Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors
Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fittin...
Saved in:
Published in | Analyst (London) Vol. 14; no. 3; pp. 765 - 77 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fitting of the obtained ATR-FTIR spectra, the changes of the BSA secondary structure with temperature were clearly identified. Two different thermal denaturation temperature ranges (
i.e.
, 50-52 and 80-82 °C, at which a change of the protein structure occurred) were determined, while only one denaturation temperature was previously identified
via
classical FTIR measurements. Additionally, taking advantage of two-dimensional correlation spectroscopy more detailed information on changes of the protein secondary structure was revealed. The developed method facilitates
in situ
, sensitive, and more in-depth probing of protein secondary structures, which represents a significant advancement compared to conventional characterization methods.
Planar silver halide fiberoptic sensors were used for the first time for studying the mechanism of heating induced bovine serum albumin (BSA) denaturation by deconvoluted infrared attenuated total reflection (IR-ATR) spectra, and two-dimensional correlation spectroscopy (2D-CoS). |
---|---|
AbstractList | Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fitting of the obtained ATR-FTIR spectra, the changes of the BSA secondary structure with temperature were clearly identified. Two different thermal denaturation temperature ranges (i.e., 50-52 and 80-82 °C, at which a change of the protein structure occurred) were determined, while only one denaturation temperature was previously identified via classical FTIR measurements. Additionally, taking advantage of two-dimensional correlation spectroscopy more detailed information on changes of the protein secondary structure was revealed. The developed method facilitates in situ, sensitive, and more in-depth probing of protein secondary structures, which represents a significant advancement compared to conventional characterization methods.Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fitting of the obtained ATR-FTIR spectra, the changes of the BSA secondary structure with temperature were clearly identified. Two different thermal denaturation temperature ranges (i.e., 50-52 and 80-82 °C, at which a change of the protein structure occurred) were determined, while only one denaturation temperature was previously identified via classical FTIR measurements. Additionally, taking advantage of two-dimensional correlation spectroscopy more detailed information on changes of the protein secondary structure was revealed. The developed method facilitates in situ, sensitive, and more in-depth probing of protein secondary structures, which represents a significant advancement compared to conventional characterization methods. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fitting of the obtained ATR-FTIR spectra, the changes of the BSA secondary structure with temperature were clearly identified. Two different thermal denaturation temperature ranges ( i.e. , 50–52 and 80–82 °C, at which a change of the protein structure occurred) were determined, while only one denaturation temperature was previously identified via classical FTIR measurements. Additionally, taking advantage of two-dimensional correlation spectroscopy more detailed information on changes of the protein secondary structure was revealed. The developed method facilitates in situ , sensitive, and more in-depth probing of protein secondary structures, which represents a significant advancement compared to conventional characterization methods. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fitting of the obtained ATR-FTIR spectra, the changes of the BSA secondary structure with temperature were clearly identified. Two different thermal denaturation temperature ranges (i.e., 50-52 and 80-82 degree C, at which a change of the protein structure occurred) were determined, while only one denaturation temperature was previously identified viaclassical FTIR measurements. Additionally, taking advantage of two-dimensional correlation spectroscopy more detailed information on changes of the protein secondary structure was revealed. The developed method facilitates in situ, sensitive, and more in-depth probing of protein secondary structures, which represents a significant advancement compared to conventional characterization methods. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fitting of the obtained ATR-FTIR spectra, the changes of the BSA secondary structure with temperature were clearly identified. Two different thermal denaturation temperature ranges ( i.e. , 50-52 and 80-82 °C, at which a change of the protein structure occurred) were determined, while only one denaturation temperature was previously identified via classical FTIR measurements. Additionally, taking advantage of two-dimensional correlation spectroscopy more detailed information on changes of the protein secondary structure was revealed. The developed method facilitates in situ , sensitive, and more in-depth probing of protein secondary structures, which represents a significant advancement compared to conventional characterization methods. Planar silver halide fiberoptic sensors were used for the first time for studying the mechanism of heating induced bovine serum albumin (BSA) denaturation by deconvoluted infrared attenuated total reflection (IR-ATR) spectra, and two-dimensional correlation spectroscopy (2D-CoS). Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing the heat-induced secondary structure and conformation changes of bovine serum albumin (BSA). From the secondary derivative and the curve fitting of the obtained ATR-FTIR spectra, the changes of the BSA secondary structure with temperature were clearly identified. Two different thermal denaturation temperature ranges (i.e., 50-52 and 80-82 °C, at which a change of the protein structure occurred) were determined, while only one denaturation temperature was previously identified via classical FTIR measurements. Additionally, taking advantage of two-dimensional correlation spectroscopy more detailed information on changes of the protein secondary structure was revealed. The developed method facilitates in situ, sensitive, and more in-depth probing of protein secondary structures, which represents a significant advancement compared to conventional characterization methods. |
Author | Raichlin, Yosef Mizaikoff, Boris Katzir, Abraham Yu, Han-Qing Li, Wen-Wei Lu, Rui |
AuthorAffiliation | University of Science and Technology of China Department of Chemistry Institute of Analytical and Bioanalytical Chemistry School of Physics Ariel University Center of Samaria University of Ulm Department of Applied Physics Tel-Aviv University |
AuthorAffiliation_xml | – name: University of Science and Technology of China – name: Department of Applied Physics – name: Department of Chemistry – name: Ariel University Center of Samaria – name: Tel-Aviv University – name: School of Physics – name: University of Ulm – name: Institute of Analytical and Bioanalytical Chemistry |
Author_xml | – sequence: 1 givenname: Rui surname: Lu fullname: Lu, Rui – sequence: 2 givenname: Wen-Wei surname: Li fullname: Li, Wen-Wei – sequence: 3 givenname: Abraham surname: Katzir fullname: Katzir, Abraham – sequence: 4 givenname: Yosef surname: Raichlin fullname: Raichlin, Yosef – sequence: 5 givenname: Han-Qing surname: Yu fullname: Yu, Han-Qing – sequence: 6 givenname: Boris surname: Mizaikoff fullname: Mizaikoff, Boris |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25525641$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktrVDEYhkOptNPqpnsl3YlwNJdzMpNlO9QLFNuFrg-5fGkj5yRjLoVu_O1mOrWCiLgK4XneD_J-OUL7IQZA6ISSt5Rw-c70KhDay0HvoQXlou-Gga320YIQwjsmhv4QHeX8rV0pGcgBOmRNGERPF-jHdYrahxtcbgFnMDFYle5xLqmaUhPg6LCOdz5saaozVpOusw_Y1rSN3YIqnQ-2GrDYQlAtpIqPAde85bO3DbukUuPOa0hxU7xpw0KOKT9Hz5yaMrx4PI_R1_cXX9Yfu8urD5_WZ5ed6ZekdIJRIsFyLTnw9lImNKHarKxZKaDEcGWWXErmjJXOWlhSIhjnTtNWRE8lP0avd3M3KX6vkMs4-2xgmlSAWPNIhZArOUjK_kMdGJdLQXhTXz2qVc9gx03yc2tv_FVvE97sBJNizgnck0LJuN3duO7PPj_s7rzJ5A_Z-PLQZUnKT3-PvNxFUjZPo39_h8ZP_8XHjXX8J53Isi8 |
CitedBy_id | crossref_primary_10_1007_s00216_016_9375_5 crossref_primary_10_1016_j_ejpb_2018_06_010 crossref_primary_10_3390_polym16182565 crossref_primary_10_1016_j_saa_2018_01_039 crossref_primary_10_1021_acsami_2c01446 crossref_primary_10_1016_j_foodhyd_2021_107283 crossref_primary_10_1021_acs_jpcb_4c03967 crossref_primary_10_1039_C7BM00820A crossref_primary_10_1111_ijfs_15394 crossref_primary_10_1016_j_molstruc_2024_140285 crossref_primary_10_1002_pat_5651 crossref_primary_10_1016_j_ijpx_2022_100154 crossref_primary_10_1371_journal_pone_0170844 crossref_primary_10_1021_acs_jpcb_5b04854 crossref_primary_10_1016_j_talanta_2024_126231 crossref_primary_10_1021_acsanm_4c03657 crossref_primary_10_2174_0113892037284277240126094716 crossref_primary_10_1016_j_ijpharm_2016_09_051 crossref_primary_10_1016_j_jaerosci_2018_04_009 crossref_primary_10_1016_j_msec_2019_109813 crossref_primary_10_1016_j_molstruc_2022_134684 crossref_primary_10_1038_s41598_020_70201_z crossref_primary_10_1111_1471_0307_12351 crossref_primary_10_3390_cancers12071708 crossref_primary_10_1038_s41598_017_18228_7 crossref_primary_10_3390_molecules27175684 crossref_primary_10_3390_polym15092039 crossref_primary_10_1111_php_12789 crossref_primary_10_3390_biom9080359 crossref_primary_10_1080_10717544_2022_2111479 crossref_primary_10_1016_j_colsurfb_2019_04_012 crossref_primary_10_1016_j_jmrt_2024_09_139 crossref_primary_10_1016_j_carbpol_2019_04_077 crossref_primary_10_1016_j_foodhyd_2023_109520 crossref_primary_10_1039_C6RA24580C crossref_primary_10_1016_j_watres_2017_01_020 crossref_primary_10_1007_s11783_024_1819_0 crossref_primary_10_1016_j_saa_2017_08_014 crossref_primary_10_1039_C6AN01477A crossref_primary_10_1016_j_saa_2024_125288 crossref_primary_10_1002_cctc_201600637 crossref_primary_10_1116_1_4982598 crossref_primary_10_1364_OME_6_002616 crossref_primary_10_1002_bip_23383 crossref_primary_10_1080_07391102_2021_2004234 crossref_primary_10_1016_j_ijpharm_2024_124009 crossref_primary_10_1016_j_molstruc_2024_139860 crossref_primary_10_1021_acs_analchem_4c01772 crossref_primary_10_1016_j_poly_2019_06_036 crossref_primary_10_1016_j_saa_2016_02_013 crossref_primary_10_1039_C9LC00656G crossref_primary_10_1016_j_foodhyd_2018_08_054 crossref_primary_10_1186_s41747_019_0090_9 crossref_primary_10_2217_nnm_2021_0187 crossref_primary_10_1016_j_foodhyd_2021_106640 crossref_primary_10_1016_j_matt_2024_101941 crossref_primary_10_3390_app11094245 crossref_primary_10_1002_jsfa_8701 crossref_primary_10_2174_1567201816666191029122445 crossref_primary_10_1016_j_saa_2024_125216 crossref_primary_10_20964_2016_08_31 crossref_primary_10_1002_admi_202400867 crossref_primary_10_1016_j_soilbio_2016_12_027 crossref_primary_10_1364_BOE_398013 crossref_primary_10_1016_j_tifs_2020_02_011 crossref_primary_10_1080_26941112_2024_2330460 crossref_primary_10_1016_j_aca_2017_07_045 crossref_primary_10_1016_j_crbiot_2022_01_004 crossref_primary_10_3390_ijms242316970 crossref_primary_10_1002_smll_202305325 crossref_primary_10_1016_j_carpta_2021_100075 crossref_primary_10_1016_j_jbiotec_2024_09_005 crossref_primary_10_3390_polym15193969 crossref_primary_10_1016_j_jphotochem_2024_115702 crossref_primary_10_1016_j_colsurfa_2023_131795 crossref_primary_10_1016_j_carbpol_2022_120067 crossref_primary_10_1016_j_jmmm_2016_05_063 crossref_primary_10_1039_C7TB00040E crossref_primary_10_1071_EN21091 crossref_primary_10_1002_wer_1184 crossref_primary_10_1039_D2LC00799A crossref_primary_10_1021_acsomega_1c06126 crossref_primary_10_1021_acs_langmuir_2c01789 crossref_primary_10_1016_j_molliq_2020_113065 crossref_primary_10_1016_j_sna_2022_113455 crossref_primary_10_1016_j_vibspec_2017_08_001 crossref_primary_10_1515_abm_2020_0032 crossref_primary_10_1021_acsbiomaterials_6b00253 crossref_primary_10_1039_C6RE00127K crossref_primary_10_1016_j_ijggc_2016_10_015 crossref_primary_10_3390_ijms221910318 crossref_primary_10_1016_j_cclet_2017_03_021 crossref_primary_10_1016_j_colcom_2018_11_003 crossref_primary_10_3390_antiox10121875 crossref_primary_10_1016_j_bpc_2023_107127 crossref_primary_10_1016_j_jcis_2023_03_107 crossref_primary_10_3390_antiox9100966 crossref_primary_10_3390_s24092903 crossref_primary_10_1002_slct_202304371 crossref_primary_10_1021_acs_jpcb_8b04364 crossref_primary_10_3390_bios13030354 crossref_primary_10_1016_j_enzmictec_2024_110517 crossref_primary_10_1016_j_bbagen_2024_130744 crossref_primary_10_2139_ssrn_4170447 crossref_primary_10_1016_j_microc_2025_113046 crossref_primary_10_1021_acs_analchem_0c02968 crossref_primary_10_1016_j_actbio_2022_11_058 crossref_primary_10_1016_j_saa_2022_120935 crossref_primary_10_1042_BSR20170720 crossref_primary_10_1016_j_jpba_2017_11_074 crossref_primary_10_1038_nprot_2016_013 crossref_primary_10_1002_pssa_201600134 crossref_primary_10_1016_j_ijpharm_2025_125422 crossref_primary_10_1038_s41598_017_04678_6 crossref_primary_10_1021_acs_est_0c00850 crossref_primary_10_1021_acs_langmuir_6b00786 crossref_primary_10_1039_C7CP02599H crossref_primary_10_1021_acs_langmuir_6b03785 crossref_primary_10_1016_j_molstruc_2016_01_028 crossref_primary_10_1117_1_JBO_23_10_105003 crossref_primary_10_3390_encyclopedia1010009 crossref_primary_10_3390_nano12030390 crossref_primary_10_1016_j_ijbiomac_2022_03_131 crossref_primary_10_1016_j_fbio_2024_104912 crossref_primary_10_1016_j_jhazmat_2023_131736 crossref_primary_10_1016_j_vibspec_2016_10_010 crossref_primary_10_1016_j_envres_2022_115131 crossref_primary_10_1146_annurev_anchem_091420_092928 crossref_primary_10_1039_C8TB02777C crossref_primary_10_22175_mmb_9470 crossref_primary_10_1021_acs_inorgchem_3c03738 crossref_primary_10_1016_j_infrared_2019_03_032 crossref_primary_10_1021_acs_biomac_4c00609 crossref_primary_10_1038_s41467_022_32417_7 crossref_primary_10_1007_s00604_016_2031_0 crossref_primary_10_1002_jbio_201800429 crossref_primary_10_1007_s11947_024_03518_6 crossref_primary_10_1002_adfm_202100775 crossref_primary_10_1021_acs_biochem_6b00418 crossref_primary_10_1039_C9TA06233E crossref_primary_10_1038_s41598_017_17027_4 crossref_primary_10_1016_j_aca_2024_342959 crossref_primary_10_1038_s41598_021_85050_7 |
Cites_doi | 10.1016/j.ab.2005.01.053 10.1021/jp8092012 10.1016/S0925-4005(00)00709-7 10.1021/bi961810j 10.1021/ac4025544 10.1021/ac052214a 10.1021/jp0008041 10.1366/000370203769699072 10.1021/ac0520137 10.1021/ac302551s 10.1021/ac048189a 10.1366/0003702001950562 10.1021/bi0489154 10.1002/anie.201209256 10.1366/0003702001950454 10.1021/bi951589v 10.1366/12-06898 10.1073/pnas.94.8.3709 10.1039/c1an15787f 10.1366/000370207781745919 10.1366/0003702934067694 10.1039/c0an00890g 10.1021/bm050540u 10.1021/jp004537a 10.1021/jf070281v 10.1039/c3cs60173k 10.1021/bi00692a004 10.1021/la800636s 10.1021/ac4002723 10.1002/phy2.201 10.1366/000370202760295449 10.1021/ac031340g |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1039/c4an01495b |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | MEDLINE - Academic CrossRef Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-5528 |
EndPage | 77 |
ExternalDocumentID | 25525641 10_1039_C4AN01495B c4an01495b |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .GJ .HR 0-7 0R~ 0UZ 186 1TJ 23M 2WC 3EH 3O- 4.4 53G 5RE 705 70~ 71~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABOCM ABPDG ABRYZ ABXOH ACGFS ACHDF ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN ADXHL AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AIDUJ AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP AQHUZ ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C1A C6K CAG CITATION COF CS3 EBS ECGLT EE0 EEHRC EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDY IDZ J3G J3H J3I L-8 LPU M4U MVM N9A NDZJH O9- P2P R56 R7B R7E RAOCF RCLXC RCNCU RIG RNS ROL RPMJG RRA RRC RRXOS RSCEA SC5 SKM SKR SKZ SLC SLF SLH TN5 UPT VH6 WH7 XOL XXG ZCG ZKB ZXP ~02 CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c470t-62109ed3b93e314926b01bc8dc8ae10c3ac73992fcd9fdde7106233fb15284193 |
ISSN | 0003-2654 1364-5528 |
IngestDate | Fri Jul 11 10:16:49 EDT 2025 Thu Jul 10 18:15:18 EDT 2025 Thu Apr 03 07:02:10 EDT 2025 Tue Jul 01 02:26:35 EDT 2025 Thu Apr 24 23:07:01 EDT 2025 Thu May 19 04:22:47 EDT 2016 Sun Jun 02 15:18:31 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c470t-62109ed3b93e314926b01bc8dc8ae10c3ac73992fcd9fdde7106233fb15284193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pubs.rsc.org/en/content/articlepdf/2015/an/c4an01495b |
PMID | 25525641 |
PQID | 1652397603 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | rsc_primary_c4an01495b proquest_miscellaneous_1669895912 proquest_miscellaneous_1652397603 pubmed_primary_25525641 crossref_primary_10_1039_C4AN01495B crossref_citationtrail_10_1039_C4AN01495B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Analyst (London) |
PublicationTitleAlternate | Analyst |
PublicationYear | 2015 |
References | Yuan (C4AN01495B-(cit5)/*[position()=1]) 2003; 57 Zhang (C4AN01495B-(cit8)/*[position()=1]) 2005; 340 Mizaikoff (C4AN01495B-(cit13)/*[position()=1]) 2013; 42 Bindig (C4AN01495B-(cit15)/*[position()=1]) 2001; 74 Jung (C4AN01495B-(cit19)/*[position()=1]) 2000; 104 Wang (C4AN01495B-(cit30)/*[position()=1]) 2013; 85 Schultz (C4AN01495B-(cit18)/*[position()=1]) 2000; 54 Neubauer (C4AN01495B-(cit22)/*[position()=1]) 2013; 85 Noda (C4AN01495B-(cit24)/*[position()=1]) 1993; 47 Lu (C4AN01495B-(cit14)/*[position()=1]) 2013; 52 Charlton (C4AN01495B-(cit12)/*[position()=1]) 2005; 77 Reisdorf (C4AN01495B-(cit28)/*[position()=1]) 1996; 35 Sanchez (C4AN01495B-(cit26)/*[position()=1]) 2008; 24 Noda (C4AN01495B-(cit17)/*[position()=1]) 2000; 54 Korbmacher (C4AN01495B-(cit23)/*[position()=1]) 2014; 2 Dominguez-Vidal (C4AN01495B-(cit25)/*[position()=1]) 2006; 78 Wang (C4AN01495B-(cit32)/*[position()=1]) 2012; 137 Charbonneau (C4AN01495B-(cit2)/*[position()=1]) 2009; 113 Wu (C4AN01495B-(cit4)/*[position()=1]) 2002; 56 Gilmanshin (C4AN01495B-(cit29)/*[position()=1]) 1997; 94 L'Hocine (C4AN01495B-(cit21)/*[position()=1]) 2007; 55 Mizaikoff (C4AN01495B-(cit10)/*[position()=1]) 2003; 75 Reinstädler (C4AN01495B-(cit27)/*[position()=1]) 1996; 35 Charlton (C4AN01495B-(cit33)/*[position()=1]) 2006; 78 Murayama (C4AN01495B-(cit7)/*[position()=1]) 2004; 43 Reed (C4AN01495B-(cit1)/*[position()=1]) 1975; 14 Schädle (C4AN01495B-(cit11)/*[position()=1]) 2013; 67 Yuan (C4AN01495B-(cit6)/*[position()=1]) 2007; 61 Noda (C4AN01495B-(cit16)/*[position()=1]) 2005 Huang (C4AN01495B-(cit9)/*[position()=1]) 2011; 136 Lefèvre (C4AN01495B-(cit20)/*[position()=1]) 2005; 6 Sieger (C4AN01495B-(cit31)/*[position()=1]) 2012; 85 Murayama (C4AN01495B-(cit3)/*[position()=1]) 2001; 105 |
References_xml | – issn: 2005 end-page: p 217-230 publication-title: Two-Dimensional Correlation Spectroscopy - Applications in Vibrational and Optical Spectroscopy doi: Noda Ozaki – volume: 340 start-page: 89 year: 2005 ident: C4AN01495B-(cit8)/*[position()=1] publication-title: Anal. Biochem. doi: 10.1016/j.ab.2005.01.053 – volume: 113 start-page: 1777 year: 2009 ident: C4AN01495B-(cit2)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp8092012 – volume: 74 start-page: 37 year: 2001 ident: C4AN01495B-(cit15)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/S0925-4005(00)00709-7 – volume: 35 start-page: 15822 year: 1996 ident: C4AN01495B-(cit27)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi961810j – volume: 85 start-page: 10648 year: 2013 ident: C4AN01495B-(cit30)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac4025544 – volume: 78 start-page: 4224 year: 2006 ident: C4AN01495B-(cit33)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac052214a – volume: 104 start-page: 7812 year: 2000 ident: C4AN01495B-(cit19)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp0008041 – volume: 57 start-page: 1223 year: 2003 ident: C4AN01495B-(cit5)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/000370203769699072 – volume: 78 start-page: 3257 year: 2006 ident: C4AN01495B-(cit25)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac0520137 – volume: 85 start-page: 3050 year: 2012 ident: C4AN01495B-(cit31)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac302551s – volume: 77 start-page: 4398 year: 2005 ident: C4AN01495B-(cit12)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac048189a – volume: 54 start-page: 931 year: 2000 ident: C4AN01495B-(cit18)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/0003702001950562 – volume: 43 start-page: 11526 year: 2004 ident: C4AN01495B-(cit7)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi0489154 – volume: 52 start-page: 2265 year: 2013 ident: C4AN01495B-(cit14)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201209256 – volume-title: Two-Dimensional Correlation Spectroscopy – Applications in Vibrational and Optical Spectroscopy year: 2005 ident: C4AN01495B-(cit16)/*[position()=1] – volume: 54 start-page: 236A year: 2000 ident: C4AN01495B-(cit17)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/0003702001950454 – volume: 35 start-page: 1383 year: 1996 ident: C4AN01495B-(cit28)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi951589v – volume: 67 start-page: 1057 year: 2013 ident: C4AN01495B-(cit11)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/12-06898 – volume: 94 start-page: 3709 year: 1997 ident: C4AN01495B-(cit29)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.94.8.3709 – volume: 137 start-page: 2322 year: 2012 ident: C4AN01495B-(cit32)/*[position()=1] publication-title: Analyst doi: 10.1039/c1an15787f – volume: 61 start-page: 921 year: 2007 ident: C4AN01495B-(cit6)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/000370207781745919 – volume: 47 start-page: 1329 year: 1993 ident: C4AN01495B-(cit24)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/0003702934067694 – volume: 136 start-page: 1747 year: 2011 ident: C4AN01495B-(cit9)/*[position()=1] publication-title: Analyst doi: 10.1039/c0an00890g – volume: 6 start-page: 3209 year: 2005 ident: C4AN01495B-(cit20)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/bm050540u – volume: 105 start-page: 4763 year: 2001 ident: C4AN01495B-(cit3)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp004537a – volume: 55 start-page: 5819 year: 2007 ident: C4AN01495B-(cit21)/*[position()=1] publication-title: J. Agric. Food Chem. doi: 10.1021/jf070281v – volume: 42 start-page: 8683 year: 2013 ident: C4AN01495B-(cit13)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs60173k – volume: 14 start-page: 4578 year: 1975 ident: C4AN01495B-(cit1)/*[position()=1] publication-title: Biochemistry doi: 10.1021/bi00692a004 – volume: 24 start-page: 6487 year: 2008 ident: C4AN01495B-(cit26)/*[position()=1] publication-title: Langmuir doi: 10.1021/la800636s – volume: 85 start-page: 4247 year: 2013 ident: C4AN01495B-(cit22)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac4002723 – volume: 2 start-page: e00201 year: 2014 ident: C4AN01495B-(cit23)/*[position()=1] publication-title: Physiol. Rep. doi: 10.1002/phy2.201 – volume: 56 start-page: 1186 year: 2002 ident: C4AN01495B-(cit4)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/000370202760295449 – volume: 75 start-page: 258A year: 2003 ident: C4AN01495B-(cit10)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac031340g |
SSID | ssj0001050 |
Score | 2.505037 |
Snippet | Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy using a special waveguide based on a silver halide fiber was used for probing... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 765 |
SubjectTerms | Animals Biosensing Techniques - methods Cattle Correlation Denaturation Derivatives Fiber Optic Technology - methods Hot Temperature Protein Denaturation Protein Structure, Secondary Proteins Serum albumin Serum Albumin, Bovine - chemistry Silver halides Spectroscopy Spectroscopy, Fourier Transform Infrared - methods Thermal denaturation |
Title | Probing the secondary structure of bovine serum albumin during heat-induced denaturation using mid-infrared fiberoptic sensors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25525641 https://www.proquest.com/docview/1652397603 https://www.proquest.com/docview/1669895912 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZg9wAXxGuhy0NGcOEQiJM4qY-l6mqBqnBotcspih1bVIK06uOyB347M7bjBG2FFi5RZFtplPk6nhnPfEPIG8mqXGd1FdVmqNFBSaIqN1jJFXNTFKLgtU2QneXni-zTJb_s0opsdclOvlNXB-tK_keqMAZyxSrZf5BseCgMwD3IF64gYbjeSMZfkUTJlztt0bOtMQfOUcLiwQAYghIjBji7wSxkjMdj-qurTUQ9HIFPvsccANA_yPHp8LC3EYSfyxqmzcbmqBubWrJGftctuL4rfwoUeJiR22TXbxASIgzTvZXjfhkGbAbBhW6iCx0GP1e7q6XrrC1t9XbvBEp9923lv6222vQDFYz3AhVOt6Z5FnHua8H1gbFWITsCJ4-8tKdeC9dX4praj1NkTVVZ1ViPT3abW3ugP_tSni2m03I-uZzfJscJOBWgFY9Hk_nHadi5wdZ0VeX-pVo621S87579pwFzzSsBG2XT9o6xNsr8PrnnnQs6ckh5QG7p5iG5M257-j0ivzxiKCCGBsTQgBi6MtQhhlrEUI8Y6hBD-4ihfcRQixjaRwztEEM9Yh6TxdlkPj6PfAeOSGVFvIvyhMVC16kUGCtHbkkZM6mGtRpWmsUqrVSBzMZG1cLARgnmKpjTqZFgFQ4z8A1OyFGzavRTQsEmkCJjcqhlkmleCFAOXAomWCorrviAvG0_a6k8PT12SflR2jSJVJTjbDSzIvgwIK_D2rUjZTm46lUrnRI-Mx6EVY1e7bcly3mCdnic_m0NtlblgiUD8sSJNvwWuOHgKWRsQE5A1mG4w8iAnB6eKNe1Ob3Bez0jd7u_0HNyBDDQL8D63cmXHrS_ATt3tXs |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Probing+the+secondary+structure+of+bovine+serum+albumin+during+heat-induced+denaturation+using+mid-infrared+fiberoptic+sensors&rft.jtitle=Analyst+%28London%29&rft.au=Lu%2C+Rui&rft.au=Li%2C+Wen-Wei&rft.au=Katzir%2C+Abraham&rft.au=Raichlin%2C+Yosef&rft.date=2015-01-01&rft.issn=1364-5528&rft.eissn=1364-5528&rft.volume=140&rft.issue=3&rft.spage=765&rft_id=info:doi/10.1039%2Fc4an01495b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon |