Mutual spin-phonon driving effects and phonon eigenvector renormalization in nickel (II) oxide

The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat, has been a subject of continuing interests for decades. Despite its pivotal role in transport processes, the effect of spin-phonon coupling on...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 29; pp. 1 - 7
Main Authors Sun, Qiyang, Wei, Bin, Su, Yaokun, Smith, Hillary, Lin, Jiao Y. Y., Abernathy, Douglas L., Li, Chen
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 19.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat, has been a subject of continuing interests for decades. Despite its pivotal role in transport processes, the effect of spin-phonon coupling on the phonon system, especially acoustic phonon properties, has so far been elusive. By means of inelastic neutron scattering and first-principles calculations, anomalous scattering spectral intensity from acoustic phonons was identified in the exemplary collinear antiferromagnetic nickel (II) oxide, unveiling strong spin-lattice correlations that renormalize the polarization of acoustic phonon. In particular, a clear magnetic scattering signature of the measured neutron scattering intensity from acoustic phonons is demonstrated by its momentum transfer and temperature dependences. The anomalous scattering intensity is successfully modeled with a modified magneto-vibrational scattering cross-section, suggesting the presence of spin precession driven by phonon. The renormalization of phonon eigenvector is indicated by the observed “geometry-forbidden” neutron scattering intensity from transverse acoustic phonon. Importantly, the eigenvector renormalization cannot be explained by magnetostriction but instead, it could result from the coupling between phonon and local magnetization of ions.
AbstractList The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat, has been a subject of continuing interests for decades. Despite its pivotal role in transport processes, the effect of spin-phonon coupling on the phonon system, especially acoustic phonon properties, has so far been elusive. By means of inelastic neutron scattering and first-principles calculations, anomalous scattering spectral intensity from acoustic phonons was identified in the exemplary collinear antiferromagnetic nickel (II) oxide, unveiling strong spin-lattice correlations that renormalize the polarization of acoustic phonon. In particular, a clear magnetic scattering signature of the measured neutron scattering intensity from acoustic phonons is demonstrated by its momentum transfer and temperature dependences. The anomalous scattering intensity is successfully modeled with a modified magneto-vibrational scattering cross-section, suggesting the presence of spin precession driven by phonon. The renormalization of phonon eigenvector is indicated by the observed "geometry-forbidden" neutron scattering intensity from transverse acoustic phonon. Importantly, the eigenvector renormalization cannot be explained by magnetostriction but instead, it could result from the coupling between phonon and local magnetization of ions.
The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat, has been a subject of continuing interests for decades. Despite its pivotal role in transport processes, the effect of spin-phonon coupling on the phonon system, especially acoustic phonon properties, has so far been elusive. By means of inelastic neutron scattering and first-principles calculations, anomalous scattering spectral intensity from acoustic phonons was identified in the exemplary collinear antiferromagnetic nickel (II) oxide, unveiling strong spin-lattice correlations that renormalize the polarization of acoustic phonon. In particular, a clear magnetic scattering signature of the measured neutron scattering intensity from acoustic phonons is demonstrated by its momentum transfer and temperature dependences. The anomalous scattering intensity is successfully modeled with a modified magneto-vibrational scattering cross-section, suggesting the presence of spin precession driven by phonon. The renormalization of phonon eigenvector is indicated by the observed "geometry-forbidden" neutron scattering intensity from transverse acoustic phonon. Importantly, the eigenvector renormalization cannot be explained by magnetostriction but instead, it could result from the coupling between phonon and local magnetization of ions.The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat, has been a subject of continuing interests for decades. Despite its pivotal role in transport processes, the effect of spin-phonon coupling on the phonon system, especially acoustic phonon properties, has so far been elusive. By means of inelastic neutron scattering and first-principles calculations, anomalous scattering spectral intensity from acoustic phonons was identified in the exemplary collinear antiferromagnetic nickel (II) oxide, unveiling strong spin-lattice correlations that renormalize the polarization of acoustic phonon. In particular, a clear magnetic scattering signature of the measured neutron scattering intensity from acoustic phonons is demonstrated by its momentum transfer and temperature dependences. The anomalous scattering intensity is successfully modeled with a modified magneto-vibrational scattering cross-section, suggesting the presence of spin precession driven by phonon. The renormalization of phonon eigenvector is indicated by the observed "geometry-forbidden" neutron scattering intensity from transverse acoustic phonon. Importantly, the eigenvector renormalization cannot be explained by magnetostriction but instead, it could result from the coupling between phonon and local magnetization of ions.
Nickel (II) oxide is a prominent candidate of antiferromagnetic spintronic applications, largely thanks to its high Néel temperature. We present scattering signatures of mutual driving interactions through strong spin-lattice coupling and acoustic phonon eigenvector renormalization in this important material for the first time. Our results provide an approach to identify and quantify strong spin-phonon interactions, shedding lights on engineering functional spintronic and spin-caloritronic materials through these interactions. The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat, has been a subject of continuing interests for decades. Despite its pivotal role in transport processes, the effect of spin-phonon coupling on the phonon system, especially acoustic phonon properties, has so far been elusive. By means of inelastic neutron scattering and first-principles calculations, anomalous scattering spectral intensity from acoustic phonons was identified in the exemplary collinear antiferromagnetic nickel (II) oxide, unveiling strong spin-lattice correlations that renormalize the polarization of acoustic phonon. In particular, a clear magnetic scattering signature of the measured neutron scattering intensity from acoustic phonons is demonstrated by its momentum transfer and temperature dependences. The anomalous scattering intensity is successfully modeled with a modified magneto-vibrational scattering cross-section, suggesting the presence of spin precession driven by phonon. The renormalization of phonon eigenvector is indicated by the observed “geometry-forbidden” neutron scattering intensity from transverse acoustic phonon. Importantly, the eigenvector renormalization cannot be explained by magnetostriction but instead, it could result from the coupling between phonon and local magnetization of ions.
Author Smith, Hillary
Li, Chen
Abernathy, Douglas L.
Su, Yaokun
Sun, Qiyang
Wei, Bin
Lin, Jiao Y. Y.
Author_xml – sequence: 1
  givenname: Qiyang
  surname: Sun
  fullname: Sun, Qiyang
– sequence: 2
  givenname: Bin
  surname: Wei
  fullname: Wei, Bin
– sequence: 3
  givenname: Yaokun
  surname: Su
  fullname: Su, Yaokun
– sequence: 4
  givenname: Hillary
  surname: Smith
  fullname: Smith, Hillary
– sequence: 5
  givenname: Jiao Y. Y.
  surname: Lin
  fullname: Lin, Jiao Y. Y.
– sequence: 6
  givenname: Douglas L.
  surname: Abernathy
  fullname: Abernathy, Douglas L.
– sequence: 7
  givenname: Chen
  surname: Li
  fullname: Li, Chen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35858352$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1976008$$D View this record in Osti.gov
BookMark eNp1Uk1vEzEUtFARTQNnTqBVuZTDtv7ctS9IVUVLpCIucMXyet8mDht7sXcj4NfjNGmBSsiyLPnNzJv3cYKOfPCA0EuCzwmu2cXgTTqnhGIhGCHqCZoRrEhZcYWP0AxjWpeSU36MTlJaY4yVkPgZOmZCCskEnaGvH6dxMn2RBufLYRWyftFGt3V-WUDXgR1TYXxbHELgluC3-TfEIoIPcWN698uMLsecL7yz36AvzhaLt0X44Vp4jp52pk_w4vDO0Zfr95-vPpS3n24WV5e3peU1HkveUW5YYzpBOwYdU7ZSvCNcSSOrfNu2gcbw7KfhktoaN6yWjREWGmJEI9kcvdvrDlOzgdaCH6Pp9RDdxsSfOhin_414t9LLsNWKYY4ZywKne4GQRqeTdSPYlQ3e51o1UXWF8S7L2SFLDN8nSKPeuGSh742HMCVNK0VrUe0mM0dvHkHXYYo-9-AORRURlGfU679tP_i9n08GiD3AxpBShE5nZ3ftzlW4XhOsd9n0bg_0nz3IvItHvHvp_zNe7RnrlIf7AKc1yUdK9hu3EcCR
CitedBy_id crossref_primary_10_1088_2632_2153_ad79b6
crossref_primary_10_1016_j_mtphys_2023_101094
crossref_primary_10_1103_PhysRevB_111_104306
crossref_primary_10_1103_PhysRevB_110_064413
crossref_primary_10_1063_5_0239197
Cites_doi 10.1088/1742-6596/92/1/012074
10.1038/nmat3099
10.1088/1361-6463/ab7efe
10.1103/PhysRevB.62.73
10.1103/PhysRevB.6.3447
10.1038/ncomms13146
10.1103/PhysRevLett.113.097202
10.1063/5.0047054
10.1103/PhysRevB.57.1505
10.1088/0953-8984/8/10/023
10.1103/PhysRevLett.124.145901
10.1103/PhysRevB.91.220410
10.1073/pnas.1707745115
10.1103/PhysRevLett.121.237202
10.1103/PhysRevB.23.5048
10.1088/0953-8984/6/45/026
10.1016/0927-0256(96)00008-0
10.1063/1.5009598
10.1016/j.scriptamat.2015.07.021
10.1093/oso/9780198862314.001.0001
10.1088/0953-8984/24/20/205601
10.1103/PhysRevMaterials.3.064405
10.1016/j.nima.2014.07.029
10.1103/PhysRevB.94.104421
10.1103/PhysRevB.96.100406
10.1103/PhysRevLett.117.207203
10.1038/nmat3301
10.1209/0295-5075/108/57005
10.1103/PhysRevB.57.7870
10.1103/PhysRevB.82.081104
10.1103/PhysRevB.81.241103
10.1021/acs.nanolett.0c03220
10.1103/PhysRevB.103.144430
10.1080/01418638108222351
10.1103/PhysRevB.94.184401
10.1103/PhysRevLett.125.077203
10.1103/PhysRevLett.121.175301
10.1017/S0305004100045229
10.1134/S0021364016140071
10.1038/s41567-018-0079-y
10.1103/PhysRevLett.108.176601
10.1063/1.342186
10.1103/PhysRev.110.836
10.1103/PhysRevLett.8.397
10.1103/PhysRevB.44.943
10.1038/nnano.2016.18
10.1103/PhysRevB.59.1758
10.1103/PhysRevB.100.014430
10.1103/PhysRev.50.58
10.1103/PhysRevLett.125.217201
10.1063/1.5082316
10.1039/c3ee43299h
10.1103/PhysRevB.94.121103
10.1103/PhysRevB.102.144438
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.50.17953
10.1063/1.4959573
10.1088/0022-3719/6/15/012
10.1143/JPSJ.43.885
10.1016/0921-4526(89)90092-6
ContentType Journal Article
Copyright Copyright © 2022 the Author(s)
Copyright National Academy of Sciences Jul 19, 2022
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s)
– notice: Copyright National Academy of Sciences Jul 19, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOI 10.1073/pnas.2120553119
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE - Academic

CrossRef
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 7
ExternalDocumentID PMC9304033
1976008
35858352
10_1073_pnas_2120553119
27171788
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: 1750786
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JENOY
JLS
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
RHF
VQA
YIF
YIN
2AX
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
ABBHK
AEUPB
AEXZC
C1K
DCCCD
FR3
H94
IPSME
JAAYA
JBMMH
JHFFW
JKQEH
JLXEF
JPM
M7N
P64
RC3
SA0
7X8
79B
ABPTK
ASUFR
OIOZB
OTOTI
ZA5
5PM
ID FETCH-LOGICAL-c470t-4f24a3baf52f3ef39c694f1498a868a8ddbeba4ffeb482c70b378ba5ceb1a5b83
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:37:57 EDT 2025
Mon Jan 15 05:22:55 EST 2024
Fri Jul 11 00:11:28 EDT 2025
Fri Jul 25 10:19:34 EDT 2025
Wed Feb 19 02:25:50 EST 2025
Tue Jul 01 01:03:20 EDT 2025
Thu Apr 24 23:07:22 EDT 2025
Thu May 29 08:53:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Keywords spin-phonon coupling
anomalous inelastic neutron scattering intensity
phonon dynamics
phonon eigenvector renormalization
Language English
License This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c470t-4f24a3baf52f3ef39c694f1498a868a8ddbeba4ffeb482c70b378ba5ceb1a5b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
AC05-00OR22725; 1750786
National Science Foundation (NSF)
Author contributions: C.L. designed research; Q.S., B.W., Y.S., H.S., D.L.A., and C.L. performed research; J.Y.Y.L. contributed new reagents/analytic tools; Q.S. and J.Y.Y.L. analyzed data; and Q.S., H.S., and C.L. wrote the paper.
Edited by Sadamichi Maekawa, Rikagaku Kenkyujo, Saitama, Japan; received November 11, 2021; accepted June 1, 2022 by Editorial Board Member Zachary Fisk
ORCID 0000-0002-0758-5334
0000-0002-3533-003X
0000-0001-9233-0100
0000-0003-0125-1760
0000000301251760
0000000161557812
0000000192330100
000000023533003X
0000000207585334
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9304033
PMID 35858352
PQID 2692291524
PQPubID 42026
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9304033
osti_scitechconnect_1976008
proquest_miscellaneous_2692756107
proquest_journals_2692291524
pubmed_primary_35858352
crossref_citationtrail_10_1073_pnas_2120553119
crossref_primary_10_1073_pnas_2120553119
jstor_primary_27171788
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-19
PublicationDateYYYYMMDD 2022-07-19
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_61_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_48_2
  doi: 10.1088/1742-6596/92/1/012074
– ident: e_1_3_4_1_2
  doi: 10.1038/nmat3099
– ident: e_1_3_4_5_2
  doi: 10.1088/1361-6463/ab7efe
– ident: e_1_3_4_45_2
  doi: 10.1103/PhysRevB.62.73
– ident: e_1_3_4_61_2
  doi: 10.1103/PhysRevB.6.3447
– ident: e_1_3_4_19_2
  doi: 10.1038/ncomms13146
– ident: e_1_3_4_11_2
  doi: 10.1103/PhysRevLett.113.097202
– ident: e_1_3_4_29_2
  doi: 10.1063/5.0047054
– ident: e_1_3_4_57_2
  doi: 10.1103/PhysRevB.57.1505
– ident: e_1_3_4_32_2
  doi: 10.1088/0953-8984/8/10/023
– ident: e_1_3_4_46_2
  doi: 10.1103/PhysRevLett.124.145901
– ident: e_1_3_4_13_2
  doi: 10.1103/PhysRevB.91.220410
– ident: e_1_3_4_50_2
  doi: 10.1073/pnas.1707745115
– ident: e_1_3_4_4_2
  doi: 10.1103/PhysRevLett.121.237202
– ident: e_1_3_4_55_2
  doi: 10.1103/PhysRevB.23.5048
– ident: e_1_3_4_43_2
  doi: 10.1088/0953-8984/6/45/026
– ident: e_1_3_4_52_2
  doi: 10.1016/0927-0256(96)00008-0
– ident: e_1_3_4_22_2
  doi: 10.1063/1.5009598
– ident: e_1_3_4_58_2
  doi: 10.1016/j.scriptamat.2015.07.021
– ident: e_1_3_4_38_2
  doi: 10.1093/oso/9780198862314.001.0001
– ident: e_1_3_4_33_2
  doi: 10.1088/0953-8984/24/20/205601
– ident: e_1_3_4_40_2
  doi: 10.1103/PhysRevMaterials.3.064405
– ident: e_1_3_4_49_2
  doi: 10.1016/j.nima.2014.07.029
– ident: e_1_3_4_20_2
  doi: 10.1103/PhysRevB.94.104421
– ident: e_1_3_4_26_2
  doi: 10.1103/PhysRevB.96.100406
– ident: e_1_3_4_25_2
  doi: 10.1103/PhysRevLett.117.207203
– ident: e_1_3_4_9_2
  doi: 10.1038/nmat3301
– ident: e_1_3_4_12_2
  doi: 10.1209/0295-5075/108/57005
– ident: e_1_3_4_44_2
  doi: 10.1103/PhysRevB.57.7870
– ident: e_1_3_4_17_2
  doi: 10.1103/PhysRevB.82.081104
– ident: e_1_3_4_16_2
  doi: 10.1103/PhysRevB.81.241103
– ident: e_1_3_4_39_2
  doi: 10.1021/acs.nanolett.0c03220
– ident: e_1_3_4_7_2
  doi: 10.1103/PhysRevB.103.144430
– ident: e_1_3_4_60_2
  doi: 10.1080/01418638108222351
– ident: e_1_3_4_3_2
  doi: 10.1103/PhysRevB.94.184401
– ident: e_1_3_4_6_2
  doi: 10.1103/PhysRevLett.125.077203
– ident: e_1_3_4_41_2
  doi: 10.1103/PhysRevLett.121.175301
– ident: e_1_3_4_37_2
  doi: 10.1017/S0305004100045229
– ident: e_1_3_4_15_2
  doi: 10.1134/S0021364016140071
– ident: e_1_3_4_30_2
  doi: 10.1038/s41567-018-0079-y
– ident: e_1_3_4_2_2
  doi: 10.1103/PhysRevLett.108.176601
– ident: e_1_3_4_23_2
  doi: 10.1063/1.342186
– ident: e_1_3_4_24_2
  doi: 10.1103/PhysRev.110.836
– ident: e_1_3_4_47_2
  doi: 10.1103/PhysRevLett.8.397
– ident: e_1_3_4_56_2
  doi: 10.1103/PhysRevB.44.943
– ident: e_1_3_4_8_2
  doi: 10.1038/nnano.2016.18
– ident: e_1_3_4_35_2
– ident: e_1_3_4_54_2
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_3_4_42_2
  doi: 10.1103/PhysRevB.100.014430
– ident: e_1_3_4_36_2
  doi: 10.1103/PhysRev.50.58
– ident: e_1_3_4_28_2
  doi: 10.1103/PhysRevLett.125.217201
– ident: e_1_3_4_21_2
  doi: 10.1063/1.5082316
– ident: e_1_3_4_10_2
  doi: 10.1039/c3ee43299h
– ident: e_1_3_4_34_2
  doi: 10.1103/PhysRevB.94.121103
– ident: e_1_3_4_27_2
  doi: 10.1103/PhysRevB.102.144438
– ident: e_1_3_4_51_2
  doi: 10.1103/PhysRevB.54.11169
– ident: e_1_3_4_53_2
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_3_4_14_2
  doi: 10.1063/1.4959573
– ident: e_1_3_4_18_2
  doi: 10.1088/0022-3719/6/15/012
– ident: e_1_3_4_59_2
  doi: 10.1143/JPSJ.43.885
– ident: e_1_3_4_31_2
  doi: 10.1016/0921-4526(89)90092-6
SSID ssj0009580
Score 2.4405901
Snippet The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat,...
Nickel (II) oxide is a prominent candidate of antiferromagnetic spintronic applications, largely thanks to its high Néel temperature. We present scattering...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Acoustic properties
Acoustics
anomalous inelastic neutron scattering intensity
Antiferromagnetism
Coupling
Eigenvectors
Electron spin
Elementary excitations
First principles
Inelastic scattering
Magnetostriction
Momentum transfer
Neutron scattering
Neutrons
Nickel
phonon dynamics
phonon eigenvector renormalization
Phonons
Physical Sciences
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Scattering cross sections
spin-phonon coupling
Transport phenomena
Transport processes
Wave dispersion
Title Mutual spin-phonon driving effects and phonon eigenvector renormalization in nickel (II) oxide
URI https://www.jstor.org/stable/27171788
https://www.ncbi.nlm.nih.gov/pubmed/35858352
https://www.proquest.com/docview/2692291524
https://www.proquest.com/docview/2692756107
https://www.osti.gov/servlets/purl/1976008
https://pubmed.ncbi.nlm.nih.gov/PMC9304033
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQNpCReOhUpaS28_U4EKhFWjXEJu2JyHYcLaJKpzZBwF_An835I0lbNmmgqlEVO07SO__uw3dnhN7kNCAqEokP0jXxWZFyPyFSwIwXVOZ5WBDjujidR9ML9ukyvBwMfm9ELTW1GMtfN-aV_A9V4RzQVWfJ_gNlu0HhBPwG-sIRKAzHO9H4tDHZH-vrsvJ1jDlQMl-VxkXQxmmYOgC2SenCm9-Nl360UpVWVhcuC1N7PaoSJvTCaJwz7StY_ijzrTihs07WrdvIgnnrSjzpE1McWqxH_uhs3m9z_KUx-Pa5_MmdsDTrQSaY4F1Z9d2MUODLb01_rvX-TPUWSS5u2XkqiIlqdXjYZg6ARGQ2Z3qsLOCCvuJHzG4Z2iFyf1Xjyjf9DfWATXp_4oqvxyB-gxDAxF22VVR7R9h1IYhm8T2mmR4g6we4h-4TMDiIgfjN8s2JTWZyb9AWiYrp250n2NJvbIgrSPsl4PVNNsxuKO6GbnP-CD10Rgk-sRy2jwaqeoz2W0LioatNfvwEfbUshzdYDjuWw47lMLAcdk0bLId3WA6XFbYsh4ez2TE27PYUXXz8cP5-6rstOnzJ4qCGyU0Yp4IXISmoKmgqo5QVYHUnPIngm-dCCc7g_oIBBsSAAHEieChBReChSOgB2oPHUc8RlnkkZKAKmacTJqKAF7QIAlHEMpRg1UYeGrd_bCZd_Xq9jcoiu4WUHhp2F1zb0i23dz0wlOr6kXgCnyTx0KEmXQbqqK6pLHXwmayzSarXs6H1qKVo5mABRo1SQlJQi5mHXnfNANp6JY5XatnYPrG2XGIPPbMM0N2aggGvzSIPxVus0XXQBeG3W6ryyhSGTymIZEpf3P3FD9GDfqYeob161aiXoGXX4pWZAH8AHnXThQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutual+spin-phonon+driving+effects+and+phonon+eigenvector+renormalization+in+nickel+%28II%29+oxide&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sun%2C+Qiyang&rft.au=Wei%2C+Bin&rft.au=Su%2C+Yaokun&rft.au=Smith%2C+Hillary&rft.date=2022-07-19&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=29&rft_id=info:doi/10.1073%2Fpnas.2120553119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2120553119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon