Biochar alters microbial community and carbon sequestration potential across different soil pH
•CO2 emission from biochar-amended soils with two different pH levels was studied.•Higher biochar degradation resulted in higher CO2 emission in acidic ferralsol.•Biochar increased the bioavailability of SOC and copiotrophic bacteria in ferralsol.•Adsorption of SOC on biochar resulted in decreased C...
Saved in:
Published in | The Science of the total environment Vol. 622-623; pp. 1391 - 1399 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •CO2 emission from biochar-amended soils with two different pH levels was studied.•Higher biochar degradation resulted in higher CO2 emission in acidic ferralsol.•Biochar increased the bioavailability of SOC and copiotrophic bacteria in ferralsol.•Adsorption of SOC on biochar resulted in decreased CO2 emission in phaeozems.
[Display omitted]
Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO2 emission. To investigate soil microbial response and CO2 emission of biochar across different pH levels, comparative incubation studies on CO2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO2 emission. |
---|---|
AbstractList | Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO
emission. To investigate soil microbial response and CO
emission of biochar across different pH levels, comparative incubation studies on CO
emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO
emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO
emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO
emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO
emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO
emission. Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO2 emission. To investigate soil microbial response and CO2 emission of biochar across different pH levels, comparative incubation studies on CO2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO2 emission.Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO2 emission. To investigate soil microbial response and CO2 emission of biochar across different pH levels, comparative incubation studies on CO2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO2 emission. •CO2 emission from biochar-amended soils with two different pH levels was studied.•Higher biochar degradation resulted in higher CO2 emission in acidic ferralsol.•Biochar increased the bioavailability of SOC and copiotrophic bacteria in ferralsol.•Adsorption of SOC on biochar resulted in decreased CO2 emission in phaeozems. [Display omitted] Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO2 emission. To investigate soil microbial response and CO2 emission of biochar across different pH levels, comparative incubation studies on CO2 emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO2 emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO2 emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO2 emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO2 emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO2 emission. Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH was a main factor affecting soil microbial community and stability of biochar, little information is available for the microbiome across different soil pH and the subsequently CO₂ emission. To investigate soil microbial response and CO₂ emission of biochar across different pH levels, comparative incubation studies on CO₂ emission, degradation of biochar, and microbial communities in a ferralsol (pH5.19) and a phaeozems (pH7.81) with 4 biochar addition rates (0.5%, 1.0%, 2.0%, 5.0%) were conducted. Biochar induced higher CO₂ emission in acidic ferralsol, largely due to the higher biochar degradation, while the more drastic negative priming effect (PE) of SOC resulted in decreased total CO₂ emission in alkaline phaeozems. The higher bacteria diversity, especially the enrichment of copiotrophic bacteria such as Bacteroidetes, Gemmatimonadetes, and decrease of oligotrophic bacteria such as Acidobacteria, were responsible for the increased CO₂ emission and initial positive PE of SOC in ferralsol, whereas biochar did not change the relative abundances of most bacteria at phylum level in phaeozems. The relative abundances of other bacterial taxa (i.e. Actinobacteria, Anaerolineae) known to degrade aromatic compounds were also elevated in both soils. Soil pH was considered to be the dominant factor to affect CO₂ emission by increasing the bioavailability of organic carbon and abundance of copiotrophic bacteria after biochar addition in ferralsol. However, the decreased bioavailability of SOC via adsorption of biochar resulted in higher abundance of oligotrophic bacteria in phaeozems, leading to the decrease in CO₂ emission. |
Author | Sheng, Yaqi Zhu, Lizhong |
Author_xml | – sequence: 1 givenname: Yaqi surname: Sheng fullname: Sheng, Yaqi – sequence: 2 givenname: Lizhong surname: Zhu fullname: Zhu, Lizhong email: zlz@zju.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29890604$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u3CAUhVGUKpmkfYWWZTd2wWB-Fl2kUZNUitRNuy26Bqwyss0UmEh5--KZpItuhg0CfedyOOcKnS9x8Qh9oKSlhIpP2zbbUGLxy1PbESpbSlvG5BnaUCV1Q0knztGGEK4aLbS8RFc5b0ldUtELdNlppYkgfIN-fQnR_oaEYSo-ZTwHm-IQYMI2zvN-CeUZw-KwhTTEBWf_Z-9zSVBCPe1WA2WFoapyxi6Mo0_1DucYJrx7eIvejDBl_-5lv0Y_777-uH1oHr_ff7u9eWwsl6Q0fAQ2VG_cScnHwQGAhUFQz5zoR3BO9ZpyCdopyxjriVKMUQHKCtqPvWXX6ONx7i7Fg0Mzh2z9NMHi4z6bjirdc8E6eRolPde0Z5xV9P0Luh9m78wuhRnSs3mNrwKfj8Dh-8mPprZyyKZGFCZDiVnrMlvzry6z1mUoNbWuqpf_6V-fOK28OSp9TfUp-LRyfrHeheRtMS6GkzP-Aip-too |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2021_150465 crossref_primary_10_1007_s11356_023_31556_8 crossref_primary_10_1016_j_cej_2023_145942 crossref_primary_10_1016_j_biombioe_2025_107823 crossref_primary_10_1111_sum_13075 crossref_primary_10_1002_ldr_4148 crossref_primary_10_1016_j_scitotenv_2020_141593 crossref_primary_10_3390_agronomy11071286 crossref_primary_10_3390_agronomy14102263 crossref_primary_10_1016_j_jenvman_2024_122233 crossref_primary_10_1016_j_indcrop_2024_118348 crossref_primary_10_1016_j_chemosphere_2021_133000 crossref_primary_10_1080_09506608_2021_1922047 crossref_primary_10_1016_j_scienta_2022_111244 crossref_primary_10_1680_jenes_24_00107 crossref_primary_10_32604_phyton_2022_021644 crossref_primary_10_1021_acs_est_3c04398 crossref_primary_10_1111_sum_12894 crossref_primary_10_1007_s42729_023_01288_2 crossref_primary_10_1016_j_soilbio_2021_108420 crossref_primary_10_1007_s13399_024_05789_7 crossref_primary_10_1016_j_fcr_2021_108306 crossref_primary_10_1016_j_scitotenv_2022_159459 crossref_primary_10_3390_agriculture12101579 crossref_primary_10_1007_s42773_024_00413_3 crossref_primary_10_1016_j_chemosphere_2021_133476 crossref_primary_10_2136_sssaj2018_08_0297 crossref_primary_10_1016_j_chemosphere_2022_135153 crossref_primary_10_1088_1402_4896_ac0f3b crossref_primary_10_3389_fmicb_2023_1250453 crossref_primary_10_1016_j_chemosphere_2020_126881 crossref_primary_10_1007_s42832_022_0158_y crossref_primary_10_1016_j_apsoil_2021_103912 crossref_primary_10_1016_j_agwat_2024_108788 crossref_primary_10_3390_land12081580 crossref_primary_10_17474_artvinofd_1256742 crossref_primary_10_1016_j_jenvman_2025_125005 crossref_primary_10_1038_s41598_020_65796_2 crossref_primary_10_3390_agriculture12101548 crossref_primary_10_1007_s11368_024_03756_3 crossref_primary_10_1016_j_wasman_2022_07_024 crossref_primary_10_1080_00103624_2024_2325482 crossref_primary_10_1016_j_jclepro_2019_04_282 crossref_primary_10_3389_fmicb_2023_1174921 crossref_primary_10_3390_plants13131736 crossref_primary_10_3390_horticulturae7080221 crossref_primary_10_3390_microorganisms10112137 crossref_primary_10_1080_00103624_2021_1993884 crossref_primary_10_1016_j_psep_2018_10_030 crossref_primary_10_3390_su141610411 crossref_primary_10_1111_gcbb_12915 crossref_primary_10_3390_agronomy13071811 crossref_primary_10_1016_j_wasman_2019_01_042 crossref_primary_10_1016_j_agee_2024_108989 crossref_primary_10_1016_j_envres_2022_113832 crossref_primary_10_3390_su15129200 crossref_primary_10_1016_j_scitotenv_2023_166171 crossref_primary_10_1016_j_chemosphere_2020_128765 crossref_primary_10_1007_s11356_018_1682_2 crossref_primary_10_1016_j_jenvman_2023_118721 crossref_primary_10_1016_j_rser_2021_111379 crossref_primary_10_1016_j_seh_2024_100095 crossref_primary_10_1016_j_aoas_2023_05_002 crossref_primary_10_1016_j_ecoenv_2022_113165 crossref_primary_10_1038_s41598_020_73184_z crossref_primary_10_1038_s41598_024_54307_2 crossref_primary_10_1016_j_agwat_2023_108565 crossref_primary_10_3390_f15040622 crossref_primary_10_3390_toxics12090661 crossref_primary_10_1007_s11356_021_15001_2 crossref_primary_10_1016_j_watres_2024_121167 crossref_primary_10_1007_s10064_025_04153_x crossref_primary_10_1007_s42773_024_00343_0 crossref_primary_10_3390_app11198914 crossref_primary_10_3390_su14095666 crossref_primary_10_1016_j_scitotenv_2019_02_125 crossref_primary_10_1007_s11356_023_27182_z crossref_primary_10_1007_s42773_021_00113_2 crossref_primary_10_1007_s13399_020_00604_5 crossref_primary_10_1139_cjm_2022_0031 crossref_primary_10_1038_s41598_020_76213_z crossref_primary_10_3390_su11071831 crossref_primary_10_1016_j_apsoil_2024_105385 crossref_primary_10_1007_s00374_020_01502_8 crossref_primary_10_3390_ijerph19042126 crossref_primary_10_1016_j_jenvman_2021_113250 crossref_primary_10_1007_s11356_021_15499_6 crossref_primary_10_1016_j_soilbio_2024_109689 crossref_primary_10_1016_j_jenvman_2021_112830 crossref_primary_10_5194_gmd_17_4871_2024 crossref_primary_10_1007_s42729_020_00340_9 crossref_primary_10_1016_j_heliyon_2023_e22075 crossref_primary_10_1002_hyp_14765 crossref_primary_10_1007_s10311_022_01519_5 crossref_primary_10_1016_j_fuel_2023_127968 crossref_primary_10_1016_j_cej_2020_125077 crossref_primary_10_1007_s42773_023_00251_9 crossref_primary_10_1002_ece3_7172 crossref_primary_10_1007_s11356_021_13801_0 crossref_primary_10_1016_j_eti_2021_101767 crossref_primary_10_1007_s11368_019_02400_9 crossref_primary_10_3390_su15076100 crossref_primary_10_1002_agg2_20082 crossref_primary_10_1021_acsomega_3c07921 crossref_primary_10_1016_j_envres_2024_119012 crossref_primary_10_1016_j_psep_2025_106931 crossref_primary_10_1016_j_scitotenv_2020_138955 crossref_primary_10_3390_agronomy14102333 crossref_primary_10_1016_j_scitotenv_2024_172439 crossref_primary_10_1007_s11027_024_10167_9 crossref_primary_10_1016_S1002_0160_21_60064_4 crossref_primary_10_3390_agronomy11122442 crossref_primary_10_1016_j_jenvman_2024_121653 crossref_primary_10_1016_j_biortech_2021_125451 crossref_primary_10_1016_j_soilbio_2022_108778 crossref_primary_10_1016_j_jenvman_2022_115770 crossref_primary_10_1016_j_rhisph_2020_100261 crossref_primary_10_3390_agronomy13071745 crossref_primary_10_1016_j_jhazmat_2024_135235 crossref_primary_10_1088_1748_9326_acfa12 crossref_primary_10_1007_s42773_023_00219_9 crossref_primary_10_3390_agronomy12051003 crossref_primary_10_1016_j_scitotenv_2020_137133 crossref_primary_10_1007_s42773_019_00025_2 crossref_primary_10_1016_j_scitotenv_2022_156333 crossref_primary_10_1007_s11104_021_04845_9 crossref_primary_10_1016_j_rhisph_2024_100954 crossref_primary_10_2139_ssrn_4076642 crossref_primary_10_3390_agronomy14030615 crossref_primary_10_1016_j_jhazmat_2019_122010 crossref_primary_10_1016_j_jhazmat_2021_125378 crossref_primary_10_1016_j_apsoil_2019_04_026 crossref_primary_10_1016_j_scitotenv_2021_148793 crossref_primary_10_1016_j_jplph_2023_154033 crossref_primary_10_1016_j_scitotenv_2023_167290 crossref_primary_10_2166_wcc_2023_270 crossref_primary_10_1007_s42773_020_00063_1 crossref_primary_10_1002_saj2_20793 crossref_primary_10_20961_stjssa_v19i2_59758 crossref_primary_10_1016_j_jenvman_2023_118191 crossref_primary_10_1016_j_agee_2020_107169 crossref_primary_10_1007_s42773_024_00319_0 crossref_primary_10_29278_azd_1362301 crossref_primary_10_3390_agronomy12112859 crossref_primary_10_1007_s00374_020_01479_4 crossref_primary_10_1007_s42773_025_00450_6 crossref_primary_10_1111_sum_12936 crossref_primary_10_1007_s11356_020_07888_0 crossref_primary_10_1016_j_scitotenv_2022_153956 crossref_primary_10_1016_j_envpol_2020_114869 crossref_primary_10_1016_j_jhazmat_2019_121749 crossref_primary_10_1016_j_scitotenv_2023_169585 crossref_primary_10_3390_agronomy11071428 crossref_primary_10_1016_j_jece_2024_114372 crossref_primary_10_1016_j_csbj_2024_03_012 crossref_primary_10_1016_j_apsoil_2022_104697 crossref_primary_10_1016_j_fuel_2021_120243 crossref_primary_10_1016_j_jssas_2022_06_004 crossref_primary_10_1016_j_apsoil_2022_104457 crossref_primary_10_1016_j_biortech_2022_128224 crossref_primary_10_1007_s11368_023_03676_8 crossref_primary_10_1016_j_scitotenv_2021_146824 crossref_primary_10_1016_j_pedsph_2024_06_007 crossref_primary_10_1016_j_jenvman_2018_09_006 crossref_primary_10_1111_1751_7915_13457 crossref_primary_10_1016_j_chemosphere_2023_139409 crossref_primary_10_1007_s42398_021_00190_w crossref_primary_10_1007_s42773_024_00346_x crossref_primary_10_3390_agronomy14061215 crossref_primary_10_1016_j_scitotenv_2022_158776 crossref_primary_10_1016_j_scitotenv_2023_166079 crossref_primary_10_5696_2156_9614_9_23_190907 crossref_primary_10_1016_j_jece_2021_105027 crossref_primary_10_15835_nbha50212688 crossref_primary_10_3390_en14051407 crossref_primary_10_1088_1755_1315_1182_1_012034 crossref_primary_10_1007_s42773_025_00440_8 crossref_primary_10_1016_j_envres_2024_120686 crossref_primary_10_1016_j_jia_2024_03_073 crossref_primary_10_3390_app15052796 crossref_primary_10_1016_j_apsoil_2023_105217 crossref_primary_10_1016_j_scitotenv_2020_143817 crossref_primary_10_1007_s10653_024_01956_x crossref_primary_10_1016_j_envpol_2024_124445 crossref_primary_10_1016_j_still_2021_105125 crossref_primary_10_1016_j_still_2021_105126 crossref_primary_10_1007_s42773_022_00195_6 crossref_primary_10_1111_gcbb_12644 crossref_primary_10_1016_j_scitotenv_2022_157215 crossref_primary_10_1007_s10653_019_00412_5 crossref_primary_10_17221_348_2022_PSE crossref_primary_10_1007_s11783_021_1473_8 crossref_primary_10_3390_su142315648 crossref_primary_10_3390_w13121615 crossref_primary_10_1080_03067319_2019_1597863 crossref_primary_10_1016_j_apsoil_2021_104229 crossref_primary_10_1016_j_chemosphere_2022_136315 crossref_primary_10_3390_f14061114 crossref_primary_10_1007_s11356_023_30099_2 crossref_primary_10_1016_j_scitotenv_2022_161203 crossref_primary_10_1016_j_soilbio_2022_108851 crossref_primary_10_1016_j_foreco_2019_117717 crossref_primary_10_1016_j_scitotenv_2022_156532 crossref_primary_10_1016_j_scitotenv_2018_11_312 crossref_primary_10_3390_w17020162 crossref_primary_10_1007_s11368_022_03359_w crossref_primary_10_1016_j_scitotenv_2021_149167 crossref_primary_10_1016_j_apsoil_2023_104986 crossref_primary_10_1016_j_ecoenv_2023_115216 crossref_primary_10_1016_j_scitotenv_2021_148757 crossref_primary_10_1007_s11368_020_02705_0 crossref_primary_10_3389_fmicb_2021_725756 crossref_primary_10_1016_j_agee_2022_108177 crossref_primary_10_1016_j_apsoil_2022_104649 crossref_primary_10_1016_j_chemosphere_2018_06_052 crossref_primary_10_1016_j_jenvman_2022_115218 crossref_primary_10_3390_su12052124 crossref_primary_10_1016_j_geoderma_2021_115217 crossref_primary_10_1016_j_scitotenv_2020_141265 crossref_primary_10_1002_ldr_5029 crossref_primary_10_1088_1755_1315_693_1_012082 crossref_primary_10_2139_ssrn_4075645 crossref_primary_10_1007_s42773_024_00411_5 crossref_primary_10_1016_j_cattod_2022_06_033 crossref_primary_10_1007_s42729_020_00311_0 crossref_primary_10_1016_j_jfca_2024_106715 crossref_primary_10_1007_s11368_024_03803_z crossref_primary_10_1016_j_scitotenv_2024_174338 crossref_primary_10_1016_j_scitotenv_2019_01_298 crossref_primary_10_1016_j_scitotenv_2020_138562 crossref_primary_10_1016_j_scitotenv_2020_141057 crossref_primary_10_1016_j_scitotenv_2022_161102 crossref_primary_10_2478_ata_2019_0013 crossref_primary_10_1016_j_jclepro_2023_139989 crossref_primary_10_1016_j_chemosphere_2024_142101 crossref_primary_10_2139_ssrn_4151657 crossref_primary_10_1111_gcbb_13137 crossref_primary_10_3390_su12051922 crossref_primary_10_1039_D2EN00762B crossref_primary_10_1111_gcbb_13019 crossref_primary_10_3390_agronomy13010261 crossref_primary_10_1088_1755_1315_1263_1_012047 crossref_primary_10_1016_j_ecoenv_2022_114407 crossref_primary_10_1016_j_scitotenv_2023_164922 crossref_primary_10_3390_f14061268 crossref_primary_10_1007_s42773_024_00312_7 crossref_primary_10_1002_agg2_20009 crossref_primary_10_1016_j_apsoil_2020_103541 crossref_primary_10_1016_j_ecoleng_2020_106084 crossref_primary_10_1016_j_jenvman_2024_123097 crossref_primary_10_1007_s13399_021_01390_4 |
Cites_doi | 10.1128/mBio.01157-14 10.1111/1574-6941.12070 10.1111/j.1365-2389.2006.00809.x 10.1016/j.soilbio.2011.07.020 10.1007/s10533-008-9248-x 10.1021/es4034777 10.1016/j.soilbio.2015.07.014 10.1128/AEM.00148-11 10.1016/j.soilbio.2008.10.016 10.1016/j.rser.2015.12.185 10.1111/nph.14253 10.1021/es00050a007 10.1029/2004GB002435 10.1128/AEM.02775-08 10.1073/pnas.0507535103 10.1111/gcbb.12402 10.1021/es202186j 10.1007/s00248-009-9515-y 10.1111/j.1365-2486.2009.02080.x 10.1016/j.soilbio.2009.11.026 10.1016/j.soilbio.2011.02.005 10.1016/j.apsoil.2013.05.003 10.1071/EN16001 10.1021/jf404624h 10.1021/es503331y 10.1890/05-1839 10.1016/j.soilbio.2011.04.022 10.1021/es5021058 10.1016/S0065-2164(05)58004-3 10.1007/s11104-012-1169-8 10.1016/j.scitotenv.2017.01.115 10.1016/j.soilbio.2009.03.017 10.1007/s11368-014-0996-z 10.2134/jeq2016.09.0369 10.1021/es803092k 10.1021/es302545b 10.1016/j.scitotenv.2016.07.135 10.1111/gcbb.12371 10.1016/j.scitotenv.2013.03.090 10.1071/SR10009 10.1016/j.soilbio.2010.11.005 10.1007/s00253-005-0030-x 10.1007/s11274-013-1528-5 10.1016/S0958-1669(96)80034-6 10.1111/gcbb.12005 10.1111/gcbb.12194 10.1016/j.chemosphere.2011.12.007 10.1021/es071263x 10.1264/jsme2.ME14052 10.1111/gcbb.12265 10.1016/j.scitotenv.2016.07.140 10.1038/srep03687 |
ContentType | Journal Article |
Copyright | 2017 Copyright © 2017. Published by Elsevier B.V. |
Copyright_xml | – notice: 2017 – notice: Copyright © 2017. Published by Elsevier B.V. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2017.11.337 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 1399 |
ExternalDocumentID | 29890604 10_1016_j_scitotenv_2017_11_337 S0048969717333958 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-4fa3b0784d774fbdaaacab61e3d65fadd859147a9d8c33350883316a8c615f5c3 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 12:08:19 EDT 2025 Fri Jul 11 09:51:09 EDT 2025 Wed Feb 19 02:41:41 EST 2025 Tue Jul 01 01:21:26 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Fri Feb 23 02:46:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | pH Microorganisms Biochar SOC Soil carbon sequestration |
Language | English |
License | Copyright © 2017. Published by Elsevier B.V. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-4fa3b0784d774fbdaaacab61e3d65fadd859147a9d8c33350883316a8c615f5c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 29890604 |
PQID | 2054915343 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2189546327 proquest_miscellaneous_2054915343 pubmed_primary_29890604 crossref_citationtrail_10_1016_j_scitotenv_2017_11_337 crossref_primary_10_1016_j_scitotenv_2017_11_337 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2017_11_337 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 2018-05-00 2018-May-01 20180501 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | White, Sutton, Ringelberg (bb0245) 1996; 7 Rousk, Brookes, Baath (bb0205) 2010; 42 Murray, Keith, Singh (bb0170) 2015; 89 Fierer, Jackson (bb0045) 2006; 103 Luo, Durenkamp, De Nobili, Lin, Brookes (bb0145) 2011; 43 Hanada, Kurogi, Giang, Yamada, Kamimoto, Kiso (bb0060) 2014; 29 Kuzyakov, Subbotina, Chen, Bogomolova, Xu (bb0110) 2009; 41 Kolton, Harel, Pasternak, Graber, Elad, Cytryn (bb0100) 2011; 77 Joseph, Camps-Arbestain, Lin, Munroe, Chia, Hook (bb0075) 2010; 48 Verastegui, Cheng, Engel, Kolczynski, Mortimer, Lavigne (bb0240) 2014; 5 Lin, Munroe, Joseph, Kimber, Van Zwieten (bb0135) 2012; 357 Zheng, Chen, Pan, Liu, Zhang, Li (bb0260) 2016; 571 Rabus (bb0195) 2005; 68 Spokas (bb0230) 2013; 5 Chen, Liu, Zheng, Zhang, HF, Chi (bb0010) 2013; 71 O'Neill, Grossman, Tsai, Gomes, Lehmann, Peterson (bb0180) 2009; 58 Jenkins, Viger, Arnold, Harris, Ventura, Miglietta (bb0070) 2017; 9 Fierer, Bradford, Jackson (bb0050) 2007; 88 Khodadad, Zimmerman, Green, Uthandi, Foster (bb0090) 2011; 43 Whitman, Zhu, Lehmann (bb0250) 2014; 48 Ding, Pronk, Babin, Heuer, Heister, Kogel-Knabner (bb0020) 2013; 86 Lehmann, Rillig, Thies, Masiello, Hockaday, Crowley (bb0125) 2011; 43 Smith, Sleighter, Hatcher, Lee (bb0225) 2013; 47 Kolton, Graber, Tsehansky, Elad, Cytryn (bb0105) 2017; 213 Mitchell, Simpson, Soong, Simpson (bb0160) 2016; 13 Maestrini, Nannipieri, Abiven (bb0155) 2015; 7 Liu, Zhang, Zong, Hu, Wu, Zhou (bb0140) 2016; 8 Farrell, Kuhn, Macdonald, Maddern, Murphy, Hall (bb0025) 2013; 465 Qian, Chen (bb0190) 2014; 62 Nguyen, Lehmann, Kinyangi, Smernik, Riha, Engelhard (bb0175) 2009; 92 von Lutzow, Kogel-Knabner, Ekschmitt, Matzner, Guggenberger, Marschner (bb0150) 2006; 57 Sun, Meng, Liang, Yang, Huang, Chen (bb0235) 2015; 15 Xu, Wang, Li, Yao, Su, Zhu (bb0255) 2014; 48 Lin, Munroe, Joseph, Henderson, Ziolkowski (bb0130) 2012; 87 Lehmann, Joseph (bb0115) 2009 Kan, Strezov, Evans (bb0080) 2016; 57 Pietri, Brookes (bb0185) 2009; 41 Miura, Watanabe, Okabe (bb0165) 2007; 41 Feng, Simpson, Schlesinger, Simpson (bb0035) 2010; 16 Sheng, Zhan, Zhu (bb0210) 2016; 572 Singh, Cowie (bb0215) 2014; 4 Kirby (bb0095) 2005; 58C Rousk, Brookes, Baath (bb0200) 2009; 75 Gu, Schmitt, Chen, Liang, Mccarthy (bb0055) 1994; 28 Hu, Cao, Zhang (bb0065) 2014; 30 Fidel, Laird, Parkin (bb0040) 2017; 46 Cao, Ma, Gao, Harris (bb0005) 2009; 43 Feng, Zhu (bb0030) 2017; 584 Singh, Cowie, Smernik (bb0220) 2012; 46 Lehmann, Liang, Solomon, Lerotic, Luizao, Kinyangi (bb0120) 2005; 19 Keith, Singh, Singh (bb0085) 2011; 45 Cheng, Hill, Bastami, Jones (bb0015) 2017; 9 Zimmerman, Gao, Ahn (bb0265) 2011; 43 Mitchell (10.1016/j.scitotenv.2017.11.337_bb0160) 2016; 13 Rousk (10.1016/j.scitotenv.2017.11.337_bb0205) 2010; 42 Lehmann (10.1016/j.scitotenv.2017.11.337_bb0115) 2009 Qian (10.1016/j.scitotenv.2017.11.337_bb0190) 2014; 62 Kolton (10.1016/j.scitotenv.2017.11.337_bb0100) 2011; 77 Spokas (10.1016/j.scitotenv.2017.11.337_bb0230) 2013; 5 Murray (10.1016/j.scitotenv.2017.11.337_bb0170) 2015; 89 Luo (10.1016/j.scitotenv.2017.11.337_bb0145) 2011; 43 Sun (10.1016/j.scitotenv.2017.11.337_bb0235) 2015; 15 Lin (10.1016/j.scitotenv.2017.11.337_bb0135) 2012; 357 Feng (10.1016/j.scitotenv.2017.11.337_bb0035) 2010; 16 Fidel (10.1016/j.scitotenv.2017.11.337_bb0040) 2017; 46 Jenkins (10.1016/j.scitotenv.2017.11.337_bb0070) 2017; 9 Verastegui (10.1016/j.scitotenv.2017.11.337_bb0240) 2014; 5 Singh (10.1016/j.scitotenv.2017.11.337_bb0220) 2012; 46 Kirby (10.1016/j.scitotenv.2017.11.337_bb0095) 2005; 58C Kolton (10.1016/j.scitotenv.2017.11.337_bb0105) 2017; 213 Lehmann (10.1016/j.scitotenv.2017.11.337_bb0125) 2011; 43 Cao (10.1016/j.scitotenv.2017.11.337_bb0005) 2009; 43 Cheng (10.1016/j.scitotenv.2017.11.337_bb0015) 2017; 9 Farrell (10.1016/j.scitotenv.2017.11.337_bb0025) 2013; 465 Fierer (10.1016/j.scitotenv.2017.11.337_bb0050) 2007; 88 Kuzyakov (10.1016/j.scitotenv.2017.11.337_bb0110) 2009; 41 White (10.1016/j.scitotenv.2017.11.337_bb0245) 1996; 7 Feng (10.1016/j.scitotenv.2017.11.337_bb0030) 2017; 584 Khodadad (10.1016/j.scitotenv.2017.11.337_bb0090) 2011; 43 Lin (10.1016/j.scitotenv.2017.11.337_bb0130) 2012; 87 Singh (10.1016/j.scitotenv.2017.11.337_bb0215) 2014; 4 Gu (10.1016/j.scitotenv.2017.11.337_bb0055) 1994; 28 Pietri (10.1016/j.scitotenv.2017.11.337_bb0185) 2009; 41 Smith (10.1016/j.scitotenv.2017.11.337_bb0225) 2013; 47 Rabus (10.1016/j.scitotenv.2017.11.337_bb0195) 2005; 68 Liu (10.1016/j.scitotenv.2017.11.337_bb0140) 2016; 8 Miura (10.1016/j.scitotenv.2017.11.337_bb0165) 2007; 41 Ding (10.1016/j.scitotenv.2017.11.337_bb0020) 2013; 86 Nguyen (10.1016/j.scitotenv.2017.11.337_bb0175) 2009; 92 Zheng (10.1016/j.scitotenv.2017.11.337_bb0260) 2016; 571 Lehmann (10.1016/j.scitotenv.2017.11.337_bb0120) 2005; 19 Sheng (10.1016/j.scitotenv.2017.11.337_bb0210) 2016; 572 Joseph (10.1016/j.scitotenv.2017.11.337_bb0075) 2010; 48 Hu (10.1016/j.scitotenv.2017.11.337_bb0065) 2014; 30 von Lutzow (10.1016/j.scitotenv.2017.11.337_bb0150) 2006; 57 Maestrini (10.1016/j.scitotenv.2017.11.337_bb0155) 2015; 7 Whitman (10.1016/j.scitotenv.2017.11.337_bb0250) 2014; 48 Zimmerman (10.1016/j.scitotenv.2017.11.337_bb0265) 2011; 43 Rousk (10.1016/j.scitotenv.2017.11.337_bb0200) 2009; 75 O'Neill (10.1016/j.scitotenv.2017.11.337_bb0180) 2009; 58 Chen (10.1016/j.scitotenv.2017.11.337_bb0010) 2013; 71 Fierer (10.1016/j.scitotenv.2017.11.337_bb0045) 2006; 103 Hanada (10.1016/j.scitotenv.2017.11.337_bb0060) 2014; 29 Xu (10.1016/j.scitotenv.2017.11.337_bb0255) 2014; 48 Kan (10.1016/j.scitotenv.2017.11.337_bb0080) 2016; 57 Keith (10.1016/j.scitotenv.2017.11.337_bb0085) 2011; 45 |
References_xml | – volume: 30 start-page: 1085 year: 2014 end-page: 1092 ident: bb0065 article-title: Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil publication-title: World J. Microbiol. Biotechnol. – volume: 46 start-page: 11770 year: 2012 end-page: 11778 ident: bb0220 article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature publication-title: Environ. Sci. Technol. – volume: 42 start-page: 516 year: 2010 end-page: 520 ident: bb0205 article-title: The microbial PLFA composition as affected by pH in an arable soil publication-title: Soil Biol. Biochem. – volume: 43 start-page: 1812 year: 2011 end-page: 1836 ident: bb0125 article-title: Biochar effects on soil biota - a review publication-title: Soil Biol. Biochem. – volume: 29 start-page: 353 year: 2014 end-page: 362 ident: bb0060 article-title: Bacteria of the candidate phylum TM7 are prevalent in acidophilic nitrifying sequencing-batch reactors publication-title: Microbes Environ. – volume: 7 start-page: 577 year: 2015 end-page: 590 ident: bb0155 article-title: A meta-analysis on pyrogenic organic matter induced priming effect publication-title: Glob. Change Biol. Bioenergy. – volume: 57 start-page: 1126 year: 2016 end-page: 1140 ident: bb0080 article-title: Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters publication-title: Renew. Sust. Energ. Rev. – volume: 48 start-page: 9391 year: 2014 end-page: 9399 ident: bb0255 article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape publication-title: Environ. Sci. Technol. – volume: 43 start-page: 1169 year: 2011 end-page: 1179 ident: bb0265 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol. Biochem. – volume: 16 start-page: 2104 year: 2010 end-page: 2116 ident: bb0035 article-title: Altered microbial community structure and organic matter composition under elevated CO2 and N fertilization in the duke forest publication-title: Glob. Chang. Biol. – volume: 9 start-page: 591 year: 2017 end-page: 612 ident: bb0070 article-title: Biochar alters the soil microbiome and soil function: results of next-generation amplicon sequencing across Europe publication-title: Glob. Change Biol. Bioenergy. – volume: 75 start-page: 1589 year: 2009 end-page: 1596 ident: bb0200 article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization publication-title: Appl. Environ. Microbiol. – volume: 57 start-page: 426 year: 2006 end-page: 445 ident: bb0150 article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review publication-title: Eur. J. Soil Sci. – volume: 213 start-page: 1393 year: 2017 end-page: 1404 ident: bb0105 article-title: Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere publication-title: New Phytol. – volume: 571 start-page: 206 year: 2016 end-page: 217 ident: bb0260 article-title: Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China publication-title: Sci. Total Environ. – volume: 15 start-page: 271 year: 2015 end-page: 281 ident: bb0235 article-title: Effect of volatile organic compounds absorbed to fresh biochar on survival of publication-title: J. Soils Sediments – volume: 465 start-page: 288 year: 2013 end-page: 297 ident: bb0025 article-title: Microbial utilisation of biochar-derived carbon publication-title: Sci. Total Environ. – volume: 77 start-page: 4924 year: 2011 end-page: 4930 ident: bb0100 article-title: Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants publication-title: Appl. Environ. Microbiol. – volume: 58C start-page: 125 year: 2005 end-page: 168 ident: bb0095 article-title: Actinomycetes and lignin degradation publication-title: Adv. Appl. Microbiol. – year: 2009 ident: bb0115 article-title: Biochar for Environmental Management: Science and Technology – volume: 92 start-page: 163 year: 2009 end-page: 176 ident: bb0175 article-title: Long-term black carbon dynamics in cultivated soil publication-title: Biogeochemistry – volume: 5 year: 2014 ident: bb0240 article-title: Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities publication-title: MBio – volume: 88 start-page: 1354 year: 2007 end-page: 1364 ident: bb0050 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology – volume: 13 start-page: 854 year: 2016 end-page: 866 ident: bb0160 article-title: Biochar amendment altered the molecular-level composition of native soil organic matter in a temperate forest soil publication-title: Environ. Chem. – volume: 86 start-page: 15 year: 2013 end-page: 25 ident: bb0020 article-title: Mineral composition and charcoal determine the bacterial community structure in artificial soils publication-title: FEMS Microbiol. Ecol. – volume: 5 start-page: 165 year: 2013 end-page: 176 ident: bb0230 article-title: Impact of biochar field aging on laboratory greenhouse gas production potentials publication-title: Glob. Change Biol. Bioenergy. – volume: 71 start-page: 33 year: 2013 end-page: 44 ident: bb0010 article-title: Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China publication-title: Appl. Soil Ecol. – volume: 9 start-page: 1110 year: 2017 end-page: 1121 ident: bb0015 article-title: Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil publication-title: Glob. Change Biol. Bioenergy. – volume: 62 start-page: 373 year: 2014 end-page: 380 ident: bb0190 article-title: Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process publication-title: J. Agric. Food Chem. – volume: 47 start-page: 13294 year: 2013 end-page: 13302 ident: bb0225 article-title: Molecular characterization of inhibiting biochar water-extractable substances using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry publication-title: Environ. Sci. Technol. – volume: 68 start-page: 580 year: 2005 end-page: 587 ident: bb0195 article-title: Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1 publication-title: Appl. Microbiol. Biotechnol. – volume: 572 start-page: 129 year: 2016 end-page: 137 ident: bb0210 article-title: Reduced carbon sequestration potential of biochar in acidic soil publication-title: Sci. Total Environ. – volume: 48 start-page: 13727 year: 2014 end-page: 13734 ident: bb0250 article-title: Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon publication-title: Environ. Sci. Technol. – volume: 19 year: 2005 ident: bb0120 article-title: Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles publication-title: Glob. Biogeochem. Cycles – volume: 103 start-page: 626 year: 2006 end-page: 631 ident: bb0045 article-title: The diversity and biogeography of soil bacterial communities publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 45 start-page: 9611 year: 2011 end-page: 9618 ident: bb0085 article-title: Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil publication-title: Environ. Sci. Technol. – volume: 357 start-page: 369 year: 2012 end-page: 380 ident: bb0135 article-title: Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy publication-title: Plant Soil – volume: 58 start-page: 23 year: 2009 end-page: 35 ident: bb0180 article-title: Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification publication-title: Microb. Ecol. – volume: 41 start-page: 7787 year: 2007 end-page: 7794 ident: bb0165 article-title: Significance of publication-title: Environ. Sci. Technol. – volume: 48 start-page: 501 year: 2010 end-page: 515 ident: bb0075 article-title: An investigation into the reactions of biochar in soil publication-title: Aust. J. Soil Res. – volume: 87 start-page: 151 year: 2012 end-page: 157 ident: bb0130 article-title: Water extractable organic carbon in untreated and chemical treated biochars publication-title: Chemosphere – volume: 41 start-page: 210 year: 2009 end-page: 219 ident: bb0110 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling publication-title: Soil Biol. Biochem. – volume: 46 start-page: 505 year: 2017 end-page: 513 ident: bb0040 article-title: Impact of biochar organic and inorganic carbon on soil CO2 and N2O emissions publication-title: J. Environ. Qual. – volume: 43 start-page: 2304 year: 2011 end-page: 2314 ident: bb0145 article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH publication-title: Soil Biol. Biochem. – volume: 28 start-page: 38 year: 1994 end-page: 46 ident: bb0055 article-title: Adsorption and desorption of natural organic-matter on iron-oxide - mechanisms and models publication-title: Environ. Sci. Technol. – volume: 89 start-page: 217 year: 2015 end-page: 225 ident: bb0170 article-title: The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy publication-title: Soil Biol. Biochem. – volume: 7 start-page: 301 year: 1996 end-page: 306 ident: bb0245 article-title: The genus publication-title: Curr. Opin. Biotechnol. – volume: 584 start-page: 776 year: 2017 end-page: 782 ident: bb0030 article-title: Impact of biochar on soil N2O emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil publication-title: Sci. Total Environ. – volume: 43 start-page: 3285 year: 2009 end-page: 3291 ident: bb0005 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. – volume: 43 start-page: 385 year: 2011 end-page: 392 ident: bb0090 article-title: Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments publication-title: Soil Biol. Biochem. – volume: 8 start-page: 392 year: 2016 end-page: 406 ident: bb0140 article-title: Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis publication-title: Glob. Change Biol. Bioenergy. – volume: 4 year: 2014 ident: bb0215 article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil publication-title: Sci. Rep. – volume: 41 start-page: 1396 year: 2009 end-page: 1405 ident: bb0185 article-title: Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil publication-title: Soil Biol. Biochem. – volume: 5 year: 2014 ident: 10.1016/j.scitotenv.2017.11.337_bb0240 article-title: Multisubstrate isotope labeling and metagenomic analysis of active soil bacterial communities publication-title: MBio doi: 10.1128/mBio.01157-14 – volume: 86 start-page: 15 year: 2013 ident: 10.1016/j.scitotenv.2017.11.337_bb0020 article-title: Mineral composition and charcoal determine the bacterial community structure in artificial soils publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12070 – volume: 57 start-page: 426 year: 2006 ident: 10.1016/j.scitotenv.2017.11.337_bb0150 article-title: Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions - a review publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2006.00809.x – volume: 43 start-page: 2304 year: 2011 ident: 10.1016/j.scitotenv.2017.11.337_bb0145 article-title: Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.07.020 – volume: 92 start-page: 163 year: 2009 ident: 10.1016/j.scitotenv.2017.11.337_bb0175 article-title: Long-term black carbon dynamics in cultivated soil publication-title: Biogeochemistry doi: 10.1007/s10533-008-9248-x – volume: 47 start-page: 13294 year: 2013 ident: 10.1016/j.scitotenv.2017.11.337_bb0225 article-title: Molecular characterization of inhibiting biochar water-extractable substances using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry publication-title: Environ. Sci. Technol. doi: 10.1021/es4034777 – volume: 89 start-page: 217 year: 2015 ident: 10.1016/j.scitotenv.2017.11.337_bb0170 article-title: The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.07.014 – volume: 77 start-page: 4924 year: 2011 ident: 10.1016/j.scitotenv.2017.11.337_bb0100 article-title: Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00148-11 – volume: 41 start-page: 210 year: 2009 ident: 10.1016/j.scitotenv.2017.11.337_bb0110 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.10.016 – volume: 57 start-page: 1126 year: 2016 ident: 10.1016/j.scitotenv.2017.11.337_bb0080 article-title: Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.12.185 – volume: 213 start-page: 1393 year: 2017 ident: 10.1016/j.scitotenv.2017.11.337_bb0105 article-title: Biochar-stimulated plant performance is strongly linked to microbial diversity and metabolic potential in the rhizosphere publication-title: New Phytol. doi: 10.1111/nph.14253 – volume: 28 start-page: 38 year: 1994 ident: 10.1016/j.scitotenv.2017.11.337_bb0055 article-title: Adsorption and desorption of natural organic-matter on iron-oxide - mechanisms and models publication-title: Environ. Sci. Technol. doi: 10.1021/es00050a007 – volume: 19 year: 2005 ident: 10.1016/j.scitotenv.2017.11.337_bb0120 article-title: Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: application to black carbon particles publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2004GB002435 – volume: 75 start-page: 1589 year: 2009 ident: 10.1016/j.scitotenv.2017.11.337_bb0200 article-title: Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02775-08 – volume: 103 start-page: 626 year: 2006 ident: 10.1016/j.scitotenv.2017.11.337_bb0045 article-title: The diversity and biogeography of soil bacterial communities publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0507535103 – volume: 9 start-page: 1110 year: 2017 ident: 10.1016/j.scitotenv.2017.11.337_bb0015 article-title: Biochar stimulates the decomposition of simple organic matter and suppresses the decomposition of complex organic matter in a sandy loam soil publication-title: Glob. Change Biol. Bioenergy. doi: 10.1111/gcbb.12402 – volume: 45 start-page: 9611 year: 2011 ident: 10.1016/j.scitotenv.2017.11.337_bb0085 article-title: Interactive priming of biochar and labile organic matter mineralization in a smectite-rich soil publication-title: Environ. Sci. Technol. doi: 10.1021/es202186j – year: 2009 ident: 10.1016/j.scitotenv.2017.11.337_bb0115 – volume: 58 start-page: 23 year: 2009 ident: 10.1016/j.scitotenv.2017.11.337_bb0180 article-title: Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification publication-title: Microb. Ecol. doi: 10.1007/s00248-009-9515-y – volume: 16 start-page: 2104 year: 2010 ident: 10.1016/j.scitotenv.2017.11.337_bb0035 article-title: Altered microbial community structure and organic matter composition under elevated CO2 and N fertilization in the duke forest publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2009.02080.x – volume: 42 start-page: 516 year: 2010 ident: 10.1016/j.scitotenv.2017.11.337_bb0205 article-title: The microbial PLFA composition as affected by pH in an arable soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.11.026 – volume: 43 start-page: 1169 year: 2011 ident: 10.1016/j.scitotenv.2017.11.337_bb0265 article-title: Positive and negative carbon mineralization priming effects among a variety of biochar-amended soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.02.005 – volume: 71 start-page: 33 year: 2013 ident: 10.1016/j.scitotenv.2017.11.337_bb0010 article-title: Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2013.05.003 – volume: 13 start-page: 854 year: 2016 ident: 10.1016/j.scitotenv.2017.11.337_bb0160 article-title: Biochar amendment altered the molecular-level composition of native soil organic matter in a temperate forest soil publication-title: Environ. Chem. doi: 10.1071/EN16001 – volume: 62 start-page: 373 year: 2014 ident: 10.1016/j.scitotenv.2017.11.337_bb0190 article-title: Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process publication-title: J. Agric. Food Chem. doi: 10.1021/jf404624h – volume: 48 start-page: 13727 year: 2014 ident: 10.1016/j.scitotenv.2017.11.337_bb0250 article-title: Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon publication-title: Environ. Sci. Technol. doi: 10.1021/es503331y – volume: 88 start-page: 1354 year: 2007 ident: 10.1016/j.scitotenv.2017.11.337_bb0050 article-title: Toward an ecological classification of soil bacteria publication-title: Ecology doi: 10.1890/05-1839 – volume: 43 start-page: 1812 year: 2011 ident: 10.1016/j.scitotenv.2017.11.337_bb0125 article-title: Biochar effects on soil biota - a review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.04.022 – volume: 48 start-page: 9391 year: 2014 ident: 10.1016/j.scitotenv.2017.11.337_bb0255 article-title: Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape publication-title: Environ. Sci. Technol. doi: 10.1021/es5021058 – volume: 58C start-page: 125 year: 2005 ident: 10.1016/j.scitotenv.2017.11.337_bb0095 article-title: Actinomycetes and lignin degradation publication-title: Adv. Appl. Microbiol. doi: 10.1016/S0065-2164(05)58004-3 – volume: 357 start-page: 369 year: 2012 ident: 10.1016/j.scitotenv.2017.11.337_bb0135 article-title: Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy publication-title: Plant Soil doi: 10.1007/s11104-012-1169-8 – volume: 584 start-page: 776 year: 2017 ident: 10.1016/j.scitotenv.2017.11.337_bb0030 article-title: Impact of biochar on soil N2O emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.115 – volume: 41 start-page: 1396 year: 2009 ident: 10.1016/j.scitotenv.2017.11.337_bb0185 article-title: Substrate inputs and pH as factors controlling microbial biomass, activity and community structure in an arable soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.03.017 – volume: 15 start-page: 271 year: 2015 ident: 10.1016/j.scitotenv.2017.11.337_bb0235 article-title: Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities publication-title: J. Soils Sediments doi: 10.1007/s11368-014-0996-z – volume: 46 start-page: 505 year: 2017 ident: 10.1016/j.scitotenv.2017.11.337_bb0040 article-title: Impact of biochar organic and inorganic carbon on soil CO2 and N2O emissions publication-title: J. Environ. Qual. doi: 10.2134/jeq2016.09.0369 – volume: 43 start-page: 3285 year: 2009 ident: 10.1016/j.scitotenv.2017.11.337_bb0005 article-title: Dairy-manure derived biochar effectively sorbs lead and atrazine publication-title: Environ. Sci. Technol. doi: 10.1021/es803092k – volume: 46 start-page: 11770 year: 2012 ident: 10.1016/j.scitotenv.2017.11.337_bb0220 article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature publication-title: Environ. Sci. Technol. doi: 10.1021/es302545b – volume: 571 start-page: 206 year: 2016 ident: 10.1016/j.scitotenv.2017.11.337_bb0260 article-title: Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.135 – volume: 9 start-page: 591 year: 2017 ident: 10.1016/j.scitotenv.2017.11.337_bb0070 article-title: Biochar alters the soil microbiome and soil function: results of next-generation amplicon sequencing across Europe publication-title: Glob. Change Biol. Bioenergy. doi: 10.1111/gcbb.12371 – volume: 465 start-page: 288 year: 2013 ident: 10.1016/j.scitotenv.2017.11.337_bb0025 article-title: Microbial utilisation of biochar-derived carbon publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.03.090 – volume: 48 start-page: 501 year: 2010 ident: 10.1016/j.scitotenv.2017.11.337_bb0075 article-title: An investigation into the reactions of biochar in soil publication-title: Aust. J. Soil Res. doi: 10.1071/SR10009 – volume: 43 start-page: 385 year: 2011 ident: 10.1016/j.scitotenv.2017.11.337_bb0090 article-title: Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.11.005 – volume: 68 start-page: 580 year: 2005 ident: 10.1016/j.scitotenv.2017.11.337_bb0195 article-title: Functional genomics of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-005-0030-x – volume: 30 start-page: 1085 year: 2014 ident: 10.1016/j.scitotenv.2017.11.337_bb0065 article-title: Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-013-1528-5 – volume: 7 start-page: 301 year: 1996 ident: 10.1016/j.scitotenv.2017.11.337_bb0245 article-title: The genus Sphingomonas: physiology and ecology publication-title: Curr. Opin. Biotechnol. doi: 10.1016/S0958-1669(96)80034-6 – volume: 5 start-page: 165 year: 2013 ident: 10.1016/j.scitotenv.2017.11.337_bb0230 article-title: Impact of biochar field aging on laboratory greenhouse gas production potentials publication-title: Glob. Change Biol. Bioenergy. doi: 10.1111/gcbb.12005 – volume: 7 start-page: 577 year: 2015 ident: 10.1016/j.scitotenv.2017.11.337_bb0155 article-title: A meta-analysis on pyrogenic organic matter induced priming effect publication-title: Glob. Change Biol. Bioenergy. doi: 10.1111/gcbb.12194 – volume: 87 start-page: 151 year: 2012 ident: 10.1016/j.scitotenv.2017.11.337_bb0130 article-title: Water extractable organic carbon in untreated and chemical treated biochars publication-title: Chemosphere doi: 10.1016/j.chemosphere.2011.12.007 – volume: 41 start-page: 7787 year: 2007 ident: 10.1016/j.scitotenv.2017.11.337_bb0165 article-title: Significance of Chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater publication-title: Environ. Sci. Technol. doi: 10.1021/es071263x – volume: 29 start-page: 353 year: 2014 ident: 10.1016/j.scitotenv.2017.11.337_bb0060 article-title: Bacteria of the candidate phylum TM7 are prevalent in acidophilic nitrifying sequencing-batch reactors publication-title: Microbes Environ. doi: 10.1264/jsme2.ME14052 – volume: 8 start-page: 392 year: 2016 ident: 10.1016/j.scitotenv.2017.11.337_bb0140 article-title: Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis publication-title: Glob. Change Biol. Bioenergy. doi: 10.1111/gcbb.12265 – volume: 572 start-page: 129 year: 2016 ident: 10.1016/j.scitotenv.2017.11.337_bb0210 article-title: Reduced carbon sequestration potential of biochar in acidic soil publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.07.140 – volume: 4 year: 2014 ident: 10.1016/j.scitotenv.2017.11.337_bb0215 article-title: Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil publication-title: Sci. Rep. doi: 10.1038/srep03687 |
SSID | ssj0000781 |
Score | 2.653231 |
Snippet | •CO2 emission from biochar-amended soils with two different pH levels was studied.•Higher biochar degradation resulted in higher CO2 emission in acidic... Biochar application to soil has been proposed for soil carbon sequestration and global warming mitigation. While recent studies have demonstrated that soil pH... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1391 |
SubjectTerms | Acidobacteria Actinobacteria adsorption Agriculture - methods aromatic compounds bacteria Bacteroidetes bioavailability Biochar carbon dioxide carbon sequestration Carbon Sequestration - physiology Charcoal - chemistry eutrophication Ferralsols Gemmatimonadetes global warming greenhouse gas emissions microbial communities microbiome Microbiota Microorganisms organic carbon Phaeozems SOC Soil - chemistry Soil carbon sequestration Soil Microbiology soil microorganisms soil pH soil treatment |
Title | Biochar alters microbial community and carbon sequestration potential across different soil pH |
URI | https://dx.doi.org/10.1016/j.scitotenv.2017.11.337 https://www.ncbi.nlm.nih.gov/pubmed/29890604 https://www.proquest.com/docview/2054915343 https://www.proquest.com/docview/2189546327 |
Volume | 622-623 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED-GIggiOr-_iOBrdWvSL9_GUKbDPYiiT5Y0SWEy2-E6YS_-7d417UTw48GnknJXklyS-6X3BXBiUM0ohBGO1K50hO8aJ4w0NTVqf9KZKUUj3wz83r24fvQeG9CtY2HIrbI6--2ZXp7W1ZuzajbPxsMhxfiKMPIjMiNzHnkU8CtEQKv89P3TzYOS2VgrM25spP7i44XfLXLEpm_k4xXg8XHKqSD69xrqJwRaaqLLNVitICTr2F6uQ8NkTViyRSVnTdi6-IxdQ7Jq806asGJ_0TEbebQBT8hCQVestJhP2MuwTMqEPMpGjRQzJjPNlHxN8oyVTtd1ll02pgEVRCzLYbC60krBJvlwxMa9Tbi_vLjr9pyq3IKjRNAqHJFKnuB0CY2QME20lFLJxG8brn0vReFRqjsRyEiHCmeckB3nbV-GClFR6im-BQtZnpkdYMjL05ZseyoVwkRB4ruujFyDqwLxpk53wa-nOFZVLnIqiTGKa6ez53gum5hkgzeVGGWzC60549im4_ib5byWYfxlZcWoNP5mPq6lHuO-I2OKzEw-nSAR3qxRXQj-C007jKjcgIvf2bZLZt5rynxPiYv2_tO9fVjGVmgdMA9goXidmkMESUVyVO6CI1jsXPV7A3r2bx_6H9n6Fnk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xRWiREGK7yxvWSHvN0sbOixtCoPDqCSROWI7tSEUlqWiK1H_PTJwUIfE4cEwyY9kee-ZzPA-AfxbNjEYY4SnjK0-EvvXixNCjQetPNjOnaOTrQZjeiou74G4BTtpYGHKrbHS_0-m1tm7eHDazeTgeDinGV8RJmNA1MudJEP-ARcpOFXRg8fj8Mh28KuQodoXzBO5tZHjj5oVNVyXC02dy84pQg_znVBP9fSP1EQitjdHZGqw2KJIdu47-ggVbdGHJ1ZWcdWH99DV8Dcma_Tvpwor7S8dc8NFvuEcWirti9aX5hD0O67xMyKNd4Eg1Y6owTKunrCxY7XfdJtplYxpQRcSqHgZri61UbFIOR2yc_oHbs9Obk9RrKi54WkS9yhO54hlOlzCICvPMKKW0ysK-5SYMcpQfZbsTkUpMrHHSCdxx3g9VrBEY5YHm69ApysJuAkNenvdUP9C5EDaJstD3VeJbXBgIOU2-BWE7xVI36cipKsZItn5nD3IuG0mywcOKRNlsQW_OOHYZOb5mOWplKN8sLol242vmg1bqErce3aeowpbTCRLh4RothuCf0PTjhCoO-NjOhlsy815T8nvKXbT9ne79hZ_pzfWVvDofXO7AMn6JnT_mLnSqp6ndQ8xUZfvNnngBksoXhw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biochar+alters+microbial+community+and+carbon+sequestration+potential+across+different+soil+pH&rft.jtitle=The+Science+of+the+total+environment&rft.au=Sheng%2C+Yaqi&rft.au=Zhu%2C+Lizhong&rft.date=2018-05-01&rft.eissn=1879-1026&rft.volume=622-623&rft.spage=1391&rft_id=info:doi/10.1016%2Fj.scitotenv.2017.11.337&rft_id=info%3Apmid%2F29890604&rft.externalDocID=29890604 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |