary_10_1080_10643389_2019_1694822 crossref_primary_10_1002_apj_3122 crossref_primary_10_1016_j_aquatox_2020_105643 crossref_primary_10_1016_j_ecohyd_2023_12_005 crossref_primary_10_1016_j_ecolecon_2021_107246 crossref_primary_10_1016_j_scitotenv_2018_03_054 crossref_primary_10_1039_D4EN00300D crossref_primary_10_1016_j_pce_2025_103866 crossref_primary_10_3748_wjg_v31_i4_100470 crossref_primary_10_2139_ssrn_4170057 crossref_primary_10_1016_j_marpolbul_2021_112803 crossref_primary_10_1007_s11356_023_27162_3 crossref_primary_10_1007_s11356_023_28750_z crossref_primary_10_1007_s11356_022_23789_w crossref_primary_10_1016_j_etap_2022_104013 crossref_primary_10_1186_s12199_020_00870_9 crossref_primary_10_1016_j_envpol_2018_08_084 crossref_primary_10_1007_s11356_024_34470_9 crossref_primary_10_1016_j_trac_2023_117392 crossref_primary_10_1007_s11356_022_20308_9 crossref_primary_10_1016_j_scitotenv_2020_141604 crossref_primary_10_3390_ijms232214411 crossref_primary_10_1016_j_marpolbul_2020_111446 crossref_primary_10_1016_j_cotox_2021_10_001 crossref_primary_10_1016_j_envint_2022_107223 crossref_primary_10_1007_s11356_023_30855_4 crossref_primary_10_3390_toxics11060539 crossref_primary_10_3390_atmos14050838 crossref_primary_10_1016_j_cotox_2020_02_004 crossref_primary_10_1016_j_chemosphere_2024_143676 crossref_primary_10_1016_j_scitotenv_2024_176644 crossref_primary_10_1016_j_apsoil_2024_105312 crossref_primary_10_1016_j_watres_2023_120871 crossref_primary_10_1002_etc_4257 crossref_primary_10_1016_j_aquaculture_2021_737245 crossref_primary_10_1016_j_eiar_2021_106642 crossref_primary_10_1080_17435390_2018_1530395 crossref_primary_10_1016_j_psep_2024_07_002 crossref_primary_10_47470_0016_9900_2023_102_12_1334_1347 crossref_primary_10_1016_j_ecoenv_2021_112837 crossref_primary_10_3390_w12092361 crossref_primary_10_1007_s12010_023_04832_z crossref_primary_10_1016_j_envpol_2019_113439 crossref_primary_10_1039_D0EN00961J crossref_primary_10_1016_j_envpol_2022_120635 crossref_primary_10_1016_j_chemosphere_2022_137637 crossref_primary_10_1021_acs_est_9b06386 crossref_primary_10_1007_s11356_020_08104_9 crossref_primary_10_1080_10408444_2019_1626801 crossref_primary_10_1016_j_scitotenv_2024_170592 crossref_primary_10_3390_microplastics1020017 crossref_primary_10_1016_j_scitotenv_2023_163779 crossref_primary_10_1016_j_watbs_2023_100192 crossref_primary_10_1016_j_envpol_2018_07_051 crossref_primary_10_1590_2318_0331_292420240016 crossref_primary_10_1016_j_jhazmat_2022_129982 crossref_primary_10_1002_jat_3915 crossref_primary_10_1016_j_marpolbul_2021_112287 crossref_primary_10_3390_ijerph16162857 crossref_primary_10_3390_ijerph17051509 crossref_primary_10_1016_j_ecoenv_2024_117332 crossref_primary_10_1186_s40793_020_00371_w crossref_primary_10_1016_j_jhazmat_2020_123775 crossref_primary_10_1016_j_scitotenv_2019_01_245 crossref_primary_10_1002_gch2_201800118 crossref_primary_10_1016_j_scitotenv_2021_146418 crossref_primary_10_1016_j_jhazmat_2023_133069 crossref_primary_10_3390_microplastics1020022 crossref_primary_10_1016_j_jhazmat_2019_04_039 crossref_primary_10_1016_j_jhazmat_2022_129995 crossref_primary_10_1016_j_envpol_2022_119473 crossref_primary_10_1016_j_chemosphere_2024_141827 crossref_primary_10_3390_toxics12110807 crossref_primary_10_1002_smll_202201680 crossref_primary_10_1016_j_envpol_2024_124394 crossref_primary_10_1590_1678_4324_2024230466 crossref_primary_10_1016_j_ecoenv_2021_112018 crossref_primary_10_3390_ijerph192214751 crossref_primary_10_1016_j_envpol_2022_119206 crossref_primary_10_3390_microplastics3040035 crossref_primary_10_1016_j_jhazmat_2024_134445 crossref_primary_10_1016_j_impact_2020_100256 crossref_primary_10_1039_C9EN01335K crossref_primary_10_1111_gcb_15074 crossref_primary_10_1007_s11160_020_09614_y crossref_primary_10_1016_j_heliyon_2023_e15069 crossref_primary_10_1016_j_envint_2019_04_024 crossref_primary_10_1016_j_jhazmat_2020_124640 crossref_primary_10_1016_j_ocecoaman_2021_105979 crossref_primary_10_1016_j_scitotenv_2022_157609 crossref_primary_10_2139_ssrn_4130894 crossref_primary_10_1016_j_cbpc_2024_110042 crossref_primary_10_1016_j_cej_2021_131442 crossref_primary_10_1016_j_gsd_2024_101185 crossref_primary_10_1016_j_marenvres_2022_105660 crossref_primary_10_1016_j_jhazmat_2023_133289 crossref_primary_10_1016_j_scitotenv_2023_161576 crossref_primary_10_1016_j_scitotenv_2023_164844 crossref_primary_10_1039_D0EN00464B crossref_primary_10_3390_toxics11030282 crossref_primary_10_1016_j_jhazmat_2024_136616 crossref_primary_10_1016_j_chemosphere_2022_135813 crossref_primary_10_1021_acs_est_8b02279 crossref_primary_10_1016_j_scitotenv_2024_172514 crossref_primary_10_1016_j_scitotenv_2022_157857 crossref_primary_10_1016_j_ecoenv_2019_109442 crossref_primary_10_1016_j_envres_2023_117345 crossref_primary_10_3390_polym15163356 crossref_primary_10_1016_j_envpol_2025_125822 crossref_primary_10_1016_j_impact_2022_100403 crossref_primary_10_1016_j_wsee_2024_02_001 crossref_primary_10_1080_10807039_2022_2140027 crossref_primary_10_1016_j_envpol_2019_112978 crossref_primary_10_3390_w16223237 crossref_primary_10_1016_j_ecoenv_2022_113601 crossref_primary_10_1016_j_ecoenv_2021_112478 crossref_primary_10_1016_j_scitotenv_2023_163582 crossref_primary_10_1016_j_envpol_2021_117800 crossref_primary_10_3390_microplastics1010011 crossref_primary_10_1016_j_scitotenv_2020_138929 crossref_primary_10_3389_fmars_2022_939530 crossref_primary_10_3390_ijms241310998 crossref_primary_10_1016_j_marpolbul_2022_113832 crossref_primary_10_1016_j_jhazmat_2021_127237 crossref_primary_10_1007_s42824_021_00038_y crossref_primary_10_1016_j_ecoenv_2020_110857 crossref_primary_10_1016_j_envpol_2022_120262 crossref_primary_10_1016_j_enceco_2024_12_005 crossref_primary_10_1155_2022_1234078 crossref_primary_10_1016_j_trac_2018_12_001 crossref_primary_10_1016_j_chemosphere_2019_01_056 crossref_primary_10_1016_j_scitotenv_2018_07_207 crossref_primary_10_4014_jmb_2402_02001 crossref_primary_10_1016_j_scitotenv_2019_135826 crossref_primary_10_3389_fenvs_2022_875512 crossref_primary_10_1016_j_jhazmat_2019_121193 crossref_primary_10_1016_j_envpol_2020_114664 crossref_primary_10_1016_j_jhazmat_2021_126143 crossref_primary_10_1002_etc_4528 crossref_primary_10_1016_j_marpolbul_2022_113820 crossref_primary_10_1016_j_ecolind_2022_109587 crossref_primary_10_1016_j_chemosphere_2024_141644 crossref_primary_10_1016_j_marpolbul_2019_110655 crossref_primary_10_1016_j_ecoenv_2020_110625 crossref_primary_10_1016_j_scitotenv_2022_153471 crossref_primary_10_3390_w17030392 crossref_primary_10_1016_j_chemosphere_2022_135601 crossref_primary_10_1016_j_trac_2024_117835 crossref_primary_10_1007_s11802_022_4937_y crossref_primary_10_1016_j_envpol_2019_02_059 crossref_primary_10_1093_biolre_ioae154 crossref_primary_10_1016_j_scitotenv_2020_138707 crossref_primary_10_1039_D3RA04054B crossref_primary_10_3390_nano14141179 crossref_primary_10_1016_j_envpol_2020_115769 crossref_primary_10_1016_j_marpolbul_2019_110665 crossref_primary_10_1016_j_envpol_2023_121631 crossref_primary_10_1016_j_chemosphere_2020_126793 crossref_primary_10_47262_BL_8_1_20220101 crossref_primary_10_1021_acs_est_0c04641 crossref_primary_10_1016_j_envpol_2022_120001 crossref_primary_10_1016_j_aquatox_2024_107003 crossref_primary_10_1016_j_jhazmat_2024_133545 crossref_primary_10_1007_s11356_022_20913_8 crossref_primary_10_1007_s11356_023_30801_4 crossref_primary_10_1016_j_cbpc_2025_110149 crossref_primary_10_1016_j_pmatsci_2022_101035 crossref_primary_10_1016_j_aquatox_2024_107009 crossref_primary_10_1016_j_envpol_2019_112980 crossref_primary_10_1016_j_envpol_2019_112983 crossref_primary_10_1016_j_marpolbul_2023_115294 crossref_primary_10_1016_j_polymdegradstab_2025_111174 crossref_primary_10_1007_s11356_018_1999_x crossref_primary_10_1016_j_jclepro_2024_141930 crossref_primary_10_1016_j_marpol_2024_106326 crossref_primary_10_1016_j_envint_2021_106504 crossref_primary_10_1016_j_chemosphere_2021_131345 crossref_primary_10_1016_j_chemosphere_2023_138776 crossref_primary_10_1016_j_envpol_2019_04_088 crossref_primary_10_1021_acs_est_8b04849 crossref_primary_10_1111_brv_13015 crossref_primary_10_1021_acs_est_8b04848 crossref_primary_10_1016_j_marpolbul_2022_113474 crossref_primary_10_1016_j_envpol_2019_113174 crossref_primary_10_53623_tasp_v2i2_134 crossref_primary_10_1016_j_toxrep_2024_101854 crossref_primary_10_1016_j_scitotenv_2019_135623 crossref_primary_10_1016_j_scitotenv_2024_170516 crossref_primary_10_3390_fishes9020055 crossref_primary_10_1016_j_scitotenv_2023_169469 crossref_primary_10_1016_j_jece_2023_111107 crossref_primary_10_3390_cimb46050256 crossref_primary_10_1016_j_scitotenv_2019_135837 crossref_primary_10_1007_s11270_025_07800_x crossref_primary_10_1016_j_psep_2020_05_050 crossref_primary_10_1016_j_toxrep_2024_101844 crossref_primary_10_3390_ijerph18189449 crossref_primary_10_70749_ijbr_v3i3_785 crossref_primary_10_2139_ssrn_4110663 crossref_primary_10_1016_j_psj_2024_104152 crossref_primary_10_1002_adbi_201800325 crossref_primary_10_1016_j_impact_2021_100374 crossref_primary_10_1039_D4EM00408F crossref_primary_10_1016_j_sciaf_2022_e01220 crossref_primary_10_1016_j_envpol_2021_116959 crossref_primary_10_1016_j_scitotenv_2023_168366 crossref_primary_10_1016_j_chemosphere_2019_125625 crossref_primary_10_1021_acs_est_3c01942 crossref_primary_10_1080_10643389_2022_2072658 crossref_primary_10_1016_j_ceja_2023_100449 crossref_primary_10_1016_j_emcon_2024_100422 crossref_primary_10_1021_acsomega_1c06779 crossref_primary_10_1007_s00128_019_02587_0 crossref_primary_10_3390_jmse11071437 crossref_primary_10_1016_j_marpolbul_2018_03_016 crossref_primary_10_1016_j_envpol_2023_121427 crossref_primary_10_1007_s10661_023_11559_1 crossref_primary_10_1016_j_envpol_2020_114089 crossref_primary_10_1016_j_scitotenv_2022_154745 crossref_primary_10_1016_j_scitotenv_2021_152681 crossref_primary_10_15250_joie_2024_23_4_410 crossref_primary_10_1021_acs_est_4c02811 crossref_primary_10_1016_j_marpolbul_2021_112237 crossref_primary_10_1016_j_jece_2024_112926 crossref_primary_10_1016_j_scitotenv_2020_141276 crossref_primary_10_1080_07388551_2024_2344572 crossref_primary_10_1016_j_chemosphere_2020_128917 crossref_primary_10_1016_j_envpol_2021_118737 crossref_primary_10_3390_microplastics1030025 crossref_primary_10_1371_journal_pone_0229777 crossref_primary_10_3389_fenvs_2022_872898 crossref_primary_10_3390_biology12030391 crossref_primary_10_3390_app12115388 crossref_primary_10_3390_biom13010140 crossref_primary_10_1016_j_scitotenv_2022_158041 crossref_primary_10_1016_j_scitotenv_2023_165903 crossref_primary_10_1007_s44169_023_00027_z crossref_primary_10_1016_j_chemosphere_2021_132460 crossref_primary_10_3389_ftox_2021_636640 crossref_primary_10_1016_j_aquatox_2023_106710 crossref_primary_10_1080_1354750X_2020_1863470 crossref_primary_10_1016_j_scitotenv_2022_154727 crossref_primary_10_1016_j_trac_2021_116235 crossref_primary_10_1016_j_ejar_2024_05_002 crossref_primary_10_3390_biology12060811 crossref_primary_10_1016_j_jhazmat_2021_125204 crossref_primary_10_3390_cancers15133323 crossref_primary_10_1016_j_scitotenv_2023_162866 crossref_primary_10_1108_PRT_10_2024_0110 crossref_primary_10_1016_j_scitotenv_2023_162874 crossref_primary_10_3389_fmars_2021_685327 crossref_primary_10_2965_jwet_19_127 crossref_primary_10_1016_j_envpol_2025_126051 crossref_primary_10_1016_j_scitotenv_2023_161540 crossref_primary_10_2903_j_efsa_2020_e181102 crossref_primary_10_1016_j_envpol_2019_04_066 crossref_primary_10_1016_j_aquatox_2023_106704 crossref_primary_10_1016_j_chemosphere_2021_131121 crossref_primary_10_1016_j_ecoenv_2024_116296 crossref_primary_10_1016_j_scitotenv_2022_153628 crossref_primary_10_3390_ijerph17249591 crossref_primary_10_1016_j_scitotenv_2018_07_271 crossref_primary_10_3390_polym14061246 crossref_primary_10_1016_j_marenvres_2021_105329 crossref_primary_10_1016_j_envpol_2022_120088 crossref_primary_10_1016_j_chemosphere_2022_134918 crossref_primary_10_1039_D1RA00880C crossref_primary_10_1016_j_psep_2020_05_020 crossref_primary_10_1016_j_scitotenv_2020_141047 crossref_primary_10_1139_cjz_2021_0044 crossref_primary_10_1016_j_scitotenv_2022_160387 crossref_primary_10_1016_j_scitotenv_2025_178798 crossref_primary_10_3389_fenvs_2020_560206 crossref_primary_10_1007_s13762_024_05656_y crossref_primary_10_1186_s12989_020_00387_7 |
Cites_doi | 10.1073/pnas.1204652109 10.1016/j.chemosphere.2015.06.032 10.1021/es501090e 10.1016/j.chemosphere.2016.09.002 10.1016/j.chemosphere.2017.04.068 10.1016/j.scitotenv.2017.01.190 10.1186/s12302-015-0069-y 10.1021/es703238h 10.1021/acs.est.5b01090 10.1021/acs.est.7b00423 10.1016/j.watres.2015.02.012 10.1371/journal.pone.0021922 10.1016/j.chemosphere.2015.11.078 10.1038/nprot.2006.172 10.1093/genetics/77.1.71 10.1021/acs.est.7b00635 10.1016/j.scitotenv.2017.08.298 10.1021/es201811s 10.1016/j.envpol.2015.09.018 10.1021/acs.est.6b01441 10.1016/j.aquaculture.2017.02.018 10.1021/acs.est.5b06280 10.1039/C6TX00306K 10.1016/j.scitotenv.2017.02.017 10.1016/j.envpol.2013.08.013 10.1021/acs.est.5b04099 10.1093/toxsci/kfm276 10.1046/j.1365-2761.1999.00134.x 10.3109/10715762.2013.872779 10.1016/j.envpol.2017.01.047 10.1016/j.scitotenv.2016.11.137 10.1021/acs.est.6b00183 10.1016/j.envpol.2013.10.036 10.1016/j.scitotenv.2016.09.213 10.1021/es401932b 10.1371/journal.pbio.1001613 10.1371/journal.ppat.1005389 10.1016/j.envpol.2016.01.083 10.1053/j.gastro.2009.07.069 10.1042/BJ20070521 10.1016/j.envpol.2016.12.038 10.1002/jat.3144 10.1016/j.scitotenv.2017.01.156 10.1016/j.envpol.2013.10.007 10.1021/acs.est.6b05812 10.1016/j.scitotenv.2016.05.084 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2017.11.103 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 8 |
ExternalDocumentID | 29136530 10_1016_j_scitotenv_2017_11_103 S0048969717331613 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-6dc3a0e8a3770a259cd1ff83938e334022a34a2c53d585dee315f317b5dc36803 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Thu Jul 10 19:35:50 EDT 2025 Fri Jul 11 08:38:40 EDT 2025 Wed Feb 19 02:43:14 EST 2025 Tue Jul 01 01:21:26 EDT 2025 Thu Apr 24 22:56:08 EDT 2025 Fri Feb 23 02:46:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Caenorhabditis elegans Oxidative stress Microplastics Intestinal damages Ecotoxicity Danio rerio |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-6dc3a0e8a3770a259cd1ff83938e334022a34a2c53d585dee315f317b5dc36803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0850-0881 |
PMID | 29136530 |
PQID | 1964703504 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000617351 proquest_miscellaneous_1964703504 pubmed_primary_29136530 crossref_citationtrail_10_1016_j_scitotenv_2017_11_103 crossref_primary_10_1016_j_scitotenv_2017_11_103 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2017_11_103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 2018-04-00 2018-Apr-01 20180401 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Paço, Duarte, da Costa, Santos, Pereira, Pereira, Freitas, Duarte, Rocha-Santos (bb0170) 2017; 586 Coburn, Allman, Mahanti, Benedetto, Cabreiro, Pincus, Matthijssens, Araiz, Mandel, Vlachos, Edward, Fischer, Davidson, Pryor, Stevens, Slack, Tavernarakis, Braeckman, Schroeder, Nehrke, Gems (bb0045) 2013; 11 Bernet, Schmidt, Meier, Burkhardt-Holm, Wahli (bb0010) 1999; 22 Paiva, Bonomo Lde, Boasquivis, de Paula, Guerra, Leal, Silva, Pedrosa, Oliveira Rde (bb0175) 2015; 2015 Horton, Walton, Spurgeon, Lahive, Svendsen (bb0090) 2017; 586 McDevitt, Criddle, Morse, Hale, Bott, Rochman (bb0155) 2017; 51 GESAMP (bb0070) 2015 Pereira, Carvalho, Cruz, Saraiva (bb0190) 2017; 473 Xu, Zhang, Hu, Li, Wu, Bao, Wu, Lei, He (bb0235) 2017; 181 Lee, Shim, Kwon, Kang (bb0130) 2013; 47 Wright, Kelly (bb0225) 2017; 51 Brenner (bb0020) 1974; 77 Spitsbergen, Kent (bb0195) 2003 Cole, Galloway (bb0050) 2015; 49 Nelms, Coombes, Foster, Galloway, Godley, Lindeque, Witt (bb0165) 2017; 579 Yu, Wei, Liao (bb0240) 2014; 48 Choi, Hu (bb0040) 2008; 42 Brugman, Liu, Lindenbergh-Kortleve, Samson, Furuta, Renshaw, Willemsen, Nieuwenhuis (bb0030) 2009; 137 Lu, Zhang, Deng, Jiang, Zhao, Geng, Ding, Ren (bb0150) 2016; 50 Bakir, Rowland, Thompson (bb0005) 2014; 185 Hamlin, Marciano, Downs (bb0075) 2015; 139 Lambert, Wagner (bb0125) 2016; 145 Pedà, Caccamo, Fossi, Gai, Andaloro, Genovese, Perdichizzi, Romeo, Maricchiolo (bb0185) 2016; 212 Wardrop, Shimeta, Nugegoda, Morrison, Miranda, Tang, Clarke (bb0215) 2016; 50 Ivar do Sul, Costa (bb0105) 2014; 185 Hasegawa, Miwa, Isomura, Tsutsumiuchi, Taniguchi, Miwa (bb0080) 2008; 101 Sruthy, Ramasamy (bb0200) 2017; 222 Watts, Lewis, Goodhead, Beckett, Moger, Tyler, Galloway (bb0220) 2014; 48 Hu, Su, Xue, Mu, Zhu, Xu, Shi (bb0095) 2016; 164 Wang, Ndungu, Li, Wang (bb0210) 2017; 575 Li, Tse, Fok (bb0145) 2016; 566–567 Chen, Gundlach, Yang, Jiang, Velki, Yin, Hollert (bb0035) 2017; 584–585 Kahn, Rea, Moyle, Kell, Johnson (bb0115) 2008; 409 Van Cauwenberghe, Vanreusel, Mees, Janssen (bb0205) 2013; 182 Hunt, Son, Wilson, Yu, Wood, Zhang, Becker, Greig, Mattson, Camandola, Wolkow (bb0100) 2011; 6 Li, Li, Yang, Xu, Li, He (bb0140) 2016; 36 Li, Yang, Li, Jabeen, Shi (bb0135) 2015; 207 Zhang, Peng, Cheng, Zhou, Ju, Wan, Yu, Shi, Deng, Wang, Ye, Hu, Lin, Ruan, Sun (bb0245) 2016; 12 Geng, Harry, Zhou, Skeen-Gaar, Ge, Lee, Mitani, Xue (bb0065) 2012; 109 Bouwmeester, Hollman, Peters (bb0015) 2015; 49 Hodson, Duffus-Hodson, Clark, Prendergast-Miller, Thorpe (bb0085) 2017; 51 Browne, Crump, Niven, Teuten, Tonkin, Galloway, Thompson (bb0025) 2011; 45 Duis, Coors (bb0055) 2016; 28 Nel, Dalu, Wasserman (bb0160) 2018; 612 Xu, Li, Wu, Lei, He (bb0230) 2017; 6 Eerkes-Medrano, Thompson, Aldridge (bb0060) 2015; 75 Karami, Groman, Wilson, Ismail, Neela (bb0120) 2017; 223 Palmer, Tsien (bb0180) 2006; 1 Jeong, Won, Kang, Lee, Hwang, Hwang, Zhou, Souissi, Lee, Lee (bb0110) 2016; 50 Bernet (10.1016/j.scitotenv.2017.11.103_bb0010) 1999; 22 GESAMP (10.1016/j.scitotenv.2017.11.103_bb0070) 2015 Geng (10.1016/j.scitotenv.2017.11.103_bb0065) 2012; 109 Wardrop (10.1016/j.scitotenv.2017.11.103_bb0215) 2016; 50 Lee (10.1016/j.scitotenv.2017.11.103_bb0130) 2013; 47 Chen (10.1016/j.scitotenv.2017.11.103_bb0035) 2017; 584–585 Ivar do Sul (10.1016/j.scitotenv.2017.11.103_bb0105) 2014; 185 Li (10.1016/j.scitotenv.2017.11.103_bb0135) 2015; 207 Jeong (10.1016/j.scitotenv.2017.11.103_bb0110) 2016; 50 Nelms (10.1016/j.scitotenv.2017.11.103_bb0165) 2017; 579 Zhang (10.1016/j.scitotenv.2017.11.103_bb0245) 2016; 12 Lu (10.1016/j.scitotenv.2017.11.103_bb0150) 2016; 50 Browne (10.1016/j.scitotenv.2017.11.103_bb0025) 2011; 45 Hamlin (10.1016/j.scitotenv.2017.11.103_bb0075) 2015; 139 Kahn (10.1016/j.scitotenv.2017.11.103_bb0115) 2008; 409 McDevitt (10.1016/j.scitotenv.2017.11.103_bb0155) 2017; 51 Hodson (10.1016/j.scitotenv.2017.11.103_bb0085) 2017; 51 Duis (10.1016/j.scitotenv.2017.11.103_bb0055) 2016; 28 Pereira (10.1016/j.scitotenv.2017.11.103_bb0190) 2017; 473 Paço (10.1016/j.scitotenv.2017.11.103_bb0170) 2017; 586 Wright (10.1016/j.scitotenv.2017.11.103_bb0225) 2017; 51 Spitsbergen (10.1016/j.scitotenv.2017.11.103_bb0195) 2003 Bakir (10.1016/j.scitotenv.2017.11.103_bb0005) 2014; 185 Horton (10.1016/j.scitotenv.2017.11.103_bb0090) 2017; 586 Li (10.1016/j.scitotenv.2017.11.103_bb0145) 2016; 566–567 Palmer (10.1016/j.scitotenv.2017.11.103_bb0180) 2006; 1 Hu (10.1016/j.scitotenv.2017.11.103_bb0095) 2016; 164 Eerkes-Medrano (10.1016/j.scitotenv.2017.11.103_bb0060) 2015; 75 Xu (10.1016/j.scitotenv.2017.11.103_bb0235) 2017; 181 Wang (10.1016/j.scitotenv.2017.11.103_bb0210) 2017; 575 Bouwmeester (10.1016/j.scitotenv.2017.11.103_bb0015) 2015; 49 Hunt (10.1016/j.scitotenv.2017.11.103_bb0100) 2011; 6 Yu (10.1016/j.scitotenv.2017.11.103_bb0240) 2014; 48 Xu (10.1016/j.scitotenv.2017.11.103_bb0230) 2017; 6 Nel (10.1016/j.scitotenv.2017.11.103_bb0160) 2018; 612 Sruthy (10.1016/j.scitotenv.2017.11.103_bb0200) 2017; 222 Hasegawa (10.1016/j.scitotenv.2017.11.103_bb0080) 2008; 101 Lambert (10.1016/j.scitotenv.2017.11.103_bb0125) 2016; 145 Paiva (10.1016/j.scitotenv.2017.11.103_bb0175) 2015; 2015 Pedà (10.1016/j.scitotenv.2017.11.103_bb0185) 2016; 212 Li (10.1016/j.scitotenv.2017.11.103_bb0140) 2016; 36 Watts (10.1016/j.scitotenv.2017.11.103_bb0220) 2014; 48 Cole (10.1016/j.scitotenv.2017.11.103_bb0050) 2015; 49 Van Cauwenberghe (10.1016/j.scitotenv.2017.11.103_bb0205) 2013; 182 Brugman (10.1016/j.scitotenv.2017.11.103_bb0030) 2009; 137 Karami (10.1016/j.scitotenv.2017.11.103_bb0120) 2017; 223 Coburn (10.1016/j.scitotenv.2017.11.103_bb0045) 2013; 11 Brenner (10.1016/j.scitotenv.2017.11.103_bb0020) 1974; 77 Choi (10.1016/j.scitotenv.2017.11.103_bb0040) 2008; 42 |
References_xml | – volume: 101 start-page: 215 year: 2008 end-page: 225 ident: bb0080 article-title: Acrylamide-responsive genes in the nematode publication-title: Toxicol. Sci. – volume: 212 start-page: 251 year: 2016 end-page: 256 ident: bb0185 article-title: Intestinal alterations in European sea bass Dicentrarchus labrax ( publication-title: Environ. Pollut. – volume: 50 start-page: 8849 year: 2016 end-page: 8857 ident: bb0110 article-title: Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer ( publication-title: Environ. Sci. Technol. – year: 2015 ident: bb0070 article-title: Sources, fate and effects of microplastics in the marine environment: a global assessment publication-title: Reports and Studies 90.IMO/FAO/UNESCO-IOC/UNIDO/WMO/IAEA/UN/U NEP/UNDP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, London – volume: 28 start-page: 2 year: 2016 ident: bb0055 article-title: Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects publication-title: Environ. Sci. Eur. – volume: 145 start-page: 265 year: 2016 end-page: 268 ident: bb0125 article-title: Characterisation of nanoplastics during the degradation of polystyrene publication-title: Chemosphere – volume: 185 start-page: 352 year: 2014 end-page: − ident: bb0105 article-title: The present and future of microplastic pollution in the marine environment: a review publication-title: Environ. Pollut. – volume: 409 start-page: 205 year: 2008 end-page: 213 ident: bb0115 article-title: Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in publication-title: Biochem. J. – volume: 207 start-page: 190 year: 2015 end-page: 195 ident: bb0135 article-title: Microplastics in commercial bivalves from China publication-title: Environ. Pollut. – volume: 47 start-page: 11278 year: 2013 end-page: 11283 ident: bb0130 article-title: Size-dependent effects of micro polystyrene particles in the marine copepod publication-title: Environ. Sci. Technol. – volume: 22 start-page: 25 year: 1999 end-page: 34 ident: bb0010 article-title: Histopathology in fish: proposal for a protocol to assess aquatic pollution publication-title: J. Fish Dis. – volume: 164 start-page: 611 year: 2016 end-page: 617 ident: bb0095 article-title: Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of publication-title: Chemosphere – volume: 45 start-page: 9175 year: 2011 end-page: 9179 ident: bb0025 article-title: Accumulation of microplastic on shorelines worldwide: sources and sinks publication-title: Environ. Sci. Technol. – volume: 1 start-page: 1057 year: 2006 end-page: 1065 ident: bb0180 article-title: Measuring calcium signaling using genetically targetable fluorescent indicators publication-title: Nat. Protoc. – volume: 223 start-page: 466 year: 2017 end-page: 475 ident: bb0120 article-title: Biomarker responses in zebrafish ( publication-title: Environ. Pollut. – volume: 42 start-page: 4583 year: 2008 end-page: 4588 ident: bb0040 article-title: Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria publication-title: Environ. Sci. Technol. – volume: 75 start-page: 63 year: 2015 end-page: 82 ident: bb0060 article-title: Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs publication-title: Water Res. – volume: 51 start-page: 6634 year: 2017 end-page: 6647 ident: bb0225 article-title: Plastic and human health: a micro issue? publication-title: Environ. Sci. Technol. – volume: 575 start-page: 1369 year: 2017 end-page: 1374 ident: bb0210 article-title: Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China publication-title: Sci. Total Environ. – volume: 137 start-page: 1757 year: 2009 end-page: 1767 ident: bb0030 article-title: Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota publication-title: Gastroenterology – volume: 185 start-page: 16 year: 2014 end-page: 23 ident: bb0005 article-title: Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions publication-title: Environ. Pollut. – volume: 50 start-page: 4054 year: 2016 end-page: 4060 ident: bb0150 article-title: Uptake and accumulation of polystyrene microplastics in zebrafish ( publication-title: Environ. Sci. Technol. – volume: 6 start-page: 63 year: 2017 end-page: 72 ident: bb0230 article-title: Tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloropropyl) phosphate (TCPP) induce locomotor deficits and dopaminergic degeneration in publication-title: Toxicol. Res. – volume: 49 start-page: 14625 year: 2015 end-page: 14632 ident: bb0050 article-title: Ingestion of nanoplastics and microplastics by pacific oyster larvae publication-title: Environ. Sci. Technol. – volume: 51 start-page: 4714 year: 2017 end-page: 4721 ident: bb0085 article-title: Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates publication-title: Environ. Sci. Technol. – volume: 579 start-page: 1399 year: 2017 end-page: 1409 ident: bb0165 article-title: Marine anthropogentic litter on British beaches: a 10-year nationwide assessment using citizen science data publication-title: Sci. Total Environ. – volume: 11 year: 2013 ident: bb0045 article-title: Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in publication-title: PLoS Biol. – volume: 51 start-page: 6611 year: 2017 end-page: 6617 ident: bb0155 article-title: Addressing the issue of microplastics in the wake of the microbead-free waters act-a new standard can facilitate improved policy publication-title: Environ. Sci. Technol. – volume: 48 start-page: 371 year: 2014 end-page: 379 ident: bb0240 article-title: Curcumin-mediated oxidative stress resistance in publication-title: Free Radic. Res. – volume: 6 year: 2011 ident: bb0100 article-title: Extension of lifespan in publication-title: PLoS One – volume: 50 start-page: 4037 year: 2016 end-page: 4044 ident: bb0215 article-title: Chemical pollutants sorbed to ingested microbeads from personal care products accumulate in fish publication-title: Environ. Sci. Technol. – volume: 109 start-page: 18465 year: 2012 end-page: 18470 ident: bb0065 article-title: Hepatitis B virus X protein targets the Bcl-2 protein CED-9 to induce intracellular Ca publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 182 start-page: 495 year: 2013 end-page: 499 ident: bb0205 article-title: Microplastic pollution in deep-sea sediments publication-title: Environ. Pollut. – volume: 49 start-page: 8932 year: 2015 end-page: 8947 ident: bb0015 article-title: Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology publication-title: Environ. Sci. Technol. – volume: 612 start-page: 950 year: 2018 end-page: 956 ident: bb0160 article-title: Sinks and sources: assessing microplastic abundance in river sediment and deposit feeders in an Austral urban river system publication-title: Sci. Total Environ. – volume: 36 start-page: 60 year: 2016 end-page: 67 ident: bb0140 article-title: Acrylamide induces locomotor defects and degeneration of dopamine neurons in publication-title: J. Appl. Toxicol. – volume: 48 start-page: 8823 year: 2014 end-page: 8830 ident: bb0220 article-title: Uptake and retention of microplastics by the shore crab publication-title: Environ. Sci. Technol. – volume: 77 start-page: 71 year: 1974 end-page: 94 ident: bb0020 article-title: The genetics of publication-title: Genetics – volume: 473 start-page: 197 year: 2017 end-page: 205 ident: bb0190 article-title: Histopathological changes and zootechnical performance in juvenile zebrafish ( publication-title: Aquaculture – volume: 222 start-page: 315 year: 2017 end-page: 322 ident: bb0200 article-title: Microplastic pollution in Vembanad Lake, Kerala, India: the first report of microplastics in lake and estuarine sediments in India publication-title: Environ. Pollut. – volume: 566–567 start-page: 333 year: 2016 end-page: 349 ident: bb0145 article-title: Plastic waste in the marine environment: a review of sources, occurrence and effects publication-title: Sci. Total Environ. – volume: 181 start-page: 55 year: 2017 end-page: 62 ident: bb0235 article-title: Behavioral deficits and neural damage of publication-title: Chemosphere – volume: 586 start-page: 127 year: 2017 end-page: 141 ident: bb0090 article-title: Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities publication-title: Sci. Total Environ. – volume: 586 start-page: 10 year: 2017 end-page: 15 ident: bb0170 article-title: Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum publication-title: Sci. Total Environ. – volume: 12 year: 2016 ident: bb0245 article-title: Bacillus thuringiensis crystal protein cry6Aa triggers publication-title: PLoS Pathog. – volume: 2015 start-page: 740162 year: 2015 ident: bb0175 article-title: Carqueja ( publication-title: Oxidative Med. Cell. Longev. – start-page: 62 year: 2003 end-page: 87 ident: bb0195 article-title: The state of the art of the zebrafish model for toxicology and toxicologic pathology research–advantages and current limitations publication-title: Toxicol. Pathol. Suppl. – volume: 584–585 start-page: 1022 year: 2017 end-page: 1031 ident: bb0035 article-title: Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity publication-title: Sci. Total Environ. – volume: 139 start-page: 223 year: 2015 end-page: 228 ident: bb0075 article-title: Migration of nonylphenol from food-grade plastic is toxic to the coral reef fish species publication-title: Chemosphere – volume: 109 start-page: 18465 issue: 45 year: 2012 ident: 10.1016/j.scitotenv.2017.11.103_bb0065 article-title: Hepatitis B virus X protein targets the Bcl-2 protein CED-9 to induce intracellular Ca2+ increase and cell death in Caenorhabditis elegans publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1204652109 – volume: 139 start-page: 223 year: 2015 ident: 10.1016/j.scitotenv.2017.11.103_bb0075 article-title: Migration of nonylphenol from food-grade plastic is toxic to the coral reef fish species Pseudochromis fridmani publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.06.032 – volume: 48 start-page: 8823 issue: 15 year: 2014 ident: 10.1016/j.scitotenv.2017.11.103_bb0220 article-title: Uptake and retention of microplastics by the shore crab Carcinus maenas publication-title: Environ. Sci. Technol. doi: 10.1021/es501090e – volume: 164 start-page: 611 year: 2016 ident: 10.1016/j.scitotenv.2017.11.103_bb0095 article-title: Uptake, accumulation and elimination of polystyrene microspheres in tadpoles of Xenopus tropicalis publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.09.002 – volume: 181 start-page: 55 year: 2017 ident: 10.1016/j.scitotenv.2017.11.103_bb0235 article-title: Behavioral deficits and neural damage of Caenorhabditis elegans induced by three rare earth elements publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.04.068 – volume: 586 start-page: 127 year: 2017 ident: 10.1016/j.scitotenv.2017.11.103_bb0090 article-title: Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.190 – volume: 28 start-page: 2 issue: 1 year: 2016 ident: 10.1016/j.scitotenv.2017.11.103_bb0055 article-title: Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects publication-title: Environ. Sci. Eur. doi: 10.1186/s12302-015-0069-y – volume: 42 start-page: 4583 issue: 12 year: 2008 ident: 10.1016/j.scitotenv.2017.11.103_bb0040 article-title: Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria publication-title: Environ. Sci. Technol. doi: 10.1021/es703238h – volume: 49 start-page: 8932 issue: 15 year: 2015 ident: 10.1016/j.scitotenv.2017.11.103_bb0015 article-title: Potential health impact of environmentally released micro- and nanoplastics in the human food production chain: experiences from nanotoxicology publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b01090 – volume: 51 start-page: 6634 issue: 12 year: 2017 ident: 10.1016/j.scitotenv.2017.11.103_bb0225 article-title: Plastic and human health: a micro issue? publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00423 – volume: 75 start-page: 63 year: 2015 ident: 10.1016/j.scitotenv.2017.11.103_bb0060 article-title: Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs publication-title: Water Res. doi: 10.1016/j.watres.2015.02.012 – volume: 6 issue: 7 year: 2011 ident: 10.1016/j.scitotenv.2017.11.103_bb0100 article-title: Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms publication-title: PLoS One doi: 10.1371/journal.pone.0021922 – volume: 145 start-page: 265 year: 2016 ident: 10.1016/j.scitotenv.2017.11.103_bb0125 article-title: Characterisation of nanoplastics during the degradation of polystyrene publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.11.078 – volume: 2015 start-page: 740162 year: 2015 ident: 10.1016/j.scitotenv.2017.11.103_bb0175 article-title: Carqueja (Baccharis trimera) protects against oxidative stress and β-amyloid-induced toxicity in Caenorhabditis elegans publication-title: Oxidative Med. Cell. Longev. – volume: 1 start-page: 1057 issue: 3 year: 2006 ident: 10.1016/j.scitotenv.2017.11.103_bb0180 article-title: Measuring calcium signaling using genetically targetable fluorescent indicators publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.172 – volume: 77 start-page: 71 year: 1974 ident: 10.1016/j.scitotenv.2017.11.103_bb0020 article-title: The genetics of Caenorhabditis elegans publication-title: Genetics doi: 10.1093/genetics/77.1.71 – volume: 51 start-page: 4714 issue: 8 year: 2017 ident: 10.1016/j.scitotenv.2017.11.103_bb0085 article-title: Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b00635 – volume: 612 start-page: 950 issue: 15 year: 2018 ident: 10.1016/j.scitotenv.2017.11.103_bb0160 article-title: Sinks and sources: assessing microplastic abundance in river sediment and deposit feeders in an Austral urban river system publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.08.298 – volume: 45 start-page: 9175 issue: 21 year: 2011 ident: 10.1016/j.scitotenv.2017.11.103_bb0025 article-title: Accumulation of microplastic on shorelines worldwide: sources and sinks publication-title: Environ. Sci. Technol. doi: 10.1021/es201811s – volume: 207 start-page: 190 year: 2015 ident: 10.1016/j.scitotenv.2017.11.103_bb0135 article-title: Microplastics in commercial bivalves from China publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2015.09.018 – volume: 50 start-page: 8849 issue: 16 year: 2016 ident: 10.1016/j.scitotenv.2017.11.103_bb0110 article-title: Microplastic size-dependent toxicity, oxidative stress induction, and p-JNK and p-p38 activation in the monogonont rotifer (Brachionus koreanus) publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b01441 – volume: 473 start-page: 197 year: 2017 ident: 10.1016/j.scitotenv.2017.11.103_bb0190 article-title: Histopathological changes and zootechnical performance in juvenile zebrafish (Danio rerio) under chronic exposure to nitrate publication-title: Aquaculture doi: 10.1016/j.aquaculture.2017.02.018 – volume: 50 start-page: 4037 issue: 7 year: 2016 ident: 10.1016/j.scitotenv.2017.11.103_bb0215 article-title: Chemical pollutants sorbed to ingested microbeads from personal care products accumulate in fish publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b06280 – volume: 6 start-page: 63 year: 2017 ident: 10.1016/j.scitotenv.2017.11.103_bb0230 article-title: Tris(2-chloroethyl) phosphate (TCEP) and tris(2-chloropropyl) phosphate (TCPP) induce locomotor deficits and dopaminergic degeneration in Caenorhabditis elegans publication-title: Toxicol. Res. doi: 10.1039/C6TX00306K – volume: 586 start-page: 10 year: 2017 ident: 10.1016/j.scitotenv.2017.11.103_bb0170 article-title: Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.02.017 – volume: 182 start-page: 495 year: 2013 ident: 10.1016/j.scitotenv.2017.11.103_bb0205 article-title: Microplastic pollution in deep-sea sediments publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.08.013 – volume: 49 start-page: 14625 issue: 24 year: 2015 ident: 10.1016/j.scitotenv.2017.11.103_bb0050 article-title: Ingestion of nanoplastics and microplastics by pacific oyster larvae publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b04099 – volume: 101 start-page: 215 issue: 2 year: 2008 ident: 10.1016/j.scitotenv.2017.11.103_bb0080 article-title: Acrylamide-responsive genes in the nematode Caenorhabditis elegans publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfm276 – volume: 22 start-page: 25 year: 1999 ident: 10.1016/j.scitotenv.2017.11.103_bb0010 article-title: Histopathology in fish: proposal for a protocol to assess aquatic pollution publication-title: J. Fish Dis. doi: 10.1046/j.1365-2761.1999.00134.x – volume: 48 start-page: 371 issue: 3 year: 2014 ident: 10.1016/j.scitotenv.2017.11.103_bb0240 article-title: Curcumin-mediated oxidative stress resistance in Caenorhabditis elegans is modulated by age-1, akt-1, pdk-1, osr-1, unc-43, sek-1, skn-1, sir-2.1, and mev-1 publication-title: Free Radic. Res. doi: 10.3109/10715762.2013.872779 – volume: 223 start-page: 466 year: 2017 ident: 10.1016/j.scitotenv.2017.11.103_bb0120 article-title: Biomarker responses in zebrafish (Danio rerio) larvae exposed to pristine low-density polyethylene fragments publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.01.047 – volume: 579 start-page: 1399 year: 2017 ident: 10.1016/j.scitotenv.2017.11.103_bb0165 article-title: Marine anthropogentic litter on British beaches: a 10-year nationwide assessment using citizen science data publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.11.137 – volume: 50 start-page: 4054 issue: 7 year: 2016 ident: 10.1016/j.scitotenv.2017.11.103_bb0150 article-title: Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b00183 – volume: 185 start-page: 352 year: 2014 ident: 10.1016/j.scitotenv.2017.11.103_bb0105 article-title: The present and future of microplastic pollution in the marine environment: a review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.10.036 – volume: 575 start-page: 1369 year: 2017 ident: 10.1016/j.scitotenv.2017.11.103_bb0210 article-title: Microplastics pollution in inland freshwaters of China: a case study in urban surface waters of Wuhan, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.09.213 – volume: 47 start-page: 11278 issue: 19 year: 2013 ident: 10.1016/j.scitotenv.2017.11.103_bb0130 article-title: Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus publication-title: Environ. Sci. Technol. doi: 10.1021/es401932b – volume: 11 issue: 7 year: 2013 ident: 10.1016/j.scitotenv.2017.11.103_bb0045 article-title: Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in C. elegans publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001613 – start-page: 62 year: 2003 ident: 10.1016/j.scitotenv.2017.11.103_bb0195 article-title: The state of the art of the zebrafish model for toxicology and toxicologic pathology research–advantages and current limitations publication-title: Toxicol. Pathol. Suppl. – volume: 12 issue: 1 year: 2016 ident: 10.1016/j.scitotenv.2017.11.103_bb0245 article-title: Bacillus thuringiensis crystal protein cry6Aa triggers Caenorhabditis elegans necrosis pathway mediated by aspartic protease (ASP-1) publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005389 – volume: 212 start-page: 251 year: 2016 ident: 10.1016/j.scitotenv.2017.11.103_bb0185 article-title: Intestinal alterations in European sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics: preliminary results publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.01.083 – year: 2015 ident: 10.1016/j.scitotenv.2017.11.103_bb0070 article-title: Sources, fate and effects of microplastics in the marine environment: a global assessment – volume: 137 start-page: 1757 issue: 5 year: 2009 ident: 10.1016/j.scitotenv.2017.11.103_bb0030 article-title: Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.07.069 – volume: 409 start-page: 205 issue: 1 year: 2008 ident: 10.1016/j.scitotenv.2017.11.103_bb0115 article-title: Proteasomal dysfunction activates the transcription factor SKN-1 and produces a selective oxidative-stress response in Caenorhabditis elegans publication-title: Biochem. J. doi: 10.1042/BJ20070521 – volume: 222 start-page: 315 year: 2017 ident: 10.1016/j.scitotenv.2017.11.103_bb0200 article-title: Microplastic pollution in Vembanad Lake, Kerala, India: the first report of microplastics in lake and estuarine sediments in India publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2016.12.038 – volume: 36 start-page: 60 issue: 1 year: 2016 ident: 10.1016/j.scitotenv.2017.11.103_bb0140 article-title: Acrylamide induces locomotor defects and degeneration of dopamine neurons in Caenorhabditis elegans publication-title: J. Appl. Toxicol. doi: 10.1002/jat.3144 – volume: 584–585 start-page: 1022 year: 2017 ident: 10.1016/j.scitotenv.2017.11.103_bb0035 article-title: Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.156 – volume: 185 start-page: 16 year: 2014 ident: 10.1016/j.scitotenv.2017.11.103_bb0005 article-title: Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.10.007 – volume: 51 start-page: 6611 issue: 12 year: 2017 ident: 10.1016/j.scitotenv.2017.11.103_bb0155 article-title: Addressing the issue of microplastics in the wake of the microbead-free waters act-a new standard can facilitate improved policy publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b05812 – volume: 566–567 start-page: 333 year: 2016 ident: 10.1016/j.scitotenv.2017.11.103_bb0145 article-title: Plastic waste in the marine environment: a review of sources, occurrence and effects publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.05.084 |
SSID | ssj0000781 |
Score | 2.6995492 |
Snippet | Microplastics have been frequently detected in aquatic environments, and there are increasing concerns about potential effects on biota. In this study,... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | adverse effects Animals aquatic environment body length Caenorhabditis elegans Calcium cracking Danio rerio Ecotoxicity enterocytes Environmental Monitoring freshwater Glutathione Transferase Intestinal damages Intestines - injuries Microplastics Oxidative Stress plastics Plastics - adverse effects poly(vinyl chloride) polyamides polypropylenes polystyrenes reproduction sediments survival rate toxicity villi Water Pollutants, Chemical - adverse effects Zebrafish |
Title | Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans |
URI | https://dx.doi.org/10.1016/j.scitotenv.2017.11.103 https://www.ncbi.nlm.nih.gov/pubmed/29136530 https://www.proquest.com/docview/1964703504 https://www.proquest.com/docview/2000617351 |
Volume | 619-620 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9KRRBE9LR6VcsKvsZusptk41s5Wk6P9kEs9i1Mdjf0RJPjPoT64Jv_tzPZ5Eofjj74dOQyk1syszO_vfkCeK-k8eTZksjmlY20kTYyBDSipKjIHWFcVN04n_OLbHqpP1-lV3swGWphOK2yt_3BpnfWuv_muH-bx4v5nGt8tSmygsPIinALd_zUOmct__DnNs2Dm9mEKDNtbKK-k-NFz123hE1_cY5XTuaDa9B3eahdCLTzRGdP4UkPIcVJWOUz2PPNCB6GoZI3Izg4va1dI7J-865G8Dj8RSdC5dFz-HvOyXgLgs_0ILEYUuSExc3KC-4jQTf4lxz-JKsjsHGiq9cSyFOciaZPBiFa8ZsD0PV8dS24aL0VS9LstmNpuCts67yYoG_a5TVWjvsoCR54QX7yBVyenX6dTKN-KkNkdS7XUeasQukNqjyXSKcn6-K6JpyljFeKjqMJKo2JTZWjo4jzXsVpTSilSokxM1IdwH7TNv4VCFMTHLLoSYZex4lEX1uXZVjE6CuZF2PIBkmUtm9ZzpMzfpRDbtr3civCkkVIBxq6ocYgt4yL0LXjfpaPg6jLOwpYkm-5n_ndoBwlbU-OuWDj282q5H5nOUdv9W6aJABJlcZjeBk0a7vqpOA8RCUP_2d5r-ERXZmQcPQG9tfLjX9LWGpdHXWb5QgenHyaTS_4c_bl2-wfbAYi4g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SDaWFUtpt02yfKvRqIlt-yL2FJWHTZPeUQG5ClmSyobWXfQTae_93Zyx5Qw5LDr1aGll4pJlP1jczAN8Elw49WxKZojJRKrmJJAKNKCkrdEc6LquunM90lk-u0h_X2fUejPtYGKJVBtvvbXpnrcOTo_A1jxbzOcX4prLMS7pGFohbxBPYp-xU2QD2j8_OJ7N7g1xIXzgvxb2NAg9oXjj0ukV4ekc0rwItCIWh73JSu0Bo54xOX8HLgCLZsZ_oa9hzzRCe-rqSv4dwcHIfvobdwv5dDeGF_0vHfPDRG_g7JT7eAhE0DsQWPUuOGb1ZOUapJLCB3mT1LzQ8TDeWdSFbTFMhZ-wT-CDYl_2hO-h6vrphFLfesiUu7rYTaSgxbGsdG2vXtMsbXVlKpcSo5gW6yrdwdXpyOZ5EoTBDZNKCr6PcGqG5k1oUBdd4gDI2rmuEWkI6IfBEmmiR6sRkwuJpxDon4qxGoFJlKJhLLg5g0LSNOwQma0RERjtUo0vjhGtXG5vnuoy1q3hRjiDvNaFMyFpOxTN-qp6edqu2KlSkQjzTYIMYAd8KLnzijsdFvveqVg_WoEL38rjw135xKNyhdO2iG9duVopSnhV0gZvu7pN4LCmyeATv_MrazjopiYoo-Pv_md4XeDa5nF6oi7PZ-Qd4ji3S848-wmC93LhPCK3W1eewdf4BJ7gj8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microplastic+particles+cause+intestinal+damage+and+other+adverse+effects+in+zebrafish+Danio+rerio+and+nematode+Caenorhabditis+elegans&rft.jtitle=The+Science+of+the+total+environment&rft.au=Lei%2C+Lili&rft.au=Wu%2C+Siyu&rft.au=Lu%2C+Shibo&rft.au=Liu%2C+Mengting&rft.date=2018-04-01&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=619-620&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1016%2Fj.scitotenv.2017.11.103&rft.externalDocID=S0048969717331613 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |