PM2.5 induces autophagy and apoptosis through endoplasmic reticulum stress in human endothelial cells
Endothelial cells integrally form a crucial interface that maintains homeostasis of the cardiovascular system. As a vulnerable target of PM2.5, the underlying mechanisms of endothelial cell damage have yet to be fully elucidated. In the current study, two types of cell death, including autophagy and...
Saved in:
Published in | The Science of the total environment Vol. 710; p. 136397 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
25.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Endothelial cells integrally form a crucial interface that maintains homeostasis of the cardiovascular system. As a vulnerable target of PM2.5, the underlying mechanisms of endothelial cell damage have yet to be fully elucidated. In the current study, two types of cell death, including autophagy and apoptosis, and an important organelle of the endoplasmic reticulum (ER) were focalized following PM2.5 exposure. As a result, the internalization of PM2.5 has the ability to induce excess ER stress, which is a crucial step for further autophagy and apoptosis in human endothelial cells, as confirmed by the pre-treatment with the inhibitor of ER stress (4-PBA) which effectively mitigates the apoptosis rate and LC3II expression. Intriguingly, crosstalk between ER stress and autophagy demonstrated that ER stress is probably involved in autophagic events, whereas autophagy has no significant effect on ER stress but confer a protective role against PM2.5-induced endothelial cell apoptosis. Moreover, PM2.5 results in blockage of autophagic flux (failed fusion between autophagosomes and lysosomes), which is detrimental to endothelial cell survival. In conclusion, our findings provide a valuable insight into the relation between autophagy and apoptosis under PM2.5-induced ER stress conditions, where the interplay between them ultimately determines cell fate.
[Display omitted]
•ER stress induced by PM2.5 facilitates endothelial cell autophagy and apoptosis.•Autophagy confers a protective role in PM2.5-induced apoptosis.•Dysfunction of autophagic flux, or defective autophagy promotes cell apoptosis.•ER stress may lead to autophagic events in response to PM2.5, but not vice versa. |
---|---|
AbstractList | Endothelial cells integrally form a crucial interface that maintains homeostasis of the cardiovascular system. As a vulnerable target of PM2.5, the underlying mechanisms of endothelial cell damage have yet to be fully elucidated. In the current study, two types of cell death, including autophagy and apoptosis, and an important organelle of the endoplasmic reticulum (ER) were focalized following PM2.5 exposure. As a result, the internalization of PM2.5 has the ability to induce excess ER stress, which is a crucial step for further autophagy and apoptosis in human endothelial cells, as confirmed by the pre-treatment with the inhibitor of ER stress (4-PBA) which effectively mitigates the apoptosis rate and LC3II expression. Intriguingly, crosstalk between ER stress and autophagy demonstrated that ER stress is probably involved in autophagic events, whereas autophagy has no significant effect on ER stress but confer a protective role against PM2.5-induced endothelial cell apoptosis. Moreover, PM2.5 results in blockage of autophagic flux (failed fusion between autophagosomes and lysosomes), which is detrimental to endothelial cell survival. In conclusion, our findings provide a valuable insight into the relation between autophagy and apoptosis under PM2.5-induced ER stress conditions, where the interplay between them ultimately determines cell fate.Endothelial cells integrally form a crucial interface that maintains homeostasis of the cardiovascular system. As a vulnerable target of PM2.5, the underlying mechanisms of endothelial cell damage have yet to be fully elucidated. In the current study, two types of cell death, including autophagy and apoptosis, and an important organelle of the endoplasmic reticulum (ER) were focalized following PM2.5 exposure. As a result, the internalization of PM2.5 has the ability to induce excess ER stress, which is a crucial step for further autophagy and apoptosis in human endothelial cells, as confirmed by the pre-treatment with the inhibitor of ER stress (4-PBA) which effectively mitigates the apoptosis rate and LC3II expression. Intriguingly, crosstalk between ER stress and autophagy demonstrated that ER stress is probably involved in autophagic events, whereas autophagy has no significant effect on ER stress but confer a protective role against PM2.5-induced endothelial cell apoptosis. Moreover, PM2.5 results in blockage of autophagic flux (failed fusion between autophagosomes and lysosomes), which is detrimental to endothelial cell survival. In conclusion, our findings provide a valuable insight into the relation between autophagy and apoptosis under PM2.5-induced ER stress conditions, where the interplay between them ultimately determines cell fate. Endothelial cells integrally form a crucial interface that maintains homeostasis of the cardiovascular system. As a vulnerable target of PM2.5, the underlying mechanisms of endothelial cell damage have yet to be fully elucidated. In the current study, two types of cell death, including autophagy and apoptosis, and an important organelle of the endoplasmic reticulum (ER) were focalized following PM2.5 exposure. As a result, the internalization of PM2.5 has the ability to induce excess ER stress, which is a crucial step for further autophagy and apoptosis in human endothelial cells, as confirmed by the pre-treatment with the inhibitor of ER stress (4-PBA) which effectively mitigates the apoptosis rate and LC3II expression. Intriguingly, crosstalk between ER stress and autophagy demonstrated that ER stress is probably involved in autophagic events, whereas autophagy has no significant effect on ER stress but confer a protective role against PM2.5-induced endothelial cell apoptosis. Moreover, PM2.5 results in blockage of autophagic flux (failed fusion between autophagosomes and lysosomes), which is detrimental to endothelial cell survival. In conclusion, our findings provide a valuable insight into the relation between autophagy and apoptosis under PM2.5-induced ER stress conditions, where the interplay between them ultimately determines cell fate. Endothelial cells integrally form a crucial interface that maintains homeostasis of the cardiovascular system. As a vulnerable target of PM2.5, the underlying mechanisms of endothelial cell damage have yet to be fully elucidated. In the current study, two types of cell death, including autophagy and apoptosis, and an important organelle of the endoplasmic reticulum (ER) were focalized following PM2.5 exposure. As a result, the internalization of PM2.5 has the ability to induce excess ER stress, which is a crucial step for further autophagy and apoptosis in human endothelial cells, as confirmed by the pre-treatment with the inhibitor of ER stress (4-PBA) which effectively mitigates the apoptosis rate and LC3II expression. Intriguingly, crosstalk between ER stress and autophagy demonstrated that ER stress is probably involved in autophagic events, whereas autophagy has no significant effect on ER stress but confer a protective role against PM2.5-induced endothelial cell apoptosis. Moreover, PM2.5 results in blockage of autophagic flux (failed fusion between autophagosomes and lysosomes), which is detrimental to endothelial cell survival. In conclusion, our findings provide a valuable insight into the relation between autophagy and apoptosis under PM2.5-induced ER stress conditions, where the interplay between them ultimately determines cell fate. [Display omitted] •ER stress induced by PM2.5 facilitates endothelial cell autophagy and apoptosis.•Autophagy confers a protective role in PM2.5-induced apoptosis.•Dysfunction of autophagic flux, or defective autophagy promotes cell apoptosis.•ER stress may lead to autophagic events in response to PM2.5, but not vice versa. |
ArticleNumber | 136397 |
Author | Tang, Meng Wang, Yan |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0002-2940-3300 surname: Wang fullname: Wang, Yan – sequence: 2 givenname: Meng surname: Tang fullname: Tang, Meng email: tm@seu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32050373$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAUhS1URKeFvwBesknqRxI7CxZVVR5SESxgbXnsm8ajxA62U6n_HodpWXQz3lzJ-s65j3OBznzwgNAHSmpKaHd1qJNxOWTwDzUjtK8p73gvXqEdlaKvKGHdGdoR0siq73pxji5SOpDyhKRv0DlnpCVc8B2Cn99Z3WLn7WogYb3msIz6_hFrb7FewpJDcgnnMYb1fsTgbVgmnWZncITszDqtM045QkrFBI_rrP0_Ko8wOT1hA9OU3qLXg54SvHuql-j359tfN1-rux9fvt1c31WmESRXLed7JjlvGB00GEKoJVJ2nWgGzZrBcknosH0NAyfWtMzqlpfSAen7vej5Jfp49F1i-LNCymp2aZtAewhrUoxLKbhoy_Kn0bYRvKWiKej7J3Tdz2DVEt2s46N6vmIBPh0BE0NKEQZVwtHZBZ-jdpOiRG2pqYP6n5raUlPH1IpevNA_tzitvD4qoVz1wUHcOPAGrItgsrLBnfT4C3AGt1o |
CitedBy_id | crossref_primary_10_1021_acsanm_4c04236 crossref_primary_10_1016_j_ecoenv_2025_117845 crossref_primary_10_1002_jat_4724 crossref_primary_10_1016_j_ecoenv_2024_116232 crossref_primary_10_1016_j_jhazmat_2021_127169 crossref_primary_10_1002_mrd_23742 crossref_primary_10_1016_j_fct_2023_114033 crossref_primary_10_1016_j_jhazmat_2020_122439 crossref_primary_10_1016_j_jhazmat_2024_137011 crossref_primary_10_1016_j_envres_2021_111281 crossref_primary_10_31089_1026_9428_2024_64_12_820_826 crossref_primary_10_1016_j_fbio_2024_105070 crossref_primary_10_1016_j_envpol_2024_123958 crossref_primary_10_1016_j_bbrep_2021_101190 crossref_primary_10_1016_j_pestbp_2023_105631 crossref_primary_10_1016_j_phymed_2021_153912 crossref_primary_10_1021_acs_chemrestox_1c00353 crossref_primary_10_1016_j_jhazmat_2022_130623 crossref_primary_10_1016_j_scitotenv_2021_150214 crossref_primary_10_3390_biology13040249 crossref_primary_10_1002_ddr_21916 crossref_primary_10_1002_jat_4439 crossref_primary_10_1016_j_ecoenv_2023_114562 crossref_primary_10_1016_j_chemosphere_2021_130919 crossref_primary_10_1515_reveh_2020_0155 crossref_primary_10_1016_j_ecoenv_2023_115816 crossref_primary_10_1016_j_pestbp_2023_105461 crossref_primary_10_1007_s11356_021_16735_9 crossref_primary_10_1016_j_scitotenv_2022_156461 crossref_primary_10_1039_D0RA06384C crossref_primary_10_1016_j_iccn_2022_103336 crossref_primary_10_1016_j_hazl_2021_100045 crossref_primary_10_1038_s41417_023_00722_y crossref_primary_10_1016_j_envint_2022_107706 crossref_primary_10_3390_biom14091135 crossref_primary_10_1007_s11356_022_19496_1 crossref_primary_10_1016_j_envpol_2022_119236 crossref_primary_10_1080_26395940_2023_2233699 crossref_primary_10_1016_j_ecoenv_2024_116531 crossref_primary_10_1016_j_scitotenv_2021_146785 crossref_primary_10_1186_s12989_022_00462_1 crossref_primary_10_3389_fphar_2021_685895 crossref_primary_10_1136_egastro_2024_100063 crossref_primary_10_3724_abbs_2022136 crossref_primary_10_1002_advs_202404142 crossref_primary_10_1002_tox_23309 crossref_primary_10_1016_j_lfs_2021_119649 crossref_primary_10_1016_j_ecoenv_2022_114039 crossref_primary_10_1093_nutrit_nuad077 crossref_primary_10_1016_j_envpol_2020_114639 crossref_primary_10_1093_cvr_cvae082 crossref_primary_10_1002_jat_4138 crossref_primary_10_1515_reveh_2022_0204 crossref_primary_10_1080_1547691X_2023_2229428 crossref_primary_10_3389_fphar_2021_662664 crossref_primary_10_1002_advs_202403222 crossref_primary_10_1002_jat_4254 crossref_primary_10_1007_s11270_024_07146_w crossref_primary_10_3389_fcvm_2022_956482 crossref_primary_10_1016_j_jhazmat_2021_125070 crossref_primary_10_1007_s10495_022_01770_9 crossref_primary_10_1016_j_gendis_2023_02_030 crossref_primary_10_3390_ijms26041761 crossref_primary_10_1177_09603271221149011 crossref_primary_10_2139_ssrn_4088141 crossref_primary_10_1080_17435390_2021_1917716 crossref_primary_10_1016_j_tice_2024_102640 crossref_primary_10_1093_toxres_tfae188 crossref_primary_10_2147_IJN_S433658 crossref_primary_10_1055_s_0044_1789269 crossref_primary_10_1186_s12989_020_00391_x crossref_primary_10_1016_j_envpol_2024_124728 crossref_primary_10_1016_j_envpol_2022_119827 crossref_primary_10_1002_advs_202302029 crossref_primary_10_1016_j_fct_2024_114506 crossref_primary_10_1016_j_atmosenv_2022_119129 crossref_primary_10_1016_j_envpol_2021_117369 crossref_primary_10_1016_j_scitotenv_2024_170701 crossref_primary_10_1016_j_scitotenv_2020_143290 crossref_primary_10_4103_ed_ed_22_21 crossref_primary_10_2139_ssrn_4143092 crossref_primary_10_1111_nyas_14512 crossref_primary_10_2139_ssrn_3996863 crossref_primary_10_1016_j_jconrel_2023_01_028 crossref_primary_10_1016_j_scitotenv_2024_172582 crossref_primary_10_1016_j_tox_2021_152770 crossref_primary_10_1016_j_ecoenv_2021_111924 crossref_primary_10_1016_j_envpol_2024_123651 crossref_primary_10_1016_j_ijbiomac_2024_137566 crossref_primary_10_1002_tox_23814 crossref_primary_10_1016_j_scitotenv_2023_165875 crossref_primary_10_1016_j_bbrc_2022_10_030 crossref_primary_10_1016_j_lfs_2021_119413 crossref_primary_10_1080_13510002_2022_2036507 crossref_primary_10_1016_j_atmosenv_2022_118965 crossref_primary_10_1016_j_scitotenv_2024_170893 crossref_primary_10_1016_j_tiv_2022_105376 crossref_primary_10_1007_s10068_024_01686_x crossref_primary_10_1111_mmi_15010 crossref_primary_10_1016_j_intimp_2024_112784 crossref_primary_10_1002_tox_23985 crossref_primary_10_1016_j_tox_2024_153730 crossref_primary_10_1016_j_chemosphere_2022_135962 crossref_primary_10_1246_cl_210097 crossref_primary_10_3390_ijms22094787 crossref_primary_10_14336_AD_2024_0362 crossref_primary_10_1016_j_taap_2024_116976 crossref_primary_10_1016_j_freeradbiomed_2022_02_005 crossref_primary_10_1021_acsnanoscienceau_2c00059 crossref_primary_10_1016_j_envint_2024_108863 crossref_primary_10_1080_15548627_2023_2234228 crossref_primary_10_1016_j_chemosphere_2024_142622 crossref_primary_10_3389_fphar_2023_1172147 crossref_primary_10_1093_jas_skad101 crossref_primary_10_1016_j_tox_2023_153568 crossref_primary_10_3390_toxics11110906 crossref_primary_10_1016_j_envres_2024_118283 crossref_primary_10_1021_acssensors_3c01744 crossref_primary_10_3892_etm_2024_12756 crossref_primary_10_1186_s11658_023_00513_1 crossref_primary_10_2147_JIR_S390497 crossref_primary_10_1038_s41569_021_00511_w crossref_primary_10_1016_j_envpol_2021_117295 crossref_primary_10_34133_research_0344 crossref_primary_10_1039_D2EM00005A crossref_primary_10_1016_j_chemosphere_2023_138463 |
Cites_doi | 10.1007/s11356-015-4140-4 10.1016/j.chemosphere.2019.05.294 10.1021/es0625632 10.2147/IJN.S157135 10.1016/j.freeradbiomed.2017.10.386 10.1038/nature09782 10.1038/cddis.2017.453 10.7150/ijbs.24546 10.1089/ars.2017.7394 10.1021/es300433x 10.1038/srep44256 10.1289/EHP1545 10.1016/j.envres.2018.02.008 10.1007/s00204-018-2197-9 10.1126/science.1193497 10.1016/j.scitotenv.2017.12.334 10.1080/15548627.2016.1196313 10.1074/jbc.RA118.002829 10.1021/nn202155y 10.1016/j.tiv.2013.05.004 10.1016/j.tiv.2017.07.001 10.1007/s10495-014-0980-5 10.1146/annurev-physiol-021909-135757 10.1016/j.envpol.2017.09.015 10.1002/jat.3451 10.1016/j.freeradbiomed.2019.03.008 10.1016/j.acvd.2017.05.003 10.1016/j.tiv.2019.01.009 10.1093/ajh/hpx216 10.1021/acs.est.5b00542 10.1016/j.envpol.2017.06.035 10.3390/ijerph14020134 10.1016/j.ecoenv.2018.11.114 10.1016/j.envpol.2019.07.105 10.1002/jcp.25785 10.1371/journal.pone.0092710 10.1016/j.ecoenv.2018.05.002 10.1016/j.chemosphere.2018.10.101 10.1039/C7TX00262A 10.1186/s12989-017-0194-4 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2019.136397 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 32050373 10_1016_j_scitotenv_2019_136397 S0048969719363934 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-533b2833421faec001d0886674fa24fd3801fd088ff30dc52da53c526e099b793 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 03:42:00 EDT 2025 Fri Jul 11 12:12:28 EDT 2025 Wed Feb 19 02:30:19 EST 2025 Thu Apr 24 23:00:57 EDT 2025 Tue Jul 01 03:35:26 EDT 2025 Fri Feb 23 02:37:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ER stress Autophagy PM2.5 Autophagic flux Apoptosis |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-533b2833421faec001d0886674fa24fd3801fd088ff30dc52da53c526e099b793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2940-3300 |
PMID | 32050373 |
PQID | 2354735174 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2388737550 proquest_miscellaneous_2354735174 pubmed_primary_32050373 crossref_citationtrail_10_1016_j_scitotenv_2019_136397 crossref_primary_10_1016_j_scitotenv_2019_136397 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2019_136397 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-25 |
PublicationDateYYYYMMDD | 2020-03-25 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Tang (bb0160) 2019; 233 Deng, Zhang, Rui, Long, Wang, Feng (bb0015) 2013; 27 Luhr, Torgersen, Szalai, Hashim, Brech, Staerk (bb0085) 2019; 294 Hsu, Chuang, Lee, Lin, Chen, Hsiao (bb0050) 2019; 135 Suzuki, Toyooka, Ibuki (bb0130) 2007; 41 Zhu, Wang, Xing, Long, Fu, Xia (bb0205) 2018; 14 Wang, Tang (bb0150) 2018; 13 Deng, Zhang, Wang, Rui, Long, Zhao (bb0020) 2014; 19 Niu, Chen, Xia, Li, Zhou, Xu (bb0100) 2018; 233 Wang, Song, Ju, Wang, Dong, Zhang (bb0170) 2017; 7 Rabinowitz, White (bb0115) 2010; 330 Liu, Chen, Cao, Tao, Zhu, Yao (bb0080) 2015; 22 Zhao, Ibuki (bb0200) 2015; 49 Ogino, Zhang, Takahashi, Takemoto, Kubo, Murakami (bb0105) 2014; 9 Honda, Pun, Manjourides, Suh (bb0045) 2018; 164 Song, Tan, Miao, Li, Zhang (bb0125) 2017; 232 Abrams, Weber, Klein, Samat, Chang, Strickland (bb0005) 2017; 125 Piao, Ahn, Kang, Ryu, Hyun, Shilnikova (bb0110) 2018; 92 Wang, Tang (bb0155) 2018; 625 Wang, Tang (bb0165) 2019; 254 Bourdrel, Bind, Bejot, Morel, Argacha (bb0010) 2017; 110 Li, Zhang, Wang, Yung, Su, Li (bb0075) 2018; 7 Mittal, Sharma, Tiwari, Rayavarapu, Shankar, Chauhan (bb0095) 2017; 14 Wang, Zou, Wu, Xiong, Zhang, Kong (bb0190) 2019; 169 Tanwar, Adelstein, Grimmer, Youtz, Sugar, Wold (bb0140) 2017; 230 Ma, Wu, Jin, Tian, Zhang, Zhao (bb0090) 2011; 5 Tang, Zheng, Feng, Chen, Lou, Wang (bb0135) 2017; 8 Guo, Hong, Dong, Deng, Zhao, Xu (bb0040) 2017; 14 Huang, Zhu, Li, Zhang, Gu, Xie (bb0055) 2016; 12 Wang, Wu, Zou, Xiong, Zhang, Kong (bb0185) 2019; 216 Toduka, Toyooka, Ibuki (bb0145) 2012; 46 Wang, Xiong, Tang (bb0175) 2017; 37 Huang, Wang, Li, Liu, Xu, Liu (bb0060) 2018; 31 Ding, Zhang, Zhu, Cheng, Zhu, Xu (bb0030) 2017; 113 Wang, Xiong, Wu, Zhang, Kong, Xue (bb0180) 2018; 159 Gottlieb, Mentzer (bb0035) 2010; 72 Rao, Zhong, Brook, Rajagopalan (bb0120) 2017; 28 Levine, Mizushima, Virgin (bb0070) 2011; 469 Wu, Zhang, Liang, He, Wei, Wang (bb0195) 2019; 56 Deweirdt, Quignard, Crobeddu, Baeza-Squiban, Sciare, Courtois (bb0025) 2017; 45 Guo (10.1016/j.scitotenv.2019.136397_bb0040) 2017; 14 Niu (10.1016/j.scitotenv.2019.136397_bb0100) 2018; 233 Huang (10.1016/j.scitotenv.2019.136397_bb0060) 2018; 31 Levine (10.1016/j.scitotenv.2019.136397_bb0070) 2011; 469 Wang (10.1016/j.scitotenv.2019.136397_bb0185) 2019; 216 Huang (10.1016/j.scitotenv.2019.136397_bb0055) 2016; 12 Tang (10.1016/j.scitotenv.2019.136397_bb0135) 2017; 8 Wang (10.1016/j.scitotenv.2019.136397_bb0155) 2018; 625 Ma (10.1016/j.scitotenv.2019.136397_bb0090) 2011; 5 Deng (10.1016/j.scitotenv.2019.136397_bb0015) 2013; 27 Toduka (10.1016/j.scitotenv.2019.136397_bb0145) 2012; 46 Ding (10.1016/j.scitotenv.2019.136397_bb0030) 2017; 113 Wang (10.1016/j.scitotenv.2019.136397_bb0165) 2019; 254 Deweirdt (10.1016/j.scitotenv.2019.136397_bb0025) 2017; 45 Abrams (10.1016/j.scitotenv.2019.136397_bb0005) 2017; 125 Deng (10.1016/j.scitotenv.2019.136397_bb0020) 2014; 19 Tanwar (10.1016/j.scitotenv.2019.136397_bb0140) 2017; 230 Liu (10.1016/j.scitotenv.2019.136397_bb0080) 2015; 22 Wang (10.1016/j.scitotenv.2019.136397_bb0170) 2017; 7 Bourdrel (10.1016/j.scitotenv.2019.136397_bb0010) 2017; 110 Honda (10.1016/j.scitotenv.2019.136397_bb0045) 2018; 164 Wu (10.1016/j.scitotenv.2019.136397_bb0195) 2019; 56 Wang (10.1016/j.scitotenv.2019.136397_bb0150) 2018; 13 Gottlieb (10.1016/j.scitotenv.2019.136397_bb0035) 2010; 72 Suzuki (10.1016/j.scitotenv.2019.136397_bb0130) 2007; 41 Mittal (10.1016/j.scitotenv.2019.136397_bb0095) 2017; 14 Zhu (10.1016/j.scitotenv.2019.136397_bb0205) 2018; 14 Zhao (10.1016/j.scitotenv.2019.136397_bb0200) 2015; 49 Li (10.1016/j.scitotenv.2019.136397_bb0075) 2018; 7 Piao (10.1016/j.scitotenv.2019.136397_bb0110) 2018; 92 Wang (10.1016/j.scitotenv.2019.136397_bb0175) 2017; 37 Rao (10.1016/j.scitotenv.2019.136397_bb0120) 2017; 28 Luhr (10.1016/j.scitotenv.2019.136397_bb0085) 2019; 294 Wang (10.1016/j.scitotenv.2019.136397_bb0160) 2019; 233 Wang (10.1016/j.scitotenv.2019.136397_bb0190) 2019; 169 Hsu (10.1016/j.scitotenv.2019.136397_bb0050) 2019; 135 Song (10.1016/j.scitotenv.2019.136397_bb0125) 2017; 232 Ogino (10.1016/j.scitotenv.2019.136397_bb0105) 2014; 9 Rabinowitz (10.1016/j.scitotenv.2019.136397_bb0115) 2010; 330 Wang (10.1016/j.scitotenv.2019.136397_bb0180) 2018; 159 |
References_xml | – volume: 7 start-page: 44256 year: 2017 ident: bb0170 article-title: The acute airway inflammation induced by PM2.5 exposure and the treatment of essential oils in Balb/c mice publication-title: Sci. Rep. – volume: 31 start-page: 590 year: 2018 end-page: 599 ident: bb0060 article-title: Short-term blood pressure responses to ambient fine particulate matter exposures at the extremes of global air pollution concentrations publication-title: Am. J. Hypertens. – volume: 28 start-page: 797 year: 2017 end-page: 818 ident: bb0120 article-title: Effect of particulate matter air pollution on cardiovascular oxidative stress pathways publication-title: Antioxid. Redox Signal. – volume: 19 start-page: 1099 year: 2014 end-page: 1112 ident: bb0020 article-title: Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells publication-title: Apoptosis – volume: 7 start-page: 271 year: 2018 end-page: 282 ident: bb0075 article-title: Effects of sub-chronic exposure to atmospheric PM2.5 on fibrosis, inflammation, endoplasmic reticulum stress and apoptosis in the livers of rats publication-title: Toxicol. Res. (Camb.) – volume: 8 start-page: e3081 year: 2017 ident: bb0135 article-title: Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development publication-title: Cell Death Dis. – volume: 625 start-page: 940 year: 2018 end-page: 962 ident: bb0155 article-title: Review of in vitro toxicological research of quantum dot and potentially involved mechanisms publication-title: Sci. Total Environ. – volume: 135 start-page: 235 year: 2019 end-page: 244 ident: bb0050 article-title: Traffic-related particulate matter exposure induces nephrotoxicity in vitro and in vivo publication-title: Free Radic. Biol. Med. – volume: 233 start-page: 711 year: 2019 end-page: 723 ident: bb0160 article-title: Integrative analysis of mRNAs, miRNAs and lncRNAs in urban particulate matter SRM 1648a-treated EA.hy926 human endothelial cells publication-title: Chemosphere – volume: 41 start-page: 3018 year: 2007 end-page: 3024 ident: bb0130 article-title: Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis publication-title: Environ. Sci. Technol. – volume: 294 start-page: 8197 year: 2019 end-page: 8217 ident: bb0085 article-title: The kinase PERK and the transcription factor ATF4 play distinct and essential roles in autophagy resulting from tunicamycin-induced ER stress publication-title: J. Biol. Chem. – volume: 159 start-page: 213 year: 2018 end-page: 220 ident: bb0180 article-title: Analysis of differentially changed gene expression in EA.hy926 human endothelial cell after exposure of fine particulate matter on the basis of microarray profile publication-title: Ecotoxicol. Environ. Saf. – volume: 233 start-page: 889 year: 2018 end-page: 899 ident: bb0100 article-title: Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity publication-title: Environ. Pollut. – volume: 230 start-page: 116 year: 2017 end-page: 124 ident: bb0140 article-title: PM2.5 exposure in utero contributes to neonatal cardiac dysfunction in mice publication-title: Environ. Pollut. – volume: 22 start-page: 9728 year: 2015 end-page: 9741 ident: bb0080 article-title: Oxidative stress, apoptosis, and cell cycle arrest are induced in primary fetal alveolar type II epithelial cells exposed to fine particulate matter from cooking oil fumes publication-title: Environ. Sci. Pollut. Res. Int. – volume: 5 start-page: 8629 year: 2011 end-page: 8639 ident: bb0090 article-title: Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment publication-title: ACS Nano – volume: 49 start-page: 5003 year: 2015 end-page: 5012 ident: bb0200 article-title: Evaluating the toxicity of silver nanoparticles by detecting phosphorylation of histone H3 in combination with flow cytometry side-scattered light publication-title: Environ. Sci. Technol. – volume: 164 start-page: 1 year: 2018 end-page: 8 ident: bb0045 article-title: Associations of long-term fine particulate matter exposure with prevalent hypertension and increased blood pressure in older Americans publication-title: Environ. Res. – volume: 27 start-page: 1762 year: 2013 end-page: 1770 ident: bb0015 article-title: PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells publication-title: Toxicol. in Vitro – volume: 13 start-page: 2729 year: 2018 end-page: 2742 ident: bb0150 article-title: Dysfunction of various organelles provokes multiple cell death after quantum dot exposure publication-title: Int. J. Nanomedicine – volume: 37 start-page: 644 year: 2017 end-page: 667 ident: bb0175 article-title: Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease publication-title: J. Appl. Toxicol. – volume: 169 start-page: 863 year: 2019 end-page: 873 ident: bb0190 article-title: Identification of mRNA-miRNA crosstalk in human endothelial cells after exposure of PM2.5 through integrative transcriptome analysis publication-title: Ecotoxicol. Environ. Saf. – volume: 45 start-page: 340 year: 2017 end-page: 350 ident: bb0025 article-title: Involvement of oxidative stress and calcium signaling in airborne particulate matter - induced damages in human pulmonary artery endothelial cells publication-title: Toxicol. in Vitro – volume: 14 year: 2017 ident: bb0040 article-title: PM2.5-induced oxidative stress and mitochondrial damage in the nasal mucosa of rats publication-title: Int. J. Environ. Res. Public Health – volume: 12 start-page: 1687 year: 2016 end-page: 1703 ident: bb0055 article-title: Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells publication-title: Autophagy – volume: 46 start-page: 7629 year: 2012 end-page: 7636 ident: bb0145 article-title: Flow cytometric evaluation of nanoparticles using side-scattered light and reactive oxygen species-mediated fluorescence-correlation with genotoxicity publication-title: Environ. Sci. Technol. – volume: 110 start-page: 634 year: 2017 end-page: 642 ident: bb0010 article-title: Cardiovascular effects of air pollution publication-title: Arch. Cardiovasc. Dis. – volume: 72 start-page: 45 year: 2010 end-page: 59 ident: bb0035 article-title: Autophagy during cardiac stress: joys and frustrations of autophagy publication-title: Annu. Rev. Physiol. – volume: 14 start-page: 557 year: 2018 end-page: 564 ident: bb0205 article-title: PM2.5 induces autophagy-mediated cell death via NOS2 signaling in human bronchial epithelium cells publication-title: Int. J. Biol. Sci. – volume: 232 start-page: 2977 year: 2017 end-page: 2984 ident: bb0125 article-title: Crosstalk of autophagy and apoptosis: involvement of the dual role of autophagy under ER stress publication-title: J. Cell. Physiol. – volume: 113 start-page: 452 year: 2017 end-page: 460 ident: bb0030 article-title: ROS-AKT-mTOR axis mediates autophagy of human umbilical vein endothelial cells induced by cooking oil fumes-derived fine particulate matters in vitro publication-title: Free Radic. Biol. Med. – volume: 469 start-page: 323 year: 2011 end-page: 335 ident: bb0070 article-title: Autophagy in immunity and inflammation publication-title: Nature – volume: 14 start-page: 15 year: 2017 ident: bb0095 article-title: Impaired lysosomal activity mediated autophagic flux disruption by graphite carbon nanofibers induce apoptosis in human lung epithelial cells through oxidative stress and energetic impairment publication-title: Part. Fibre Toxicol. – volume: 254 year: 2019 ident: bb0165 article-title: PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance publication-title: Environ. Pollut. – volume: 92 start-page: 2077 year: 2018 end-page: 2091 ident: bb0110 article-title: Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis publication-title: Arch. Toxicol. – volume: 125 start-page: 107008 year: 2017 ident: bb0005 article-title: Associations between ambient fine particulate oxidative potential and cardiorespiratory emergency department visits publication-title: Environ. Health Perspect. – volume: 9 year: 2014 ident: bb0105 article-title: Allergic airway inflammation by nasal inoculation of particulate matter (PM2.5) in NC/Nga mice publication-title: PLoS One – volume: 216 start-page: 396 year: 2019 end-page: 403 ident: bb0185 article-title: Genome-wide identification and functional analysis of long non-coding RNAs in human endothelial cell line after incubation with PM2.5 publication-title: Chemosphere – volume: 56 start-page: 126 year: 2019 end-page: 132 ident: bb0195 article-title: The apoptosis induced by silica nanoparticle through endoplasmic reticulum stress response in human pulmonary alveolar epithelial cells publication-title: Toxicol. in Vitro – volume: 330 start-page: 1344 year: 2010 end-page: 1348 ident: bb0115 article-title: Autophagy and metabolism publication-title: Science – volume: 22 start-page: 9728 year: 2015 ident: 10.1016/j.scitotenv.2019.136397_bb0080 article-title: Oxidative stress, apoptosis, and cell cycle arrest are induced in primary fetal alveolar type II epithelial cells exposed to fine particulate matter from cooking oil fumes publication-title: Environ. Sci. Pollut. Res. Int. doi: 10.1007/s11356-015-4140-4 – volume: 233 start-page: 711 year: 2019 ident: 10.1016/j.scitotenv.2019.136397_bb0160 article-title: Integrative analysis of mRNAs, miRNAs and lncRNAs in urban particulate matter SRM 1648a-treated EA.hy926 human endothelial cells publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.05.294 – volume: 41 start-page: 3018 year: 2007 ident: 10.1016/j.scitotenv.2019.136397_bb0130 article-title: Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis publication-title: Environ. Sci. Technol. doi: 10.1021/es0625632 – volume: 13 start-page: 2729 year: 2018 ident: 10.1016/j.scitotenv.2019.136397_bb0150 article-title: Dysfunction of various organelles provokes multiple cell death after quantum dot exposure publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S157135 – volume: 113 start-page: 452 year: 2017 ident: 10.1016/j.scitotenv.2019.136397_bb0030 article-title: ROS-AKT-mTOR axis mediates autophagy of human umbilical vein endothelial cells induced by cooking oil fumes-derived fine particulate matters in vitro publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.10.386 – volume: 469 start-page: 323 year: 2011 ident: 10.1016/j.scitotenv.2019.136397_bb0070 article-title: Autophagy in immunity and inflammation publication-title: Nature doi: 10.1038/nature09782 – volume: 8 start-page: e3081 year: 2017 ident: 10.1016/j.scitotenv.2019.136397_bb0135 article-title: Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.453 – volume: 14 start-page: 557 year: 2018 ident: 10.1016/j.scitotenv.2019.136397_bb0205 article-title: PM2.5 induces autophagy-mediated cell death via NOS2 signaling in human bronchial epithelium cells publication-title: Int. J. Biol. Sci. doi: 10.7150/ijbs.24546 – volume: 28 start-page: 797 year: 2017 ident: 10.1016/j.scitotenv.2019.136397_bb0120 article-title: Effect of particulate matter air pollution on cardiovascular oxidative stress pathways publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2017.7394 – volume: 46 start-page: 7629 year: 2012 ident: 10.1016/j.scitotenv.2019.136397_bb0145 article-title: Flow cytometric evaluation of nanoparticles using side-scattered light and reactive oxygen species-mediated fluorescence-correlation with genotoxicity publication-title: Environ. Sci. Technol. doi: 10.1021/es300433x – volume: 7 start-page: 44256 year: 2017 ident: 10.1016/j.scitotenv.2019.136397_bb0170 article-title: The acute airway inflammation induced by PM2.5 exposure and the treatment of essential oils in Balb/c mice publication-title: Sci. Rep. doi: 10.1038/srep44256 – volume: 125 start-page: 107008 year: 2017 ident: 10.1016/j.scitotenv.2019.136397_bb0005 article-title: Associations between ambient fine particulate oxidative potential and cardiorespiratory emergency department visits publication-title: Environ. Health Perspect. doi: 10.1289/EHP1545 – volume: 164 start-page: 1 year: 2018 ident: 10.1016/j.scitotenv.2019.136397_bb0045 article-title: Associations of long-term fine particulate matter exposure with prevalent hypertension and increased blood pressure in older Americans publication-title: Environ. Res. doi: 10.1016/j.envres.2018.02.008 – volume: 92 start-page: 2077 year: 2018 ident: 10.1016/j.scitotenv.2019.136397_bb0110 article-title: Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis publication-title: Arch. Toxicol. doi: 10.1007/s00204-018-2197-9 – volume: 330 start-page: 1344 year: 2010 ident: 10.1016/j.scitotenv.2019.136397_bb0115 article-title: Autophagy and metabolism publication-title: Science doi: 10.1126/science.1193497 – volume: 625 start-page: 940 year: 2018 ident: 10.1016/j.scitotenv.2019.136397_bb0155 article-title: Review of in vitro toxicological research of quantum dot and potentially involved mechanisms publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.334 – volume: 12 start-page: 1687 year: 2016 ident: 10.1016/j.scitotenv.2019.136397_bb0055 article-title: Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells publication-title: Autophagy doi: 10.1080/15548627.2016.1196313 – volume: 294 start-page: 8197 year: 2019 ident: 10.1016/j.scitotenv.2019.136397_bb0085 article-title: The kinase PERK and the transcription factor ATF4 play distinct and essential roles in autophagy resulting from tunicamycin-induced ER stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.002829 – volume: 5 start-page: 8629 year: 2011 ident: 10.1016/j.scitotenv.2019.136397_bb0090 article-title: Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment publication-title: ACS Nano doi: 10.1021/nn202155y – volume: 27 start-page: 1762 year: 2013 ident: 10.1016/j.scitotenv.2019.136397_bb0015 article-title: PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2013.05.004 – volume: 45 start-page: 340 year: 2017 ident: 10.1016/j.scitotenv.2019.136397_bb0025 article-title: Involvement of oxidative stress and calcium signaling in airborne particulate matter - induced damages in human pulmonary artery endothelial cells publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2017.07.001 – volume: 19 start-page: 1099 year: 2014 ident: 10.1016/j.scitotenv.2019.136397_bb0020 article-title: Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells publication-title: Apoptosis doi: 10.1007/s10495-014-0980-5 – volume: 72 start-page: 45 year: 2010 ident: 10.1016/j.scitotenv.2019.136397_bb0035 article-title: Autophagy during cardiac stress: joys and frustrations of autophagy publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-021909-135757 – volume: 233 start-page: 889 year: 2018 ident: 10.1016/j.scitotenv.2019.136397_bb0100 article-title: Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.09.015 – volume: 37 start-page: 644 year: 2017 ident: 10.1016/j.scitotenv.2019.136397_bb0175 article-title: Toxicity of inhaled particulate matter on the central nervous system: neuroinflammation, neuropsychological effects and neurodegenerative disease publication-title: J. Appl. Toxicol. doi: 10.1002/jat.3451 – volume: 135 start-page: 235 year: 2019 ident: 10.1016/j.scitotenv.2019.136397_bb0050 article-title: Traffic-related particulate matter exposure induces nephrotoxicity in vitro and in vivo publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2019.03.008 – volume: 110 start-page: 634 year: 2017 ident: 10.1016/j.scitotenv.2019.136397_bb0010 article-title: Cardiovascular effects of air pollution publication-title: Arch. Cardiovasc. Dis. doi: 10.1016/j.acvd.2017.05.003 – volume: 56 start-page: 126 year: 2019 ident: 10.1016/j.scitotenv.2019.136397_bb0195 article-title: The apoptosis induced by silica nanoparticle through endoplasmic reticulum stress response in human pulmonary alveolar epithelial cells publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2019.01.009 – volume: 31 start-page: 590 year: 2018 ident: 10.1016/j.scitotenv.2019.136397_bb0060 article-title: Short-term blood pressure responses to ambient fine particulate matter exposures at the extremes of global air pollution concentrations publication-title: Am. J. Hypertens. doi: 10.1093/ajh/hpx216 – volume: 49 start-page: 5003 year: 2015 ident: 10.1016/j.scitotenv.2019.136397_bb0200 article-title: Evaluating the toxicity of silver nanoparticles by detecting phosphorylation of histone H3 in combination with flow cytometry side-scattered light publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b00542 – volume: 230 start-page: 116 year: 2017 ident: 10.1016/j.scitotenv.2019.136397_bb0140 article-title: PM2.5 exposure in utero contributes to neonatal cardiac dysfunction in mice publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.06.035 – volume: 14 year: 2017 ident: 10.1016/j.scitotenv.2019.136397_bb0040 article-title: PM2.5-induced oxidative stress and mitochondrial damage in the nasal mucosa of rats publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph14020134 – volume: 169 start-page: 863 year: 2019 ident: 10.1016/j.scitotenv.2019.136397_bb0190 article-title: Identification of mRNA-miRNA crosstalk in human endothelial cells after exposure of PM2.5 through integrative transcriptome analysis publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.11.114 – volume: 254 year: 2019 ident: 10.1016/j.scitotenv.2019.136397_bb0165 article-title: PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.07.105 – volume: 232 start-page: 2977 year: 2017 ident: 10.1016/j.scitotenv.2019.136397_bb0125 article-title: Crosstalk of autophagy and apoptosis: involvement of the dual role of autophagy under ER stress publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25785 – volume: 9 year: 2014 ident: 10.1016/j.scitotenv.2019.136397_bb0105 article-title: Allergic airway inflammation by nasal inoculation of particulate matter (PM2.5) in NC/Nga mice publication-title: PLoS One doi: 10.1371/journal.pone.0092710 – volume: 159 start-page: 213 year: 2018 ident: 10.1016/j.scitotenv.2019.136397_bb0180 article-title: Analysis of differentially changed gene expression in EA.hy926 human endothelial cell after exposure of fine particulate matter on the basis of microarray profile publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.05.002 – volume: 216 start-page: 396 year: 2019 ident: 10.1016/j.scitotenv.2019.136397_bb0185 article-title: Genome-wide identification and functional analysis of long non-coding RNAs in human endothelial cell line after incubation with PM2.5 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.10.101 – volume: 7 start-page: 271 year: 2018 ident: 10.1016/j.scitotenv.2019.136397_bb0075 article-title: Effects of sub-chronic exposure to atmospheric PM2.5 on fibrosis, inflammation, endoplasmic reticulum stress and apoptosis in the livers of rats publication-title: Toxicol. Res. (Camb.) doi: 10.1039/C7TX00262A – volume: 14 start-page: 15 year: 2017 ident: 10.1016/j.scitotenv.2019.136397_bb0095 article-title: Impaired lysosomal activity mediated autophagic flux disruption by graphite carbon nanofibers induce apoptosis in human lung epithelial cells through oxidative stress and energetic impairment publication-title: Part. Fibre Toxicol. doi: 10.1186/s12989-017-0194-4 |
SSID | ssj0000781 |
Score | 2.6189675 |
Snippet | Endothelial cells integrally form a crucial interface that maintains homeostasis of the cardiovascular system. As a vulnerable target of PM2.5, the underlying... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 136397 |
SubjectTerms | Apoptosis Autophagic flux Autophagy cardiovascular system cell viability endoplasmic reticulum Endoplasmic Reticulum Stress Endothelial Cells ER stress homeostasis Humans lysosomes Particulate Matter particulates PM2.5 protective effect |
Title | PM2.5 induces autophagy and apoptosis through endoplasmic reticulum stress in human endothelial cells |
URI | https://dx.doi.org/10.1016/j.scitotenv.2019.136397 https://www.ncbi.nlm.nih.gov/pubmed/32050373 https://www.proquest.com/docview/2354735174 https://www.proquest.com/docview/2388737550 |
Volume | 710 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9KiyCI1NPqaVsi-LrtbpJNer6V0nJ6tIhY7FvIZhO5UncXd0_oi3-7M5vdKwW1Dz4FQiaETGbml2Q-AN4dqeCVCzLJFcI36fWM_nddopXNdGZLl_ZBYecXan4pP17lVxtwMsbCkFvloPujTu-19dBzOOzmYbNcUoyvPJqpmUYIgmZWUE5QKTWd8oNfd24elMwm_jKjYOPoez5eOG9XIzb9ST5eM3L5EpT96c8W6m8ItLdEZ9vwdICQ7Diu8hls-GoCj2JRydsJ7Jzexa7hsEF42wk8iU90LEYePQf_6Zwf5Awv5cjeltkV5Riw326ZrUpmm7rp6nbZsqGSD_NVWTeItb_jFH3oI70bshhrgpOwvtpfPwox5Q0ea0afAu0LuDw7_XIyT4aqC4mTOu0SxH8FYg4heRasd2jGStRESmkZLJehFGjTAnWFINLS5by0ucBGeQSbBYr7DmxWdeVfAcuDEEFa711GSWFCYQsdnNdIlWeBqymocaeNG1KSU2WMGzP6nl2bNYsMschEFk0hXRM2MSvHwyTvR1aaewfMoO14mPjtyHyD4kfbZytfr1rDRV-8Ge91_xqDmlxovAtO4WU8OetVC04JebR4_T_LewOPOT0DpCLh-S5sdj9Wfg-xUlfs98KwD1vHHxbzC2oXn78ufgPnaxdU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB_qFVEQ0dPW8zOCr2t383nnWyktV9s7fGihbyGbTeSk3V3cPaH_vZPN7pVCbR98CoRMCJnMzC_JfAB8mUrvpPU8ERLhG3dqFv53baKkyVRmCpt2QWGLpZyf8-8X4mILDoZYmOBW2ev-qNM7bd337PW7uVevViHGl09ncqYQgqCZZfwRbIfsVGIE2_vHJ_PljUJW01g4j6NsI8EtNy-cuq0Qnv4Jbl6z4PXFQgKou43Uv0BoZ4yOXsDzHkWS_bjQl7DlyjE8jnUlr8ewc3gTvobDevltxvAsvtKRGHz0CtyPBf0qCN7LkcMNMeuQZsD8vCamLIipq7qtmlVD-mI-xJVFVSPcvsIpuujH8HRIYrgJTkK6gn_dKISVl3iySfgXaF7D-dHh2cE86QsvJJartE0QAuYIOxinmTfOoiUrUBlJqbg3lPuCoVnzoct7lhZW0MIIho10iDdzlPgdGJVV6d4AEZ4xz41zNgt5YXxucuWtU0glMk_lBOSw09r2WclDcYxLPbif_dIbFunAIh1ZNIF0Q1jHxBwPk3wbWKlvnTGN5uNh4s8D8zVKYNg-U7pq3WjKuvrNeLW7bwwqc6bwOjiB3XhyNqtmNOTkUezt_yzvEzyZny1O9enx8uQdPKXhVSBlCRXvYdT-XrsPCJ3a_GMvGn8Bo0AYYg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PM2.5+induces+autophagy+and+apoptosis+through+endoplasmic+reticulum+stress+in+human+endothelial+cells&rft.jtitle=The+Science+of+the+total+environment&rft.au=Wang%2C+Yan&rft.au=Tang%2C+Meng&rft.date=2020-03-25&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.eissn=1879-1026&rft.volume=710&rft_id=info:doi/10.1016%2Fj.scitotenv.2019.136397&rft.externalDocID=S0048969719363934 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |