Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors

Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fittin...

Full description

Saved in:
Bibliographic Details
Published inAnalyst (London) Vol. 14; no. 3; pp. 765 - 77
Main Authors Lu, Rui, Li, Wen-Wei, Katzir, Abraham, Raichlin, Yosef, Yu, Han-Qing, Mizaikoff, Boris
Format Journal Article
LanguageEnglish
Published England 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fitting of the obtained ATR-FTIR spectra, the changes of the BSA secondary structure with temperature were clearly identified. Two different thermal denaturation temperature ranges ( i.e. , 50-52 and 80-82 °C, at which a change of the protein structure occurred) were determined, while only one denaturation temperature was previously identified via classical FTIR measurements. Additionally, taking advantage of two-dimensional correlation spectroscopy more detailed information on changes of the protein secondary structure was revealed. The developed method facilitates in situ , sensitive, and more in-depth probing of protein secondary structures, which represents a significant advancement compared to conventional characterization methods. Planar silver halide fiberoptic sensors were used for the first time for studying the mechanism of heating induced bovine serum albumin (BSA) denaturation by deconvoluted infrared attenuated total reflection (IR-ATR) spectra, and two-dimensional correlation spectroscopy (2D-CoS).
AbstractList Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fitting of the obtained ATR-FTIR spectra, the changes of the BSA secondary structure with temperature were clearly identified. Two different thermal denaturation temperature ranges (i.e., 50-52 and 80-82 °C, at which a change of the protein structure occurred) were determined, while only one denaturation temperature was previously identified via classical FTIR measurements. Additionally, taking advantage of two-dimensional correlation spectroscopy more detailed information on changes of the protein secondary structure was revealed. The developed method facilitates in situ, sensitive, and more in-depth probing of protein secondary structures, which represents a significant advancement compared to conventional characterization methods.Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fitting of the obtained ATR-FTIR spectra, the changes of the BSA secondary structure with temperature were clearly identified. Two different thermal denaturation temperature ranges (i.e., 50-52 and 80-82 °C, at which a change of the protein structure occurred) were determined, while only one denaturation temperature was previously identified via classical FTIR measurements. Additionally, taking advantage of two-dimensional correlation spectroscopy more detailed information on changes of the protein secondary structure was revealed. The developed method facilitates in situ, sensitive, and more in-depth probing of protein secondary structures, which represents a significant advancement compared to conventional characterization methods.
Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fitting of the obtained ATR-FTIR spectra, the changes of the BSA secondary structure with temperature were clearly identified. Two different thermal denaturation temperature ranges ( i.e. , 50–52 and 80–82 °C, at which a change of the protein structure occurred) were determined, while only one denaturation temperature was previously identified via classical FTIR measurements. Additionally, taking advantage of two-dimensional correlation spectroscopy more detailed information on changes of the protein secondary structure was revealed. The developed method facilitates in situ , sensitive, and more in-depth probing of protein secondary structures, which represents a significant advancement compared to conventional characterization methods.
Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fitting of the obtained ATR-FTIR spectra, the changes of the BSA secondary structure with temperature were clearly identified. Two different thermal denaturation temperature ranges (i.e., 50-52 and 80-82 degree C, at which a change of the protein structure occurred) were determined, while only one denaturation temperature was previously identified viaclassical FTIR measurements. Additionally, taking advantage of two-dimensional correlation spectroscopy more detailed information on changes of the protein secondary structure was revealed. The developed method facilitates in situ, sensitive, and more in-depth probing of protein secondary structures, which represents a significant advancement compared to conventional characterization methods.
Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fitting of the obtained ATR-FTIR spectra, the changes of the BSA secondary structure with temperature were clearly identified. Two different thermal denaturation temperature ranges ( i.e. , 50-52 and 80-82 °C, at which a change of the protein structure occurred) were determined, while only one denaturation temperature was previously identified via classical FTIR measurements. Additionally, taking advantage of two-dimensional correlation spectroscopy more detailed information on changes of the protein secondary structure was revealed. The developed method facilitates in situ , sensitive, and more in-depth probing of protein secondary structures, which represents a significant advancement compared to conventional characterization methods. Planar silver halide fiberoptic sensors were used for the first time for studying the mechanism of heating induced bovine serum albumin (BSA) denaturation by deconvoluted infrared attenuated total reflection (IR-ATR) spectra, and two-dimensional correlation spectroscopy (2D-CoS).
Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fitting of the obtained ATR-FTIR spectra, the changes of the BSA secondary structure with temperature were clearly identified. Two different thermal denaturation temperature ranges (i.e., 50-52 and 80-82 °C, at which a change of the protein structure occurred) were determined, while only one denaturation temperature was previously identified via classical FTIR measurements. Additionally, taking advantage of two-dimensional correlation spectroscopy more detailed information on changes of the protein secondary structure was revealed. The developed method facilitates in situ, sensitive, and more in-depth probing of protein secondary structures, which represents a significant advancement compared to conventional characterization methods.
Author Raichlin, Yosef
Mizaikoff, Boris
Katzir, Abraham
Yu, Han-Qing
Li, Wen-Wei
Lu, Rui
AuthorAffiliation University of Science and Technology of China
Department of Chemistry
Institute of Analytical and Bioanalytical Chemistry
School of Physics
Ariel University Center of Samaria
University of Ulm
Department of Applied Physics
Tel-Aviv University
AuthorAffiliation_xml – name: University of Science and Technology of China
– name: Department of Applied Physics
– name: Department of Chemistry
– name: Ariel University Center of Samaria
– name: Tel-Aviv University
– name: School of Physics
– name: University of Ulm
– name: Institute of Analytical and Bioanalytical Chemistry
Author_xml – sequence: 1
  givenname: Rui
  surname: Lu
  fullname: Lu, Rui
– sequence: 2
  givenname: Wen-Wei
  surname: Li
  fullname: Li, Wen-Wei
– sequence: 3
  givenname: Abraham
  surname: Katzir
  fullname: Katzir, Abraham
– sequence: 4
  givenname: Yosef
  surname: Raichlin
  fullname: Raichlin, Yosef
– sequence: 5
  givenname: Han-Qing
  surname: Yu
  fullname: Yu, Han-Qing
– sequence: 6
  givenname: Boris
  surname: Mizaikoff
  fullname: Mizaikoff, Boris
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25525641$$D View this record in MEDLINE/PubMed
BookMark eNqNkktrVDEYhkOptNPqpnsl3YlwNJdzMpNlO9QLFNuFrg-5fGkj5yRjLoVu_O1mOrWCiLgK4XneD_J-OUL7IQZA6ISSt5Rw-c70KhDay0HvoQXlou-Gga320YIQwjsmhv4QHeX8rV0pGcgBOmRNGERPF-jHdYrahxtcbgFnMDFYle5xLqmaUhPg6LCOdz5saaozVpOusw_Y1rSN3YIqnQ-2GrDYQlAtpIqPAde85bO3DbukUuPOa0hxU7xpw0KOKT9Hz5yaMrx4PI_R1_cXX9Yfu8urD5_WZ5ed6ZekdIJRIsFyLTnw9lImNKHarKxZKaDEcGWWXErmjJXOWlhSIhjnTtNWRE8lP0avd3M3KX6vkMs4-2xgmlSAWPNIhZArOUjK_kMdGJdLQXhTXz2qVc9gx03yc2tv_FVvE97sBJNizgnck0LJuN3duO7PPj_s7rzJ5A_Z-PLQZUnKT3-PvNxFUjZPo39_h8ZP_8XHjXX8J53Isi8
CitedBy_id crossref_primary_10_1007_s00216_016_9375_5
crossref_primary_10_1016_j_ejpb_2018_06_010
crossref_primary_10_3390_polym16182565
crossref_primary_10_1016_j_saa_2018_01_039
crossref_primary_10_1021_acsami_2c01446
crossref_primary_10_1016_j_foodhyd_2021_107283
crossref_primary_10_1021_acs_jpcb_4c03967
crossref_primary_10_1039_C7BM00820A
crossref_primary_10_1111_ijfs_15394
crossref_primary_10_1016_j_molstruc_2024_140285
crossref_primary_10_1002_pat_5651
crossref_primary_10_1016_j_ijpx_2022_100154
crossref_primary_10_1371_journal_pone_0170844
crossref_primary_10_1021_acs_jpcb_5b04854
crossref_primary_10_1016_j_talanta_2024_126231
crossref_primary_10_1021_acsanm_4c03657
crossref_primary_10_2174_0113892037284277240126094716
crossref_primary_10_1016_j_ijpharm_2016_09_051
crossref_primary_10_1016_j_jaerosci_2018_04_009
crossref_primary_10_1016_j_msec_2019_109813
crossref_primary_10_1016_j_molstruc_2022_134684
crossref_primary_10_1038_s41598_020_70201_z
crossref_primary_10_1111_1471_0307_12351
crossref_primary_10_3390_cancers12071708
crossref_primary_10_1038_s41598_017_18228_7
crossref_primary_10_3390_molecules27175684
crossref_primary_10_3390_polym15092039
crossref_primary_10_1111_php_12789
crossref_primary_10_3390_biom9080359
crossref_primary_10_1080_10717544_2022_2111479
crossref_primary_10_1016_j_colsurfb_2019_04_012
crossref_primary_10_1016_j_jmrt_2024_09_139
crossref_primary_10_1016_j_carbpol_2019_04_077
crossref_primary_10_1016_j_foodhyd_2023_109520
crossref_primary_10_1039_C6RA24580C
crossref_primary_10_1016_j_watres_2017_01_020
crossref_primary_10_1007_s11783_024_1819_0
crossref_primary_10_1016_j_saa_2017_08_014
crossref_primary_10_1039_C6AN01477A
crossref_primary_10_1016_j_saa_2024_125288
crossref_primary_10_1002_cctc_201600637
crossref_primary_10_1116_1_4982598
crossref_primary_10_1364_OME_6_002616
crossref_primary_10_1002_bip_23383
crossref_primary_10_1080_07391102_2021_2004234
crossref_primary_10_1016_j_ijpharm_2024_124009
crossref_primary_10_1016_j_molstruc_2024_139860
crossref_primary_10_1021_acs_analchem_4c01772
crossref_primary_10_1016_j_poly_2019_06_036
crossref_primary_10_1016_j_saa_2016_02_013
crossref_primary_10_1039_C9LC00656G
crossref_primary_10_1016_j_foodhyd_2018_08_054
crossref_primary_10_1186_s41747_019_0090_9
crossref_primary_10_2217_nnm_2021_0187
crossref_primary_10_1016_j_foodhyd_2021_106640
crossref_primary_10_1016_j_matt_2024_101941
crossref_primary_10_3390_app11094245
crossref_primary_10_1002_jsfa_8701
crossref_primary_10_2174_1567201816666191029122445
crossref_primary_10_1016_j_saa_2024_125216
crossref_primary_10_20964_2016_08_31
crossref_primary_10_1002_admi_202400867
crossref_primary_10_1016_j_soilbio_2016_12_027
crossref_primary_10_1364_BOE_398013
crossref_primary_10_1016_j_tifs_2020_02_011
crossref_primary_10_1080_26941112_2024_2330460
crossref_primary_10_1016_j_aca_2017_07_045
crossref_primary_10_1016_j_crbiot_2022_01_004
crossref_primary_10_3390_ijms242316970
crossref_primary_10_1002_smll_202305325
crossref_primary_10_1016_j_carpta_2021_100075
crossref_primary_10_1016_j_jbiotec_2024_09_005
crossref_primary_10_3390_polym15193969
crossref_primary_10_1016_j_jphotochem_2024_115702
crossref_primary_10_1016_j_colsurfa_2023_131795
crossref_primary_10_1016_j_carbpol_2022_120067
crossref_primary_10_1016_j_jmmm_2016_05_063
crossref_primary_10_1039_C7TB00040E
crossref_primary_10_1071_EN21091
crossref_primary_10_1002_wer_1184
crossref_primary_10_1039_D2LC00799A
crossref_primary_10_1021_acsomega_1c06126
crossref_primary_10_1021_acs_langmuir_2c01789
crossref_primary_10_1016_j_molliq_2020_113065
crossref_primary_10_1016_j_sna_2022_113455
crossref_primary_10_1016_j_vibspec_2017_08_001
crossref_primary_10_1515_abm_2020_0032
crossref_primary_10_1021_acsbiomaterials_6b00253
crossref_primary_10_1039_C6RE00127K
crossref_primary_10_1016_j_ijggc_2016_10_015
crossref_primary_10_3390_ijms221910318
crossref_primary_10_1016_j_cclet_2017_03_021
crossref_primary_10_1016_j_colcom_2018_11_003
crossref_primary_10_3390_antiox10121875
crossref_primary_10_1016_j_bpc_2023_107127
crossref_primary_10_1016_j_jcis_2023_03_107
crossref_primary_10_3390_antiox9100966
crossref_primary_10_3390_s24092903
crossref_primary_10_1002_slct_202304371
crossref_primary_10_1021_acs_jpcb_8b04364
crossref_primary_10_3390_bios13030354
crossref_primary_10_1016_j_enzmictec_2024_110517
crossref_primary_10_1016_j_bbagen_2024_130744
crossref_primary_10_2139_ssrn_4170447
crossref_primary_10_1016_j_microc_2025_113046
crossref_primary_10_1021_acs_analchem_0c02968
crossref_primary_10_1016_j_actbio_2022_11_058
crossref_primary_10_1016_j_saa_2022_120935
crossref_primary_10_1042_BSR20170720
crossref_primary_10_1016_j_jpba_2017_11_074
crossref_primary_10_1038_nprot_2016_013
crossref_primary_10_1002_pssa_201600134
crossref_primary_10_1016_j_ijpharm_2025_125422
crossref_primary_10_1038_s41598_017_04678_6
crossref_primary_10_1021_acs_est_0c00850
crossref_primary_10_1021_acs_langmuir_6b00786
crossref_primary_10_1039_C7CP02599H
crossref_primary_10_1021_acs_langmuir_6b03785
crossref_primary_10_1016_j_molstruc_2016_01_028
crossref_primary_10_1117_1_JBO_23_10_105003
crossref_primary_10_3390_encyclopedia1010009
crossref_primary_10_3390_nano12030390
crossref_primary_10_1016_j_ijbiomac_2022_03_131
crossref_primary_10_1016_j_fbio_2024_104912
crossref_primary_10_1016_j_jhazmat_2023_131736
crossref_primary_10_1016_j_vibspec_2016_10_010
crossref_primary_10_1016_j_envres_2022_115131
crossref_primary_10_1146_annurev_anchem_091420_092928
crossref_primary_10_1039_C8TB02777C
crossref_primary_10_22175_mmb_9470
crossref_primary_10_1021_acs_inorgchem_3c03738
crossref_primary_10_1016_j_infrared_2019_03_032
crossref_primary_10_1021_acs_biomac_4c00609
crossref_primary_10_1038_s41467_022_32417_7
crossref_primary_10_1007_s00604_016_2031_0
crossref_primary_10_1002_jbio_201800429
crossref_primary_10_1007_s11947_024_03518_6
crossref_primary_10_1002_adfm_202100775
crossref_primary_10_1021_acs_biochem_6b00418
crossref_primary_10_1039_C9TA06233E
crossref_primary_10_1038_s41598_017_17027_4
crossref_primary_10_1016_j_aca_2024_342959
crossref_primary_10_1038_s41598_021_85050_7
Cites_doi 10.1016/j.ab.2005.01.053
10.1021/jp8092012
10.1016/S0925-4005(00)00709-7
10.1021/bi961810j
10.1021/ac4025544
10.1021/ac052214a
10.1021/jp0008041
10.1366/000370203769699072
10.1021/ac0520137
10.1021/ac302551s
10.1021/ac048189a
10.1366/0003702001950562
10.1021/bi0489154
10.1002/anie.201209256
10.1366/0003702001950454
10.1021/bi951589v
10.1366/12-06898
10.1073/pnas.94.8.3709
10.1039/c1an15787f
10.1366/000370207781745919
10.1366/0003702934067694
10.1039/c0an00890g
10.1021/bm050540u
10.1021/jp004537a
10.1021/jf070281v
10.1039/c3cs60173k
10.1021/bi00692a004
10.1021/la800636s
10.1021/ac4002723
10.1002/phy2.201
10.1366/000370202760295449
10.1021/ac031340g
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/c4an01495b
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic
CrossRef
Materials Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-5528
EndPage 77
ExternalDocumentID 25525641
10_1039_C4AN01495B
c4an01495b
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.GJ
.HR
0-7
0R~
0UZ
186
1TJ
23M
2WC
3EH
3O-
4.4
53G
5RE
705
70~
71~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABOCM
ABPDG
ABRYZ
ABXOH
ACGFS
ACHDF
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
ADXHL
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AIDUJ
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
APEMP
AQHUZ
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C1A
C6K
CAG
CITATION
COF
CS3
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
LPU
M4U
MVM
N9A
NDZJH
O9-
P2P
R56
R7B
R7E
RAOCF
RCLXC
RCNCU
RIG
RNS
ROL
RPMJG
RRA
RRC
RRXOS
RSCEA
SC5
SKM
SKR
SKZ
SLC
SLF
SLH
TN5
UPT
VH6
WH7
XOL
XXG
ZCG
ZKB
ZXP
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c470t-62109ed3b93e314926b01bc8dc8ae10c3ac73992fcd9fdde7106233fb15284193
ISSN 0003-2654
1364-5528
IngestDate Fri Jul 11 10:16:49 EDT 2025
Thu Jul 10 18:15:18 EDT 2025
Thu Apr 03 07:02:10 EDT 2025
Tue Jul 01 02:26:35 EDT 2025
Thu Apr 24 23:07:01 EDT 2025
Thu May 19 04:22:47 EDT 2016
Sun Jun 02 15:18:31 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c470t-62109ed3b93e314926b01bc8dc8ae10c3ac73992fcd9fdde7106233fb15284193
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubs.rsc.org/en/content/articlepdf/2015/an/c4an01495b
PMID 25525641
PQID 1652397603
PQPubID 23479
PageCount 6
ParticipantIDs rsc_primary_c4an01495b
proquest_miscellaneous_1669895912
proquest_miscellaneous_1652397603
pubmed_primary_25525641
crossref_primary_10_1039_C4AN01495B
crossref_citationtrail_10_1039_C4AN01495B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Analyst (London)
PublicationTitleAlternate Analyst
PublicationYear 2015
References Yuan (C4AN01495B-(cit5)/*[position()=1]) 2003; 57
Zhang (C4AN01495B-(cit8)/*[position()=1]) 2005; 340
Mizaikoff (C4AN01495B-(cit13)/*[position()=1]) 2013; 42
Bindig (C4AN01495B-(cit15)/*[position()=1]) 2001; 74
Jung (C4AN01495B-(cit19)/*[position()=1]) 2000; 104
Wang (C4AN01495B-(cit30)/*[position()=1]) 2013; 85
Schultz (C4AN01495B-(cit18)/*[position()=1]) 2000; 54
Neubauer (C4AN01495B-(cit22)/*[position()=1]) 2013; 85
Noda (C4AN01495B-(cit24)/*[position()=1]) 1993; 47
Lu (C4AN01495B-(cit14)/*[position()=1]) 2013; 52
Charlton (C4AN01495B-(cit12)/*[position()=1]) 2005; 77
Reisdorf (C4AN01495B-(cit28)/*[position()=1]) 1996; 35
Sanchez (C4AN01495B-(cit26)/*[position()=1]) 2008; 24
Noda (C4AN01495B-(cit17)/*[position()=1]) 2000; 54
Korbmacher (C4AN01495B-(cit23)/*[position()=1]) 2014; 2
Dominguez-Vidal (C4AN01495B-(cit25)/*[position()=1]) 2006; 78
Wang (C4AN01495B-(cit32)/*[position()=1]) 2012; 137
Charbonneau (C4AN01495B-(cit2)/*[position()=1]) 2009; 113
Wu (C4AN01495B-(cit4)/*[position()=1]) 2002; 56
Gilmanshin (C4AN01495B-(cit29)/*[position()=1]) 1997; 94
L'Hocine (C4AN01495B-(cit21)/*[position()=1]) 2007; 55
Mizaikoff (C4AN01495B-(cit10)/*[position()=1]) 2003; 75
Reinstädler (C4AN01495B-(cit27)/*[position()=1]) 1996; 35
Charlton (C4AN01495B-(cit33)/*[position()=1]) 2006; 78
Murayama (C4AN01495B-(cit7)/*[position()=1]) 2004; 43
Reed (C4AN01495B-(cit1)/*[position()=1]) 1975; 14
Schädle (C4AN01495B-(cit11)/*[position()=1]) 2013; 67
Yuan (C4AN01495B-(cit6)/*[position()=1]) 2007; 61
Noda (C4AN01495B-(cit16)/*[position()=1]) 2005
Huang (C4AN01495B-(cit9)/*[position()=1]) 2011; 136
Lefèvre (C4AN01495B-(cit20)/*[position()=1]) 2005; 6
Sieger (C4AN01495B-(cit31)/*[position()=1]) 2012; 85
Murayama (C4AN01495B-(cit3)/*[position()=1]) 2001; 105
References_xml – issn: 2005
  end-page: p 217-230
  publication-title: Two-Dimensional Correlation Spectroscopy - Applications in Vibrational and Optical Spectroscopy
  doi: Noda Ozaki
– volume: 340
  start-page: 89
  year: 2005
  ident: C4AN01495B-(cit8)/*[position()=1]
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2005.01.053
– volume: 113
  start-page: 1777
  year: 2009
  ident: C4AN01495B-(cit2)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp8092012
– volume: 74
  start-page: 37
  year: 2001
  ident: C4AN01495B-(cit15)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/S0925-4005(00)00709-7
– volume: 35
  start-page: 15822
  year: 1996
  ident: C4AN01495B-(cit27)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi961810j
– volume: 85
  start-page: 10648
  year: 2013
  ident: C4AN01495B-(cit30)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac4025544
– volume: 78
  start-page: 4224
  year: 2006
  ident: C4AN01495B-(cit33)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac052214a
– volume: 104
  start-page: 7812
  year: 2000
  ident: C4AN01495B-(cit19)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0008041
– volume: 57
  start-page: 1223
  year: 2003
  ident: C4AN01495B-(cit5)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370203769699072
– volume: 78
  start-page: 3257
  year: 2006
  ident: C4AN01495B-(cit25)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac0520137
– volume: 85
  start-page: 3050
  year: 2012
  ident: C4AN01495B-(cit31)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac302551s
– volume: 77
  start-page: 4398
  year: 2005
  ident: C4AN01495B-(cit12)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac048189a
– volume: 54
  start-page: 931
  year: 2000
  ident: C4AN01495B-(cit18)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702001950562
– volume: 43
  start-page: 11526
  year: 2004
  ident: C4AN01495B-(cit7)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi0489154
– volume: 52
  start-page: 2265
  year: 2013
  ident: C4AN01495B-(cit14)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201209256
– volume-title: Two-Dimensional Correlation Spectroscopy – Applications in Vibrational and Optical Spectroscopy
  year: 2005
  ident: C4AN01495B-(cit16)/*[position()=1]
– volume: 54
  start-page: 236A
  year: 2000
  ident: C4AN01495B-(cit17)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702001950454
– volume: 35
  start-page: 1383
  year: 1996
  ident: C4AN01495B-(cit28)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi951589v
– volume: 67
  start-page: 1057
  year: 2013
  ident: C4AN01495B-(cit11)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/12-06898
– volume: 94
  start-page: 3709
  year: 1997
  ident: C4AN01495B-(cit29)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.94.8.3709
– volume: 137
  start-page: 2322
  year: 2012
  ident: C4AN01495B-(cit32)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c1an15787f
– volume: 61
  start-page: 921
  year: 2007
  ident: C4AN01495B-(cit6)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370207781745919
– volume: 47
  start-page: 1329
  year: 1993
  ident: C4AN01495B-(cit24)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702934067694
– volume: 136
  start-page: 1747
  year: 2011
  ident: C4AN01495B-(cit9)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/c0an00890g
– volume: 6
  start-page: 3209
  year: 2005
  ident: C4AN01495B-(cit20)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/bm050540u
– volume: 105
  start-page: 4763
  year: 2001
  ident: C4AN01495B-(cit3)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp004537a
– volume: 55
  start-page: 5819
  year: 2007
  ident: C4AN01495B-(cit21)/*[position()=1]
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf070281v
– volume: 42
  start-page: 8683
  year: 2013
  ident: C4AN01495B-(cit13)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs60173k
– volume: 14
  start-page: 4578
  year: 1975
  ident: C4AN01495B-(cit1)/*[position()=1]
  publication-title: Biochemistry
  doi: 10.1021/bi00692a004
– volume: 24
  start-page: 6487
  year: 2008
  ident: C4AN01495B-(cit26)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/la800636s
– volume: 85
  start-page: 4247
  year: 2013
  ident: C4AN01495B-(cit22)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac4002723
– volume: 2
  start-page: e00201
  year: 2014
  ident: C4AN01495B-(cit23)/*[position()=1]
  publication-title: Physiol. Rep.
  doi: 10.1002/phy2.201
– volume: 56
  start-page: 1186
  year: 2002
  ident: C4AN01495B-(cit4)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370202760295449
– volume: 75
  start-page: 258A
  year: 2003
  ident: C4AN01495B-(cit10)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac031340g
SSID ssj0001050
Score 2.505037
Snippet Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 765
SubjectTerms Animals
Biosensing Techniques - methods
Cattle
Correlation
Denaturation
Derivatives
Fiber Optic Technology - methods
Hot Temperature
Protein Denaturation
Protein Structure, Secondary
Proteins
Serum albumin
Serum Albumin, Bovine - chemistry
Silver halides
Spectroscopy
Spectroscopy, Fourier Transform Infrared - methods
Thermal denaturation
Title Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors
URI https://www.ncbi.nlm.nih.gov/pubmed/25525641
https://www.proquest.com/docview/1652397603
https://www.proquest.com/docview/1669895912
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZg9wAXxGuhy0NGcOEQiJM4qY-l6mqBqnBotcspih1bVIK06uOyB347M7bjBG2FFi5RZFtplPk6nhnPfEPIG8mqXGd1FdVmqNFBSaIqN1jJFXNTFKLgtU2QneXni-zTJb_s0opsdclOvlNXB-tK_keqMAZyxSrZf5BseCgMwD3IF64gYbjeSMZfkUTJlztt0bOtMQfOUcLiwQAYghIjBji7wSxkjMdj-qurTUQ9HIFPvsccANA_yPHp8LC3EYSfyxqmzcbmqBubWrJGftctuL4rfwoUeJiR22TXbxASIgzTvZXjfhkGbAbBhW6iCx0GP1e7q6XrrC1t9XbvBEp9923lv6222vQDFYz3AhVOt6Z5FnHua8H1gbFWITsCJ4-8tKdeC9dX4praj1NkTVVZ1ViPT3abW3ugP_tSni2m03I-uZzfJscJOBWgFY9Hk_nHadi5wdZ0VeX-pVo621S87579pwFzzSsBG2XT9o6xNsr8PrnnnQs6ckh5QG7p5iG5M257-j0ivzxiKCCGBsTQgBi6MtQhhlrEUI8Y6hBD-4ihfcRQixjaRwztEEM9Yh6TxdlkPj6PfAeOSGVFvIvyhMVC16kUGCtHbkkZM6mGtRpWmsUqrVSBzMZG1cLARgnmKpjTqZFgFQ4z8A1OyFGzavRTQsEmkCJjcqhlkmleCFAOXAomWCorrviAvG0_a6k8PT12SflR2jSJVJTjbDSzIvgwIK_D2rUjZTm46lUrnRI-Mx6EVY1e7bcly3mCdnic_m0NtlblgiUD8sSJNvwWuOHgKWRsQE5A1mG4w8iAnB6eKNe1Ob3Bez0jd7u_0HNyBDDQL8D63cmXHrS_ATt3tXs
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+secondary+structure+of+bovine+serum+albumin+during+heat-induced+denaturation+using+mid-infrared+fiberoptic+sensors&rft.jtitle=Analyst+%28London%29&rft.au=Lu%2C+Rui&rft.au=Li%2C+Wen-Wei&rft.au=Katzir%2C+Abraham&rft.au=Raichlin%2C+Yosef&rft.date=2015-01-01&rft.issn=1364-5528&rft.eissn=1364-5528&rft.volume=140&rft.issue=3&rft.spage=765&rft_id=info:doi/10.1039%2Fc4an01495b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon