Recent Advances on Natural Aryl-C-glycoside Scaffolds: Structure, Bioactivities, and Synthesis—A Comprehensive Review

Aryl-C-glycosides, of both synthetic and natural origin, are of great significance in medicinal chemistry owing to their unique structures and stability towards enzymatic and chemical hydrolysis as compared to O-glycosides. They are well-known antibiotics and potent enzyme inhibitors and possess a w...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 27; no. 21; p. 7439
Main Author Liu, Chen-Fu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aryl-C-glycosides, of both synthetic and natural origin, are of great significance in medicinal chemistry owing to their unique structures and stability towards enzymatic and chemical hydrolysis as compared to O-glycosides. They are well-known antibiotics and potent enzyme inhibitors and possess a wide range of biological activities such as anticancer, antioxidant, antiviral, hypoglycemic effects, and so on. Currently, a number of aryl-C-glycoside drugs are on sale for the treatment of diabetes and related complications. This review summarizes the findings on aryl-C-glycoside scaffolds over the past 20 years, concerning new structures (over 200 molecules), their bioactivities—including anticancer, anti-inflammatory, antioxidant, antivirus, glycation inhibitory activities and other pharmacological effects—as well as their synthesis.
AbstractList Aryl-C-glycosides, of both synthetic and natural origin, are of great significance in medicinal chemistry owing to their unique structures and stability towards enzymatic and chemical hydrolysis as compared to O-glycosides. They are well-known antibiotics and potent enzyme inhibitors and possess a wide range of biological activities such as anticancer, antioxidant, antiviral, hypoglycemic effects, and so on. Currently, a number of aryl-C-glycoside drugs are on sale for the treatment of diabetes and related complications. This review summarizes the findings on aryl-C-glycoside scaffolds over the past 20 years, concerning new structures (over 200 molecules), their bioactivities—including anticancer, anti-inflammatory, antioxidant, antivirus, glycation inhibitory activities and other pharmacological effects—as well as their synthesis.
Aryl- C -glycosides, of both synthetic and natural origin, are of great significance in medicinal chemistry owing to their unique structures and stability towards enzymatic and chemical hydrolysis as compared to O -glycosides. They are well-known antibiotics and potent enzyme inhibitors and possess a wide range of biological activities such as anticancer, antioxidant, antiviral, hypoglycemic effects, and so on. Currently, a number of aryl- C -glycoside drugs are on sale for the treatment of diabetes and related complications. This review summarizes the findings on aryl- C -glycoside scaffolds over the past 20 years, concerning new structures (over 200 molecules), their bioactivities—including anticancer, anti-inflammatory, antioxidant, antivirus, glycation inhibitory activities and other pharmacological effects—as well as their synthesis.
Aryl-C-glycosides, of both synthetic and natural origin, are of great significance in medicinal chemistry owing to their unique structures and stability towards enzymatic and chemical hydrolysis as compared to O-glycosides. They are well-known antibiotics and potent enzyme inhibitors and possess a wide range of biological activities such as anticancer, antioxidant, antiviral, hypoglycemic effects, and so on. Currently, a number of aryl-C-glycoside drugs are on sale for the treatment of diabetes and related complications. This review summarizes the findings on aryl-C-glycoside scaffolds over the past 20 years, concerning new structures (over 200 molecules), their bioactivities-including anticancer, anti-inflammatory, antioxidant, antivirus, glycation inhibitory activities and other pharmacological effects-as well as their synthesis.Aryl-C-glycosides, of both synthetic and natural origin, are of great significance in medicinal chemistry owing to their unique structures and stability towards enzymatic and chemical hydrolysis as compared to O-glycosides. They are well-known antibiotics and potent enzyme inhibitors and possess a wide range of biological activities such as anticancer, antioxidant, antiviral, hypoglycemic effects, and so on. Currently, a number of aryl-C-glycoside drugs are on sale for the treatment of diabetes and related complications. This review summarizes the findings on aryl-C-glycoside scaffolds over the past 20 years, concerning new structures (over 200 molecules), their bioactivities-including anticancer, anti-inflammatory, antioxidant, antivirus, glycation inhibitory activities and other pharmacological effects-as well as their synthesis.
Author Liu, Chen-Fu
AuthorAffiliation School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China; chenfu@gmu.edu.cn
AuthorAffiliation_xml – name: School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, China; chenfu@gmu.edu.cn
Author_xml – sequence: 1
  givenname: Chen-Fu
  orcidid: 0000-0001-6708-3216
  surname: Liu
  fullname: Liu, Chen-Fu
BookMark eNp1kstu1DAUhiNURC_wAOwssWHRgK9JzAJpOuJSqQKpA2vL45zMeOSxB9tJNTseok_YJyFhikSLWNmy__-z_OmcFkc-eCiKlwS_YUzit9vgwPQOEq0pqTmTT4oTwikuGeby6K_9cXGa0gZjSjgRz4pjVrGK06o6KW6uwYDPaNYO2htIKHj0Rec-aodmce_KeblyexOSbQEtjO664Nr0Di1y7M0Yg3N0YYM22Q42W0jnSPsWLfY-ryHZdPfzdobmYbuLsAaf7ADoGgYLN8-Lp512CV7cr2fF948fvs0_l1dfP13OZ1el4TXOZVVxkLrTncFABeMCS00l560RHaHAllxWUtJRhsYN4ZXumqXETUcxaQnGkp0VlwduG_RG7aLd6rhXQVv1-yDEldIxW-NAkYZiAx2jRhAuWrnUTWUwNloIIRmmI-v9gbXrl1toJ2-jpgfQhzfertUqDEpWYrTdjIDX94AYfvSQstraZMA57SH0SdGaiaYWkk_RV4-im9BHP6qaUqObmlA2pupDysSQUoROGZt1tmF63zpFsJoGRf0zKGOTPGr--cb_O78ALtzFoQ
CitedBy_id crossref_primary_10_1007_s11030_023_10733_4
crossref_primary_10_1016_j_bmc_2024_117903
crossref_primary_10_3390_ph17030323
crossref_primary_10_1002_bit_28354
crossref_primary_10_1021_acs_orglett_5c00493
crossref_primary_10_1021_acs_joc_4c00026
crossref_primary_10_1002_adsc_202301356
crossref_primary_10_1016_j_carres_2023_109021
crossref_primary_10_1039_D4CC00486H
crossref_primary_10_3390_molecules29132953
crossref_primary_10_1002_slct_202303077
crossref_primary_10_1016_j_carres_2024_109146
crossref_primary_10_1021_acs_joc_4c01046
crossref_primary_10_1039_D3CC00046J
crossref_primary_10_1021_acscatal_4c02322
crossref_primary_10_1021_acs_joc_3c01474
crossref_primary_10_1055_a_2223_1303
crossref_primary_10_3390_nu17071104
crossref_primary_10_1016_j_cclet_2024_110560
crossref_primary_10_3390_biologics3040016
Cites_doi 10.1039/C8OB00032H
10.1080/10286020.2011.568413
10.1021/np060359m
10.1002/tcr.201000030
10.1021/acs.jnatprod.2c00292
10.1248/cpb.55.808
10.1248/cpb.c19-00608
10.1038/s44160-022-00024-5
10.1021/ol900273d
10.1248/cpb.51.1186
10.1002/anie.201204786
10.1016/j.bmc.2014.02.014
10.1039/b909248j
10.2174/156802605774643042
10.1248/cpb.c13-00466
10.1021/ol900689m
10.1021/ol006662a
10.1016/j.phytochem.2012.05.008
10.1021/jacs.9b12211
10.1021/ol901353f
10.1039/b407364a
10.1039/c2ob25821h
10.1021/np060621r
10.1080/10286020902877747
10.1248/cpb.c19-00166
10.1002/hlca.201000205
10.1021/np0502342
10.1039/c3cc44050h
10.1248/cpb.59.135
10.1021/np030443r
10.1016/S0031-9422(03)00189-4
10.1021/acs.jnatprod.5b01051
10.1016/S0040-4020(01)98726-5
10.1021/acs.orglett.5b00983
10.1016/j.phytochem.2016.12.006
10.1021/jo4013892
10.1021/acs.orglett.8b00475
10.1021/np0400196
10.1016/j.fitote.2015.01.001
10.1021/acscatal.0c05052
10.1007/s10600-021-03449-0
10.1021/acs.jnatprod.0c00684
10.1021/jo302589t
10.1007/s10600-019-02714-7
10.1021/jo202353r
10.1080/10286020.2010.504183
10.1016/j.fitote.2010.10.016
10.1021/acs.orglett.6b00566
10.1007/s10600-019-02887-1
10.1016/j.fitote.2013.09.006
10.1248/cpb.c13-00264
10.1080/10286020.2011.598859
10.1016/j.phytochem.2016.03.020
10.1021/np2008335
10.1021/ja8041564
10.1021/acs.jnatprod.9b00224
10.1021/np2008939
10.1021/acs.orglett.8b03567
10.1080/10286020.2017.1409734
10.1021/np030367s
10.1021/acs.chemrev.7b00234
10.1016/j.chroma.2013.01.060
10.1021/acs.chemrev.7b00731
10.1021/np9000653
10.3390/md13031304
10.1021/acs.orglett.6b02203
10.1080/10286020.2012.760545
10.1016/j.phytochem.2005.03.021
10.1016/j.chroma.2019.03.030
10.1002/adsc.202100343
10.1021/np100008r
10.1021/ol0000253
10.1016/j.fitote.2015.11.001
10.1021/acscentsci.0c00122
10.1007/s10600-020-03220-x
10.1080/10286020.2011.623128
10.1021/np9007987
10.1021/acs.joc.7b03041
10.1021/ol035846x
10.1021/jo500730y
10.1080/10286020500172368
10.1007/s10600-008-9006-2
10.1016/j.fitote.2015.09.011
10.1002/hlca.201600244
10.1021/ja407827n
10.1016/j.fitote.2018.01.009
10.1002/anie.201308016
10.1021/ja107926f
10.1007/s10600-012-0379-x
10.1002/hlca.201600131
10.1248/cpb.51.1204
10.1021/np2007796
10.1016/j.tetlet.2005.04.073
10.1021/np100937e
10.1016/j.fitote.2013.12.009
10.1177/1934578X19850688
10.1021/ol500725e
10.1016/j.fitote.2017.11.010
10.1021/ol100315g
10.1021/jacs.7b03867
10.1016/j.apsb.2017.04.005
10.1016/j.carres.2011.04.031
10.1007/s10600-015-1374-9
10.1016/j.tet.2011.06.046
10.1021/jacs.7b08707
10.1021/np020256d
10.1002/hlca.201000378
10.1016/j.fitote.2014.09.001
10.1021/jacs.6b07891
10.1021/ol025549c
10.1021/acs.jnatprod.9b01099
10.1080/10286020.2013.790377
10.1021/acs.orglett.8b01117
10.1016/j.jpba.2014.09.027
10.1002/adsc.202100855
10.1002/anie.202014991
10.1016/j.phytochem.2006.10.027
10.1007/s10600-016-1623-6
10.1080/10286020.2013.814107
10.1021/acs.jnatprod.0c00597
10.1021/acs.chemrev.6b00475
10.1021/np030150y
10.1248/cpb.59.1393
10.1021/acs.chemrev.7b00380
10.1039/C1NP00068C
10.1021/ja0652619
10.1021/ja0447154
10.1021/ja070071z
10.1021/acs.jnatprod.9b00107
10.1021/acs.orglett.0c02843
10.1021/np100255u
10.1039/C9OB00121B
ContentType Journal Article
Copyright 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the author. 2022
Copyright_xml – notice: 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the author. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules27217439
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_1820cef32c5145d9ba86c00ca5559302
PMC9654268
10_3390_molecules27217439
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 21762004
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c470t-664e9afafc0e2534509a2944dc5f12e3b496992390a08146af8b908f201d10093
IEDL.DBID 7X7
ISSN 1420-3049
IngestDate Wed Aug 27 01:21:03 EDT 2025
Thu Aug 21 18:39:17 EDT 2025
Fri Jul 11 01:26:25 EDT 2025
Fri Jul 25 09:31:49 EDT 2025
Tue Jul 01 01:21:33 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-664e9afafc0e2534509a2944dc5f12e3b496992390a08146af8b908f201d10093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6708-3216
OpenAccessLink https://www.proquest.com/docview/2734707123?pq-origsite=%requestingapplication%
PMID 36364266
PQID 2734707123
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_1820cef32c5145d9ba86c00ca5559302
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9654268
proquest_miscellaneous_2735875948
proquest_journals_2734707123
crossref_citationtrail_10_3390_molecules27217439
crossref_primary_10_3390_molecules27217439
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Zou (ref_60) 2004; 67
Yi (ref_118) 2018; 20
Syed (ref_34) 2016; 99
Zhang (ref_88) 2020; 142
Alqahtani (ref_47) 2020; 83
Jiang (ref_12) 2018; 125
Zhu (ref_83) 2018; 20
Nakayama (ref_97) 2016; 99
Chen (ref_10) 2019; 55
Harunari (ref_30) 2019; 82
Li (ref_21) 2014; 93
Kitamura (ref_8) 2018; 118
Devkota (ref_45) 2013; 8
Dong (ref_61) 2010; 12
Juvik (ref_56) 2015; 106
Shimokawa (ref_77) 2010; 73
Wu (ref_85) 2011; 82
Acharya (ref_111) 2019; 17
Suzuki (ref_19) 2003; 51
Perlatti (ref_25) 2020; 83
Zhu (ref_117) 2017; 139
Song (ref_36) 2015; 13
Mans (ref_95) 2010; 132
Anand (ref_113) 2013; 78
Wei (ref_123) 2021; 60
Yuan (ref_112) 2004; 126
Tang (ref_126) 2018; 20
Xu (ref_46) 2011; 13
Singh (ref_127) 2020; 22
Ancheeva (ref_38) 2015; 10
Olennikov (ref_42) 2020; 56
Li (ref_59) 2009; 11
Ito (ref_28) 2004; 67
Adak (ref_125) 2017; 139
Bringmann (ref_84) 2003; 63
Mou (ref_129) 2021; 363
Liao (ref_91) 2018; 16
Tsujimoto (ref_78) 2019; 67
Sezaki (ref_4) 1970; 26
ref_71
Faizi (ref_22) 2012; 48
Chang (ref_31) 2020; 83
Song (ref_51) 2013; 91
Chen (ref_62) 2019; 1599
Zheng (ref_68) 2016; 52
Chen (ref_44) 2013; 15
Moral (ref_138) 2009; 11
Liu (ref_14) 2013; 15
Hauser (ref_139) 2002; 4
Iwao (ref_18) 2019; 67
Zhou (ref_15) 2015; 51
Li (ref_73) 2011; 94
Ohba (ref_104) 2015; 17
Denmark (ref_122) 2007; 129
Li (ref_86) 2017; 7
McNally (ref_37) 2003; 66
Mainkar (ref_137) 2012; 77
Feng (ref_64) 2008; 44
Marrassini (ref_87) 2011; 74
Lee (ref_26) 2019; 82
Trzewik (ref_2) 2019; 37
Ghouilem (ref_131) 2021; 11
Yao (ref_99) 2016; 79
Obmann (ref_43) 2011; 346
Liu (ref_128) 2018; 20
Martin (ref_32) 2007; 70
Elbandy (ref_40) 2007; 55
Song (ref_54) 2013; 1282
Wu (ref_107) 2020; 6
Ukida (ref_74) 2013; 61
Liu (ref_132) 2016; 18
Chen (ref_102) 2006; 128
Xie (ref_69) 2003; 51
Zhuravleva (ref_82) 2012; 80
Ahmed (ref_133) 2005; 46
Bililign (ref_5) 2005; 22
Zhu (ref_116) 2016; 138
Hsieh (ref_16) 2004; 67
Suzuki (ref_93) 2010; 10
Wu (ref_13) 2006; 8
Ebrahimi (ref_58) 2011; 94
Olennikov (ref_41) 2019; 55
Zhang (ref_39) 2015; 102
Mitra (ref_103) 2013; 78
Xie (ref_50) 2011; 13
Pichlmair (ref_140) 2003; 5
Balachari (ref_134) 2000; 2
Kanchanapoom (ref_55) 2007; 68
Wang (ref_124) 2022; 1
Huang (ref_35) 2012; 75
Misawa (ref_96) 2013; 61
Liu (ref_136) 2014; 79
Lee (ref_9) 2009; 72
Kitamura (ref_98) 2014; 53
Mavlan (ref_109) 2014; 16
Yang (ref_90) 2017; 117
Anh (ref_70) 2022; 24
Nicolas (ref_115) 2012; 51
Pan (ref_65) 2004; 13
Bajracharya (ref_7) 2015; 101
Ming (ref_24) 2016; 108
Hu (ref_72) 2011; 59
Balachari (ref_135) 2000; 2
Ohba (ref_105) 2018; 83
Zhang (ref_29) 2022; 85
Xiong (ref_119) 2009; 11
Bennett (ref_89) 2018; 118
Du (ref_23) 2010; 73
Nedialkov (ref_66) 2016; 11
Kusumi (ref_100) 2013; 135
Chen (ref_101) 2013; 49
Wu (ref_52) 2011; 59
Dong (ref_63) 2007; 32
Gong (ref_114) 2008; 130
Li (ref_48) 2014; 99
Li (ref_120) 2009; 7
Suzuki (ref_20) 2003; 66
Bayoumi (ref_79) 2014; 22
Olennikov (ref_49) 2021; 57
Ateba (ref_76) 2016; 128
Dat (ref_27) 2007; 70
Ho (ref_108) 2016; 18
Qiu (ref_17) 2013; 15
Zou (ref_53) 2005; 66
Bai (ref_11) 2018; 124
Yepremyan (ref_106) 2010; 12
Yepremyan (ref_121) 2012; 10
Zheng (ref_75) 2017; 135
Zou (ref_81) 2005; 68
Furuta (ref_94) 2009; 11
Pacifico (ref_67) 2010; 73
ref_1
Lee (ref_92) 2005; 5
Yu (ref_130) 2021; 363
Bokor (ref_3) 2017; 117
Ben (ref_110) 2011; 67
Shen (ref_33) 2012; 75
Tang (ref_57) 2011; 13
Kharel (ref_6) 2012; 29
Achari (ref_80) 2012; 75
References_xml – volume: 16
  start-page: 1791
  year: 2018
  ident: ref_91
  article-title: Recent progress of C-glycosylation methods in the total synthesis of natural products and pharmaceuticals
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C8OB00032H
– volume: 13
  start-page: 409
  year: 2011
  ident: ref_46
  article-title: Three new flavone C-glycosides from the aerial parts of Paraquilegia microphylla
  publication-title: J. Asian Nat. Prod. Res.
  doi: 10.1080/10286020.2011.568413
– volume: 70
  start-page: 839
  year: 2007
  ident: ref_27
  article-title: A Dimeric Lactone from Ardisia japonica with Inhibitory Activity for HIV-1 and HIV-2 Ribonuclease H
  publication-title: J. Nat. Prod.
  doi: 10.1021/np060359m
– volume: 10
  start-page: 291
  year: 2010
  ident: ref_93
  article-title: Lessons from Total Synthesis of Hybrid Natural Products
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201000030
– volume: 85
  start-page: 1626
  year: 2022
  ident: ref_29
  article-title: Neopetrosins A–D and Haliclorensin D, Indole-C-Mannopyranosides and a Diamine Alkaloid Isolated from the South China Sea Marine Sponge Neopetrosia chaliniformis
  publication-title: J. Nat. Prod.
  doi: 10.1021/acs.jnatprod.2c00292
– volume: 55
  start-page: 808
  year: 2007
  ident: ref_40
  article-title: Sulfated Lupane Triterpene Derivatives and a Flavone C-Glycoside from Gypsophila repens
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.55.808
– volume: 67
  start-page: 1242
  year: 2019
  ident: ref_78
  article-title: Structural Analysis of Polygalaxanthones, C-Glucosyl Xanthones of Polygala tenuifolia Roots
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.c19-00608
– volume: 1
  start-page: 235
  year: 2022
  ident: ref_124
  article-title: Iron-catalysed reductive cross-coupling of glycosyl radicals for the stereoselective synthesis of C-glycosides
  publication-title: Nat. Synth.
  doi: 10.1038/s44160-022-00024-5
– volume: 11
  start-page: 1709
  year: 2009
  ident: ref_119
  article-title: Oxidant-Controlled Heck-Type C-Glycosylation of Glycals with Arylboronic Acids: Stereoselective Synthesis of Aryl 2-Deoxy-C-glycosides
  publication-title: Org. Lett.
  doi: 10.1021/ol900273d
– volume: 51
  start-page: 1186
  year: 2003
  ident: ref_19
  article-title: A New Flavone C-Glycoside from the Style of Zea mays L. with Glycation Inhibitory Activity
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.51.1186
– volume: 51
  start-page: 11101
  year: 2012
  ident: ref_115
  article-title: Diastereoselective Metal-Catalyzed Synthesis of C-Aryl and C-Vinyl Glycosides
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201204786
– volume: 22
  start-page: 2236
  year: 2014
  ident: ref_79
  article-title: Benzophenone C-glucosides and gallotannins from mango tree stem bark with broad-spectrum anti-viral activity
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2014.02.014
– ident: ref_1
– volume: 7
  start-page: 3855
  year: 2009
  ident: ref_120
  article-title: Regio- and stereo-selective synthesis of aryl 2-deoxy-C-glycopyranosides by palladium-catalyzed Heck coupling reactions of glycals and aryl iodides
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b909248j
– volume: 11
  start-page: 791
  year: 2016
  ident: ref_66
  article-title: A Validated HPLC Method for Simultaneous Determination of Caffeoyl Phenylethanoid Glucosides and Flavone 8-C-glycosides in Haberlea rhodopensis
  publication-title: Nat. Prod. Commun.
– volume: 5
  start-page: 1333
  year: 2005
  ident: ref_92
  article-title: Recent Advances in Aryl C-Glycoside Synthesis
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/156802605774643042
– volume: 61
  start-page: 1136
  year: 2013
  ident: ref_74
  article-title: Schoepfiajasmins A–H: C-Glycosyl Dihydrochalcones, Dihydrochalcone Glycoside, C-Glucosyl Flavanones, Flavanone Glycoside and Flavone Glycoside from the Branches of Schoepfia jasminodora
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.c13-00466
– volume: 32
  start-page: 1048
  year: 2007
  ident: ref_63
  article-title: Studies on chemical constituents from Stellaria media I
  publication-title: China J. Chin. Mater. Med.
– volume: 11
  start-page: 2233
  year: 2009
  ident: ref_94
  article-title: Concise Synthesis of Chafurosides A and B
  publication-title: Org. Lett.
  doi: 10.1021/ol900689m
– volume: 10
  start-page: 437
  year: 2015
  ident: ref_38
  article-title: Flavonoids from Stellaria nemorum and Stellaria holostea
  publication-title: Nat. Prod. Commun.
– volume: 2
  start-page: 4033
  year: 2000
  ident: ref_134
  article-title: Enantioselective Synthesis of the Papulacandin Ring System: Conversion of the Mannose Diastereoisomer into a Glucose Stereoisomer
  publication-title: Org. Lett.
  doi: 10.1021/ol006662a
– volume: 80
  start-page: 123
  year: 2012
  ident: ref_82
  article-title: Secondary metabolites from a marine-derived fungus Aspergillus carneus Blochwitz
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2012.05.008
– volume: 142
  start-page: 3506
  year: 2020
  ident: ref_88
  article-title: Functional Characterization and Structural Basis of an Efficient Di-C-glycosyltransferase from Glycyrrhiza glabra
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b12211
– volume: 8
  start-page: 1413
  year: 2013
  ident: ref_45
  article-title: Flavone C-Glycosides from Lychnis senno and their Antioxidative Activity
  publication-title: Nat. Prod. Commun.
– volume: 11
  start-page: 3734
  year: 2009
  ident: ref_138
  article-title: A Sequential Indium-Mediated Aldehyde Allylation/Palladium-Catalyzed Cross-Coupling Reaction in the Synthesis of 2-Deoxy-β-C-Aryl Glycosides
  publication-title: Org. Lett.
  doi: 10.1021/ol901353f
– volume: 22
  start-page: 742
  year: 2005
  ident: ref_5
  article-title: Structure, activity, synthesis and biosynthesis of aryl-C-glycosides
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/b407364a
– volume: 10
  start-page: 5194
  year: 2012
  ident: ref_121
  article-title: Total synthesis of indole-3-acetonitrile-4-methoxy-2-C-β-D-glucopyranoside. Proposal for structural revision of the natural product
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/c2ob25821h
– volume: 70
  start-page: 1406
  year: 2007
  ident: ref_32
  article-title: Marmycins A and B, Cytotoxic Pentacyclic C-Glycosides from a Marine Sediment-Derived Actinomycete Related to the Genus Streptomyces
  publication-title: J. Nat. Prod.
  doi: 10.1021/np060621r
– volume: 11
  start-page: 426
  year: 2009
  ident: ref_59
  article-title: Three new acylated flavone C-glycosides from the flowers of Trollius chinensis
  publication-title: J. Asian Nat. Prod. Res.
  doi: 10.1080/10286020902877747
– volume: 67
  start-page: 935
  year: 2019
  ident: ref_18
  article-title: Crystal Structures of Flavone C-Glycosides from Oolong Tea Leaves: Chafuroside A Dihydrate and Chafuroside B Monohydrate
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.c19-00166
– volume: 94
  start-page: 423
  year: 2011
  ident: ref_73
  article-title: New Isoflavone C-Glycosides from Pueraria lobata
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.201000205
– volume: 68
  start-page: 1514
  year: 2005
  ident: ref_81
  article-title: Selective Cyclooxygenase-2 Inhibitors from Calophyllum membranaceum
  publication-title: J. Nat. Prod.
  doi: 10.1021/np0502342
– volume: 49
  start-page: 6806
  year: 2013
  ident: ref_101
  article-title: Convergent de novo synthesis of vineomycinone B2 methyl ester
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc44050h
– volume: 59
  start-page: 135
  year: 2011
  ident: ref_72
  article-title: Flavonoid Constituents from the Roots of Acanthopanax brachypus
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.59.135
– volume: 67
  start-page: 664
  year: 2004
  ident: ref_60
  article-title: Acylated Flavone C-Glycosides from Trollius ledebouri
  publication-title: J. Nat. Prod.
  doi: 10.1021/np030443r
– volume: 63
  start-page: 437
  year: 2003
  ident: ref_84
  article-title: Evariquinone, isoemericellin, and stromemycin from a sponge derived strain of the fungus Emericella variecolor
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(03)00189-4
– volume: 79
  start-page: 1719
  year: 2016
  ident: ref_99
  article-title: Total Synthesis of the Naturally Occurring Glycosylflavone Aciculatin
  publication-title: J. Nat. Prod.
  doi: 10.1021/acs.jnatprod.5b01051
– volume: 26
  start-page: 5171
  year: 1970
  ident: ref_4
  article-title: The structure of aquayamycin
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(01)98726-5
– volume: 17
  start-page: 2890
  year: 2015
  ident: ref_104
  article-title: Total Synthesis of Paecilomycin B
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.5b00983
– volume: 135
  start-page: 128
  year: 2017
  ident: ref_75
  article-title: Phenolic constituents from the root bark of Morus alba L. and their cardioprotective activity in vitro
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2016.12.006
– volume: 78
  start-page: 9748
  year: 2013
  ident: ref_103
  article-title: Angucycline C5 Glycosides: Regio- and Stereocontrolled Synthesis and Cytotoxicity
  publication-title: J. Org. Chem.
  doi: 10.1021/jo4013892
– volume: 20
  start-page: 1936
  year: 2018
  ident: ref_118
  article-title: Glycosyl Cross-Coupling with Diaryliodonium Salts: Access to Aryl C-Glycosides of Biomedical Relevance
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b00475
– volume: 67
  start-page: 1175
  year: 2004
  ident: ref_16
  article-title: A New Anti-HIV Alkaloid, Drymaritin, and a New C-Glycoside Flavonoid, Diandraflavone, from Drymaria diandra
  publication-title: J. Nat. Prod.
  doi: 10.1021/np0400196
– volume: 101
  start-page: 133
  year: 2015
  ident: ref_7
  article-title: Diversity, pharmacology and synthesis of bergenin and its derivatives: Potential materials for therapeutic usages
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2015.01.001
– volume: 11
  start-page: 1818
  year: 2021
  ident: ref_131
  article-title: Diastereoselective Pd-Catalyzed Anomeric C(sp3) −H Activation: Synthesis of α-(Hetero)aryl C-Glycosides
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c05052
– volume: 57
  start-page: 681
  year: 2021
  ident: ref_49
  article-title: New Compounds from Siberian Gentiana Species. II. Xanthone and C, O-Glycosylflavone
  publication-title: Chem. Nat. Compd.
  doi: 10.1007/s10600-021-03449-0
– volume: 83
  start-page: 2749
  year: 2020
  ident: ref_31
  article-title: Monacycliones G–K and ent-Gephyromycin A, Angucycline Derivatives from the Marine-Derived Streptomyces sp. HDN15129
  publication-title: J. Nat. Prod.
  doi: 10.1021/acs.jnatprod.0c00684
– volume: 78
  start-page: 4685
  year: 2013
  ident: ref_113
  article-title: A Strategy for the Synthesis of Anthraquinone-Based Aryl-C-glycosides
  publication-title: J. Org. Chem.
  doi: 10.1021/jo302589t
– volume: 55
  start-page: 461
  year: 2019
  ident: ref_10
  article-title: Flavonoid Glycosides from the Bulbs of Lilium speciosum var. gloriosoides and their Potential Antiviral Activity Against RSV
  publication-title: Chem. Nat. Compd.
  doi: 10.1007/s10600-019-02714-7
– volume: 77
  start-page: 2519
  year: 2012
  ident: ref_137
  article-title: Synthesis of O-Spiro-C-Aryl Glycosides Using Organocatalysis
  publication-title: J. Org. Chem.
  doi: 10.1021/jo202353r
– volume: 12
  start-page: 776
  year: 2010
  ident: ref_61
  article-title: Acylated flavone C-glycosides from Hemistepta lyrate
  publication-title: J. Asian Nat. Prod. Res.
  doi: 10.1080/10286020.2010.504183
– volume: 82
  start-page: 288
  year: 2011
  ident: ref_85
  article-title: Novel indole C-glycosides from Isatis indigotica and their potential cytotoxic activity
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2010.10.016
– volume: 18
  start-page: 1836
  year: 2016
  ident: ref_132
  article-title: Ligand-Controlled Monoselective C-Aryl Glycoside Synthesis via Palladium-Catalyzed C–H Functionalization of N-Quinolyl Benzamides with 1-Iodoglycals
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b00566
– volume: 55
  start-page: 1032
  year: 2019
  ident: ref_41
  article-title: New C, O-Glycosylflavones from Melandrium divaricatum
  publication-title: Chem. Nat. Compd.
  doi: 10.1007/s10600-019-02887-1
– volume: 91
  start-page: 272
  year: 2013
  ident: ref_51
  article-title: Simultaneous determination of 19 flavonoids in commercial trollflowers by using high-performance liquid chromatography and classification of samples by hierarchical clustering analysis
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2013.09.006
– volume: 61
  start-page: 776
  year: 2013
  ident: ref_96
  article-title: First Synthesis of Saponarin, 6-C- and 7-O-Di-β-d-glucosylapigenin
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.c13-00264
– volume: 13
  start-page: 895
  year: 2011
  ident: ref_57
  article-title: Two new compounds from Comastoma pedunlulatum
  publication-title: J. Asian Nat. Prod. Res.
  doi: 10.1080/10286020.2011.598859
– volume: 128
  start-page: 5
  year: 2016
  ident: ref_76
  article-title: Rare phenolic structures found in the aerial parts of Eriosema laurentii De Wild
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2016.03.020
– volume: 75
  start-page: 202
  year: 2012
  ident: ref_35
  article-title: Cytotoxic Angucycline Class Glycosides from the Deep-Sea Actinomycete Streptomyces lusitanus SCSIO LR32
  publication-title: J. Nat. Prod.
  doi: 10.1021/np2008335
– volume: 13
  start-page: 92
  year: 2004
  ident: ref_65
  article-title: Constituents from Ranunculus sieboldii Miq
  publication-title: J. Chin. Pharm. Sci.
– volume: 130
  start-page: 12177
  year: 2008
  ident: ref_114
  article-title: Diastereoselective Ni-Catalyzed Negishi Cross-Coupling Approach to Saturated, Fully Oxygenated C-Alkyl and C-Aryl Glycosides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8041564
– volume: 82
  start-page: 2201
  year: 2019
  ident: ref_26
  article-title: Constituents of the Edible Leaves of Melicope pteleifolia with Potential Analgesic Activity
  publication-title: J. Nat. Prod.
  doi: 10.1021/acs.jnatprod.9b00224
– volume: 75
  start-page: 655
  year: 2012
  ident: ref_80
  article-title: Fluorescent Pigment and Phenol Glucosides from the Heartwood of Pterocarpus marsupium
  publication-title: J. Nat. Prod.
  doi: 10.1021/np2008939
– volume: 20
  start-page: 7991
  year: 2018
  ident: ref_128
  article-title: Stereoselective Preparation of α-C-Vinyl/Aryl Glycosides via Nickel-Catalyzed Reductive Coupling of Glycosyl Halides with Vinyl and Aryl Halides
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b03567
– volume: 20
  start-page: 49
  year: 2018
  ident: ref_83
  article-title: C-glycosides from the stems of Calophyllum membranaceum
  publication-title: J. Asian Nat. Prod. Res.
  doi: 10.1080/10286020.2017.1409734
– volume: 67
  start-page: 411
  year: 2004
  ident: ref_28
  article-title: Dimeric Flavonol Glycoside and Galloylated C-Glucosylchromones from Kunzea ambigua
  publication-title: J. Nat. Prod.
  doi: 10.1021/np030367s
– volume: 117
  start-page: 12281
  year: 2017
  ident: ref_90
  article-title: Recent Advances in the Chemical Synthesis of C-Glycosides
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00234
– volume: 1282
  start-page: 102
  year: 2013
  ident: ref_54
  article-title: On-line study of flavonoids of Trollius chinensis Bunge binding to DNA with ethidium bromide using a novel combination of chromatographic, mass spectrometric and fluorescence techniques
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2013.01.060
– volume: 118
  start-page: 7931
  year: 2018
  ident: ref_89
  article-title: Methods for 2-Deoxyglycoside Synthesis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00731
– volume: 72
  start-page: 1249
  year: 2009
  ident: ref_9
  article-title: Three Adducts of Butenolide and Apigenin Glycoside from the Leaves of Machilus japonica
  publication-title: J. Nat. Prod.
  doi: 10.1021/np9000653
– volume: 13
  start-page: 1304
  year: 2015
  ident: ref_36
  article-title: Cytotoxic and Antibacterial Angucycline- and Prodigiosin- Analogues from the Deep-Sea Derived Streptomyces sp. SCSIO 11594
  publication-title: Mar. Drugs
  doi: 10.3390/md13031304
– volume: 18
  start-page: 4488
  year: 2016
  ident: ref_108
  article-title: Total Synthesis of (+)-Vicenin-2
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.6b02203
– volume: 15
  start-page: 325
  year: 2013
  ident: ref_14
  article-title: Flavone C-glycosides from the flowers of Trollius chinensis and their anti-complementary activity
  publication-title: J. Asian Nat. Prod. Res.
  doi: 10.1080/10286020.2012.760545
– volume: 66
  start-page: 1121
  year: 2005
  ident: ref_53
  article-title: Flavone C-glycosides from flowers of Trollius ledebouri
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2005.03.021
– volume: 1599
  start-page: 180
  year: 2019
  ident: ref_62
  article-title: Preparation of flavone di-C-glycoside isomers from Jian-Gu injection (Premna fulva Craib.) using recycling counter-current chromatography
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2019.03.030
– volume: 363
  start-page: 3025
  year: 2021
  ident: ref_129
  article-title: Stereoselective Preparation of C-Aryl Glycosides via Visible-Light-Induced Nickel-Catalyzed Reductive Cross-Coupling of Glycosyl Chlorides and Aryl Bromides
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202100343
– volume: 73
  start-page: 1422
  year: 2010
  ident: ref_23
  article-title: Neuroprotective Xanthone Glycosides from Swertia punicea
  publication-title: J. Nat. Prod.
  doi: 10.1021/np100008r
– volume: 2
  start-page: 863
  year: 2000
  ident: ref_135
  article-title: Sharpless Asymmetric Dihydroxylation of 5-Aryl-2-vinylfurans: Application to the Synthesis of the Spiroketal Moiety of Papulacandin D
  publication-title: Org. Lett.
  doi: 10.1021/ol0000253
– volume: 108
  start-page: 66
  year: 2016
  ident: ref_24
  article-title: RXR alpha transcriptional inhibitors from the stems of Calophyllum membranaceum
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2015.11.001
– volume: 6
  start-page: 928
  year: 2020
  ident: ref_107
  article-title: Chrysomycin A Derivatives for the Treatment of Multi-Drug-Resistant Tuberculosis
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c00122
– volume: 56
  start-page: 1026
  year: 2020
  ident: ref_42
  article-title: New C, O-Glycosylflavones from the Genus Silene
  publication-title: Chem. Nat. Compd.
  doi: 10.1007/s10600-020-03220-x
– volume: 13
  start-page: 1151
  year: 2011
  ident: ref_50
  article-title: A novel spinosin derivative from Semen Ziziphi Spinosae
  publication-title: J. Asian Nat. Prod. Res.
  doi: 10.1080/10286020.2011.623128
– volume: 73
  start-page: 763
  year: 2010
  ident: ref_77
  article-title: Gneyulins A and B, Stilbene Trimers, and Noidesols A and B, Dihydroflavonol-C-Glucosides, from the Bark of Gnetum gnemonoides
  publication-title: J. Nat. Prod.
  doi: 10.1021/np9007987
– volume: 83
  start-page: 7019
  year: 2018
  ident: ref_105
  article-title: Convergent Total Synthesis of Paecilomycin B and 6′-epi-Paecilomycin B by a Barbier-Type Reaction Using 2,4,6-Triisopropylphenyllithium
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.7b03041
– volume: 5
  start-page: 4657
  year: 2003
  ident: ref_140
  article-title: A Novel Approach toward the Synthesis of Kendomycin: Selective Synthesis of a C-Aryl Glycoside as a Single Atropisomer
  publication-title: Org. Lett.
  doi: 10.1021/ol035846x
– volume: 79
  start-page: 4676
  year: 2014
  ident: ref_136
  article-title: “Ring Opening–Ring Closure” Strategy for the Synthesis of Aryl-C-glycosides
  publication-title: J. Org. Chem.
  doi: 10.1021/jo500730y
– volume: 8
  start-page: 391
  year: 2006
  ident: ref_13
  article-title: Antioxidant phenolic glucosides from Gentiana piasezkii
  publication-title: J. Asian Nat. Prod. Res.
  doi: 10.1080/10286020500172368
– volume: 44
  start-page: 171
  year: 2008
  ident: ref_64
  article-title: New flavonoid-C-Glycosides from Triticum aestivum
  publication-title: Chem. Nat. Compd.
  doi: 10.1007/s10600-008-9006-2
– volume: 106
  start-page: 280
  year: 2015
  ident: ref_56
  article-title: First identification of natural products from the African medicinal plant Zamioculcas zamiifolia—A drought resistant survivor through millions of years
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2015.09.011
– volume: 99
  start-page: 944
  year: 2016
  ident: ref_97
  article-title: Total Synthesis of the Proposed Structure of Ardimerin, and Proposal for its Structural Revision
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.201600244
– volume: 135
  start-page: 15909
  year: 2013
  ident: ref_100
  article-title: Total Synthesis of Vineomycin B2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407827n
– volume: 125
  start-page: 184
  year: 2018
  ident: ref_12
  article-title: Flavonoid glycosides and alkaloids from the embryos of Nelumbo nucifera seeds and their antioxidant activity
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2018.01.009
– volume: 53
  start-page: 1258
  year: 2014
  ident: ref_98
  article-title: Synthesis of the Pluramycins 1: Two Designed Anthrones as Enabling Platforms for Flexible Bis-C-Glycosylation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201308016
– volume: 132
  start-page: 15528
  year: 2010
  ident: ref_95
  article-title: Total Synthesis of Isokidamycin
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja107926f
– volume: 48
  start-page: 774
  year: 2012
  ident: ref_22
  article-title: Bioassay-guided studies on Bombax ceiba leaf extract: Isolation of shamimoside, a new antioxidant xanthone C-glucoside
  publication-title: Chem. Nat. Compd.
  doi: 10.1007/s10600-012-0379-x
– volume: 99
  start-page: 691
  year: 2016
  ident: ref_34
  article-title: Isocassiaoccidentalin B, A New C-Glycosyl Flavone Containing a 3-Keto Sugar, and Other Constituents from Cassia nomame
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.201600131
– volume: 51
  start-page: 1204
  year: 2003
  ident: ref_69
  article-title: Flavone C-Glycosides from Viola yedoensis MAKINO
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.51.1204
– volume: 75
  start-page: 198
  year: 2012
  ident: ref_33
  article-title: Cytotoxic Apigenin Derivatives from Chrysopogon aciculatis
  publication-title: J. Nat. Prod.
  doi: 10.1021/np2007796
– volume: 24
  start-page: 1
  year: 2022
  ident: ref_70
  article-title: Three new chromanes and one new flavone C-glycoside from Mallotus apelta
  publication-title: J. Asian Nat. Prod. Res.
– volume: 46
  start-page: 4151
  year: 2005
  ident: ref_133
  article-title: De novo synthesis of a galacto-papulacandin moiety via an iterative dihydroxylation strategy
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2005.04.073
– volume: 74
  start-page: 1503
  year: 2011
  ident: ref_87
  article-title: Vicenin-2, a Potential Anti-inflammatory Constituent of Urtica circularis
  publication-title: J. Nat. Prod.
  doi: 10.1021/np100937e
– volume: 93
  start-page: 175
  year: 2014
  ident: ref_21
  article-title: Glomexanthones A-C, three xanthonolignoid C-glycosides from Polygala glomerata Lour
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2013.12.009
– ident: ref_71
  doi: 10.1177/1934578X19850688
– volume: 16
  start-page: 2212
  year: 2014
  ident: ref_109
  article-title: Synthesis of 3,3′-Di-O-methyl Ardimerin and Exploration of Its DNA Binding Properties
  publication-title: Org. Lett.
  doi: 10.1021/ol500725e
– volume: 124
  start-page: 211
  year: 2018
  ident: ref_11
  article-title: Hydroxycinnamoylmalated flavone C-glycosides from Lemna japonica
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2017.11.010
– volume: 12
  start-page: 1580
  year: 2010
  ident: ref_106
  article-title: Concise Total Syntheses of Aspalathin and Nothofagin
  publication-title: Org. Lett.
  doi: 10.1021/ol100315g
– volume: 139
  start-page: 10693
  year: 2017
  ident: ref_125
  article-title: Synthesis of Aryl C-Glycosides via Iron-Catalyzed Cross Coupling of Halosugars: Stereoselective Anomeric Arylation of Glycosyl Radicals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03867
– volume: 7
  start-page: 527
  year: 2017
  ident: ref_86
  article-title: Isocartormin, a novel quinochalcone C-glycoside from Carthamus tinctorius
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2017.04.005
– volume: 346
  start-page: 1868
  year: 2011
  ident: ref_43
  article-title: Flavonoid C- and O-glycosides from the Mongolian medicinal plant Dianthus versicolor Fisch
  publication-title: Carbohyd. Res.
  doi: 10.1016/j.carres.2011.04.031
– volume: 51
  start-page: 640
  year: 2015
  ident: ref_15
  article-title: A New C-Glycosylflavone from the Rhizomes of Cyperus rotundus
  publication-title: Chem. Nat. Compd.
  doi: 10.1007/s10600-015-1374-9
– volume: 67
  start-page: 6460
  year: 2011
  ident: ref_110
  article-title: Total synthesis and structure revision of deacetylravidomycin M
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2011.06.046
– volume: 139
  start-page: 17908
  year: 2017
  ident: ref_117
  article-title: Glycosyl Cross-Coupling of Anomeric Nucleophiles: Scope, Mechanism, and Applications in the Synthesis of Aryl C-Glycosides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08707
– volume: 37
  start-page: 19
  year: 2019
  ident: ref_2
  article-title: In the Search of Glycoside-Based Molecules as Antidiabetic Agents
  publication-title: Top. Curr. Chem.
– volume: 66
  start-page: 564
  year: 2003
  ident: ref_20
  article-title: Two Flavone C-Glycosides from the Style of Zea mays with Glycation Inhibitory Activity
  publication-title: J. Nat. Prod.
  doi: 10.1021/np020256d
– volume: 94
  start-page: 38
  year: 2011
  ident: ref_58
  article-title: Flavone 8-C-Glycosides from Haberlea rhodopensis Friv. (Gesneriaceae)
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.201000378
– volume: 99
  start-page: 48
  year: 2014
  ident: ref_48
  article-title: Indoleacetic acid derivatives from the seeds of Ziziphus jujuba var. spinosa
  publication-title: Fitoterapia
  doi: 10.1016/j.fitote.2014.09.001
– volume: 138
  start-page: 12049
  year: 2016
  ident: ref_116
  article-title: Highly Stereospecific Cross-Coupling Reactions of Anomeric Stannanes for the Synthesis of C-Aryl Glycosides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07891
– volume: 4
  start-page: 977
  year: 2002
  ident: ref_139
  article-title: A New Route to C-Aryl Glycosides
  publication-title: Org. Lett.
  doi: 10.1021/ol025549c
– volume: 83
  start-page: 668
  year: 2020
  ident: ref_25
  article-title: Arenicolins: C-Glycosylated Depsides from Penicillium arenicola
  publication-title: J. Nat. Prod.
  doi: 10.1021/acs.jnatprod.9b01099
– volume: 15
  start-page: 589
  year: 2013
  ident: ref_17
  article-title: Five new flavonoid glycosides from Nervilia fordii
  publication-title: J. Asian Nat. Prod. Res.
  doi: 10.1080/10286020.2013.790377
– volume: 20
  start-page: 3079
  year: 2018
  ident: ref_126
  article-title: Stereocontrolled Synthesis of 2-Deoxy-C-glycopyranosyl Arenes Using Glycals and Aromatic Amines
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.8b01117
– volume: 102
  start-page: 276
  year: 2015
  ident: ref_39
  article-title: Bioassay-guided preparative separation of angiotensin-converting enzyme inhibitory C-flavone glycosides from Desmodium styracifolium by recycling complexation high-speed counter-current chromatography
  publication-title: J. Pharmaceut. Biomed.
  doi: 10.1016/j.jpba.2014.09.027
– volume: 363
  start-page: 4926
  year: 2021
  ident: ref_130
  article-title: Ir(I)-Catalyzed C-H Glycosylation for Synthesis of 2-Indolyl-C-Deoxyglycosides
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.202100855
– volume: 60
  start-page: 9433
  year: 2021
  ident: ref_123
  article-title: Diastereoselective Synthesis of Aryl C-Glycosides from Glycosyl Esters via C-O Bond Homolysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202014991
– volume: 68
  start-page: 692
  year: 2007
  ident: ref_55
  article-title: Aromatic diglycosides from Cladogynos orientalis
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2006.10.027
– volume: 52
  start-page: 306
  year: 2016
  ident: ref_68
  article-title: Flavone Di-C-Glycosides from Selaginella uncinate and Their Antioxidative Activities
  publication-title: Chem. Nat. Compd.
  doi: 10.1007/s10600-016-1623-6
– volume: 15
  start-page: 1088
  year: 2013
  ident: ref_44
  article-title: A flavonoid 8-C-glycoside and a triterpenoid cinnamate from Nervilia fordii
  publication-title: J. Asian Nat. Prod. Res.
  doi: 10.1080/10286020.2013.814107
– volume: 83
  start-page: 3298
  year: 2020
  ident: ref_47
  article-title: Glycosylated Phenols and an Unprecedented Diacid from the Saudi Plant Cissus rotundifolia
  publication-title: J. Nat. Prod.
  doi: 10.1021/acs.jnatprod.0c00597
– volume: 117
  start-page: 1687
  year: 2017
  ident: ref_3
  article-title: C-Glycopyranosyl Arenes and Hetarenes: Synthetic Methods and Bioactivity Focused on Antidiabetic Potential
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00475
– volume: 66
  start-page: 1280
  year: 2003
  ident: ref_37
  article-title: Complex C-Glycosyl Flavonoid Phytoalexins from Cucumis sativus
  publication-title: J. Nat. Prod.
  doi: 10.1021/np030150y
– volume: 59
  start-page: 1393
  year: 2011
  ident: ref_52
  article-title: Two New Flavone C-Glycosides from Trollius ledebourii
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.59.1393
– volume: 118
  start-page: 1495
  year: 2018
  ident: ref_8
  article-title: Total Synthesis of Aryl C-Glycoside Natural Products: Strategies and Tactics
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00380
– volume: 29
  start-page: 264
  year: 2012
  ident: ref_6
  article-title: Angucyclines: Biosynthesis, mode-of-action, new natural products, and synthesis
  publication-title: Nat. Prod. Rep.
  doi: 10.1039/C1NP00068C
– volume: 128
  start-page: 13696
  year: 2006
  ident: ref_102
  article-title: C-Aryl Glycosides via Tandem Intramolecular Benzyne–Furan Cycloadditions. Total Synthesis of Vineomycinone B2 Methyl Ester
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0652619
– volume: 126
  start-page: 14720
  year: 2004
  ident: ref_112
  article-title: Total Synthesis of Kendomycin: A Macro-C-Glycosidation Approach
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0447154
– volume: 129
  start-page: 2774
  year: 2007
  ident: ref_122
  article-title: Total Synthesis of Papulacandin D
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja070071z
– volume: 82
  start-page: 1609
  year: 2019
  ident: ref_30
  article-title: Konamycins A and B and Rubromycins CA1 and CA2, Aromatic Polyketides from the Tunicate-Derived Streptomyces hyaluromycini MB-PO13T
  publication-title: J. Nat. Prod.
  doi: 10.1021/acs.jnatprod.9b00107
– volume: 22
  start-page: 7650
  year: 2020
  ident: ref_127
  article-title: Development of Routes for the Stereoselective Preparation of β-Aryl-C-glycosides via C-1 Aryl Enones
  publication-title: Org. Lett.
  doi: 10.1021/acs.orglett.0c02843
– volume: 73
  start-page: 1973
  year: 2010
  ident: ref_67
  article-title: Spectroscopic Characterization and Antiproliferative Activity on HepG2 Human Hepatoblastoma Cells of Flavonoid C-Glycosides from Petrorhagia velutina
  publication-title: J. Nat. Prod.
  doi: 10.1021/np100255u
– volume: 17
  start-page: 2691
  year: 2019
  ident: ref_111
  article-title: Synthesis and antitumor activities of aquayamycin and analogues of derhodinosylurdamycin A
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB00121B
SSID ssj0021415
Score 2.4921014
SecondaryResourceType review_article
Snippet Aryl-C-glycosides, of both synthetic and natural origin, are of great significance in medicinal chemistry owing to their unique structures and stability...
Aryl- C -glycosides, of both synthetic and natural origin, are of great significance in medicinal chemistry owing to their unique structures and stability...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7439
SubjectTerms Acids
Antibiotics
Antiviral drugs
aryl-C-glycoside
bioactivity
Cancer
Cytotoxicity
Flavonoids
Glucose
Hydrocarbons
Hypoglycemia
Leukemia
Natural products
novel structures
Review
synthesis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUQF3qpCi3qtoBciRMiwknsJOa2rECIA5cFiVs0cWxYaZsgAkV74yP4wn5JZ-zsiqgSvfSQS2xHtmeceWOP3zC2HwOolG4sAxrvSKLGRJWq4whEbhXYVOND0RaX2fm1vLhRN29SfVFMWKAHDhN3RATjxro0MWjaVa0rKDIjhAGFWDgNNJJo85bOVO9qxWiXwhlmik790c-QatZ2SR4g-MAKebL-AcIcxke-MThnn9jHHinycejhJluzzRbbmCwTtH1mzwj5sCkfh2P8jrcNvwTPo4GtFvNoEt3OF6alhJx8asC5dl53x3zqKWOfHuwhP5m1dLHhl6dVPeTQ1Hy6aBATdrPu98vrmNPv4sHehSh3Hg4SvrDrs9OryXnU51GIjMzFY5Rl0mpw4IywiUolYgRItJS1US5ObFpJnWkEelqAoB1BcEWlReEQG9QxbXlss_WmbexXxotMGgS6VQ65xO_IQtdO2rowCBPQGUpHTCzntTQ9yTjlupiX6GyQKMq_RDFiB6sm94Fh473KJySsVUUix_YvUGXKXmXKf6nMiO0sRV32K7YrieYnR7yV4Bh-rIpRonSAAo1tn3wdhf6dlsWI5QMVGXRoWNLM7jxrt6bUYFnx7X-M4Dv7kNA1DH8ncoeto97YXQRHj9WeXwd_AEwKECM
  priority: 102
  providerName: Directory of Open Access Journals
Title Recent Advances on Natural Aryl-C-glycoside Scaffolds: Structure, Bioactivities, and Synthesis—A Comprehensive Review
URI https://www.proquest.com/docview/2734707123
https://www.proquest.com/docview/2735875948
https://pubmed.ncbi.nlm.nih.gov/PMC9654268
https://doaj.org/article/1820cef32c5145d9ba86c00ca5559302
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbpwwEB61yaG9VOmfSpuuXKmnKigGbMC5RLurbKMeVlW3kfaGjDHJShtIl6TV3vIQecI8SWcMuymqlAMcsA2IGTzfzNjfAHwOtJYR7VjWaLx9gRrj57IIfM0TK7WNFB602mIan56Jb3M57wJuTbescjMnuom6qA3FyA-JhiVBexhGx1e_fKoaRdnVroTGU9gl6jLS6mT-4HAFaJ3aTGaErv3hZVtw1jZh0gLxni1ylP09nNlfJfmP2ZnswYsOL7JhK-CX8MRWr-DZeFOm7TX8QeCHQ9mwTeY3rK7YVDs2DRy1Xvpj_3y5NjWV5WQzo8uyXhbNEZs54tiblT1go0VN2xt-O3LVA6args3WFSLDZtHc394NGU0aK3vRrnVnbTrhDZxNTn6OT_2umoJv8MNd-3EsrNKlLg23oYwEIgUdKiEKI8sgtFEuVKwQ7imuOcUFdZnmiqclIoQioMDHW9ip6sq-A5bGwiDczROdCLyPSFVRClukBsECukSRB3zzXTPTUY1TxYtlhi4HiSL7TxQefNkOuWp5Nh7rPCJhbTsSRba7UK_Os-6Py4iZ3tgyCg1iQlmoXKex4dxoiU5UxEMP9jeizrr_tsketMyDT9tmlCilUXRl6xvXR6KXp0TqQdJTkd4L9VuqxYXj7lZUICxO3z_-8A_wPKRtFm7P4z7soEbYjwh-rvOB03A8p5OvA9gdnUy__xi4QMJfMTkL2A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaqcigXxK9IKWAkuKBGdWznx0gIbReWLS172VbqLTiO0660TdpNS7U3HoLn4KF4EmacZCFC6q2HXGI7iTKTmW_imW8IeR1oHQqsWNbgvH0JGuNnYR74msU21FYoODDbYhKNj-SX4_B4jfzqamEwrbKzic5Q55XBf-Q7SMMSgz_k4sP5hY9do3B3tWuh0ajFvl1eQ8hWv9_7CPJ9w_no0-Fw7LddBXwDF7j0o0hapQtdGGZ5KCR4TM2VlLkJi4BbkUkVKYA9immG_8d0kWSKJQV4yjxgjnwJTP4dKcCTY2X66PMqwAvAGzY7pzDIds6aBre25nED_Hu-z7UI6OHaflbmP25udJ_ca_EpHTQK9YCs2fIh2Rh2beEekWsAmrCUDprkgZpWJZ1ox94Bq5Zzf-ifzJemwjagdGp0UVTzvH5Hp46o9mpht-nurMJyiu-OzHWb6jKn02UJSLSe1b9__BxQNFILe9rk1tNm--IxObqV9_yErJdVaZ8SmkTSALzOYh1LuI5MVF5ImycGwAmEYMIjrHuvqWmpzbHDxjyFEAdFkf4nCo-8XS05b3g9bpq8i8JaTURKbneiWpyk7ReeIhO-sYXgBjBomKtMJ5FhzOgQgjbBuEe2OlGnrZ2o079a7ZFXq2GQKG7b6NJWV25OCFGlkolH4p6K9B6oP1LOTh1XuMKGZFGyefPNX5KN8eHXg_Rgb7L_jNzlWOLh6i23yDpoh30OwOsye-G0nZJvt_15_QFT4EMl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD6aOgm4QfyKjgFGghu0qI7j_BgJobZbtTFUTZRJuwuOY2-VSjKajal3PARPw-PwJBw7SSFC2t0uctPYTpVzfH7ic74P4JUvZRjYjmWJztvjqDFeFua-J2msQ6kDgZettphG-8f8w0l4sgG_2l4YW1bZ2kRnqPNS2W_kAwvDEqM_ZMHANGURR7uT9-ffPMsgZU9aWzqNWkUO9eoK07fq3cEuyvo1Y5O9z-N9r2EY8BQuduFFEddCGmkU1SwMOHpPyQTnuQqNz3SQcREJDIEEldR-K5MmyQRNDHrN3KcOiAnN_2Zss6IebI72pkef1umej76xPkcNcIHB15ruVlcsrtOAjid0hAGdKLdbo_mP05vcg7tNtEqGtXrdhw1dPIDb45Yk7iFcYdiJU8mwLiWoSFmQqXRYHjhrtfDG3ulipUpLCkpmShpTLvLqLZk52NrLpd4ho3lpmyu-O2jXHSKLnMxWBcal1bz6_ePnkFiTtdRndaU9qQ8zHsHxjbzpx9ArykI_AZJEXGGwncUy5rgOT0RuuM4ThaEKJmRBH2j7XlPVAJ1bvo1FigmPFUX6nyj68GY95bxG-bhu8MgKaz3QAnS7H8rladrs99Ti4ittAqYwIg1zkckkUpQqGWIKF1DWh-1W1GljNar0r4734eX6NkrUHuLIQpeXbkyIOabgSR_ijop0_lD3TjE_c8jhwtKTRcnW9Q9_Abdwa6UfD6aHT-EOs_0ervlyG3qoHPoZRmEX2fNG3Ql8uekd9geFW0i3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+on+Natural+Aryl-C-glycoside+Scaffolds%3A+Structure%2C+Bioactivities%2C+and+Synthesis%E2%80%94A+Comprehensive+Review&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Chen-Fu%2C+Liu&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.eissn=1420-3049&rft.volume=27&rft.issue=21&rft.spage=7439&rft_id=info:doi/10.3390%2Fmolecules27217439&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon