Biochar alters microbial community and carbon sequestration potential across different soil pH

•CO2 emission from biochar-amended soils with two different pH levels was studied.•Higher biochar degradation resulted in higher CO2 emission in acidic ferralsol.•Biochar increased the bioavailability of SOC and copiotrophic bacteria in ferralsol.•Adsorption of SOC on biochar resulted in decreased C...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 622-623; pp. 1391 - 1399
Main Authors Sheng, Yaqi, Zhu, Lizhong
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •CO2 emission from biochar-amended soils with two different pH levels was studied.•Higher biochar degradation resulted in higher CO2 emission in acidic ferralsol.•Biochar increased the bioavailability of SOC and copiotrophic bacteria in ferralsol.•Adsorption of SOC on biochar resulted in decreased CO2 emission in phaeozems. [Display omitted] Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO2 emission. To investigate soil microbial response and CO2 emission of biochar across different pH levels, comparative incubation studies on CO2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO2 emission.
AbstractList Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO emission. To investigate soil microbial response and CO emission of biochar across different pH levels, comparative incubation studies on CO emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO emission.
Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO2 emission. To investigate soil microbial response and CO2 emission of biochar across different pH levels, comparative incubation studies on CO2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO2 emission.Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO2 emission. To investigate soil microbial response and CO2 emission of biochar across different pH levels, comparative incubation studies on CO2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO2 emission.
•CO2 emission from biochar-amended soils with two different pH levels was studied.•Higher biochar degradation resulted in higher CO2 emission in acidic ferralsol.•Biochar increased the bioavailability of SOC and copiotrophic bacteria in ferralsol.•Adsorption of SOC on biochar resulted in decreased CO2 emission in phaeozems. [Display omitted] Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO2 emission. To investigate soil microbial response and CO2 emission of biochar across different pH levels, comparative incubation studies on CO2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO2 emission.
Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO₂ emission. To investigate soil microbial response and CO₂ emission of biochar across different pH levels, comparative incubation studies on CO₂ emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO₂ emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO₂ emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO₂ emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO₂ emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO₂ emission.
Author Sheng, Yaqi
Zhu, Lizhong
Author_xml – sequence: 1
  givenname: Yaqi
  surname: Sheng
  fullname: Sheng, Yaqi
– sequence: 2
  givenname: Lizhong
  surname: Zhu
  fullname: Zhu, Lizhong
  email: zlz@zju.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29890604$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u3CAUhVGUKpmkfYWWZTd2wWB-Fl2kUZNUitRNuy26Bqwyss0UmEh5--KZpItuhg0CfedyOOcKnS9x8Qh9oKSlhIpP2zbbUGLxy1PbESpbSlvG5BnaUCV1Q0knztGGEK4aLbS8RFc5b0ldUtELdNlppYkgfIN-fQnR_oaEYSo-ZTwHm-IQYMI2zvN-CeUZw-KwhTTEBWf_Z-9zSVBCPe1WA2WFoapyxi6Mo0_1DucYJrx7eIvejDBl_-5lv0Y_777-uH1oHr_ff7u9eWwsl6Q0fAQ2VG_cScnHwQGAhUFQz5zoR3BO9ZpyCdopyxjriVKMUQHKCtqPvWXX6ONx7i7Fg0Mzh2z9NMHi4z6bjirdc8E6eRolPde0Z5xV9P0Luh9m78wuhRnSs3mNrwKfj8Dh-8mPprZyyKZGFCZDiVnrMlvzry6z1mUoNbWuqpf_6V-fOK28OSp9TfUp-LRyfrHeheRtMS6GkzP-Aip-too
CitedBy_id crossref_primary_10_1016_j_scitotenv_2021_150465
crossref_primary_10_1007_s11356_023_31556_8
crossref_primary_10_1016_j_cej_2023_145942
crossref_primary_10_1016_j_biombioe_2025_107823
crossref_primary_10_1111_sum_13075
crossref_primary_10_1002_ldr_4148
crossref_primary_10_1016_j_scitotenv_2020_141593
crossref_primary_10_3390_agronomy11071286
crossref_primary_10_3390_agronomy14102263
crossref_primary_10_1016_j_jenvman_2024_122233
crossref_primary_10_1016_j_indcrop_2024_118348
crossref_primary_10_1016_j_chemosphere_2021_133000
crossref_primary_10_1080_09506608_2021_1922047
crossref_primary_10_1016_j_scienta_2022_111244
crossref_primary_10_1680_jenes_24_00107
crossref_primary_10_32604_phyton_2022_021644
crossref_primary_10_1021_acs_est_3c04398
crossref_primary_10_1111_sum_12894
crossref_primary_10_1007_s42729_023_01288_2
crossref_primary_10_1016_j_soilbio_2021_108420
crossref_primary_10_1007_s13399_024_05789_7
crossref_primary_10_1016_j_fcr_2021_108306
crossref_primary_10_1016_j_scitotenv_2022_159459
crossref_primary_10_3390_agriculture12101579
crossref_primary_10_1007_s42773_024_00413_3
crossref_primary_10_1016_j_chemosphere_2021_133476
crossref_primary_10_2136_sssaj2018_08_0297
crossref_primary_10_1016_j_chemosphere_2022_135153
crossref_primary_10_1088_1402_4896_ac0f3b
crossref_primary_10_3389_fmicb_2023_1250453
crossref_primary_10_1016_j_chemosphere_2020_126881
crossref_primary_10_1007_s42832_022_0158_y
crossref_primary_10_1016_j_apsoil_2021_103912
crossref_primary_10_1016_j_agwat_2024_108788
crossref_primary_10_3390_land12081580
crossref_primary_10_17474_artvinofd_1256742
crossref_primary_10_1016_j_jenvman_2025_125005
crossref_primary_10_1038_s41598_020_65796_2
crossref_primary_10_3390_agriculture12101548
crossref_primary_10_1007_s11368_024_03756_3
crossref_primary_10_1016_j_wasman_2022_07_024
crossref_primary_10_1080_00103624_2024_2325482
crossref_primary_10_1016_j_jclepro_2019_04_282
crossref_primary_10_3389_fmicb_2023_1174921
crossref_primary_10_3390_plants13131736
crossref_primary_10_3390_horticulturae7080221
crossref_primary_10_3390_microorganisms10112137
crossref_primary_10_1080_00103624_2021_1993884
crossref_primary_10_1016_j_psep_2018_10_030
crossref_primary_10_3390_su141610411
crossref_primary_10_1111_gcbb_12915
crossref_primary_10_3390_agronomy13071811
crossref_primary_10_1016_j_wasman_2019_01_042
crossref_primary_10_1016_j_agee_2024_108989
crossref_primary_10_1016_j_envres_2022_113832
crossref_primary_10_3390_su15129200
crossref_primary_10_1016_j_scitotenv_2023_166171
crossref_primary_10_1016_j_chemosphere_2020_128765
crossref_primary_10_1007_s11356_018_1682_2
crossref_primary_10_1016_j_jenvman_2023_118721
crossref_primary_10_1016_j_rser_2021_111379
crossref_primary_10_1016_j_seh_2024_100095
crossref_primary_10_1016_j_aoas_2023_05_002
crossref_primary_10_1016_j_ecoenv_2022_113165
crossref_primary_10_1038_s41598_020_73184_z
crossref_primary_10_1038_s41598_024_54307_2
crossref_primary_10_1016_j_agwat_2023_108565
crossref_primary_10_3390_f15040622
crossref_primary_10_3390_toxics12090661
crossref_primary_10_1007_s11356_021_15001_2
crossref_primary_10_1016_j_watres_2024_121167
crossref_primary_10_1007_s10064_025_04153_x
crossref_primary_10_1007_s42773_024_00343_0
crossref_primary_10_3390_app11198914
crossref_primary_10_3390_su14095666
crossref_primary_10_1016_j_scitotenv_2019_02_125
crossref_primary_10_1007_s11356_023_27182_z
crossref_primary_10_1007_s42773_021_00113_2
crossref_primary_10_1007_s13399_020_00604_5
crossref_primary_10_1139_cjm_2022_0031
crossref_primary_10_1038_s41598_020_76213_z
crossref_primary_10_3390_su11071831
crossref_primary_10_1016_j_apsoil_2024_105385
crossref_primary_10_1007_s00374_020_01502_8
crossref_primary_10_3390_ijerph19042126
crossref_primary_10_1016_j_jenvman_2021_113250
crossref_primary_10_1007_s11356_021_15499_6
crossref_primary_10_1016_j_soilbio_2024_109689
crossref_primary_10_1016_j_jenvman_2021_112830
crossref_primary_10_5194_gmd_17_4871_2024
crossref_primary_10_1007_s42729_020_00340_9
crossref_primary_10_1016_j_heliyon_2023_e22075
crossref_primary_10_1002_hyp_14765
crossref_primary_10_1007_s10311_022_01519_5
crossref_primary_10_1016_j_fuel_2023_127968
crossref_primary_10_1016_j_cej_2020_125077
crossref_primary_10_1007_s42773_023_00251_9
crossref_primary_10_1002_ece3_7172
crossref_primary_10_1007_s11356_021_13801_0
crossref_primary_10_1016_j_eti_2021_101767
crossref_primary_10_1007_s11368_019_02400_9
crossref_primary_10_3390_su15076100
crossref_primary_10_1002_agg2_20082
crossref_primary_10_1021_acsomega_3c07921
crossref_primary_10_1016_j_envres_2024_119012
crossref_primary_10_1016_j_psep_2025_106931
crossref_primary_10_1016_j_scitotenv_2020_138955
crossref_primary_10_3390_agronomy14102333
crossref_primary_10_1016_j_scitotenv_2024_172439
crossref_primary_10_1007_s11027_024_10167_9
crossref_primary_10_1016_S1002_0160_21_60064_4
crossref_primary_10_3390_agronomy11122442
crossref_primary_10_1016_j_jenvman_2024_121653
crossref_primary_10_1016_j_biortech_2021_125451
crossref_primary_10_1016_j_soilbio_2022_108778
crossref_primary_10_1016_j_jenvman_2022_115770
crossref_primary_10_1016_j_rhisph_2020_100261
crossref_primary_10_3390_agronomy13071745
crossref_primary_10_1016_j_jhazmat_2024_135235
crossref_primary_10_1088_1748_9326_acfa12
crossref_primary_10_1007_s42773_023_00219_9
crossref_primary_10_3390_agronomy12051003
crossref_primary_10_1016_j_scitotenv_2020_137133
crossref_primary_10_1007_s42773_019_00025_2
crossref_primary_10_1016_j_scitotenv_2022_156333
crossref_primary_10_1007_s11104_021_04845_9
crossref_primary_10_1016_j_rhisph_2024_100954
crossref_primary_10_2139_ssrn_4076642
crossref_primary_10_3390_agronomy14030615
crossref_primary_10_1016_j_jhazmat_2019_122010
crossref_primary_10_1016_j_jhazmat_2021_125378
crossref_primary_10_1016_j_apsoil_2019_04_026
crossref_primary_10_1016_j_scitotenv_2021_148793
crossref_primary_10_1016_j_jplph_2023_154033
crossref_primary_10_1016_j_scitotenv_2023_167290
crossref_primary_10_2166_wcc_2023_270
crossref_primary_10_1007_s42773_020_00063_1
crossref_primary_10_1002_saj2_20793
crossref_primary_10_20961_stjssa_v19i2_59758
crossref_primary_10_1016_j_jenvman_2023_118191
crossref_primary_10_1016_j_agee_2020_107169
crossref_primary_10_1007_s42773_024_00319_0
crossref_primary_10_29278_azd_1362301
crossref_primary_10_3390_agronomy12112859
crossref_primary_10_1007_s00374_020_01479_4
crossref_primary_10_1007_s42773_025_00450_6
crossref_primary_10_1111_sum_12936
crossref_primary_10_1007_s11356_020_07888_0
crossref_primary_10_1016_j_scitotenv_2022_153956
crossref_primary_10_1016_j_envpol_2020_114869
crossref_primary_10_1016_j_jhazmat_2019_121749
crossref_primary_10_1016_j_scitotenv_2023_169585
crossref_primary_10_3390_agronomy11071428
crossref_primary_10_1016_j_jece_2024_114372
crossref_primary_10_1016_j_csbj_2024_03_012
crossref_primary_10_1016_j_apsoil_2022_104697
crossref_primary_10_1016_j_fuel_2021_120243
crossref_primary_10_1016_j_jssas_2022_06_004
crossref_primary_10_1016_j_apsoil_2022_104457
crossref_primary_10_1016_j_biortech_2022_128224
crossref_primary_10_1007_s11368_023_03676_8
crossref_primary_10_1016_j_scitotenv_2021_146824
crossref_primary_10_1016_j_pedsph_2024_06_007
crossref_primary_10_1016_j_jenvman_2018_09_006
crossref_primary_10_1111_1751_7915_13457
crossref_primary_10_1016_j_chemosphere_2023_139409
crossref_primary_10_1007_s42398_021_00190_w
crossref_primary_10_1007_s42773_024_00346_x
crossref_primary_10_3390_agronomy14061215
crossref_primary_10_1016_j_scitotenv_2022_158776
crossref_primary_10_1016_j_scitotenv_2023_166079
crossref_primary_10_5696_2156_9614_9_23_190907
crossref_primary_10_1016_j_jece_2021_105027
crossref_primary_10_15835_nbha50212688
crossref_primary_10_3390_en14051407
crossref_primary_10_1088_1755_1315_1182_1_012034
crossref_primary_10_1007_s42773_025_00440_8
crossref_primary_10_1016_j_envres_2024_120686
crossref_primary_10_1016_j_jia_2024_03_073
crossref_primary_10_3390_app15052796
crossref_primary_10_1016_j_apsoil_2023_105217
crossref_primary_10_1016_j_scitotenv_2020_143817
crossref_primary_10_1007_s10653_024_01956_x
crossref_primary_10_1016_j_envpol_2024_124445
crossref_primary_10_1016_j_still_2021_105125
crossref_primary_10_1016_j_still_2021_105126
crossref_primary_10_1007_s42773_022_00195_6
crossref_primary_10_1111_gcbb_12644
crossref_primary_10_1016_j_scitotenv_2022_157215
crossref_primary_10_1007_s10653_019_00412_5
crossref_primary_10_17221_348_2022_PSE
crossref_primary_10_1007_s11783_021_1473_8
crossref_primary_10_3390_su142315648
crossref_primary_10_3390_w13121615
crossref_primary_10_1080_03067319_2019_1597863
crossref_primary_10_1016_j_apsoil_2021_104229
crossref_primary_10_1016_j_chemosphere_2022_136315
crossref_primary_10_3390_f14061114
crossref_primary_10_1007_s11356_023_30099_2
crossref_primary_10_1016_j_scitotenv_2022_161203
crossref_primary_10_1016_j_soilbio_2022_108851
crossref_primary_10_1016_j_foreco_2019_117717
crossref_primary_10_1016_j_scitotenv_2022_156532
crossref_primary_10_1016_j_scitotenv_2018_11_312
crossref_primary_10_3390_w17020162
crossref_primary_10_1007_s11368_022_03359_w
crossref_primary_10_1016_j_scitotenv_2021_149167
crossref_primary_10_1016_j_apsoil_2023_104986
crossref_primary_10_1016_j_ecoenv_2023_115216
crossref_primary_10_1016_j_scitotenv_2021_148757
crossref_primary_10_1007_s11368_020_02705_0
crossref_primary_10_3389_fmicb_2021_725756
crossref_primary_10_1016_j_agee_2022_108177
crossref_primary_10_1016_j_apsoil_2022_104649
crossref_primary_10_1016_j_chemosphere_2018_06_052
crossref_primary_10_1016_j_jenvman_2022_115218
crossref_primary_10_3390_su12052124
crossref_primary_10_1016_j_geoderma_2021_115217
crossref_primary_10_1016_j_scitotenv_2020_141265
crossref_primary_10_1002_ldr_5029
crossref_primary_10_1088_1755_1315_693_1_012082
crossref_primary_10_2139_ssrn_4075645
crossref_primary_10_1007_s42773_024_00411_5
crossref_primary_10_1016_j_cattod_2022_06_033
crossref_primary_10_1007_s42729_020_00311_0
crossref_primary_10_1016_j_jfca_2024_106715
crossref_primary_10_1007_s11368_024_03803_z
crossref_primary_10_1016_j_scitotenv_2024_174338
crossref_primary_10_1016_j_scitotenv_2019_01_298
crossref_primary_10_1016_j_scitotenv_2020_138562
crossref_primary_10_1016_j_scitotenv_2020_141057
crossref_primary_10_1016_j_scitotenv_2022_161102
crossref_primary_10_2478_ata_2019_0013
crossref_primary_10_1016_j_jclepro_2023_139989
crossref_primary_10_1016_j_chemosphere_2024_142101
crossref_primary_10_2139_ssrn_4151657
crossref_primary_10_1111_gcbb_13137
crossref_primary_10_3390_su12051922
crossref_primary_10_1039_D2EN00762B
crossref_primary_10_1111_gcbb_13019
crossref_primary_10_3390_agronomy13010261
crossref_primary_10_1088_1755_1315_1263_1_012047
crossref_primary_10_1016_j_ecoenv_2022_114407
crossref_primary_10_1016_j_scitotenv_2023_164922
crossref_primary_10_3390_f14061268
crossref_primary_10_1007_s42773_024_00312_7
crossref_primary_10_1002_agg2_20009
crossref_primary_10_1016_j_apsoil_2020_103541
crossref_primary_10_1016_j_ecoleng_2020_106084
crossref_primary_10_1016_j_jenvman_2024_123097
crossref_primary_10_1007_s13399_021_01390_4
Cites_doi 10.1128/mBio.01157-14
10.1111/1574-6941.12070
10.1111/j.1365-2389.2006.00809.x
10.1016/j.soilbio.2011.07.020
10.1007/s10533-008-9248-x
10.1021/es4034777
10.1016/j.soilbio.2015.07.014
10.1128/AEM.00148-11
10.1016/j.soilbio.2008.10.016
10.1016/j.rser.2015.12.185
10.1111/nph.14253
10.1021/es00050a007
10.1029/2004GB002435
10.1128/AEM.02775-08
10.1073/pnas.0507535103
10.1111/gcbb.12402
10.1021/es202186j
10.1007/s00248-009-9515-y
10.1111/j.1365-2486.2009.02080.x
10.1016/j.soilbio.2009.11.026
10.1016/j.soilbio.2011.02.005
10.1016/j.apsoil.2013.05.003
10.1071/EN16001
10.1021/jf404624h
10.1021/es503331y
10.1890/05-1839
10.1016/j.soilbio.2011.04.022
10.1021/es5021058
10.1016/S0065-2164(05)58004-3
10.1007/s11104-012-1169-8
10.1016/j.scitotenv.2017.01.115
10.1016/j.soilbio.2009.03.017
10.1007/s11368-014-0996-z
10.2134/jeq2016.09.0369
10.1021/es803092k
10.1021/es302545b
10.1016/j.scitotenv.2016.07.135
10.1111/gcbb.12371
10.1016/j.scitotenv.2013.03.090
10.1071/SR10009
10.1016/j.soilbio.2010.11.005
10.1007/s00253-005-0030-x
10.1007/s11274-013-1528-5
10.1016/S0958-1669(96)80034-6
10.1111/gcbb.12005
10.1111/gcbb.12194
10.1016/j.chemosphere.2011.12.007
10.1021/es071263x
10.1264/jsme2.ME14052
10.1111/gcbb.12265
10.1016/j.scitotenv.2016.07.140
10.1038/srep03687
ContentType Journal Article
Copyright 2017
Copyright © 2017. Published by Elsevier B.V.
Copyright_xml – notice: 2017
– notice: Copyright © 2017. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2017.11.337
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 1399
ExternalDocumentID 29890604
10_1016_j_scitotenv_2017_11_337
S0048969717333958
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c470t-4fa3b0784d774fbdaaacab61e3d65fadd859147a9d8c33350883316a8c615f5c3
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Jul 11 12:08:19 EDT 2025
Fri Jul 11 09:51:09 EDT 2025
Wed Feb 19 02:41:41 EST 2025
Tue Jul 01 01:21:26 EDT 2025
Thu Apr 24 23:12:44 EDT 2025
Fri Feb 23 02:46:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords pH
Microorganisms
Biochar
SOC
Soil carbon sequestration
Language English
License Copyright © 2017. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-4fa3b0784d774fbdaaacab61e3d65fadd859147a9d8c33350883316a8c615f5c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 29890604
PQID 2054915343
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2189546327
proquest_miscellaneous_2054915343
pubmed_primary_29890604
crossref_citationtrail_10_1016_j_scitotenv_2017_11_337
crossref_primary_10_1016_j_scitotenv_2017_11_337
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2017_11_337
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
2018-05-00
2018-May-01
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References White, Sutton, Ringelberg (bb0245) 1996; 7
Rousk, Brookes, Baath (bb0205) 2010; 42
Murray, Keith, Singh (bb0170) 2015; 89
Fierer, Jackson (bb0045) 2006; 103
Luo, Durenkamp, De Nobili, Lin, Brookes (bb0145) 2011; 43
Hanada, Kurogi, Giang, Yamada, Kamimoto, Kiso (bb0060) 2014; 29
Kuzyakov, Subbotina, Chen, Bogomolova, Xu (bb0110) 2009; 41
Kolton, Harel, Pasternak, Graber, Elad, Cytryn (bb0100) 2011; 77
Joseph, Camps-Arbestain, Lin, Munroe, Chia, Hook (bb0075) 2010; 48
Verastegui, Cheng, Engel, Kolczynski, Mortimer, Lavigne (bb0240) 2014; 5
Lin, Munroe, Joseph, Kimber, Van Zwieten (bb0135) 2012; 357
Zheng, Chen, Pan, Liu, Zhang, Li (bb0260) 2016; 571
Rabus (bb0195) 2005; 68
Spokas (bb0230) 2013; 5
Chen, Liu, Zheng, Zhang, HF, Chi (bb0010) 2013; 71
O'Neill, Grossman, Tsai, Gomes, Lehmann, Peterson (bb0180) 2009; 58
Jenkins, Viger, Arnold, Harris, Ventura, Miglietta (bb0070) 2017; 9
Fierer, Bradford, Jackson (bb0050) 2007; 88
Khodadad, Zimmerman, Green, Uthandi, Foster (bb0090) 2011; 43
Whitman, Zhu, Lehmann (bb0250) 2014; 48
Ding, Pronk, Babin, Heuer, Heister, Kogel-Knabner (bb0020) 2013; 86
Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (bb0125) 2011; 43
Smith, Sleighter, Hatcher, Lee (bb0225) 2013; 47
Kolton, Graber, Tsehansky, Elad, Cytryn (bb0105) 2017; 213
Mitchell, Simpson, Soong, Simpson (bb0160) 2016; 13
Maestrini, Nannipieri, Abiven (bb0155) 2015; 7
Liu, Zhang, Zong, Hu, Wu, Zhou (bb0140) 2016; 8
Farrell, Kuhn, Macdonald, Maddern, Murphy, Hall (bb0025) 2013; 465
Qian, Chen (bb0190) 2014; 62
Nguyen, Lehmann, Kinyangi, Smernik, Riha, Engelhard (bb0175) 2009; 92
von Lutzow, Kogel-Knabner, Ekschmitt, Matzner, Guggenberger, Marschner (bb0150) 2006; 57
Sun, Meng, Liang, Yang, Huang, Chen (bb0235) 2015; 15
Xu, Wang, Li, Yao, Su, Zhu (bb0255) 2014; 48
Lin, Munroe, Joseph, Henderson, Ziolkowski (bb0130) 2012; 87
Lehmann, Joseph (bb0115) 2009
Kan, Strezov, Evans (bb0080) 2016; 57
Pietri, Brookes (bb0185) 2009; 41
Miura, Watanabe, Okabe (bb0165) 2007; 41
Feng, Simpson, Schlesinger, Simpson (bb0035) 2010; 16
Sheng, Zhan, Zhu (bb0210) 2016; 572
Singh, Cowie (bb0215) 2014; 4
Kirby (bb0095) 2005; 58C
Rousk, Brookes, Baath (bb0200) 2009; 75
Gu, Schmitt, Chen, Liang, Mccarthy (bb0055) 1994; 28
Hu, Cao, Zhang (bb0065) 2014; 30
Fidel, Laird, Parkin (bb0040) 2017; 46
Cao, Ma, Gao, Harris (bb0005) 2009; 43
Feng, Zhu (bb0030) 2017; 584
Singh, Cowie, Smernik (bb0220) 2012; 46
Lehmann, Liang, Solomon, Lerotic, Luizao, Kinyangi (bb0120) 2005; 19
Keith, Singh, Singh (bb0085) 2011; 45
Cheng, Hill, Bastami, Jones (bb0015) 2017; 9
Zimmerman, Gao, Ahn (bb0265) 2011; 43
Mitchell (10.1016/j.scitotenv.2017.11.337_bb0160) 2016; 13
Rousk (10.1016/j.scitotenv.2017.11.337_bb0205) 2010; 42
Lehmann (10.1016/j.scitotenv.2017.11.337_bb0115) 2009
Qian (10.1016/j.scitotenv.2017.11.337_bb0190) 2014; 62
Kolton (10.1016/j.scitotenv.2017.11.337_bb0100) 2011; 77
Spokas (10.1016/j.scitotenv.2017.11.337_bb0230) 2013; 5
Murray (10.1016/j.scitotenv.2017.11.337_bb0170) 2015; 89
Luo (10.1016/j.scitotenv.2017.11.337_bb0145) 2011; 43
Sun (10.1016/j.scitotenv.2017.11.337_bb0235) 2015; 15
Lin (10.1016/j.scitotenv.2017.11.337_bb0135) 2012; 357
Feng (10.1016/j.scitotenv.2017.11.337_bb0035) 2010; 16
Fidel (10.1016/j.scitotenv.2017.11.337_bb0040) 2017; 46
Jenkins (10.1016/j.scitotenv.2017.11.337_bb0070) 2017; 9
Verastegui (10.1016/j.scitotenv.2017.11.337_bb0240) 2014; 5
Singh (10.1016/j.scitotenv.2017.11.337_bb0220) 2012; 46
Kirby (10.1016/j.scitotenv.2017.11.337_bb0095) 2005; 58C
Kolton (10.1016/j.scitotenv.2017.11.337_bb0105) 2017; 213
Lehmann (10.1016/j.scitotenv.2017.11.337_bb0125) 2011; 43
Cao (10.1016/j.scitotenv.2017.11.337_bb0005) 2009; 43
Cheng (10.1016/j.scitotenv.2017.11.337_bb0015) 2017; 9
Farrell (10.1016/j.scitotenv.2017.11.337_bb0025) 2013; 465
Fierer (10.1016/j.scitotenv.2017.11.337_bb0050) 2007; 88
Kuzyakov (10.1016/j.scitotenv.2017.11.337_bb0110) 2009; 41
White (10.1016/j.scitotenv.2017.11.337_bb0245) 1996; 7
Feng (10.1016/j.scitotenv.2017.11.337_bb0030) 2017; 584
Khodadad (10.1016/j.scitotenv.2017.11.337_bb0090) 2011; 43
Lin (10.1016/j.scitotenv.2017.11.337_bb0130) 2012; 87
Singh (10.1016/j.scitotenv.2017.11.337_bb0215) 2014; 4
Gu (10.1016/j.scitotenv.2017.11.337_bb0055) 1994; 28
Pietri (10.1016/j.scitotenv.2017.11.337_bb0185) 2009; 41
Smith (10.1016/j.scitotenv.2017.11.337_bb0225) 2013; 47
Rabus (10.1016/j.scitotenv.2017.11.337_bb0195) 2005; 68
Liu (10.1016/j.scitotenv.2017.11.337_bb0140) 2016; 8
Miura (10.1016/j.scitotenv.2017.11.337_bb0165) 2007; 41
Ding (10.1016/j.scitotenv.2017.11.337_bb0020) 2013; 86
Nguyen (10.1016/j.scitotenv.2017.11.337_bb0175) 2009; 92
Zheng (10.1016/j.scitotenv.2017.11.337_bb0260) 2016; 571
Lehmann (10.1016/j.scitotenv.2017.11.337_bb0120) 2005; 19
Sheng (10.1016/j.scitotenv.2017.11.337_bb0210) 2016; 572
Joseph (10.1016/j.scitotenv.2017.11.337_bb0075) 2010; 48
Hu (10.1016/j.scitotenv.2017.11.337_bb0065) 2014; 30
von Lutzow (10.1016/j.scitotenv.2017.11.337_bb0150) 2006; 57
Maestrini (10.1016/j.scitotenv.2017.11.337_bb0155) 2015; 7
Whitman (10.1016/j.scitotenv.2017.11.337_bb0250) 2014; 48
Zimmerman (10.1016/j.scitotenv.2017.11.337_bb0265) 2011; 43
Rousk (10.1016/j.scitotenv.2017.11.337_bb0200) 2009; 75
O'Neill (10.1016/j.scitotenv.2017.11.337_bb0180) 2009; 58
Chen (10.1016/j.scitotenv.2017.11.337_bb0010) 2013; 71
Fierer (10.1016/j.scitotenv.2017.11.337_bb0045) 2006; 103
Hanada (10.1016/j.scitotenv.2017.11.337_bb0060) 2014; 29
Xu (10.1016/j.scitotenv.2017.11.337_bb0255) 2014; 48
Kan (10.1016/j.scitotenv.2017.11.337_bb0080) 2016; 57
Keith (10.1016/j.scitotenv.2017.11.337_bb0085) 2011; 45
References_xml – volume: 30
  start-page: 1085
  year: 2014
  end-page: 1092
  ident: bb0065
  article-title: Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil
  publication-title: World J. Microbiol. Biotechnol.
– volume: 46
  start-page: 11770
  year: 2012
  end-page: 11778
  ident: bb0220
  article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature
  publication-title: Environ. Sci. Technol.
– volume: 42
  start-page: 516
  year: 2010
  end-page: 520
  ident: bb0205
  article-title: The microbial PLFA composition as affected by pH in an arable soil
  publication-title: Soil Biol. Biochem.
– volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  ident: bb0125
  article-title: Biochar effects on soil biota - a review
  publication-title: Soil Biol. Biochem.
– volume: 29
  start-page: 353
  year: 2014
  end-page: 362
  ident: bb0060
  article-title: Bacteria of the candidate phylum TM7 are prevalent in acidophilic nitrifying sequencing-batch reactors
  publication-title: Microbes Environ.
– volume: 7
  start-page: 577
  year: 2015
  end-page: 590
  ident: bb0155
  article-title: A meta-analysis on pyrogenic organic matter induced priming effect
  publication-title: Glob. Change Biol. Bioenergy.
– volume: 57
  start-page: 1126
  year: 2016
  end-page: 1140
  ident: bb0080
  article-title: Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters
  publication-title: Renew. Sust. Energ. Rev.
– volume: 48
  start-page: 9391
  year: 2014
  end-page: 9399
  ident: bb0255
  article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 1169
  year: 2011
  end-page: 1179
  ident: bb0265
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils
  publication-title: Soil Biol. Biochem.
– volume: 16
  start-page: 2104
  year: 2010
  end-page: 2116
  ident: bb0035
  article-title: Altered microbial community structure and organic matter composition under elevated CO2 and N fertilization in the duke forest
  publication-title: Glob. Chang. Biol.
– volume: 9
  start-page: 591
  year: 2017
  end-page: 612
  ident: bb0070
  article-title: Biochar alters the soil microbiome and soil function: results of next-generation amplicon sequencing across Europe
  publication-title: Glob. Change Biol. Bioenergy.
– volume: 75
  start-page: 1589
  year: 2009
  end-page: 1596
  ident: bb0200
  article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization
  publication-title: Appl. Environ. Microbiol.
– volume: 57
  start-page: 426
  year: 2006
  end-page: 445
  ident: bb0150
  article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review
  publication-title: Eur. J. Soil Sci.
– volume: 213
  start-page: 1393
  year: 2017
  end-page: 1404
  ident: bb0105
  article-title: Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere
  publication-title: New Phytol.
– volume: 571
  start-page: 206
  year: 2016
  end-page: 217
  ident: bb0260
  article-title: Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China
  publication-title: Sci. Total Environ.
– volume: 15
  start-page: 271
  year: 2015
  end-page: 281
  ident: bb0235
  article-title: Effect of volatile organic compounds absorbed to fresh biochar on survival of
  publication-title: J. Soils Sediments
– volume: 465
  start-page: 288
  year: 2013
  end-page: 297
  ident: bb0025
  article-title: Microbial utilisation of biochar-derived carbon
  publication-title: Sci. Total Environ.
– volume: 77
  start-page: 4924
  year: 2011
  end-page: 4930
  ident: bb0100
  article-title: Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants
  publication-title: Appl. Environ. Microbiol.
– volume: 58C
  start-page: 125
  year: 2005
  end-page: 168
  ident: bb0095
  article-title: Actinomycetes and lignin degradation
  publication-title: Adv. Appl. Microbiol.
– year: 2009
  ident: bb0115
  article-title: Biochar for Environmental Management: Science and Technology
– volume: 92
  start-page: 163
  year: 2009
  end-page: 176
  ident: bb0175
  article-title: Long-term black carbon dynamics in cultivated soil
  publication-title: Biogeochemistry
– volume: 5
  year: 2014
  ident: bb0240
  article-title: Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities
  publication-title: MBio
– volume: 88
  start-page: 1354
  year: 2007
  end-page: 1364
  ident: bb0050
  article-title: Toward an ecological classification of soil bacteria
  publication-title: Ecology
– volume: 13
  start-page: 854
  year: 2016
  end-page: 866
  ident: bb0160
  article-title: Biochar amendment altered the molecular-level composition of native soil organic matter in a temperate forest soil
  publication-title: Environ. Chem.
– volume: 86
  start-page: 15
  year: 2013
  end-page: 25
  ident: bb0020
  article-title: Mineral composition and charcoal determine the bacterial community structure in artificial soils
  publication-title: FEMS Microbiol. Ecol.
– volume: 5
  start-page: 165
  year: 2013
  end-page: 176
  ident: bb0230
  article-title: Impact of biochar field aging on laboratory greenhouse gas production potentials
  publication-title: Glob. Change Biol. Bioenergy.
– volume: 71
  start-page: 33
  year: 2013
  end-page: 44
  ident: bb0010
  article-title: Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China
  publication-title: Appl. Soil Ecol.
– volume: 9
  start-page: 1110
  year: 2017
  end-page: 1121
  ident: bb0015
  article-title: Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil
  publication-title: Glob. Change Biol. Bioenergy.
– volume: 62
  start-page: 373
  year: 2014
  end-page: 380
  ident: bb0190
  article-title: Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process
  publication-title: J. Agric. Food Chem.
– volume: 47
  start-page: 13294
  year: 2013
  end-page: 13302
  ident: bb0225
  article-title: Molecular characterization of inhibiting biochar water-extractable substances using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry
  publication-title: Environ. Sci. Technol.
– volume: 68
  start-page: 580
  year: 2005
  end-page: 587
  ident: bb0195
  article-title: Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 572
  start-page: 129
  year: 2016
  end-page: 137
  ident: bb0210
  article-title: Reduced carbon sequestration potential of biochar in acidic soil
  publication-title: Sci. Total Environ.
– volume: 48
  start-page: 13727
  year: 2014
  end-page: 13734
  ident: bb0250
  article-title: Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon
  publication-title: Environ. Sci. Technol.
– volume: 19
  year: 2005
  ident: bb0120
  article-title: Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles
  publication-title: Glob. Biogeochem. Cycles
– volume: 103
  start-page: 626
  year: 2006
  end-page: 631
  ident: bb0045
  article-title: The diversity and biogeography of soil bacterial communities
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 45
  start-page: 9611
  year: 2011
  end-page: 9618
  ident: bb0085
  article-title: Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil
  publication-title: Environ. Sci. Technol.
– volume: 357
  start-page: 369
  year: 2012
  end-page: 380
  ident: bb0135
  article-title: Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy
  publication-title: Plant Soil
– volume: 58
  start-page: 23
  year: 2009
  end-page: 35
  ident: bb0180
  article-title: Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification
  publication-title: Microb. Ecol.
– volume: 41
  start-page: 7787
  year: 2007
  end-page: 7794
  ident: bb0165
  article-title: Significance of
  publication-title: Environ. Sci. Technol.
– volume: 48
  start-page: 501
  year: 2010
  end-page: 515
  ident: bb0075
  article-title: An investigation into the reactions of biochar in soil
  publication-title: Aust. J. Soil Res.
– volume: 87
  start-page: 151
  year: 2012
  end-page: 157
  ident: bb0130
  article-title: Water extractable organic carbon in untreated and chemical treated biochars
  publication-title: Chemosphere
– volume: 41
  start-page: 210
  year: 2009
  end-page: 219
  ident: bb0110
  article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling
  publication-title: Soil Biol. Biochem.
– volume: 46
  start-page: 505
  year: 2017
  end-page: 513
  ident: bb0040
  article-title: Impact of biochar organic and inorganic carbon on soil CO2 and N2O emissions
  publication-title: J. Environ. Qual.
– volume: 43
  start-page: 2304
  year: 2011
  end-page: 2314
  ident: bb0145
  article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH
  publication-title: Soil Biol. Biochem.
– volume: 28
  start-page: 38
  year: 1994
  end-page: 46
  ident: bb0055
  article-title: Adsorption and desorption of natural organic-matter on iron-oxide - mechanisms and models
  publication-title: Environ. Sci. Technol.
– volume: 89
  start-page: 217
  year: 2015
  end-page: 225
  ident: bb0170
  article-title: The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy
  publication-title: Soil Biol. Biochem.
– volume: 7
  start-page: 301
  year: 1996
  end-page: 306
  ident: bb0245
  article-title: The genus
  publication-title: Curr. Opin. Biotechnol.
– volume: 584
  start-page: 776
  year: 2017
  end-page: 782
  ident: bb0030
  article-title: Impact of biochar on soil N2O emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil
  publication-title: Sci. Total Environ.
– volume: 43
  start-page: 3285
  year: 2009
  end-page: 3291
  ident: bb0005
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
– volume: 43
  start-page: 385
  year: 2011
  end-page: 392
  ident: bb0090
  article-title: Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments
  publication-title: Soil Biol. Biochem.
– volume: 8
  start-page: 392
  year: 2016
  end-page: 406
  ident: bb0140
  article-title: Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis
  publication-title: Glob. Change Biol. Bioenergy.
– volume: 4
  year: 2014
  ident: bb0215
  article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil
  publication-title: Sci. Rep.
– volume: 41
  start-page: 1396
  year: 2009
  end-page: 1405
  ident: bb0185
  article-title: Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil
  publication-title: Soil Biol. Biochem.
– volume: 5
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.337_bb0240
  article-title: Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities
  publication-title: MBio
  doi: 10.1128/mBio.01157-14
– volume: 86
  start-page: 15
  year: 2013
  ident: 10.1016/j.scitotenv.2017.11.337_bb0020
  article-title: Mineral composition and charcoal determine the bacterial community structure in artificial soils
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12070
– volume: 57
  start-page: 426
  year: 2006
  ident: 10.1016/j.scitotenv.2017.11.337_bb0150
  article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2006.00809.x
– volume: 43
  start-page: 2304
  year: 2011
  ident: 10.1016/j.scitotenv.2017.11.337_bb0145
  article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.07.020
– volume: 92
  start-page: 163
  year: 2009
  ident: 10.1016/j.scitotenv.2017.11.337_bb0175
  article-title: Long-term black carbon dynamics in cultivated soil
  publication-title: Biogeochemistry
  doi: 10.1007/s10533-008-9248-x
– volume: 47
  start-page: 13294
  year: 2013
  ident: 10.1016/j.scitotenv.2017.11.337_bb0225
  article-title: Molecular characterization of inhibiting biochar water-extractable substances using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4034777
– volume: 89
  start-page: 217
  year: 2015
  ident: 10.1016/j.scitotenv.2017.11.337_bb0170
  article-title: The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.07.014
– volume: 77
  start-page: 4924
  year: 2011
  ident: 10.1016/j.scitotenv.2017.11.337_bb0100
  article-title: Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00148-11
– volume: 41
  start-page: 210
  year: 2009
  ident: 10.1016/j.scitotenv.2017.11.337_bb0110
  article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2008.10.016
– volume: 57
  start-page: 1126
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.337_bb0080
  article-title: Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2015.12.185
– volume: 213
  start-page: 1393
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.337_bb0105
  article-title: Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere
  publication-title: New Phytol.
  doi: 10.1111/nph.14253
– volume: 28
  start-page: 38
  year: 1994
  ident: 10.1016/j.scitotenv.2017.11.337_bb0055
  article-title: Adsorption and desorption of natural organic-matter on iron-oxide - mechanisms and models
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00050a007
– volume: 19
  year: 2005
  ident: 10.1016/j.scitotenv.2017.11.337_bb0120
  article-title: Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2004GB002435
– volume: 75
  start-page: 1589
  year: 2009
  ident: 10.1016/j.scitotenv.2017.11.337_bb0200
  article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02775-08
– volume: 103
  start-page: 626
  year: 2006
  ident: 10.1016/j.scitotenv.2017.11.337_bb0045
  article-title: The diversity and biogeography of soil bacterial communities
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0507535103
– volume: 9
  start-page: 1110
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.337_bb0015
  article-title: Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil
  publication-title: Glob. Change Biol. Bioenergy.
  doi: 10.1111/gcbb.12402
– volume: 45
  start-page: 9611
  year: 2011
  ident: 10.1016/j.scitotenv.2017.11.337_bb0085
  article-title: Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202186j
– year: 2009
  ident: 10.1016/j.scitotenv.2017.11.337_bb0115
– volume: 58
  start-page: 23
  year: 2009
  ident: 10.1016/j.scitotenv.2017.11.337_bb0180
  article-title: Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-009-9515-y
– volume: 16
  start-page: 2104
  year: 2010
  ident: 10.1016/j.scitotenv.2017.11.337_bb0035
  article-title: Altered microbial community structure and organic matter composition under elevated CO2 and N fertilization in the duke forest
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2009.02080.x
– volume: 42
  start-page: 516
  year: 2010
  ident: 10.1016/j.scitotenv.2017.11.337_bb0205
  article-title: The microbial PLFA composition as affected by pH in an arable soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.11.026
– volume: 43
  start-page: 1169
  year: 2011
  ident: 10.1016/j.scitotenv.2017.11.337_bb0265
  article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.02.005
– volume: 71
  start-page: 33
  year: 2013
  ident: 10.1016/j.scitotenv.2017.11.337_bb0010
  article-title: Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2013.05.003
– volume: 13
  start-page: 854
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.337_bb0160
  article-title: Biochar amendment altered the molecular-level composition of native soil organic matter in a temperate forest soil
  publication-title: Environ. Chem.
  doi: 10.1071/EN16001
– volume: 62
  start-page: 373
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.337_bb0190
  article-title: Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf404624h
– volume: 48
  start-page: 13727
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.337_bb0250
  article-title: Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es503331y
– volume: 88
  start-page: 1354
  year: 2007
  ident: 10.1016/j.scitotenv.2017.11.337_bb0050
  article-title: Toward an ecological classification of soil bacteria
  publication-title: Ecology
  doi: 10.1890/05-1839
– volume: 43
  start-page: 1812
  year: 2011
  ident: 10.1016/j.scitotenv.2017.11.337_bb0125
  article-title: Biochar effects on soil biota - a review
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2011.04.022
– volume: 48
  start-page: 9391
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.337_bb0255
  article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5021058
– volume: 58C
  start-page: 125
  year: 2005
  ident: 10.1016/j.scitotenv.2017.11.337_bb0095
  article-title: Actinomycetes and lignin degradation
  publication-title: Adv. Appl. Microbiol.
  doi: 10.1016/S0065-2164(05)58004-3
– volume: 357
  start-page: 369
  year: 2012
  ident: 10.1016/j.scitotenv.2017.11.337_bb0135
  article-title: Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy
  publication-title: Plant Soil
  doi: 10.1007/s11104-012-1169-8
– volume: 584
  start-page: 776
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.337_bb0030
  article-title: Impact of biochar on soil N2O emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.115
– volume: 41
  start-page: 1396
  year: 2009
  ident: 10.1016/j.scitotenv.2017.11.337_bb0185
  article-title: Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.03.017
– volume: 15
  start-page: 271
  year: 2015
  ident: 10.1016/j.scitotenv.2017.11.337_bb0235
  article-title: Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-014-0996-z
– volume: 46
  start-page: 505
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.337_bb0040
  article-title: Impact of biochar organic and inorganic carbon on soil CO2 and N2O emissions
  publication-title: J. Environ. Qual.
  doi: 10.2134/jeq2016.09.0369
– volume: 43
  start-page: 3285
  year: 2009
  ident: 10.1016/j.scitotenv.2017.11.337_bb0005
  article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es803092k
– volume: 46
  start-page: 11770
  year: 2012
  ident: 10.1016/j.scitotenv.2017.11.337_bb0220
  article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302545b
– volume: 571
  start-page: 206
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.337_bb0260
  article-title: Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.07.135
– volume: 9
  start-page: 591
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.337_bb0070
  article-title: Biochar alters the soil microbiome and soil function: results of next-generation amplicon sequencing across Europe
  publication-title: Glob. Change Biol. Bioenergy.
  doi: 10.1111/gcbb.12371
– volume: 465
  start-page: 288
  year: 2013
  ident: 10.1016/j.scitotenv.2017.11.337_bb0025
  article-title: Microbial utilisation of biochar-derived carbon
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.03.090
– volume: 48
  start-page: 501
  year: 2010
  ident: 10.1016/j.scitotenv.2017.11.337_bb0075
  article-title: An investigation into the reactions of biochar in soil
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR10009
– volume: 43
  start-page: 385
  year: 2011
  ident: 10.1016/j.scitotenv.2017.11.337_bb0090
  article-title: Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.11.005
– volume: 68
  start-page: 580
  year: 2005
  ident: 10.1016/j.scitotenv.2017.11.337_bb0195
  article-title: Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-005-0030-x
– volume: 30
  start-page: 1085
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.337_bb0065
  article-title: Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-013-1528-5
– volume: 7
  start-page: 301
  year: 1996
  ident: 10.1016/j.scitotenv.2017.11.337_bb0245
  article-title: The genus Sphingomonas: physiology and ecology
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/S0958-1669(96)80034-6
– volume: 5
  start-page: 165
  year: 2013
  ident: 10.1016/j.scitotenv.2017.11.337_bb0230
  article-title: Impact of biochar field aging on laboratory greenhouse gas production potentials
  publication-title: Glob. Change Biol. Bioenergy.
  doi: 10.1111/gcbb.12005
– volume: 7
  start-page: 577
  year: 2015
  ident: 10.1016/j.scitotenv.2017.11.337_bb0155
  article-title: A meta-analysis on pyrogenic organic matter induced priming effect
  publication-title: Glob. Change Biol. Bioenergy.
  doi: 10.1111/gcbb.12194
– volume: 87
  start-page: 151
  year: 2012
  ident: 10.1016/j.scitotenv.2017.11.337_bb0130
  article-title: Water extractable organic carbon in untreated and chemical treated biochars
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2011.12.007
– volume: 41
  start-page: 7787
  year: 2007
  ident: 10.1016/j.scitotenv.2017.11.337_bb0165
  article-title: Significance of Chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es071263x
– volume: 29
  start-page: 353
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.337_bb0060
  article-title: Bacteria of the candidate phylum TM7 are prevalent in acidophilic nitrifying sequencing-batch reactors
  publication-title: Microbes Environ.
  doi: 10.1264/jsme2.ME14052
– volume: 8
  start-page: 392
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.337_bb0140
  article-title: Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis
  publication-title: Glob. Change Biol. Bioenergy.
  doi: 10.1111/gcbb.12265
– volume: 572
  start-page: 129
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.337_bb0210
  article-title: Reduced carbon sequestration potential of biochar in acidic soil
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.07.140
– volume: 4
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.337_bb0215
  article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil
  publication-title: Sci. Rep.
  doi: 10.1038/srep03687
SSID ssj0000781
Score 2.653231
Snippet •CO2 emission from biochar-amended soils with two different pH levels was studied.•Higher biochar degradation resulted in higher CO2 emission in acidic...
Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1391
SubjectTerms Acidobacteria
Actinobacteria
adsorption
Agriculture - methods
aromatic compounds
bacteria
Bacteroidetes
bioavailability
Biochar
carbon dioxide
carbon sequestration
Carbon Sequestration - physiology
Charcoal - chemistry
eutrophication
Ferralsols
Gemmatimonadetes
global warming
greenhouse gas emissions
microbial communities
microbiome
Microbiota
Microorganisms
organic carbon
Phaeozems
SOC
Soil - chemistry
Soil carbon sequestration
Soil Microbiology
soil microorganisms
soil pH
soil treatment
Title Biochar alters microbial community and carbon sequestration potential across different soil pH
URI https://dx.doi.org/10.1016/j.scitotenv.2017.11.337
https://www.ncbi.nlm.nih.gov/pubmed/29890604
https://www.proquest.com/docview/2054915343
https://www.proquest.com/docview/2189546327
Volume 622-623
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED-GIggiOr-_iOBrdWvSL9_GUKbDPYiiT5Y0SWEy2-E6YS_-7d417UTw48GnknJXklyS-6X3BXBiUM0ohBGO1K50hO8aJ4w0NTVqf9KZKUUj3wz83r24fvQeG9CtY2HIrbI6--2ZXp7W1ZuzajbPxsMhxfiKMPIjMiNzHnkU8CtEQKv89P3TzYOS2VgrM25spP7i44XfLXLEpm_k4xXg8XHKqSD69xrqJwRaaqLLNVitICTr2F6uQ8NkTViyRSVnTdi6-IxdQ7Jq806asGJ_0TEbebQBT8hCQVestJhP2MuwTMqEPMpGjRQzJjPNlHxN8oyVTtd1ll02pgEVRCzLYbC60krBJvlwxMa9Tbi_vLjr9pyq3IKjRNAqHJFKnuB0CY2QME20lFLJxG8brn0vReFRqjsRyEiHCmeckB3nbV-GClFR6im-BQtZnpkdYMjL05ZseyoVwkRB4ruujFyDqwLxpk53wa-nOFZVLnIqiTGKa6ez53gum5hkgzeVGGWzC60549im4_ib5byWYfxlZcWoNP5mPq6lHuO-I2OKzEw-nSAR3qxRXQj-C007jKjcgIvf2bZLZt5rynxPiYv2_tO9fVjGVmgdMA9goXidmkMESUVyVO6CI1jsXPV7A3r2bx_6H9n6Fnk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xRWiREGK7yxvWSHvN0sbOixtCoPDqCSROWI7tSEUlqWiK1H_PTJwUIfE4cEwyY9kee-ZzPA-AfxbNjEYY4SnjK0-EvvXixNCjQetPNjOnaOTrQZjeiou74G4BTtpYGHKrbHS_0-m1tm7eHDazeTgeDinGV8RJmNA1MudJEP-ARcpOFXRg8fj8Mh28KuQodoXzBO5tZHjj5oVNVyXC02dy84pQg_znVBP9fSP1EQitjdHZGqw2KJIdu47-ggVbdGHJ1ZWcdWH99DV8Dcma_Tvpwor7S8dc8NFvuEcWirti9aX5hD0O67xMyKNd4Eg1Y6owTKunrCxY7XfdJtplYxpQRcSqHgZri61UbFIOR2yc_oHbs9Obk9RrKi54WkS9yhO54hlOlzCICvPMKKW0ysK-5SYMcpQfZbsTkUpMrHHSCdxx3g9VrBEY5YHm69ApysJuAkNenvdUP9C5EDaJstD3VeJbXBgIOU2-BWE7xVI36cipKsZItn5nD3IuG0mywcOKRNlsQW_OOHYZOb5mOWplKN8sLol242vmg1bqErce3aeowpbTCRLh4RothuCf0PTjhCoO-NjOhlsy815T8nvKXbT9ne79hZ_pzfWVvDofXO7AMn6JnT_mLnSqp6ndQ8xUZfvNnngBksoXhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+alters+microbial+community+and+carbon+sequestration+potential+across+different+soil+pH&rft.jtitle=The+Science+of+the+total+environment&rft.au=Sheng%2C+Yaqi&rft.au=Zhu%2C+Lizhong&rft.date=2018-05-01&rft.eissn=1879-1026&rft.volume=622-623&rft.spage=1391&rft_id=info:doi/10.1016%2Fj.scitotenv.2017.11.337&rft_id=info%3Apmid%2F29890604&rft.externalDocID=29890604
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon