Mutual spin-phonon driving effects and phonon eigenvector renormalization in nickel (II) oxide
The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat, has been a subject of continuing interests for decades. Despite its pivotal role in transport processes, the effect of spin-phonon coupling on...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 29; pp. 1 - 7 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
19.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat, has been a subject of continuing interests for decades. Despite its pivotal role in transport processes, the effect of spin-phonon coupling on the phonon system, especially acoustic phonon properties, has so far been elusive. By means of inelastic neutron scattering and first-principles calculations, anomalous scattering spectral intensity from acoustic phonons was identified in the exemplary collinear antiferromagnetic nickel (II) oxide, unveiling strong spin-lattice correlations that renormalize the polarization of acoustic phonon. In particular, a clear magnetic scattering signature of the measured neutron scattering intensity from acoustic phonons is demonstrated by its momentum transfer and temperature dependences. The anomalous scattering intensity is successfully modeled with a modified magneto-vibrational scattering cross-section, suggesting the presence of spin precession driven by phonon. The renormalization of phonon eigenvector is indicated by the observed “geometry-forbidden” neutron scattering intensity from transverse acoustic phonon. Importantly, the eigenvector renormalization cannot be explained by magnetostriction but instead, it could result from the coupling between phonon and local magnetization of ions. |
---|---|
AbstractList | The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat, has been a subject of continuing interests for decades. Despite its pivotal role in transport processes, the effect of spin-phonon coupling on the phonon system, especially acoustic phonon properties, has so far been elusive. By means of inelastic neutron scattering and first-principles calculations, anomalous scattering spectral intensity from acoustic phonons was identified in the exemplary collinear antiferromagnetic nickel (II) oxide, unveiling strong spin-lattice correlations that renormalize the polarization of acoustic phonon. In particular, a clear magnetic scattering signature of the measured neutron scattering intensity from acoustic phonons is demonstrated by its momentum transfer and temperature dependences. The anomalous scattering intensity is successfully modeled with a modified magneto-vibrational scattering cross-section, suggesting the presence of spin precession driven by phonon. The renormalization of phonon eigenvector is indicated by the observed "geometry-forbidden" neutron scattering intensity from transverse acoustic phonon. Importantly, the eigenvector renormalization cannot be explained by magnetostriction but instead, it could result from the coupling between phonon and local magnetization of ions. The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat, has been a subject of continuing interests for decades. Despite its pivotal role in transport processes, the effect of spin-phonon coupling on the phonon system, especially acoustic phonon properties, has so far been elusive. By means of inelastic neutron scattering and first-principles calculations, anomalous scattering spectral intensity from acoustic phonons was identified in the exemplary collinear antiferromagnetic nickel (II) oxide, unveiling strong spin-lattice correlations that renormalize the polarization of acoustic phonon. In particular, a clear magnetic scattering signature of the measured neutron scattering intensity from acoustic phonons is demonstrated by its momentum transfer and temperature dependences. The anomalous scattering intensity is successfully modeled with a modified magneto-vibrational scattering cross-section, suggesting the presence of spin precession driven by phonon. The renormalization of phonon eigenvector is indicated by the observed "geometry-forbidden" neutron scattering intensity from transverse acoustic phonon. Importantly, the eigenvector renormalization cannot be explained by magnetostriction but instead, it could result from the coupling between phonon and local magnetization of ions.The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat, has been a subject of continuing interests for decades. Despite its pivotal role in transport processes, the effect of spin-phonon coupling on the phonon system, especially acoustic phonon properties, has so far been elusive. By means of inelastic neutron scattering and first-principles calculations, anomalous scattering spectral intensity from acoustic phonons was identified in the exemplary collinear antiferromagnetic nickel (II) oxide, unveiling strong spin-lattice correlations that renormalize the polarization of acoustic phonon. In particular, a clear magnetic scattering signature of the measured neutron scattering intensity from acoustic phonons is demonstrated by its momentum transfer and temperature dependences. The anomalous scattering intensity is successfully modeled with a modified magneto-vibrational scattering cross-section, suggesting the presence of spin precession driven by phonon. The renormalization of phonon eigenvector is indicated by the observed "geometry-forbidden" neutron scattering intensity from transverse acoustic phonon. Importantly, the eigenvector renormalization cannot be explained by magnetostriction but instead, it could result from the coupling between phonon and local magnetization of ions. Nickel (II) oxide is a prominent candidate of antiferromagnetic spintronic applications, largely thanks to its high Néel temperature. We present scattering signatures of mutual driving interactions through strong spin-lattice coupling and acoustic phonon eigenvector renormalization in this important material for the first time. Our results provide an approach to identify and quantify strong spin-phonon interactions, shedding lights on engineering functional spintronic and spin-caloritronic materials through these interactions. The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat, has been a subject of continuing interests for decades. Despite its pivotal role in transport processes, the effect of spin-phonon coupling on the phonon system, especially acoustic phonon properties, has so far been elusive. By means of inelastic neutron scattering and first-principles calculations, anomalous scattering spectral intensity from acoustic phonons was identified in the exemplary collinear antiferromagnetic nickel (II) oxide, unveiling strong spin-lattice correlations that renormalize the polarization of acoustic phonon. In particular, a clear magnetic scattering signature of the measured neutron scattering intensity from acoustic phonons is demonstrated by its momentum transfer and temperature dependences. The anomalous scattering intensity is successfully modeled with a modified magneto-vibrational scattering cross-section, suggesting the presence of spin precession driven by phonon. The renormalization of phonon eigenvector is indicated by the observed “geometry-forbidden” neutron scattering intensity from transverse acoustic phonon. Importantly, the eigenvector renormalization cannot be explained by magnetostriction but instead, it could result from the coupling between phonon and local magnetization of ions. |
Author | Smith, Hillary Li, Chen Abernathy, Douglas L. Su, Yaokun Sun, Qiyang Wei, Bin Lin, Jiao Y. Y. |
Author_xml | – sequence: 1 givenname: Qiyang surname: Sun fullname: Sun, Qiyang – sequence: 2 givenname: Bin surname: Wei fullname: Wei, Bin – sequence: 3 givenname: Yaokun surname: Su fullname: Su, Yaokun – sequence: 4 givenname: Hillary surname: Smith fullname: Smith, Hillary – sequence: 5 givenname: Jiao Y. Y. surname: Lin fullname: Lin, Jiao Y. Y. – sequence: 6 givenname: Douglas L. surname: Abernathy fullname: Abernathy, Douglas L. – sequence: 7 givenname: Chen surname: Li fullname: Li, Chen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35858352$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1976008$$D View this record in Osti.gov |
BookMark | eNp1Uk1vEzEUtFARTQNnTqBVuZTDtv7ctS9IVUVLpCIucMXyet8mDht7sXcj4NfjNGmBSsiyLPnNzJv3cYKOfPCA0EuCzwmu2cXgTTqnhGIhGCHqCZoRrEhZcYWP0AxjWpeSU36MTlJaY4yVkPgZOmZCCskEnaGvH6dxMn2RBufLYRWyftFGt3V-WUDXgR1TYXxbHELgluC3-TfEIoIPcWN698uMLsecL7yz36AvzhaLt0X44Vp4jp52pk_w4vDO0Zfr95-vPpS3n24WV5e3peU1HkveUW5YYzpBOwYdU7ZSvCNcSSOrfNu2gcbw7KfhktoaN6yWjREWGmJEI9kcvdvrDlOzgdaCH6Pp9RDdxsSfOhin_414t9LLsNWKYY4ZywKne4GQRqeTdSPYlQ3e51o1UXWF8S7L2SFLDN8nSKPeuGSh742HMCVNK0VrUe0mM0dvHkHXYYo-9-AORRURlGfU679tP_i9n08GiD3AxpBShE5nZ3ftzlW4XhOsd9n0bg_0nz3IvItHvHvp_zNe7RnrlIf7AKc1yUdK9hu3EcCR |
CitedBy_id | crossref_primary_10_1088_2632_2153_ad79b6 crossref_primary_10_1016_j_mtphys_2023_101094 crossref_primary_10_1103_PhysRevB_111_104306 crossref_primary_10_1103_PhysRevB_110_064413 crossref_primary_10_1063_5_0239197 |
Cites_doi | 10.1088/1742-6596/92/1/012074 10.1038/nmat3099 10.1088/1361-6463/ab7efe 10.1103/PhysRevB.62.73 10.1103/PhysRevB.6.3447 10.1038/ncomms13146 10.1103/PhysRevLett.113.097202 10.1063/5.0047054 10.1103/PhysRevB.57.1505 10.1088/0953-8984/8/10/023 10.1103/PhysRevLett.124.145901 10.1103/PhysRevB.91.220410 10.1073/pnas.1707745115 10.1103/PhysRevLett.121.237202 10.1103/PhysRevB.23.5048 10.1088/0953-8984/6/45/026 10.1016/0927-0256(96)00008-0 10.1063/1.5009598 10.1016/j.scriptamat.2015.07.021 10.1093/oso/9780198862314.001.0001 10.1088/0953-8984/24/20/205601 10.1103/PhysRevMaterials.3.064405 10.1016/j.nima.2014.07.029 10.1103/PhysRevB.94.104421 10.1103/PhysRevB.96.100406 10.1103/PhysRevLett.117.207203 10.1038/nmat3301 10.1209/0295-5075/108/57005 10.1103/PhysRevB.57.7870 10.1103/PhysRevB.82.081104 10.1103/PhysRevB.81.241103 10.1021/acs.nanolett.0c03220 10.1103/PhysRevB.103.144430 10.1080/01418638108222351 10.1103/PhysRevB.94.184401 10.1103/PhysRevLett.125.077203 10.1103/PhysRevLett.121.175301 10.1017/S0305004100045229 10.1134/S0021364016140071 10.1038/s41567-018-0079-y 10.1103/PhysRevLett.108.176601 10.1063/1.342186 10.1103/PhysRev.110.836 10.1103/PhysRevLett.8.397 10.1103/PhysRevB.44.943 10.1038/nnano.2016.18 10.1103/PhysRevB.59.1758 10.1103/PhysRevB.100.014430 10.1103/PhysRev.50.58 10.1103/PhysRevLett.125.217201 10.1063/1.5082316 10.1039/c3ee43299h 10.1103/PhysRevB.94.121103 10.1103/PhysRevB.102.144438 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.50.17953 10.1063/1.4959573 10.1088/0022-3719/6/15/012 10.1143/JPSJ.43.885 10.1016/0921-4526(89)90092-6 |
ContentType | Journal Article |
Copyright | Copyright © 2022 the Author(s) Copyright National Academy of Sciences Jul 19, 2022 Copyright © 2022 the Author(s). Published by PNAS. 2022 |
Copyright_xml | – notice: Copyright © 2022 the Author(s) – notice: Copyright National Academy of Sciences Jul 19, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022 |
CorporateAuthor | Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS) |
CorporateAuthor_xml | – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS) |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OIOZB OTOTI 5PM |
DOI | 10.1073/pnas.2120553119 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 7 |
ExternalDocumentID | PMC9304033 1976008 35858352 10_1073_pnas_2120553119 27171788 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: 1750786 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JENOY JLS JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM RHF VQA YIF YIN 2AX 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD ABBHK AEUPB AEXZC C1K DCCCD FR3 H94 IPSME JAAYA JBMMH JHFFW JKQEH JLXEF JPM M7N P64 RC3 SA0 7X8 79B ABPTK ASUFR OIOZB OTOTI ZA5 5PM |
ID | FETCH-LOGICAL-c470t-4f24a3baf52f3ef39c694f1498a868a8ddbeba4ffeb482c70b378ba5ceb1a5b83 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:37:57 EDT 2025 Mon Jan 15 05:22:55 EST 2024 Fri Jul 11 00:11:28 EDT 2025 Fri Jul 25 10:19:34 EDT 2025 Wed Feb 19 02:25:50 EST 2025 Tue Jul 01 01:03:20 EDT 2025 Thu Apr 24 23:07:22 EDT 2025 Thu May 29 08:53:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Keywords | spin-phonon coupling anomalous inelastic neutron scattering intensity phonon dynamics phonon eigenvector renormalization |
Language | English |
License | This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c470t-4f24a3baf52f3ef39c694f1498a868a8ddbeba4ffeb482c70b378ba5ceb1a5b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE AC05-00OR22725; 1750786 National Science Foundation (NSF) Author contributions: C.L. designed research; Q.S., B.W., Y.S., H.S., D.L.A., and C.L. performed research; J.Y.Y.L. contributed new reagents/analytic tools; Q.S. and J.Y.Y.L. analyzed data; and Q.S., H.S., and C.L. wrote the paper. Edited by Sadamichi Maekawa, Rikagaku Kenkyujo, Saitama, Japan; received November 11, 2021; accepted June 1, 2022 by Editorial Board Member Zachary Fisk |
ORCID | 0000-0002-0758-5334 0000-0002-3533-003X 0000-0001-9233-0100 0000-0003-0125-1760 0000000301251760 0000000161557812 0000000192330100 000000023533003X 0000000207585334 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9304033 |
PMID | 35858352 |
PQID | 2692291524 |
PQPubID | 42026 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9304033 osti_scitechconnect_1976008 proquest_miscellaneous_2692756107 proquest_journals_2692291524 pubmed_primary_35858352 crossref_citationtrail_10_1073_pnas_2120553119 crossref_primary_10_1073_pnas_2120553119 jstor_primary_27171788 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-19 |
PublicationDateYYYYMMDD | 2022-07-19 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_48_2 doi: 10.1088/1742-6596/92/1/012074 – ident: e_1_3_4_1_2 doi: 10.1038/nmat3099 – ident: e_1_3_4_5_2 doi: 10.1088/1361-6463/ab7efe – ident: e_1_3_4_45_2 doi: 10.1103/PhysRevB.62.73 – ident: e_1_3_4_61_2 doi: 10.1103/PhysRevB.6.3447 – ident: e_1_3_4_19_2 doi: 10.1038/ncomms13146 – ident: e_1_3_4_11_2 doi: 10.1103/PhysRevLett.113.097202 – ident: e_1_3_4_29_2 doi: 10.1063/5.0047054 – ident: e_1_3_4_57_2 doi: 10.1103/PhysRevB.57.1505 – ident: e_1_3_4_32_2 doi: 10.1088/0953-8984/8/10/023 – ident: e_1_3_4_46_2 doi: 10.1103/PhysRevLett.124.145901 – ident: e_1_3_4_13_2 doi: 10.1103/PhysRevB.91.220410 – ident: e_1_3_4_50_2 doi: 10.1073/pnas.1707745115 – ident: e_1_3_4_4_2 doi: 10.1103/PhysRevLett.121.237202 – ident: e_1_3_4_55_2 doi: 10.1103/PhysRevB.23.5048 – ident: e_1_3_4_43_2 doi: 10.1088/0953-8984/6/45/026 – ident: e_1_3_4_52_2 doi: 10.1016/0927-0256(96)00008-0 – ident: e_1_3_4_22_2 doi: 10.1063/1.5009598 – ident: e_1_3_4_58_2 doi: 10.1016/j.scriptamat.2015.07.021 – ident: e_1_3_4_38_2 doi: 10.1093/oso/9780198862314.001.0001 – ident: e_1_3_4_33_2 doi: 10.1088/0953-8984/24/20/205601 – ident: e_1_3_4_40_2 doi: 10.1103/PhysRevMaterials.3.064405 – ident: e_1_3_4_49_2 doi: 10.1016/j.nima.2014.07.029 – ident: e_1_3_4_20_2 doi: 10.1103/PhysRevB.94.104421 – ident: e_1_3_4_26_2 doi: 10.1103/PhysRevB.96.100406 – ident: e_1_3_4_25_2 doi: 10.1103/PhysRevLett.117.207203 – ident: e_1_3_4_9_2 doi: 10.1038/nmat3301 – ident: e_1_3_4_12_2 doi: 10.1209/0295-5075/108/57005 – ident: e_1_3_4_44_2 doi: 10.1103/PhysRevB.57.7870 – ident: e_1_3_4_17_2 doi: 10.1103/PhysRevB.82.081104 – ident: e_1_3_4_16_2 doi: 10.1103/PhysRevB.81.241103 – ident: e_1_3_4_39_2 doi: 10.1021/acs.nanolett.0c03220 – ident: e_1_3_4_7_2 doi: 10.1103/PhysRevB.103.144430 – ident: e_1_3_4_60_2 doi: 10.1080/01418638108222351 – ident: e_1_3_4_3_2 doi: 10.1103/PhysRevB.94.184401 – ident: e_1_3_4_6_2 doi: 10.1103/PhysRevLett.125.077203 – ident: e_1_3_4_41_2 doi: 10.1103/PhysRevLett.121.175301 – ident: e_1_3_4_37_2 doi: 10.1017/S0305004100045229 – ident: e_1_3_4_15_2 doi: 10.1134/S0021364016140071 – ident: e_1_3_4_30_2 doi: 10.1038/s41567-018-0079-y – ident: e_1_3_4_2_2 doi: 10.1103/PhysRevLett.108.176601 – ident: e_1_3_4_23_2 doi: 10.1063/1.342186 – ident: e_1_3_4_24_2 doi: 10.1103/PhysRev.110.836 – ident: e_1_3_4_47_2 doi: 10.1103/PhysRevLett.8.397 – ident: e_1_3_4_56_2 doi: 10.1103/PhysRevB.44.943 – ident: e_1_3_4_8_2 doi: 10.1038/nnano.2016.18 – ident: e_1_3_4_35_2 – ident: e_1_3_4_54_2 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_3_4_42_2 doi: 10.1103/PhysRevB.100.014430 – ident: e_1_3_4_36_2 doi: 10.1103/PhysRev.50.58 – ident: e_1_3_4_28_2 doi: 10.1103/PhysRevLett.125.217201 – ident: e_1_3_4_21_2 doi: 10.1063/1.5082316 – ident: e_1_3_4_10_2 doi: 10.1039/c3ee43299h – ident: e_1_3_4_34_2 doi: 10.1103/PhysRevB.94.121103 – ident: e_1_3_4_27_2 doi: 10.1103/PhysRevB.102.144438 – ident: e_1_3_4_51_2 doi: 10.1103/PhysRevB.54.11169 – ident: e_1_3_4_53_2 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_3_4_14_2 doi: 10.1063/1.4959573 – ident: e_1_3_4_18_2 doi: 10.1088/0022-3719/6/15/012 – ident: e_1_3_4_59_2 doi: 10.1143/JPSJ.43.885 – ident: e_1_3_4_31_2 doi: 10.1016/0921-4526(89)90092-6 |
SSID | ssj0009580 |
Score | 2.4405901 |
Snippet | The physics of mutual interaction of phonon quasiparticles with electronic spin degrees of freedom, leading to unusual transport phenomena of spin and heat,... Nickel (II) oxide is a prominent candidate of antiferromagnetic spintronic applications, largely thanks to its high Néel temperature. We present scattering... |
SourceID | pubmedcentral osti proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Acoustic properties Acoustics anomalous inelastic neutron scattering intensity Antiferromagnetism Coupling Eigenvectors Electron spin Elementary excitations First principles Inelastic scattering Magnetostriction Momentum transfer Neutron scattering Neutrons Nickel phonon dynamics phonon eigenvector renormalization Phonons Physical Sciences PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Scattering cross sections spin-phonon coupling Transport phenomena Transport processes Wave dispersion |
Title | Mutual spin-phonon driving effects and phonon eigenvector renormalization in nickel (II) oxide |
URI | https://www.jstor.org/stable/27171788 https://www.ncbi.nlm.nih.gov/pubmed/35858352 https://www.proquest.com/docview/2692291524 https://www.proquest.com/docview/2692756107 https://www.osti.gov/servlets/purl/1976008 https://pubmed.ncbi.nlm.nih.gov/PMC9304033 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQNpCReOhUpaS28_U4EKhFWjXEJu2JyHYcLaJKpzZBwF_An835I0lbNmmgqlEVO07SO__uw3dnhN7kNCAqEokP0jXxWZFyPyFSwIwXVOZ5WBDjujidR9ML9ukyvBwMfm9ELTW1GMtfN-aV_A9V4RzQVWfJ_gNlu0HhBPwG-sIRKAzHO9H4tDHZH-vrsvJ1jDlQMl-VxkXQxmmYOgC2SenCm9-Nl360UpVWVhcuC1N7PaoSJvTCaJwz7StY_ijzrTihs07WrdvIgnnrSjzpE1McWqxH_uhs3m9z_KUx-Pa5_MmdsDTrQSaY4F1Z9d2MUODLb01_rvX-TPUWSS5u2XkqiIlqdXjYZg6ARGQ2Z3qsLOCCvuJHzG4Z2iFyf1Xjyjf9DfWATXp_4oqvxyB-gxDAxF22VVR7R9h1IYhm8T2mmR4g6we4h-4TMDiIgfjN8s2JTWZyb9AWiYrp250n2NJvbIgrSPsl4PVNNsxuKO6GbnP-CD10Rgk-sRy2jwaqeoz2W0LioatNfvwEfbUshzdYDjuWw47lMLAcdk0bLId3WA6XFbYsh4ez2TE27PYUXXz8cP5-6rstOnzJ4qCGyU0Yp4IXISmoKmgqo5QVYHUnPIngm-dCCc7g_oIBBsSAAHEieChBReChSOgB2oPHUc8RlnkkZKAKmacTJqKAF7QIAlHEMpRg1UYeGrd_bCZd_Xq9jcoiu4WUHhp2F1zb0i23dz0wlOr6kXgCnyTx0KEmXQbqqK6pLHXwmayzSarXs6H1qKVo5mABRo1SQlJQi5mHXnfNANp6JY5XatnYPrG2XGIPPbMM0N2aggGvzSIPxVus0XXQBeG3W6ryyhSGTymIZEpf3P3FD9GDfqYeob161aiXoGXX4pWZAH8AHnXThQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutual+spin-phonon+driving+effects+and+phonon+eigenvector+renormalization+in+nickel+%28II%29+oxide&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Sun%2C+Qiyang&rft.au=Wei%2C+Bin&rft.au=Su%2C+Yaokun&rft.au=Smith%2C+Hillary&rft.date=2022-07-19&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=29&rft_id=info:doi/10.1073%2Fpnas.2120553119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2120553119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |