Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization
The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of heavy metal-contaminated soil more effectively, the present study focused on the combination of soil washing (with FeCl3) and in situ immobiliz...
Saved in:
Published in | The Science of the total environment Vol. 635; pp. 92 - 99 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of heavy metal-contaminated soil more effectively, the present study focused on the combination of soil washing (with FeCl3) and in situ immobilization (with lime, biochar, and black carbon). The results showed that the removal rate of Cd, Pb, Zn, and Cu was 62.9%, 52.1%, 30.0%, and 16.7%, respectively, when washed with FeCl3. After the combined remediation (immobilization with 1% (w/w) lime), the contaminated soils showed 36.5%, 73.6%, 70.9%, and 53.4% reductions in the bioavailability of Cd, Cu, Pb, and Zn (extracted with 0.11M acetic acid), respectively, than those of the soils washed with FeCl3 only. However, the immobilization with 1% (w/w) biochar or 1% (w/w) carbon black after washing exhibited low effects on stabilizing the metals. The differences in effects between the immobilization with lime, biochar, and carbon black indicated that the soil pH had a significant influence on the lability of heavy metals during the combined remediation process. The activity of the soil enzymes (urease, sucrase, and catalase) showed that the addition of all the materials, including lime, biochar, and carbon black, exhibited positive effects on microbial remediation after soil washing. Furthermore, lime was the most effective material, indicating that low soil pH and high acid-soluble metal concentrations might restrain the activity of soil enzymes. Soil pH and nutrition were the major considerations for microbial remediation during the combined remediation. These findings suggest that the combination of soil washing and in situ immobilization is an effective method to amend the soils contaminated with multiple heavy metals.
[Display omitted]
•Soil washing combined with lime addition can effectively amend metal-polluted soil.•pH is a crucial factor to control heavy metal lability in the combined remediation.•Soil enzyme activities are greatly influenced by pH and acid-soluble metal contents. |
---|---|
AbstractList | The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of heavy metal-contaminated soil more effectively, the present study focused on the combination of soil washing (with FeCl3) and in situ immobilization (with lime, biochar, and black carbon). The results showed that the removal rate of Cd, Pb, Zn, and Cu was 62.9%, 52.1%, 30.0%, and 16.7%, respectively, when washed with FeCl3. After the combined remediation (immobilization with 1% (w/w) lime), the contaminated soils showed 36.5%, 73.6%, 70.9%, and 53.4% reductions in the bioavailability of Cd, Cu, Pb, and Zn (extracted with 0.11M acetic acid), respectively, than those of the soils washed with FeCl3 only. However, the immobilization with 1% (w/w) biochar or 1% (w/w) carbon black after washing exhibited low effects on stabilizing the metals. The differences in effects between the immobilization with lime, biochar, and carbon black indicated that the soil pH had a significant influence on the lability of heavy metals during the combined remediation process. The activity of the soil enzymes (urease, sucrase, and catalase) showed that the addition of all the materials, including lime, biochar, and carbon black, exhibited positive effects on microbial remediation after soil washing. Furthermore, lime was the most effective material, indicating that low soil pH and high acid-soluble metal concentrations might restrain the activity of soil enzymes. Soil pH and nutrition were the major considerations for microbial remediation during the combined remediation. These findings suggest that the combination of soil washing and in situ immobilization is an effective method to amend the soils contaminated with multiple heavy metals.The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of heavy metal-contaminated soil more effectively, the present study focused on the combination of soil washing (with FeCl3) and in situ immobilization (with lime, biochar, and black carbon). The results showed that the removal rate of Cd, Pb, Zn, and Cu was 62.9%, 52.1%, 30.0%, and 16.7%, respectively, when washed with FeCl3. After the combined remediation (immobilization with 1% (w/w) lime), the contaminated soils showed 36.5%, 73.6%, 70.9%, and 53.4% reductions in the bioavailability of Cd, Cu, Pb, and Zn (extracted with 0.11M acetic acid), respectively, than those of the soils washed with FeCl3 only. However, the immobilization with 1% (w/w) biochar or 1% (w/w) carbon black after washing exhibited low effects on stabilizing the metals. The differences in effects between the immobilization with lime, biochar, and carbon black indicated that the soil pH had a significant influence on the lability of heavy metals during the combined remediation process. The activity of the soil enzymes (urease, sucrase, and catalase) showed that the addition of all the materials, including lime, biochar, and carbon black, exhibited positive effects on microbial remediation after soil washing. Furthermore, lime was the most effective material, indicating that low soil pH and high acid-soluble metal concentrations might restrain the activity of soil enzymes. Soil pH and nutrition were the major considerations for microbial remediation during the combined remediation. These findings suggest that the combination of soil washing and in situ immobilization is an effective method to amend the soils contaminated with multiple heavy metals. The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of heavy metal-contaminated soil more effectively, the present study focused on the combination of soil washing (with FeCl ) and in situ immobilization (with lime, biochar, and black carbon). The results showed that the removal rate of Cd, Pb, Zn, and Cu was 62.9%, 52.1%, 30.0%, and 16.7%, respectively, when washed with FeCl . After the combined remediation (immobilization with 1% (w/w) lime), the contaminated soils showed 36.5%, 73.6%, 70.9%, and 53.4% reductions in the bioavailability of Cd, Cu, Pb, and Zn (extracted with 0.11M acetic acid), respectively, than those of the soils washed with FeCl only. However, the immobilization with 1% (w/w) biochar or 1% (w/w) carbon black after washing exhibited low effects on stabilizing the metals. The differences in effects between the immobilization with lime, biochar, and carbon black indicated that the soil pH had a significant influence on the lability of heavy metals during the combined remediation process. The activity of the soil enzymes (urease, sucrase, and catalase) showed that the addition of all the materials, including lime, biochar, and carbon black, exhibited positive effects on microbial remediation after soil washing. Furthermore, lime was the most effective material, indicating that low soil pH and high acid-soluble metal concentrations might restrain the activity of soil enzymes. Soil pH and nutrition were the major considerations for microbial remediation during the combined remediation. These findings suggest that the combination of soil washing and in situ immobilization is an effective method to amend the soils contaminated with multiple heavy metals. The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of heavy metal-contaminated soil more effectively, the present study focused on the combination of soil washing (with FeCl₃) and in situ immobilization (with lime, biochar, and black carbon). The results showed that the removal rate of Cd, Pb, Zn, and Cu was 62.9%, 52.1%, 30.0%, and 16.7%, respectively, when washed with FeCl₃. After the combined remediation (immobilization with 1% (w/w) lime), the contaminated soils showed 36.5%, 73.6%, 70.9%, and 53.4% reductions in the bioavailability of Cd, Cu, Pb, and Zn (extracted with 0.11M acetic acid), respectively, than those of the soils washed with FeCl₃ only. However, the immobilization with 1% (w/w) biochar or 1% (w/w) carbon black after washing exhibited low effects on stabilizing the metals. The differences in effects between the immobilization with lime, biochar, and carbon black indicated that the soil pH had a significant influence on the lability of heavy metals during the combined remediation process. The activity of the soil enzymes (urease, sucrase, and catalase) showed that the addition of all the materials, including lime, biochar, and carbon black, exhibited positive effects on microbial remediation after soil washing. Furthermore, lime was the most effective material, indicating that low soil pH and high acid-soluble metal concentrations might restrain the activity of soil enzymes. Soil pH and nutrition were the major considerations for microbial remediation during the combined remediation. These findings suggest that the combination of soil washing and in situ immobilization is an effective method to amend the soils contaminated with multiple heavy metals. The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of heavy metal-contaminated soil more effectively, the present study focused on the combination of soil washing (with FeCl3) and in situ immobilization (with lime, biochar, and black carbon). The results showed that the removal rate of Cd, Pb, Zn, and Cu was 62.9%, 52.1%, 30.0%, and 16.7%, respectively, when washed with FeCl3. After the combined remediation (immobilization with 1% (w/w) lime), the contaminated soils showed 36.5%, 73.6%, 70.9%, and 53.4% reductions in the bioavailability of Cd, Cu, Pb, and Zn (extracted with 0.11M acetic acid), respectively, than those of the soils washed with FeCl3 only. However, the immobilization with 1% (w/w) biochar or 1% (w/w) carbon black after washing exhibited low effects on stabilizing the metals. The differences in effects between the immobilization with lime, biochar, and carbon black indicated that the soil pH had a significant influence on the lability of heavy metals during the combined remediation process. The activity of the soil enzymes (urease, sucrase, and catalase) showed that the addition of all the materials, including lime, biochar, and carbon black, exhibited positive effects on microbial remediation after soil washing. Furthermore, lime was the most effective material, indicating that low soil pH and high acid-soluble metal concentrations might restrain the activity of soil enzymes. Soil pH and nutrition were the major considerations for microbial remediation during the combined remediation. These findings suggest that the combination of soil washing and in situ immobilization is an effective method to amend the soils contaminated with multiple heavy metals. [Display omitted] •Soil washing combined with lime addition can effectively amend metal-polluted soil.•pH is a crucial factor to control heavy metal lability in the combined remediation.•Soil enzyme activities are greatly influenced by pH and acid-soluble metal contents. |
Author | Zhang, Qiu Li, Zhongwu Zeng, Guangming Luo, Ninglin Zhai, Xiuqing Huang, Bin Huang, Mei |
Author_xml | – sequence: 1 givenname: Xiuqing surname: Zhai fullname: Zhai, Xiuqing organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 2 givenname: Zhongwu surname: Li fullname: Li, Zhongwu email: lizw@hnu.edu.cn organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 3 givenname: Bin surname: Huang fullname: Huang, Bin organization: Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Science and Technology, Guangzhou 510650, PR China – sequence: 4 givenname: Ninglin surname: Luo fullname: Luo, Ninglin organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 5 givenname: Mei surname: Huang fullname: Huang, Mei organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 6 givenname: Qiu surname: Zhang fullname: Zhang, Qiu organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China – sequence: 7 givenname: Guangming orcidid: 0000-0002-4230-7647 surname: Zeng fullname: Zeng, Guangming organization: College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29660731$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URKeFvwBeskmwncSPBYuqghapEhKCteU4Nx2PEnuwnYHy6_E8yoLNeHMX9zvHuudcoQsfPCD0jpKaEso_bOpkXQ4Z_K5mhMqatDWl6gVaUSlURQnjF2hFSCsrxZW4RFcpbUh5QtJX6JIpzolo6Ar9_gYzDM5kFzwOI56XKbvtBHgNZveEZ8hmqmzw2czOmwwDTsFNOK9jWB7XZQK2Ye73u5PDYf_LpLXzj9j4ATuPk8sLdvMceje5Pwf0NXo5minBm9O8Rj8-f_p-e189fL37cnvzUNlWkFzxFgj0lDcSqFKy59YMYIm0rBt5awdBgXXGWBB8EKYlHZhxtINVheaSNM01en_03cbwc4GU9eyShWkyHsKSNGOMyI6ITp1HS6otawQTBX17Qpe-5Ke30c0mPunnYAvw8QjYGFKKMOrS1-HwHI2bNCV6X6Te6H9F6n2RmrS6FFn04j_98xfnlTdHJZRUdw7ingNvS8sRbNZDcGc9_gJhnMCu |
CitedBy_id | crossref_primary_10_1016_j_envres_2022_115120 crossref_primary_10_1016_j_seppur_2020_117250 crossref_primary_10_1016_j_ecoenv_2020_110807 crossref_primary_10_1016_j_scitotenv_2019_06_178 crossref_primary_10_1016_j_chemosphere_2020_128960 crossref_primary_10_3390_su14127266 crossref_primary_10_1007_s10661_023_11714_8 crossref_primary_10_1080_03067319_2021_2014826 crossref_primary_10_1016_j_jhazmat_2019_03_132 crossref_primary_10_1038_s41598_022_13977_6 crossref_primary_10_1007_s11356_024_34795_5 crossref_primary_10_1016_j_cej_2020_125132 crossref_primary_10_1080_15567036_2022_2146237 crossref_primary_10_3389_fenvs_2024_1403989 crossref_primary_10_1016_j_coldregions_2023_104006 crossref_primary_10_1016_j_jwpe_2025_107134 crossref_primary_10_1016_j_scitotenv_2020_138176 crossref_primary_10_1016_j_scitotenv_2020_140378 crossref_primary_10_1016_j_scitotenv_2023_161593 crossref_primary_10_1016_j_jece_2022_107410 crossref_primary_10_1016_j_chemosphere_2021_130883 crossref_primary_10_1007_s11356_020_08032_8 crossref_primary_10_1016_j_jhazmat_2021_125884 crossref_primary_10_1007_s11356_022_21623_x crossref_primary_10_1007_s13762_022_04684_w crossref_primary_10_1016_j_jenvman_2023_118943 crossref_primary_10_1016_j_ecoenv_2024_116935 crossref_primary_10_1016_j_scitotenv_2019_05_235 crossref_primary_10_1080_12269328_2022_2159884 crossref_primary_10_3390_w14213432 crossref_primary_10_1016_j_ecoenv_2025_117706 crossref_primary_10_1016_j_jhazmat_2021_126739 crossref_primary_10_1007_s11368_023_03487_x crossref_primary_10_3389_fmicb_2022_1049277 crossref_primary_10_1007_s41742_018_0107_x crossref_primary_10_1016_j_surfin_2021_101563 crossref_primary_10_1016_j_envpol_2020_115447 crossref_primary_10_1007_s11356_019_05900_w crossref_primary_10_1007_s11270_020_04572_4 crossref_primary_10_1051_e3sconf_202014302043 crossref_primary_10_1016_j_eti_2020_100692 crossref_primary_10_1016_j_chemosphere_2021_130731 crossref_primary_10_1016_j_ecoenv_2019_109934 crossref_primary_10_1007_s13762_021_03144_1 crossref_primary_10_1016_j_ecoenv_2023_115559 crossref_primary_10_1016_j_porgcoat_2022_106704 crossref_primary_10_2139_ssrn_4005935 crossref_primary_10_1016_j_micres_2022_127208 crossref_primary_10_1016_j_cej_2023_144384 crossref_primary_10_1016_j_chemosphere_2020_127798 crossref_primary_10_1016_j_envpol_2024_123880 crossref_primary_10_1016_j_jece_2024_112652 crossref_primary_10_1016_j_scitotenv_2023_162929 crossref_primary_10_1016_j_scitotenv_2024_177588 crossref_primary_10_1007_s11356_022_19734_6 crossref_primary_10_1016_j_scitotenv_2023_164556 crossref_primary_10_1016_j_scitotenv_2022_156373 crossref_primary_10_1016_j_chemosphere_2023_138854 crossref_primary_10_1007_s11356_020_11573_7 crossref_primary_10_3390_nano13101671 crossref_primary_10_3390_su15010790 crossref_primary_10_1007_s11356_021_14595_x crossref_primary_10_3389_fenvs_2021_638324 crossref_primary_10_1080_09593330_2022_2121179 crossref_primary_10_1080_15226514_2021_1878105 crossref_primary_10_1016_j_chemosphere_2020_126690 crossref_primary_10_1038_s41598_021_99106_1 crossref_primary_10_1007_s12665_022_10403_y crossref_primary_10_1007_s11356_023_29656_6 crossref_primary_10_1016_j_ecoenv_2020_110981 crossref_primary_10_1080_15226514_2020_1840509 crossref_primary_10_31015_jaefs_2023_2_17 crossref_primary_10_1016_j_chemosphere_2019_125360 crossref_primary_10_1007_s12665_024_11445_0 crossref_primary_10_1016_j_psep_2025_106957 crossref_primary_10_46592_turkager_2021_v02i02_020 crossref_primary_10_1016_j_cjche_2021_09_023 crossref_primary_10_1016_j_scitotenv_2024_173641 crossref_primary_10_2478_rtuect_2022_0031 crossref_primary_10_1016_j_jenvman_2023_117888 crossref_primary_10_1080_15320383_2019_1689919 crossref_primary_10_1016_j_jhazmat_2021_125165 crossref_primary_10_1016_j_cej_2020_125866 crossref_primary_10_1016_j_jhazmat_2020_122026 crossref_primary_10_1016_j_greeac_2024_100095 crossref_primary_10_1002_wer_1489 crossref_primary_10_1007_s00128_022_03584_6 crossref_primary_10_1007_s11270_020_04703_x crossref_primary_10_1007_s11356_020_11337_3 crossref_primary_10_1016_j_ecoenv_2020_111179 crossref_primary_10_1007_s10653_024_02190_1 crossref_primary_10_1007_s11356_023_30655_w crossref_primary_10_1016_j_envexpbot_2024_106067 crossref_primary_10_1007_s11270_019_4169_y crossref_primary_10_1016_j_jhazmat_2019_120997 crossref_primary_10_1016_j_envres_2019_108779 crossref_primary_10_2166_wst_2023_289 crossref_primary_10_3390_jof9070765 crossref_primary_10_3390_ijerph17207654 crossref_primary_10_1016_j_eti_2020_101038 crossref_primary_10_1007_s11368_020_02678_0 crossref_primary_10_1016_j_envpol_2022_120721 crossref_primary_10_1007_s11356_022_22126_5 crossref_primary_10_1016_j_jece_2022_108479 crossref_primary_10_1039_C9EN00143C crossref_primary_10_1007_s11356_023_30643_0 crossref_primary_10_1016_j_scitotenv_2022_161369 crossref_primary_10_1016_j_scitotenv_2024_170082 crossref_primary_10_1016_j_eti_2023_103172 crossref_primary_10_1007_s11356_023_27896_0 crossref_primary_10_1080_03067319_2023_2296582 crossref_primary_10_1080_00207233_2019_1674582 crossref_primary_10_3390_nano11010026 crossref_primary_10_1007_s11356_024_33690_3 crossref_primary_10_1016_j_cej_2024_149994 crossref_primary_10_1080_02757540_2020_1849152 crossref_primary_10_1089_ees_2020_0356 crossref_primary_10_1016_j_chemosphere_2022_134581 crossref_primary_10_1016_j_scitotenv_2024_177009 crossref_primary_10_3390_app112210956 crossref_primary_10_1016_j_jhazmat_2020_123269 crossref_primary_10_1080_10643389_2024_2315009 crossref_primary_10_1016_j_jhazmat_2025_137955 crossref_primary_10_1089_ees_2019_0120 crossref_primary_10_1016_j_jclepro_2022_134973 crossref_primary_10_1007_s11356_019_06765_9 crossref_primary_10_1016_j_heliyon_2023_e15472 crossref_primary_10_3390_biology10070666 crossref_primary_10_3390_w12092329 crossref_primary_10_1007_s10661_022_09756_5 crossref_primary_10_3390_su152115646 crossref_primary_10_7717_peerj_11921 crossref_primary_10_3390_toxics13020069 crossref_primary_10_3390_w12071886 crossref_primary_10_1016_j_jhazmat_2020_124806 crossref_primary_10_1039_C9RA01986C crossref_primary_10_1007_s12665_022_10507_5 crossref_primary_10_1016_j_scitotenv_2019_135964 crossref_primary_10_1016_j_coldregions_2024_104330 crossref_primary_10_1007_s11356_023_27244_2 crossref_primary_10_1016_j_jhazmat_2022_130312 crossref_primary_10_1016_j_jece_2021_105830 crossref_primary_10_1016_j_jhazmat_2018_11_103 crossref_primary_10_3389_feart_2022_901570 crossref_primary_10_1016_j_jclepro_2018_11_294 crossref_primary_10_1016_j_psep_2020_12_024 crossref_primary_10_1016_j_jhazmat_2020_122754 crossref_primary_10_1016_j_scitotenv_2021_146567 crossref_primary_10_1016_j_wasman_2020_11_030 crossref_primary_10_3390_su132212523 crossref_primary_10_3390_app11094134 crossref_primary_10_1007_s10653_019_00326_2 crossref_primary_10_1016_j_mseb_2024_117383 crossref_primary_10_1186_s13765_020_00526_w crossref_primary_10_1016_j_jhazmat_2023_131232 crossref_primary_10_3389_fenvs_2024_1397850 crossref_primary_10_1007_s11270_023_06263_2 crossref_primary_10_1016_j_arabjc_2020_02_015 crossref_primary_10_1590_1519_6984_252143 crossref_primary_10_3390_ma14102655 crossref_primary_10_1007_s11270_024_07672_7 crossref_primary_10_1016_j_jenvman_2019_109674 crossref_primary_10_1016_j_scitotenv_2022_156417 crossref_primary_10_1002_cjce_24620 crossref_primary_10_3390_ijerph20021311 crossref_primary_10_1016_j_apgeochem_2019_104441 crossref_primary_10_3390_polym15030771 crossref_primary_10_3390_su15076286 crossref_primary_10_1007_s11270_022_05664_z crossref_primary_10_1016_j_chemosphere_2020_127022 crossref_primary_10_1007_s11356_023_30140_4 crossref_primary_10_1007_s11356_021_15138_0 crossref_primary_10_1007_s11157_022_09613_4 crossref_primary_10_1016_j_watres_2018_10_024 crossref_primary_10_1016_j_biotechadv_2024_108337 crossref_primary_10_1007_s11270_024_07416_7 crossref_primary_10_1007_s11356_022_18727_9 crossref_primary_10_1016_j_jece_2020_103931 crossref_primary_10_1007_s10068_023_01431_w crossref_primary_10_1016_j_scitotenv_2018_07_282 crossref_primary_10_1007_s11356_019_07138_y crossref_primary_10_1016_j_jes_2022_05_025 crossref_primary_10_1016_j_scitotenv_2018_12_228 crossref_primary_10_4491_eer_2018_274 crossref_primary_10_1186_s12302_020_00451_1 crossref_primary_10_1007_s11270_023_06394_6 crossref_primary_10_1016_j_chemosphere_2019_125418 crossref_primary_10_1088_1755_1315_300_3_032076 crossref_primary_10_1007_s10653_024_01968_7 crossref_primary_10_1016_j_ecoenv_2023_114958 crossref_primary_10_1016_j_mineng_2023_108211 crossref_primary_10_1002_clen_202200402 crossref_primary_10_1016_j_envres_2021_112239 crossref_primary_10_1007_s13762_019_02253_2 crossref_primary_10_1007_s11356_019_06990_2 crossref_primary_10_2139_ssrn_4047609 crossref_primary_10_3389_fmicb_2019_02293 crossref_primary_10_1016_j_apsoil_2025_106024 crossref_primary_10_1016_j_envexpbot_2022_104911 crossref_primary_10_1016_j_envpol_2019_05_083 crossref_primary_10_1016_j_scitotenv_2021_146118 crossref_primary_10_1039_C9RA09999A crossref_primary_10_3390_agronomy13051335 crossref_primary_10_1016_j_scitotenv_2022_158186 crossref_primary_10_1016_j_chemosphere_2022_135457 crossref_primary_10_1016_j_ecoenv_2022_113312 crossref_primary_10_3390_agriculture13071414 crossref_primary_10_1016_j_catena_2022_106851 |
Cites_doi | 10.1016/j.chemosphere.2016.04.096 10.1016/S0045-6535(02)00224-2 10.1016/j.chemosphere.2013.12.059 10.1016/j.jhazmat.2007.10.043 10.1016/j.apgeochem.2010.11.014 10.1016/j.envpol.2007.11.020 10.1002/jpln.200520504 10.1016/j.chemosphere.2007.07.080 10.1016/S0269-7491(99)00132-3 10.1016/j.chemosphere.2016.09.110 10.1007/s11368-015-1317-x 10.1007/s11431-009-0348-1 10.1046/j.1365-2389.1999.00261.x 10.1021/es5047099 10.1016/j.jhazmat.2013.10.074 10.1016/j.envpol.2006.01.017 10.1016/j.envpol.2017.07.021 10.1080/10643380490492412 10.1016/j.jhazmat.2013.12.018 10.1016/j.envpol.2007.05.024 10.1016/j.jhazmat.2009.09.012 10.1093/bmb/ldg032 10.1016/S1003-6326(16)64142-0 10.1016/j.chemosphere.2012.06.030 10.1016/j.scitotenv.2017.11.038 10.1016/j.envpol.2013.11.027 10.1016/j.jhazmat.2014.01.030 10.1016/S1002-0160(11)60121-5 10.1016/j.ejsobi.2009.10.001 10.1038/nature06275 10.1016/j.cis.2013.10.005 10.1007/s11356-016-6271-7 10.1007/s11368-014-0919-z 10.1016/j.envpol.2007.05.008 10.1016/j.scitotenv.2017.11.132 10.1016/S0013-7952(00)00101-0 10.1016/j.chemosphere.2016.04.106 10.1016/j.watres.2016.09.050 10.1007/s11771-015-2643-2 10.1016/j.watres.2011.11.058 10.1016/j.jbiosc.2013.05.035 10.1016/j.jclepro.2014.07.062 10.1007/s11270-013-1711-1 10.1111/j.1365-2389.1964.tb00247.x 10.1016/j.envpol.2007.06.054 10.1007/s11104-009-9907-2 10.1007/s00374-015-0994-3 10.1007/s11356-017-0012-4 10.1016/j.foodchem.2016.07.168 10.1016/j.geoderma.2016.01.006 10.1007/s11356-016-7853-0 10.1046/j.1462-2920.2002.00314.x 10.1016/j.chemosphere.2009.08.056 10.1021/es026083w 10.1021/es5021058 10.1002/ldr.2741 10.1071/SR9810309 10.1016/j.ecoenv.2014.08.007 10.1097/SS.0b013e3181fba6d1 10.1016/j.chemosphere.2015.12.087 10.1016/S0048-9697(97)00284-2 10.1021/jf104206c 10.1007/s11356-013-1659-0 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2018.04.119 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 99 |
ExternalDocumentID | 29660731 10_1016_j_scitotenv_2018_04_119 S0048969718312890 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-64e0eb1638e1998b6cadec08c25f64cd71e25aace76d7a405eaffcdc919968033 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 04:00:11 EDT 2025 Fri Jul 11 08:12:52 EDT 2025 Wed Feb 19 02:42:58 EST 2025 Tue Jul 01 01:21:38 EDT 2025 Thu Apr 24 23:02:39 EDT 2025 Fri Feb 23 02:46:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Combined remediation Soil enzyme activity Soil washing In situ immobilization Heavy metals |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-64e0eb1638e1998b6cadec08c25f64cd71e25aace76d7a405eaffcdc919968033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4230-7647 |
PMID | 29660731 |
PQID | 2026423727 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2220850759 proquest_miscellaneous_2026423727 pubmed_primary_29660731 crossref_citationtrail_10_1016_j_scitotenv_2018_04_119 crossref_primary_10_1016_j_scitotenv_2018_04_119 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_04_119 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Shaheen, Tsadilas, Rinklebe (bb0295) 2013; 201 Hou, Al-Tabbaa, Hellings (bb0125) 2015; 168 He, Xi, Cui, Liu, Tan, Pan (bb0110) 2014; 268 Zhang, Wang, He, Lu, Sarmah, Li (bb0350) 2013; 20 Beiyuan, Tsang, Valix, Zhang, Yang, Ok (bb0025) 2017; 166 Lu, Zhang, Yang, Huang, Wang, Qiu (bb0230) 2012; 46 Makino, Sugahara, Sakurai, Takano, Kamiya, Sasaki (bb0235) 2006; 144 Hou, O'Connor, Nathanail, Tian, Ma (bb0130) 2017; 231 Liu, Duan, Zhang, Zhu, Hu (bb0215) 2009; 322 Porter, Scheckel, Impellitteri, Ryan (bb0285) 2004; 34 Uchimiya, Wartelle, Klasson, Fortier, Lima (bb0315) 2011; 59 Li, Feng, Li, Bi, Sun, Zhu (bb0205) 2011; 26 Lee, Lee, Choi, Kim (bb0195) 2009; 77 GB15618 (bb0090) 1995 Huang, Xue, Zeng, Wan, Chen, Huang (bb0155) 2016; 106 Guo, Wei, Wu, Li, Qian, Zheng (bb0100) 2016; 147 Jiang, Luo, Zhao, Baker, Christie, Wong (bb0170) 2003; 50 Labanowski, Monna, Bermond, Cambier, Fernandez, Lamy (bb0185) 2008; 152 Huang, Li, Huang, Guo, Nie, Wang (bb0150) 2014; 264 Cui, Fan, Xu, Zhou, Zhou, Mao (bb0045) 2016; 16 Jiang, Wu, Li, Luo, Liu, Zhao (bb0175) 2010; 46 Ball (bb0010) 1964; 15 Dermont, Bergeron, Mercier, Richer-Lafleche (bb0055) 2008; 152 Haidouti (bb0105) 1997; 208 Zhao, Ma, Zhu, Tang, McGrath (bb0360) 2015; 49 O'Connor, Peng, Zhang, Tsang, Alessi, Shen (bb0270) 2018; 619 Chaney (bb0040) 1973 Kusel, Roth, Drake (bb0180) 2002; 4 Zupanc, Kastelec, Lestan, Grcman (bb0370) 2014; 186 Hou, Al-Tabbaa, Guthrie, Hellings, Gu (bb0120) 2014; 83 Yang, Zhenli, Tingqiang, Mingkui, Jiali (bb0345) 2005; 24 Guan, Shen, Meng, Yao, Min (bb0095) 1984; 4 Makino, Maejima, Akahane, Kamiya, Takano, Fujitomi (bb0245) 2016; 270 Ai, Liang, Sun, He, Tang, Yang (bb0005) 2015; 51 Huang, Zhang, Zhang, Pan (bb0145) 2009; 52 Zhou, Wang, Wang, Wang, Cheng (bb0365) 2010; 174 Jarup (bb0165) 2003; 68 Derome (bb0060) 2000; 107 Tan, Li, Qiu, Zou, Li, Zhuang (bb0305) 2011; 21 Van Nevel, Mertens, Oorts, Verheyen (bb0320) 2007; 150 Donnet, Lansinger (bb0065) 1992; 45 Echeverria, Morera, Mazkiarán, Garrido (bb0070) 1999; 50 Lombi, Hamon, McGrath, McLaughlin (bb0225) 2003; 37 Mulligan, Yong, Gibbs (bb0265) 2001; 60 Li, Feng, Li, Bi, Sun, Zhu (bb0200) 2011; 26 Wang, Li, Huang, Jiang, Guo, Huang (bb0330) 2015; 22 Cao, Ma, Singh, Zhou (bb0035) 2008; 152 Garforth, Bailey, Tye, Young, Lofts (bb0085) 2016; 155 Hu, Liang, Liu, Lei, Yu (bb0140) 2014; 110 Mcbride (bb0255) 1994 Xu, Wang, Li, Yao, Su, Zhu (bb0340) 2014; 48 Barrow, Bowden, Posner, Quirk (bb0015) 1981; 19 Hou, Ding, Li, Wu, Hu, Guo (bb0135) 2017 Wei, Chen, Wang (bb0335) 2016; 156 Liu, Zeng, Tie, Chen, Chen, Zheng (bb0220) 2013; vol. I and Ii Lee, Chen (bb0190) 2010; 175 Bolan, Kunhikrishnan, Thangarajan, Kumpiene, Park, Makino (bb0030) 2014; 266 Mallampati, Mitoma, Okuda, Sakita, Kakeda (bb0250) 2012; 89 Mengel, Kirkby (bb0260) 2012 Huang, Li, Li, Yuan, Chen, Huang (bb0160) 2017; 24 Wahla, Kirkham (bb0325) 2008; 155 Pan, Koopmans, Bonten, Song, Luo, Temminghoff (bb0275) 2014; 14 Park, Choppala, Lee, Bolan, Chung, Edraki (bb0280) 2013; 224 Franca, Albuuerque, Almeida, Silveira, Filho, Hazin (bb0080) 2017; 215 Li, Huang, Huang, Chen, Xiong, Nie (bb0210) 2016; 26 Becker, Asch (bb0020) 2005; 168 Shen, Hou, Zhao, Xu, Ok, Bolan (bb0300) 2018; 619 Fontaine, Barot, Barre, Bdioui, Mary, Rumpel (bb0075) 2007; 450 Cui, Ma, Fan, Peng, Mao, Zhou (bb0050) 2016; 23 Rao, Scelza, Acevedo, Diez, Gianfreda (bb0290) 2014; 107 Tang, Zhu, Kookana, Katayama (bb0310) 2013; 116 Hou, Li (bb0115) 2017; 28 Makino, Takano, Kamiya, Itou, Sekiya, Inahara (bb0240) 2008; 70 Zhang, Li, Huang, Luo, Long, Huang (bb0355) 2017; 24 Haidouti (10.1016/j.scitotenv.2018.04.119_bb0105) 1997; 208 Uchimiya (10.1016/j.scitotenv.2018.04.119_bb0315) 2011; 59 Echeverria (10.1016/j.scitotenv.2018.04.119_bb0070) 1999; 50 Shaheen (10.1016/j.scitotenv.2018.04.119_bb0295) 2013; 201 Zhang (10.1016/j.scitotenv.2018.04.119_bb0350) 2013; 20 Li (10.1016/j.scitotenv.2018.04.119_bb0210) 2016; 26 Mcbride (10.1016/j.scitotenv.2018.04.119_bb0255) 1994 Dermont (10.1016/j.scitotenv.2018.04.119_bb0055) 2008; 152 Mengel (10.1016/j.scitotenv.2018.04.119_bb0260) 2012 Tan (10.1016/j.scitotenv.2018.04.119_bb0305) 2011; 21 Van Nevel (10.1016/j.scitotenv.2018.04.119_bb0320) 2007; 150 He (10.1016/j.scitotenv.2018.04.119_bb0110) 2014; 268 Hou (10.1016/j.scitotenv.2018.04.119_bb0130) 2017; 231 Jarup (10.1016/j.scitotenv.2018.04.119_bb0165) 2003; 68 Rao (10.1016/j.scitotenv.2018.04.119_bb0290) 2014; 107 Hu (10.1016/j.scitotenv.2018.04.119_bb0140) 2014; 110 Guan (10.1016/j.scitotenv.2018.04.119_bb0095) 1984; 4 Guo (10.1016/j.scitotenv.2018.04.119_bb0100) 2016; 147 Hou (10.1016/j.scitotenv.2018.04.119_bb0115) 2017; 28 Jiang (10.1016/j.scitotenv.2018.04.119_bb0170) 2003; 50 Huang (10.1016/j.scitotenv.2018.04.119_bb0160) 2017; 24 Barrow (10.1016/j.scitotenv.2018.04.119_bb0015) 1981; 19 Mulligan (10.1016/j.scitotenv.2018.04.119_bb0265) 2001; 60 Shen (10.1016/j.scitotenv.2018.04.119_bb0300) 2018; 619 Chaney (10.1016/j.scitotenv.2018.04.119_bb0040) 1973 Becker (10.1016/j.scitotenv.2018.04.119_bb0020) 2005; 168 Porter (10.1016/j.scitotenv.2018.04.119_bb0285) 2004; 34 Cui (10.1016/j.scitotenv.2018.04.119_bb0050) 2016; 23 Li (10.1016/j.scitotenv.2018.04.119_bb0205) 2011; 26 Wang (10.1016/j.scitotenv.2018.04.119_bb0330) 2015; 22 Zhang (10.1016/j.scitotenv.2018.04.119_bb0355) 2017; 24 Liu (10.1016/j.scitotenv.2018.04.119_bb0215) 2009; 322 Zupanc (10.1016/j.scitotenv.2018.04.119_bb0370) 2014; 186 Wei (10.1016/j.scitotenv.2018.04.119_bb0335) 2016; 156 Lombi (10.1016/j.scitotenv.2018.04.119_bb0225) 2003; 37 Cui (10.1016/j.scitotenv.2018.04.119_bb0045) 2016; 16 Bolan (10.1016/j.scitotenv.2018.04.119_bb0030) 2014; 266 Huang (10.1016/j.scitotenv.2018.04.119_bb0155) 2016; 106 Huang (10.1016/j.scitotenv.2018.04.119_bb0150) 2014; 264 Zhou (10.1016/j.scitotenv.2018.04.119_bb0365) 2010; 174 Makino (10.1016/j.scitotenv.2018.04.119_bb0235) 2006; 144 Park (10.1016/j.scitotenv.2018.04.119_bb0280) 2013; 224 Wahla (10.1016/j.scitotenv.2018.04.119_bb0325) 2008; 155 Ai (10.1016/j.scitotenv.2018.04.119_bb0005) 2015; 51 O'Connor (10.1016/j.scitotenv.2018.04.119_bb0270) 2018; 619 Zhao (10.1016/j.scitotenv.2018.04.119_bb0360) 2015; 49 Donnet (10.1016/j.scitotenv.2018.04.119_bb0065) 1992; 45 Tang (10.1016/j.scitotenv.2018.04.119_bb0310) 2013; 116 Derome (10.1016/j.scitotenv.2018.04.119_bb0060) 2000; 107 Ball (10.1016/j.scitotenv.2018.04.119_bb0010) 1964; 15 Hou (10.1016/j.scitotenv.2018.04.119_bb0135) 2017 Yang (10.1016/j.scitotenv.2018.04.119_bb0345) 2005; 24 Franca (10.1016/j.scitotenv.2018.04.119_bb0080) 2017; 215 Liu (10.1016/j.scitotenv.2018.04.119_bb0220) 2013; vol. I and Ii Lu (10.1016/j.scitotenv.2018.04.119_bb0230) 2012; 46 Xu (10.1016/j.scitotenv.2018.04.119_bb0340) 2014; 48 Mallampati (10.1016/j.scitotenv.2018.04.119_bb0250) 2012; 89 GB15618 (10.1016/j.scitotenv.2018.04.119_bb0090) 1995 Huang (10.1016/j.scitotenv.2018.04.119_bb0145) 2009; 52 Beiyuan (10.1016/j.scitotenv.2018.04.119_bb0025) 2017; 166 Lee (10.1016/j.scitotenv.2018.04.119_bb0190) 2010; 175 Garforth (10.1016/j.scitotenv.2018.04.119_bb0085) 2016; 155 Pan (10.1016/j.scitotenv.2018.04.119_bb0275) 2014; 14 Fontaine (10.1016/j.scitotenv.2018.04.119_bb0075) 2007; 450 Labanowski (10.1016/j.scitotenv.2018.04.119_bb0185) 2008; 152 Kusel (10.1016/j.scitotenv.2018.04.119_bb0180) 2002; 4 Lee (10.1016/j.scitotenv.2018.04.119_bb0195) 2009; 77 Makino (10.1016/j.scitotenv.2018.04.119_bb0240) 2008; 70 Li (10.1016/j.scitotenv.2018.04.119_bb0200) 2011; 26 Jiang (10.1016/j.scitotenv.2018.04.119_bb0175) 2010; 46 Hou (10.1016/j.scitotenv.2018.04.119_bb0125) 2015; 168 Cao (10.1016/j.scitotenv.2018.04.119_bb0035) 2008; 152 Makino (10.1016/j.scitotenv.2018.04.119_bb0245) 2016; 270 Hou (10.1016/j.scitotenv.2018.04.119_bb0120) 2014; 83 |
References_xml | – volume: vol. I and Ii start-page: 2264 year: 2013 end-page: 2272 ident: bb0220 article-title: Effects of biochar and lime application on soluble Cd, Pb, as release and non-point loads of rice agroecosystem by in situ field experiment, Central Hunan Province mining area publication-title: Proceedings Of the 35th Iahr World Congress – volume: 322 start-page: 187 year: 2009 end-page: 195 ident: bb0215 article-title: Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz publication-title: Plant Soil – volume: 107 start-page: 145 year: 2014 end-page: 162 ident: bb0290 article-title: Enzymes as useful tools for environmental purposes publication-title: Chemosphere – volume: 24 start-page: 469 year: 2005 end-page: 475 ident: bb0345 article-title: Desorption of adsorbed Pb in the presence of Cu2+, Zn2+at various pH values in two variable charge soils publication-title: J. Agro-Environ. Sci. – volume: 68 start-page: 167 year: 2003 end-page: 182 ident: bb0165 article-title: Hazards of heavy metal contamination publication-title: Br. Med. Bull. – volume: 14 start-page: 1713 year: 2014 end-page: 1726 ident: bb0275 article-title: Influence of pH on the redox chemistry of metal (hydr)oxides and organic matter in paddy soils publication-title: J. Soils Sediments – volume: 24 start-page: 2734 year: 2017 end-page: 2743 ident: bb0355 article-title: Effect of land use pattern change from paddy soil to vegetable soil on the adsorption-desorption of cadmium by soil aggregates publication-title: Environ. Sci. Pollut. Res. – volume: 20 start-page: 8472 year: 2013 end-page: 8483 ident: bb0350 article-title: Using biochar for remediation of soils contaminated with heavy metals and organic pollutants publication-title: Environ. Sci. Pollut. Res. – year: 2017 ident: bb0135 article-title: A sustainability assessment framework for agricultural land remediation in China publication-title: Land Degrad. Dev. – volume: 26 start-page: 160 year: 2011 end-page: 166 ident: bb0200 article-title: Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan province, China publication-title: Appl. Geochem. – volume: 166 start-page: 489 year: 2017 end-page: 496 ident: bb0025 article-title: Selective dissolution followed by EDDS washing of an e-waste contaminated soil: extraction efficiency, fate of residual metals, and impact on soil environment publication-title: Chemosphere – volume: 106 start-page: 15 year: 2016 end-page: 25 ident: bb0155 article-title: Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: impact on enzyme activities and microbial community diversity publication-title: Water Res. – volume: 21 start-page: 223 year: 2011 end-page: 229 ident: bb0305 article-title: Lime and phosphate could reduce cadmium uptake by five vegetables commonly grown in South China publication-title: Pedosphere – volume: 59 start-page: 2501 year: 2011 end-page: 2510 ident: bb0315 article-title: Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil publication-title: J. Agric. Food Chem. – volume: 619 start-page: 815 year: 2018 end-page: 826 ident: bb0270 article-title: Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials publication-title: Sci. Total Environ. – volume: 270 start-page: 3 year: 2016 end-page: 9 ident: bb0245 article-title: A practical soil washing method for use in a Cd-contaminated paddy field, with simple on-site wastewater treatment publication-title: Geoderma – volume: 155 start-page: 534 year: 2016 end-page: 541 ident: bb0085 article-title: Using isotopic dilution to assess chemical extraction of labile Ni, Cu, Zn, Cd and Pb in soils publication-title: Chemosphere – volume: 19 start-page: 309 year: 1981 end-page: 321 ident: bb0015 article-title: Describing the adsorption of copper, zinc and lead on a variable charge mineral surface publication-title: Soil Res. – volume: 107 start-page: 79 year: 2000 end-page: 88 ident: bb0060 article-title: Detoxification and amelioration of heavy-metal contaminated forest soils by means of liming and fertilisation publication-title: Environ. Pollut. – volume: 201 start-page: 43 year: 2013 end-page: 56 ident: bb0295 article-title: A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties publication-title: Adv. Colloid Interf. Sci. – volume: 24 start-page: 23939 year: 2017 end-page: 23952 ident: bb0160 article-title: Distribution characteristics of heavy metal(loid)s in aggregates of different size fractions along contaminated paddy soil profile publication-title: Environ. Sci. Pollut. Res. – year: 2012 ident: bb0260 article-title: Principles of Plant Nutrition – volume: 208 start-page: 105 year: 1997 end-page: 109 ident: bb0105 article-title: Inactivation of mercury in contaminated soils using natural zeolites publication-title: Sci. Total Environ. – volume: 266 start-page: 141 year: 2014 end-page: 166 ident: bb0030 article-title: Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize? publication-title: J. Hazard. Mater. – volume: 28 start-page: 2315 year: 2017 end-page: 2320 ident: bb0115 article-title: Complexities surrounding China's soil action plan publication-title: Land Degrad. Dev. – volume: 152 start-page: 184 year: 2008 end-page: 192 ident: bb0035 article-title: Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions publication-title: Environ. Pollut. – volume: 45 start-page: 459 year: 1992 end-page: 468 ident: bb0065 article-title: Characterization of surface energy of carbon black surfaces and relationship to elastomer reinforcement publication-title: Kautsch. Gummi Kunstst. – volume: 450 year: 2007 ident: bb0075 article-title: Stability of organic carbon in deep soil layers controlled by fresh carbon supply publication-title: Nature – volume: 175 start-page: 552 year: 2010 end-page: 561 ident: bb0190 article-title: The effects of compost-derived dissolved organic carbon on Cd, Zn, and Cu release from metal-spiked soils publication-title: Soil Sci. – volume: 37 start-page: 979 year: 2003 end-page: 984 ident: bb0225 article-title: Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques publication-title: Environ. Sci. Technol. – volume: 4 start-page: 368 year: 1984 end-page: 381 ident: bb0095 article-title: Enzyme activities in main soils in China publication-title: Acta Pedol. Sin. – volume: 144 start-page: 2 year: 2006 end-page: 10 ident: bb0235 article-title: Remediation of cadmium contamination in paddy soils by washing with chemicals: selection of washing chemicals publication-title: Environ. Pollut. – volume: 215 start-page: 171 year: 2017 end-page: 176 ident: bb0080 article-title: Heavy metals deposited in the culture of lettuce ( publication-title: Food Chem. – volume: 70 start-page: 1035 year: 2008 end-page: 1043 ident: bb0240 article-title: Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification publication-title: Chemosphere – volume: 49 start-page: 750 year: 2015 end-page: 759 ident: bb0360 article-title: Soil contamination in China: current status and mitigation strategies publication-title: Environ. Sci. Technol. – volume: 52 start-page: 3293 year: 2009 end-page: 3299 ident: bb0145 article-title: Effects of pH and soil texture on the adsorption and transport of Cd in soils publication-title: Sci. China Ser. E-Technol. Sci. – volume: 46 start-page: 18 year: 2010 end-page: 26 ident: bb0175 article-title: Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties publication-title: Eur. J. Soil Biol. – volume: 174 start-page: 34 year: 2010 end-page: 39 ident: bb0365 article-title: Surface-modified nanoscale carbon black used as sorbents for Cu(II) and Cd(II) publication-title: J. Hazard. Mater. – volume: 110 start-page: 41 year: 2014 end-page: 48 ident: bb0140 article-title: Transformation of heavy metal fractions on soil urease and nitrate reductase activities in copper and selenium co-contaminated soil publication-title: Ecotoxicol. Environ. Saf. – volume: 268 start-page: 256 year: 2014 end-page: 263 ident: bb0110 article-title: Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting publication-title: J. Hazard. Mater. – volume: 168 start-page: 61 year: 2015 end-page: 70 ident: bb0125 article-title: Sustainable site clean-up from megaprojects: lessons from London 2012 publication-title: Proceedings of the Institution Of Civil Engineers-Engineering Sustainability – volume: 116 start-page: 653 year: 2013 end-page: 659 ident: bb0310 article-title: Characteristics of biochar and its application in remediation of contaminated soil publication-title: J. Biosci. Bioeng. – volume: 168 start-page: 558 year: 2005 end-page: 573 ident: bb0020 article-title: Iron toxicity in rice-conditions and management concepts publication-title: J. Plant Nutr. Soil Sci. – year: 1994 ident: bb0255 article-title: Environmental Chemistry of Soils – volume: 77 start-page: 1069 year: 2009 end-page: 1075 ident: bb0195 article-title: In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments publication-title: Chemosphere – volume: 22 start-page: 1269 year: 2015 end-page: 1275 ident: bb0330 article-title: Kinetics comparison on simultaneous and sequential competitive adsorption of heavy metals in red soils publication-title: J. Cent. South Univ. – volume: 150 start-page: 34 year: 2007 end-page: 40 ident: bb0320 article-title: Phytoextraction of metals from soils: how far from practice? publication-title: Environ. Pollut. – volume: 48 start-page: 9391 year: 2014 end-page: 9399 ident: bb0340 article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape publication-title: Environ. Sci. Technol. – volume: 147 start-page: 412 year: 2016 end-page: 419 ident: bb0100 article-title: Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: field experiments publication-title: Chemosphere – volume: 156 start-page: 252 year: 2016 end-page: 261 ident: bb0335 article-title: Removal of arsenic and cadmium with sequential soil washing techniques using Na(2)EDTA, oxalic and phosphoric acid: optimization conditions, removal effectiveness and ecological risks publication-title: Chemosphere – volume: 83 start-page: 87 year: 2014 end-page: 95 ident: bb0120 article-title: Using a hybrid LCA method to evaluate the sustainability of sediment remediation at the London Olympic Park publication-title: J. Clean. Prod. – volume: 152 start-page: 693 year: 2008 end-page: 701 ident: bb0185 article-title: Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate publication-title: Environ. Pollut. – volume: 152 start-page: 1 year: 2008 end-page: 31 ident: bb0055 article-title: Soil washing for metal removal: a review of physical/chemical technologies and field applications publication-title: J. Hazard. Mater. – volume: 231 start-page: 1188 year: 2017 end-page: 1200 ident: bb0130 article-title: Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review publication-title: Environ. Pollut. – volume: 15 start-page: 84 year: 1964 end-page: 92 ident: bb0010 article-title: Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils publication-title: J. Soil Sci. – year: 1973 ident: bb0040 article-title: Crop and food chain effects of toxic elements in sludges and effluents publication-title: Recycling Municipal Sludges and Effluents on Land – volume: 46 start-page: 854 year: 2012 end-page: 862 ident: bb0230 article-title: Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar publication-title: Water Res. – volume: 23 start-page: 10808 year: 2016 end-page: 10817 ident: bb0050 article-title: Stability and heavy metal distribution of soil aggregates affected by application of apatite, lime, and charcoal publication-title: Environ. Sci. Pollut. Res. – volume: 186 start-page: 56 year: 2014 end-page: 62 ident: bb0370 article-title: Soil physical characteristics after EDTA washing and amendment with inorganic and organic additives publication-title: Environ. Pollut. – volume: 224 year: 2013 ident: bb0280 article-title: Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soils publication-title: Water Air Soil Pollut. – volume: 50 start-page: 497 year: 1999 end-page: 503 ident: bb0070 article-title: Characterization of the porous structure of soils: adsorption of nitrogen (77 K) and carbon dioxide (273 K), and mercury porosimetry publication-title: Eur. J. Soil Sci. – volume: 50 start-page: 813 year: 2003 end-page: 818 ident: bb0170 article-title: Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil publication-title: Chemosphere – volume: 26 start-page: 160 year: 2011 end-page: 166 ident: bb0205 article-title: Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan province, China publication-title: Appl. Geochem. – volume: 34 start-page: 495 year: 2004 end-page: 604 ident: bb0285 article-title: Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg publication-title: Crit. Rev. Environ. Sci. Technol. – volume: 619 start-page: 185 year: 2018 end-page: 193 ident: bb0300 article-title: Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing publication-title: Sci. Total Environ. – volume: 16 start-page: 1498 year: 2016 end-page: 1508 ident: bb0045 article-title: Sustainability of in situ remediation of Cu- and Cd-contaminated soils with one-time application of amendments in Guixi, China publication-title: J. Soils Sediments – volume: 155 start-page: 271 year: 2008 end-page: 283 ident: bb0325 article-title: Heavy metal displacement in salt-water-irrigated soil during phytoremediation publication-title: Environ. Pollut. – volume: 89 start-page: 717 year: 2012 end-page: 723 ident: bb0250 article-title: Enhanced heavy metal immobilization in soil by grinding with addition of nanometallic Ca/CaO dispersion mixture publication-title: Chemosphere – volume: 26 start-page: 536 year: 2016 end-page: 543 ident: bb0210 article-title: Influence of different phosphates on adsorption and leaching of Cu and Zn in red soil publication-title: Trans. Nonferrous Metals Soc. China – year: 1995 ident: bb0090 article-title: Environmental quality standard for soils publication-title: Ministry of Environmental Protection of China – volume: 264 start-page: 176 year: 2014 end-page: 183 ident: bb0150 article-title: Adsorption characteristics of Cu and Zn onto various size fractions of aggregates from red paddy soil publication-title: J. Hazard. Mater. – volume: 4 start-page: 414 year: 2002 end-page: 421 ident: bb0180 article-title: Microbial reduction of Fe(III) in the presence of oxygen under low pH conditions publication-title: Environ. Microbiol. – volume: 60 start-page: 193 year: 2001 end-page: 207 ident: bb0265 article-title: Remediation technologies for metal-contaminated soils and groundwater: an evaluation publication-title: Eng. Geol. – volume: 51 start-page: 465 year: 2015 end-page: 477 ident: bb0005 article-title: The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition publication-title: Biol. Fertil. Soils – volume: 155 start-page: 534 year: 2016 ident: 10.1016/j.scitotenv.2018.04.119_bb0085 article-title: Using isotopic dilution to assess chemical extraction of labile Ni, Cu, Zn, Cd and Pb in soils publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.04.096 – volume: 24 start-page: 469 year: 2005 ident: 10.1016/j.scitotenv.2018.04.119_bb0345 article-title: Desorption of adsorbed Pb in the presence of Cu2+, Zn2+at various pH values in two variable charge soils publication-title: J. Agro-Environ. Sci. – volume: 50 start-page: 813 year: 2003 ident: 10.1016/j.scitotenv.2018.04.119_bb0170 article-title: Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil publication-title: Chemosphere doi: 10.1016/S0045-6535(02)00224-2 – year: 2017 ident: 10.1016/j.scitotenv.2018.04.119_bb0135 article-title: A sustainability assessment framework for agricultural land remediation in China publication-title: Land Degrad. Dev. – volume: 107 start-page: 145 year: 2014 ident: 10.1016/j.scitotenv.2018.04.119_bb0290 article-title: Enzymes as useful tools for environmental purposes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.12.059 – volume: 152 start-page: 1 year: 2008 ident: 10.1016/j.scitotenv.2018.04.119_bb0055 article-title: Soil washing for metal removal: a review of physical/chemical technologies and field applications publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2007.10.043 – volume: 26 start-page: 160 year: 2011 ident: 10.1016/j.scitotenv.2018.04.119_bb0200 article-title: Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan province, China publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2010.11.014 – volume: 155 start-page: 271 year: 2008 ident: 10.1016/j.scitotenv.2018.04.119_bb0325 article-title: Heavy metal displacement in salt-water-irrigated soil during phytoremediation publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.11.020 – volume: 168 start-page: 558 year: 2005 ident: 10.1016/j.scitotenv.2018.04.119_bb0020 article-title: Iron toxicity in rice-conditions and management concepts publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200520504 – volume: 70 start-page: 1035 year: 2008 ident: 10.1016/j.scitotenv.2018.04.119_bb0240 article-title: Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.07.080 – volume: 107 start-page: 79 year: 2000 ident: 10.1016/j.scitotenv.2018.04.119_bb0060 article-title: Detoxification and amelioration of heavy-metal contaminated forest soils by means of liming and fertilisation publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(99)00132-3 – volume: 166 start-page: 489 year: 2017 ident: 10.1016/j.scitotenv.2018.04.119_bb0025 article-title: Selective dissolution followed by EDDS washing of an e-waste contaminated soil: extraction efficiency, fate of residual metals, and impact on soil environment publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.09.110 – volume: 16 start-page: 1498 year: 2016 ident: 10.1016/j.scitotenv.2018.04.119_bb0045 article-title: Sustainability of in situ remediation of Cu- and Cd-contaminated soils with one-time application of amendments in Guixi, China publication-title: J. Soils Sediments doi: 10.1007/s11368-015-1317-x – volume: 52 start-page: 3293 year: 2009 ident: 10.1016/j.scitotenv.2018.04.119_bb0145 article-title: Effects of pH and soil texture on the adsorption and transport of Cd in soils publication-title: Sci. China Ser. E-Technol. Sci. doi: 10.1007/s11431-009-0348-1 – year: 1973 ident: 10.1016/j.scitotenv.2018.04.119_bb0040 article-title: Crop and food chain effects of toxic elements in sludges and effluents – volume: 50 start-page: 497 year: 1999 ident: 10.1016/j.scitotenv.2018.04.119_bb0070 article-title: Characterization of the porous structure of soils: adsorption of nitrogen (77 K) and carbon dioxide (273 K), and mercury porosimetry publication-title: Eur. J. Soil Sci. doi: 10.1046/j.1365-2389.1999.00261.x – volume: 49 start-page: 750 year: 2015 ident: 10.1016/j.scitotenv.2018.04.119_bb0360 article-title: Soil contamination in China: current status and mitigation strategies publication-title: Environ. Sci. Technol. doi: 10.1021/es5047099 – volume: 264 start-page: 176 year: 2014 ident: 10.1016/j.scitotenv.2018.04.119_bb0150 article-title: Adsorption characteristics of Cu and Zn onto various size fractions of aggregates from red paddy soil publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.10.074 – volume: 144 start-page: 2 year: 2006 ident: 10.1016/j.scitotenv.2018.04.119_bb0235 article-title: Remediation of cadmium contamination in paddy soils by washing with chemicals: selection of washing chemicals publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2006.01.017 – year: 1994 ident: 10.1016/j.scitotenv.2018.04.119_bb0255 – volume: 231 start-page: 1188 year: 2017 ident: 10.1016/j.scitotenv.2018.04.119_bb0130 article-title: Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: a critical review publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.07.021 – volume: 34 start-page: 495 year: 2004 ident: 10.1016/j.scitotenv.2018.04.119_bb0285 article-title: Toxic metals in the environment: thermodynamic considerations for possible immobilization strategies for Pb, Cd, As, and Hg publication-title: Crit. Rev. Environ. Sci. Technol. doi: 10.1080/10643380490492412 – volume: 266 start-page: 141 year: 2014 ident: 10.1016/j.scitotenv.2018.04.119_bb0030 article-title: Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize? publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.12.018 – volume: 150 start-page: 34 year: 2007 ident: 10.1016/j.scitotenv.2018.04.119_bb0320 article-title: Phytoextraction of metals from soils: how far from practice? publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.05.024 – volume: 174 start-page: 34 year: 2010 ident: 10.1016/j.scitotenv.2018.04.119_bb0365 article-title: Surface-modified nanoscale carbon black used as sorbents for Cu(II) and Cd(II) publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.09.012 – volume: 68 start-page: 167 year: 2003 ident: 10.1016/j.scitotenv.2018.04.119_bb0165 article-title: Hazards of heavy metal contamination publication-title: Br. Med. Bull. doi: 10.1093/bmb/ldg032 – volume: 26 start-page: 536 year: 2016 ident: 10.1016/j.scitotenv.2018.04.119_bb0210 article-title: Influence of different phosphates on adsorption and leaching of Cu and Zn in red soil publication-title: Trans. Nonferrous Metals Soc. China doi: 10.1016/S1003-6326(16)64142-0 – volume: 89 start-page: 717 year: 2012 ident: 10.1016/j.scitotenv.2018.04.119_bb0250 article-title: Enhanced heavy metal immobilization in soil by grinding with addition of nanometallic Ca/CaO dispersion mixture publication-title: Chemosphere doi: 10.1016/j.chemosphere.2012.06.030 – volume: 619 start-page: 185 year: 2018 ident: 10.1016/j.scitotenv.2018.04.119_bb0300 article-title: Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.038 – volume: 186 start-page: 56 year: 2014 ident: 10.1016/j.scitotenv.2018.04.119_bb0370 article-title: Soil physical characteristics after EDTA washing and amendment with inorganic and organic additives publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2013.11.027 – volume: 268 start-page: 256 year: 2014 ident: 10.1016/j.scitotenv.2018.04.119_bb0110 article-title: Influence of chemical and structural evolution of dissolved organic matter on electron transfer capacity during composting publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2014.01.030 – volume: 21 start-page: 223 year: 2011 ident: 10.1016/j.scitotenv.2018.04.119_bb0305 article-title: Lime and phosphate could reduce cadmium uptake by five vegetables commonly grown in South China publication-title: Pedosphere doi: 10.1016/S1002-0160(11)60121-5 – volume: 46 start-page: 18 year: 2010 ident: 10.1016/j.scitotenv.2018.04.119_bb0175 article-title: Effects of multiple heavy metal contamination and repeated phytoextraction by Sedum plumbizincicola on soil microbial properties publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2009.10.001 – volume: 450 year: 2007 ident: 10.1016/j.scitotenv.2018.04.119_bb0075 article-title: Stability of organic carbon in deep soil layers controlled by fresh carbon supply publication-title: Nature doi: 10.1038/nature06275 – volume: 201 start-page: 43 year: 2013 ident: 10.1016/j.scitotenv.2018.04.119_bb0295 article-title: A review of the distribution coefficients of trace elements in soils: influence of sorption system, element characteristics, and soil colloidal properties publication-title: Adv. Colloid Interf. Sci. doi: 10.1016/j.cis.2013.10.005 – volume: 23 start-page: 10808 year: 2016 ident: 10.1016/j.scitotenv.2018.04.119_bb0050 article-title: Stability and heavy metal distribution of soil aggregates affected by application of apatite, lime, and charcoal publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-6271-7 – year: 1995 ident: 10.1016/j.scitotenv.2018.04.119_bb0090 article-title: Environmental quality standard for soils – volume: 14 start-page: 1713 year: 2014 ident: 10.1016/j.scitotenv.2018.04.119_bb0275 article-title: Influence of pH on the redox chemistry of metal (hydr)oxides and organic matter in paddy soils publication-title: J. Soils Sediments doi: 10.1007/s11368-014-0919-z – volume: 152 start-page: 184 year: 2008 ident: 10.1016/j.scitotenv.2018.04.119_bb0035 article-title: Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.05.008 – volume: 619 start-page: 815 year: 2018 ident: 10.1016/j.scitotenv.2018.04.119_bb0270 article-title: Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.11.132 – volume: 60 start-page: 193 year: 2001 ident: 10.1016/j.scitotenv.2018.04.119_bb0265 article-title: Remediation technologies for metal-contaminated soils and groundwater: an evaluation publication-title: Eng. Geol. doi: 10.1016/S0013-7952(00)00101-0 – volume: 156 start-page: 252 year: 2016 ident: 10.1016/j.scitotenv.2018.04.119_bb0335 article-title: Removal of arsenic and cadmium with sequential soil washing techniques using Na(2)EDTA, oxalic and phosphoric acid: optimization conditions, removal effectiveness and ecological risks publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.04.106 – volume: 45 start-page: 459 year: 1992 ident: 10.1016/j.scitotenv.2018.04.119_bb0065 article-title: Characterization of surface energy of carbon black surfaces and relationship to elastomer reinforcement publication-title: Kautsch. Gummi Kunstst. – volume: 168 start-page: 61 year: 2015 ident: 10.1016/j.scitotenv.2018.04.119_bb0125 article-title: Sustainable site clean-up from megaprojects: lessons from London 2012 – volume: 106 start-page: 15 year: 2016 ident: 10.1016/j.scitotenv.2018.04.119_bb0155 article-title: Immobilization of Cd in river sediments by sodium alginate modified nanoscale zero-valent iron: impact on enzyme activities and microbial community diversity publication-title: Water Res. doi: 10.1016/j.watres.2016.09.050 – volume: 22 start-page: 1269 year: 2015 ident: 10.1016/j.scitotenv.2018.04.119_bb0330 article-title: Kinetics comparison on simultaneous and sequential competitive adsorption of heavy metals in red soils publication-title: J. Cent. South Univ. doi: 10.1007/s11771-015-2643-2 – volume: 46 start-page: 854 year: 2012 ident: 10.1016/j.scitotenv.2018.04.119_bb0230 article-title: Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar publication-title: Water Res. doi: 10.1016/j.watres.2011.11.058 – volume: 116 start-page: 653 year: 2013 ident: 10.1016/j.scitotenv.2018.04.119_bb0310 article-title: Characteristics of biochar and its application in remediation of contaminated soil publication-title: J. Biosci. Bioeng. doi: 10.1016/j.jbiosc.2013.05.035 – volume: 83 start-page: 87 year: 2014 ident: 10.1016/j.scitotenv.2018.04.119_bb0120 article-title: Using a hybrid LCA method to evaluate the sustainability of sediment remediation at the London Olympic Park publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2014.07.062 – volume: 224 year: 2013 ident: 10.1016/j.scitotenv.2018.04.119_bb0280 article-title: Comparative sorption of Pb and Cd by biochars and its implication for metal immobilization in soils publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-013-1711-1 – volume: 15 start-page: 84 year: 1964 ident: 10.1016/j.scitotenv.2018.04.119_bb0010 article-title: Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1964.tb00247.x – volume: 152 start-page: 693 year: 2008 ident: 10.1016/j.scitotenv.2018.04.119_bb0185 article-title: Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.06.054 – volume: vol. I and Ii start-page: 2264 year: 2013 ident: 10.1016/j.scitotenv.2018.04.119_bb0220 article-title: Effects of biochar and lime application on soluble Cd, Pb, as release and non-point loads of rice agroecosystem by in situ field experiment, Central Hunan Province mining area – volume: 322 start-page: 187 year: 2009 ident: 10.1016/j.scitotenv.2018.04.119_bb0215 article-title: Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz publication-title: Plant Soil doi: 10.1007/s11104-009-9907-2 – volume: 51 start-page: 465 year: 2015 ident: 10.1016/j.scitotenv.2018.04.119_bb0005 article-title: The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-015-0994-3 – volume: 24 start-page: 23939 year: 2017 ident: 10.1016/j.scitotenv.2018.04.119_bb0160 article-title: Distribution characteristics of heavy metal(loid)s in aggregates of different size fractions along contaminated paddy soil profile publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-017-0012-4 – volume: 215 start-page: 171 year: 2017 ident: 10.1016/j.scitotenv.2018.04.119_bb0080 article-title: Heavy metals deposited in the culture of lettuce (Lactuca sativa L.) by the influence of vehicular traffic in Pernambuco, Brazil publication-title: Food Chem. doi: 10.1016/j.foodchem.2016.07.168 – volume: 270 start-page: 3 year: 2016 ident: 10.1016/j.scitotenv.2018.04.119_bb0245 article-title: A practical soil washing method for use in a Cd-contaminated paddy field, with simple on-site wastewater treatment publication-title: Geoderma doi: 10.1016/j.geoderma.2016.01.006 – volume: 24 start-page: 2734 year: 2017 ident: 10.1016/j.scitotenv.2018.04.119_bb0355 article-title: Effect of land use pattern change from paddy soil to vegetable soil on the adsorption-desorption of cadmium by soil aggregates publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-016-7853-0 – volume: 4 start-page: 414 year: 2002 ident: 10.1016/j.scitotenv.2018.04.119_bb0180 article-title: Microbial reduction of Fe(III) in the presence of oxygen under low pH conditions publication-title: Environ. Microbiol. doi: 10.1046/j.1462-2920.2002.00314.x – volume: 77 start-page: 1069 year: 2009 ident: 10.1016/j.scitotenv.2018.04.119_bb0195 article-title: In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.08.056 – volume: 37 start-page: 979 year: 2003 ident: 10.1016/j.scitotenv.2018.04.119_bb0225 article-title: Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques publication-title: Environ. Sci. Technol. doi: 10.1021/es026083w – volume: 26 start-page: 160 year: 2011 ident: 10.1016/j.scitotenv.2018.04.119_bb0205 article-title: Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan province, China publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2010.11.014 – year: 2012 ident: 10.1016/j.scitotenv.2018.04.119_bb0260 – volume: 48 start-page: 9391 year: 2014 ident: 10.1016/j.scitotenv.2018.04.119_bb0340 article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape publication-title: Environ. Sci. Technol. doi: 10.1021/es5021058 – volume: 4 start-page: 368 year: 1984 ident: 10.1016/j.scitotenv.2018.04.119_bb0095 article-title: Enzyme activities in main soils in China publication-title: Acta Pedol. Sin. – volume: 28 start-page: 2315 year: 2017 ident: 10.1016/j.scitotenv.2018.04.119_bb0115 article-title: Complexities surrounding China's soil action plan publication-title: Land Degrad. Dev. doi: 10.1002/ldr.2741 – volume: 19 start-page: 309 year: 1981 ident: 10.1016/j.scitotenv.2018.04.119_bb0015 article-title: Describing the adsorption of copper, zinc and lead on a variable charge mineral surface publication-title: Soil Res. doi: 10.1071/SR9810309 – volume: 110 start-page: 41 year: 2014 ident: 10.1016/j.scitotenv.2018.04.119_bb0140 article-title: Transformation of heavy metal fractions on soil urease and nitrate reductase activities in copper and selenium co-contaminated soil publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2014.08.007 – volume: 175 start-page: 552 year: 2010 ident: 10.1016/j.scitotenv.2018.04.119_bb0190 article-title: The effects of compost-derived dissolved organic carbon on Cd, Zn, and Cu release from metal-spiked soils publication-title: Soil Sci. doi: 10.1097/SS.0b013e3181fba6d1 – volume: 147 start-page: 412 year: 2016 ident: 10.1016/j.scitotenv.2018.04.119_bb0100 article-title: Effect of soil washing with only chelators or combining with ferric chloride on soil heavy metal removal and phytoavailability: field experiments publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.12.087 – volume: 208 start-page: 105 year: 1997 ident: 10.1016/j.scitotenv.2018.04.119_bb0105 article-title: Inactivation of mercury in contaminated soils using natural zeolites publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(97)00284-2 – volume: 59 start-page: 2501 year: 2011 ident: 10.1016/j.scitotenv.2018.04.119_bb0315 article-title: Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil publication-title: J. Agric. Food Chem. doi: 10.1021/jf104206c – volume: 20 start-page: 8472 year: 2013 ident: 10.1016/j.scitotenv.2018.04.119_bb0350 article-title: Using biochar for remediation of soils contaminated with heavy metals and organic pollutants publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-013-1659-0 |
SSID | ssj0000781 |
Score | 2.630443 |
Snippet | The remediation of heavy metal-contaminated soils is a great challenge for global environmental sciences and engineering. To control the ecological risks of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 92 |
SubjectTerms | acetic acid bioavailability biochar cadmium catalase Combined remediation copper environmental engineering ferric chloride Heavy metals In situ immobilization lead nutrition polluted soils risk Soil enzyme activity soil enzymes soil pH soil remediation Soil washing soot sucrose alpha-glucosidase urease washing zinc |
Title | Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization |
URI | https://dx.doi.org/10.1016/j.scitotenv.2018.04.119 https://www.ncbi.nlm.nih.gov/pubmed/29660731 https://www.proquest.com/docview/2026423727 https://www.proquest.com/docview/2220850759 |
Volume | 635 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS90wFD6IMhiM4a5z6lQy8LUzbXOTdG8iyp2X-SATfStpkkKHtuLtdfqyv33nNO0Vwc0Hn0rbJIScH_nafOccgL0EMagSTkWlVjYSUshIF2iPGS8LWUprdZdM58epnJyLk8vx5RIcDrEwRKvsfX_w6Z237p_s96u5f1NVFOMrdCYzdK5pTMdlFMEuFGn51z-PNA9KZhNOmdGwsfUTjheO2zaITe-I46Up52lMKXee36H-hUC7neh4Fd73EJIdhFl-gCVfj-BNKCr5MIL1o8fYNWzWG-9sBO_CLzoWIo_W4P7Md3EjJBrWlGzgFjL0z3cP7Npj94io7IboMohM2ayprlhf2QevnuGqFVW9GKF7_zuUZ2Kmdqyq2axq56xCbScWboj5_Ajnx0c_DydRX4ghskLxNpLCc_TpaKqeQvIKSdR9y7VNxqUU1qnYJ2NjrFfSKYMQ0JuytM5mRHHWPE3XYbluar8BzPHMS8Q0JaX1McrpQlue2dg4ERubuk2Qw-Lnts9STsUyrvKBjvYrX0gtJ6nlXOBnTLYJfNHxJiTqeLnLt0G6-ROdy3E7ebnzl0EfcrRIOmYxtW_mM2yEIDNJERj-p01CtVERruE4n4IyLWadUMJUlcZbr5neZ3hLd4ENtw3L7e3c7yB8aovdzj52YeXg-3RyStfp2cX0Lw5TIAM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqIgQSQrDQUihgJDiGOlmv7VTqAUGrLf04oFbqzTi2IwWVpCLZlr3wp_iDnYmdrSoBPaCeVtrYkeMZP7_Eb2YIeZsBB5XcyaRU0iZccJGoAtZjzspClMJa1SfTOTgU02P--WRyskR-D7EwKKuM2B8wvUfr-M9GnM2Ns6rCGF-ucpEDuI5TPC6Lyso9P7-A97Z2a_cTGPldlu1sH32cJrG0QGK5ZF0iuGeAUuB8HoPMCoFidMuUzSal4NbJ1GcTY6yXwkkDpMabsrTO5ijaVQy_ggLu3-EAF1g24f2vK10JZs8Jx9qAJDC8a6IyeJCuATJ8jqIyhUlWU8zx8-ct8W-Ut9_6dh6Rh5Gz0g9hWh6TJV-PyN1QxXI-IivbV8Fy0CyiRTsiD8I3QRpCnZ6Qn198H6iCvkCbkg5iRgobwvmcfvfQPUHtvEF9DlBh2jbVKY2lhODXUzBTUdWLO_TXL0I9KGpqR6uatlU3oxUsL5T9hiDTp-T4VsyzQpbrpvbPCHUs9wJIVIl5hIx0qlCW5TY1jqfGjt0aEcPkaxvTomN1jlM96N--6YXVNFpNMw7vTfkaYYuOZyEzyM1dNgfr6mtOrmH_urnzm8EfNEAAnuuY2jezFhoBq83GwET_0SbDYqzAD-E-q8GZFqPOMEOrHKfP_2d4r8m96dHBvt7fPdx7Qe7jlSDFWyfL3Y-ZfwncrSte9WuFkq-3vTgvAXbTW14 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remediation+of+multiple+heavy+metal-contaminated+soil+through+the+combination+of+soil+washing+and+in+situ+immobilization&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhai%2C+Xiuqing&rft.au=Li%2C+Zhongwu&rft.au=Huang%2C+Bin&rft.au=Luo%2C+Ninglin&rft.date=2018-09-01&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=635&rft.spage=92&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.04.119&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |