Assessing climate change impacts on stream temperature in the Athabasca River Basin using SWAT equilibrium temperature model and its potential impacts on stream ecosystem
Stream temperatures, which influence dynamics and distributions of the aquatic species and kinetics of biochemical reactions, are expected to be altered by the climate change. Therefore, predicting the impacts of climate change on stream temperature is helpful for integrated water resources manageme...
Saved in:
Published in | The Science of the total environment Vol. 650; no. Pt 2; pp. 1872 - 1881 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
10.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Stream temperatures, which influence dynamics and distributions of the aquatic species and kinetics of biochemical reactions, are expected to be altered by the climate change. Therefore, predicting the impacts of climate change on stream temperature is helpful for integrated water resources management. In this study, our previously developed Soil and Water Assessment Tool (SWAT) equilibrium temperature model, which considers both the impacts of meteorological condition and hydrological processes, was used to assess the climate change impact on the stream temperature regimes in the Athabasca River Basin (ARB), a cold climate region watershed of western Canada. The streamflow and stream temperatures were calibrated and validated first in the baseline period, using multi-site observed data in the ARB. Then, climate change impact assessments were conducted based on three climate models under the Representative Concentration Pathways 4.6 and 8.5 scenarios. Results showed that warmer and wetter future condition would prevail in the ARB. As a result, streamflow in the basin would increase despite the projected increases in evapotranspiration due to warmer condition. On the basin scale, annual stream temperatures are expected to increase by 0.8 to 1.1 °C in mid-century and by 1.6 to 3.1 °C in late century. Moreover, the stream temperature changes showed a marked temporal pattern with the highest increases (2.0 to 7.4 °C) in summer. The increasing stream temperatures would affect water quality dynamics in the ARB by decreasing dissolved oxygen concentrations and increasing biochemical reaction rates in the streams. Such spatial-temporal changes in stream temperature regimes in future period would also affect aquatic species, thus require appropriate management measures to attenuate the impacts.
[Display omitted]
•Climate change impact on the stream temperature regimes in the Athabasca River Basin was assessed.•Stream temperatures are expected to increase in the basin due to the warmer climate.•Stream temperature changes showed marked temporal pattern with highest increases in summer.•Future warmer stream temperatures would affect the fish species and water quality dynamics. |
---|---|
AbstractList | Stream temperatures, which influence dynamics and distributions of the aquatic species and kinetics of biochemical reactions, are expected to be altered by the climate change. Therefore, predicting the impacts of climate change on stream temperature is helpful for integrated water resources management. In this study, our previously developed Soil and Water Assessment Tool (SWAT) equilibrium temperature model, which considers both the impacts of meteorological condition and hydrological processes, was used to assess the climate change impact on the stream temperature regimes in the Athabasca River Basin (ARB), a cold climate region watershed of western Canada. The streamflow and stream temperatures were calibrated and validated first in the baseline period, using multi-site observed data in the ARB. Then, climate change impact assessments were conducted based on three climate models under the Representative Concentration Pathways 4.6 and 8.5 scenarios. Results showed that warmer and wetter future condition would prevail in the ARB. As a result, streamflow in the basin would increase despite the projected increases in evapotranspiration due to warmer condition. On the basin scale, annual stream temperatures are expected to increase by 0.8 to 1.1 °C in mid-century and by 1.6 to 3.1 °C in late century. Moreover, the stream temperature changes showed a marked temporal pattern with the highest increases (2.0 to 7.4 °C) in summer. The increasing stream temperatures would affect water quality dynamics in the ARB by decreasing dissolved oxygen concentrations and increasing biochemical reaction rates in the streams. Such spatial-temporal changes in stream temperature regimes in future period would also affect aquatic species, thus require appropriate management measures to attenuate the impacts. Stream temperatures, which influence dynamics and distributions of the aquatic species and kinetics of biochemical reactions, are expected to be altered by the climate change. Therefore, predicting the impacts of climate change on stream temperature is helpful for integrated water resources management. In this study, our previously developed Soil and Water Assessment Tool (SWAT) equilibrium temperature model, which considers both the impacts of meteorological condition and hydrological processes, was used to assess the climate change impact on the stream temperature regimes in the Athabasca River Basin (ARB), a cold climate region watershed of western Canada. The streamflow and stream temperatures were calibrated and validated first in the baseline period, using multi-site observed data in the ARB. Then, climate change impact assessments were conducted based on three climate models under the Representative Concentration Pathways 4.6 and 8.5 scenarios. Results showed that warmer and wetter future condition would prevail in the ARB. As a result, streamflow in the basin would increase despite the projected increases in evapotranspiration due to warmer condition. On the basin scale, annual stream temperatures are expected to increase by 0.8 to 1.1 °C in mid-century and by 1.6 to 3.1 °C in late century. Moreover, the stream temperature changes showed a marked temporal pattern with the highest increases (2.0 to 7.4 °C) in summer. The increasing stream temperatures would affect water quality dynamics in the ARB by decreasing dissolved oxygen concentrations and increasing biochemical reaction rates in the streams. Such spatial-temporal changes in stream temperature regimes in future period would also affect aquatic species, thus require appropriate management measures to attenuate the impacts. [Display omitted] •Climate change impact on the stream temperature regimes in the Athabasca River Basin was assessed.•Stream temperatures are expected to increase in the basin due to the warmer climate.•Stream temperature changes showed marked temporal pattern with highest increases in summer.•Future warmer stream temperatures would affect the fish species and water quality dynamics. Stream temperatures, which influence dynamics and distributions of the aquatic species and kinetics of biochemical reactions, are expected to be altered by the climate change. Therefore, predicting the impacts of climate change on stream temperature is helpful for integrated water resources management. In this study, our previously developed Soil and Water Assessment Tool (SWAT) equilibrium temperature model, which considers both the impacts of meteorological condition and hydrological processes, was used to assess the climate change impact on the stream temperature regimes in the Athabasca River Basin (ARB), a cold climate region watershed of western Canada. The streamflow and stream temperatures were calibrated and validated first in the baseline period, using multi-site observed data in the ARB. Then, climate change impact assessments were conducted based on three climate models under the Representative Concentration Pathways 4.6 and 8.5 scenarios. Results showed that warmer and wetter future condition would prevail in the ARB. As a result, streamflow in the basin would increase despite the projected increases in evapotranspiration due to warmer condition. On the basin scale, annual stream temperatures are expected to increase by 0.8 to 1.1 °C in mid-century and by 1.6 to 3.1 °C in late century. Moreover, the stream temperature changes showed a marked temporal pattern with the highest increases (2.0 to 7.4 °C) in summer. The increasing stream temperatures would affect water quality dynamics in the ARB by decreasing dissolved oxygen concentrations and increasing biochemical reaction rates in the streams. Such spatial-temporal changes in stream temperature regimes in future period would also affect aquatic species, thus require appropriate management measures to attenuate the impacts.Stream temperatures, which influence dynamics and distributions of the aquatic species and kinetics of biochemical reactions, are expected to be altered by the climate change. Therefore, predicting the impacts of climate change on stream temperature is helpful for integrated water resources management. In this study, our previously developed Soil and Water Assessment Tool (SWAT) equilibrium temperature model, which considers both the impacts of meteorological condition and hydrological processes, was used to assess the climate change impact on the stream temperature regimes in the Athabasca River Basin (ARB), a cold climate region watershed of western Canada. The streamflow and stream temperatures were calibrated and validated first in the baseline period, using multi-site observed data in the ARB. Then, climate change impact assessments were conducted based on three climate models under the Representative Concentration Pathways 4.6 and 8.5 scenarios. Results showed that warmer and wetter future condition would prevail in the ARB. As a result, streamflow in the basin would increase despite the projected increases in evapotranspiration due to warmer condition. On the basin scale, annual stream temperatures are expected to increase by 0.8 to 1.1 °C in mid-century and by 1.6 to 3.1 °C in late century. Moreover, the stream temperature changes showed a marked temporal pattern with the highest increases (2.0 to 7.4 °C) in summer. The increasing stream temperatures would affect water quality dynamics in the ARB by decreasing dissolved oxygen concentrations and increasing biochemical reaction rates in the streams. Such spatial-temporal changes in stream temperature regimes in future period would also affect aquatic species, thus require appropriate management measures to attenuate the impacts. |
Author | Wang, Junye Shrestha, Narayan Kumar Du, Xinzhong |
Author_xml | – sequence: 1 givenname: Xinzhong surname: Du fullname: Du, Xinzhong – sequence: 2 givenname: Narayan Kumar surname: Shrestha fullname: Shrestha, Narayan Kumar – sequence: 3 givenname: Junye orcidid: 0000-0001-5562-1400 surname: Wang fullname: Wang, Junye email: junyew@athabascau.ca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30286353$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkctu1DAUhi1URKeFVwAv2STYuTj2gkWoykWqhARFLK0T56TjUeKktjNSX4mnxMO0SCCk4o0X_v7_yOc7IydudkjIK85yzrh4s8uDsXGO6PZ5wbjMmcrLqnpCNlw2KuOsECdkw1glMyVUc0rOQtixdBrJn5HTkhVSlHW5IT_aEDAE626oGe0EEanZgrtBaqcFTAx0djREjzDRiNOCHuLq06ujcYu0jVvoIBigX-wePX0HqYquv_q-fm-vKd6udrSdt-uf-WnucaTgemrTjOXwk2hh_MdUNHO4Cyn7nDwdYAz44v4-J9_eX15ffMyuPn_4dNFeZaZqWMyqXgkDtTJMiIaVFR-Gwqja1NXQS2F4JQFqZgQTdcc7XgAUICWYQvRlo4wqz8nrY-_i59sVQ9STDQbHERzOa9AFl6qui0Lx_0C5kDVnjUjoy3t07Sbs9eLTtv2dflCRgLdHwPg5BI-DToYh2tlFD3bUnOmDer3Tv9Xrg3rNlE7qU775K_8w4vFke0xi2ureoj9w6Az21qOJup_tox0_AcFR0gM |
CitedBy_id | crossref_primary_10_3390_app142310900 crossref_primary_10_1016_j_scitotenv_2019_01_239 crossref_primary_10_1007_s00704_023_04546_6 crossref_primary_10_1007_s40710_024_00716_4 crossref_primary_10_3390_w14081200 crossref_primary_10_1007_s10661_023_11070_7 crossref_primary_10_1016_j_envsoft_2023_105935 crossref_primary_10_3389_fenvs_2021_619092 crossref_primary_10_3390_w14091458 crossref_primary_10_1016_j_jhydrol_2021_126629 crossref_primary_10_1016_j_wsee_2021_04_001 crossref_primary_10_3390_app12083848 crossref_primary_10_1016_j_jhydrol_2020_125898 crossref_primary_10_1080_09613218_2021_1977908 crossref_primary_10_3389_fenvs_2021_723997 crossref_primary_10_1002_ece3_9056 crossref_primary_10_32438_WPE_23021 crossref_primary_10_2208_jscejhe_77_2_I_985 crossref_primary_10_1016_j_jglr_2020_10_009 crossref_primary_10_1007_s11442_025_2316_5 crossref_primary_10_1016_j_jhydrol_2020_125065 crossref_primary_10_5194_essd_15_2827_2023 crossref_primary_10_3390_w12010271 crossref_primary_10_3390_su13042193 crossref_primary_10_2139_ssrn_4192413 crossref_primary_10_3390_data8030048 crossref_primary_10_1016_j_jhydrol_2021_126016 crossref_primary_10_1038_s41598_022_12996_7 crossref_primary_10_3390_w12041112 crossref_primary_10_1007_s12665_019_8202_7 crossref_primary_10_1016_j_jhydrol_2021_127303 crossref_primary_10_3390_w12041075 crossref_primary_10_1016_j_jsames_2025_105420 crossref_primary_10_1029_2019WR025959 crossref_primary_10_1007_s10333_024_00994_6 crossref_primary_10_1007_s10661_022_10007_w crossref_primary_10_1016_j_atmosenv_2019_04_014 crossref_primary_10_1016_j_scitotenv_2020_139092 crossref_primary_10_1016_j_ecolmodel_2019_108718 crossref_primary_10_1016_j_watres_2019_115296 crossref_primary_10_3390_environments12010025 crossref_primary_10_3390_w11102130 crossref_primary_10_1016_j_engappai_2024_108605 crossref_primary_10_7831_ras_13_1_1 crossref_primary_10_1515_eng_2022_0027 crossref_primary_10_1080_19942060_2025_2450477 crossref_primary_10_3390_w13040518 crossref_primary_10_1007_s11356_022_22930_z crossref_primary_10_1016_j_jhydrol_2019_124513 crossref_primary_10_1002_rra_4072 crossref_primary_10_5194_hess_26_1063_2022 crossref_primary_10_1016_j_ejrh_2024_101682 crossref_primary_10_3390_jmse11020259 crossref_primary_10_1007_s11600_020_00480_7 crossref_primary_10_1016_j_aej_2020_02_017 crossref_primary_10_1016_j_jhydrol_2020_124952 crossref_primary_10_1007_s13201_023_01932_3 crossref_primary_10_1016_j_ecolind_2024_111918 crossref_primary_10_1016_j_ejrh_2021_100847 crossref_primary_10_1139_er_2018_0055 crossref_primary_10_1016_j_scitotenv_2020_139729 |
Cites_doi | 10.1080/014311600210191 10.1002/joc.4608 10.1016/j.scitotenv.2017.12.347 10.1002/hyp.10358 10.1175/BAMS-D-11-00094.1 10.1111/jawr.12182 10.1016/j.jhydrol.2016.11.034 10.1016/j.scitotenv.2017.05.013 10.1175/JHM-D-11-0138.1 10.1029/98WR01877 10.1007/s10584-012-0459-8 10.1016/j.gloenvcha.2012.11.002 10.1577/1548-8446(1995)020<0010:AFISFE>2.0.CO;2 10.1016/j.jhydrol.2007.01.008 10.1029/2011WR011256 10.1016/j.ecolmodel.2008.02.030 10.1175/2009BAMS2607.1 10.1002/wrcr.20248 10.1175/JCLI-D-15-0161.1 10.1002/hyp.9683 10.1002/hyp.10784 10.5194/hess-18-4897-2014 10.5194/hess-22-2343-2018 10.3390/w9050346 10.1016/j.ejrh.2018.01.003 10.1016/j.ecolmodel.2015.06.023 10.1111/j.1095-8649.2009.02380.x 10.1029/2010WR009198 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2018.09.344 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 1881 |
ExternalDocumentID | 30286353 10_1016_j_scitotenv_2018_09_344 S0048969718338130 |
Genre | Journal Article |
GeographicLocations | Canada |
GeographicLocations_xml | – name: Canada |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-4d96ca59c06670341ff2c95c54fd86c148aa50c6065b1b12aa2a88ac26d379c93 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 11:25:18 EDT 2025 Fri Jul 11 09:12:52 EDT 2025 Thu Apr 03 06:53:39 EDT 2025 Tue Jul 01 01:21:54 EDT 2025 Thu Apr 24 22:55:26 EDT 2025 Fri Feb 23 02:47:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt 2 |
Keywords | Equilibrium temperature approach Stream temperature modeling Climate change impact assessment |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-4d96ca59c06670341ff2c95c54fd86c148aa50c6065b1b12aa2a88ac26d379c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5562-1400 |
PMID | 30286353 |
PQID | 2116851076 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2189552291 proquest_miscellaneous_2116851076 pubmed_primary_30286353 crossref_citationtrail_10_1016_j_scitotenv_2018_09_344 crossref_primary_10_1016_j_scitotenv_2018_09_344 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_09_344 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-10 |
PublicationDateYYYYMMDD | 2019-02-10 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ficklin, Stewart, Maurer (bb0075) 2013; 49 Bustillo, Moatar, Ducharne, Thiéry, Poirel (bb0010) 2014; 28 Shrestha, Wang (bb0155) 2018 Zhu, Du, Luo (bb0185) 2018 Loveland, Reed, Brown, Ohlen, Zhu, Yang (bb0110) 2000; 21 Null, Viers, Deas, Tanaka, Mount (bb0135) 2013; 116 Murdock, Cannon, Sobie (bb0125) 2013 Caissie, Satish, El-Jabi (bb0015) 2007; 336 Hawkins, Sutton (bb0090) 2009; 90 van Vliet, Franssen, Yearsley, Ludwig, Haddeland, Lettenmaier (bb0180) 2013; 23 Lutz, ter Maat, Biemans, Shrestha, Wester, Immerzeel (bb0115) 2016; 36 Arnold, Kiniry, Srinivasan, William, Haney, Neitsch (bb9505) 2012 Eum, Dibike, Prowse (bb0065) 2017; 544 Ozaki, Fukushima, Kojiri (bb0140) 2008; 215 Edinger, Brady, Geyer (bb0060) 1974 Punzet, Voß, Voß, Kynast, Bärlund (bb0145) 2012; 13 Scinocca, Kharin, Jiao, Qian, Lazare, Solheim (bb0150) 2016; 29 Harvey (bb0085) 2009 Shrestha, Wang (bb0160) 2018; 625 Du, Shrestha, Ficklin, Wang (bb0050) 2018; 22 Armour (bb0005) 1993 Dibike, Eum, Prowse (bb0035) 2018; 15 Lebel, Maas, Powell (bb0105) 2011 Neitsch, Arnold, Kiniry, Williams (bb0130) 2011 Dile, Srinivasan (bb0040) 2014; 50 Eaton, McCormick, Goodno, O'brien, Stefany, Hondzo (bb0055) 1995; 20 Ficklin, Barnhart, Knouft, Stewart, Maurer, Letsinger (bb0080) 2014; 18 Shrestha, Du, Wang (bb0165) 2017; 601 Cao, Sun, Yearsley, Nijssen, Lettenmaier (bb0025) 2016; 30 Mohseni, Stefan, Erickson (bb0120) 1998; 34 Caldwell, Segura, Gull Laird, Sun, McNulty, Sandercock (bb0020) 2015; 29 Ficklin, Luo, Stewart, Maurer (bb0070) 2012; 48 van Vliet, Ludwig, Zwolsman, Weedon, Kabat (bb0175) 2011; 47 Taylor, Stouffer, Meehl (bb0170) 2011; 93 Cianfrani, Satizábal, Randin (bb0030) 2015; 313 Du, Su, Li, Zhang (bb0045) 2016; 44 Kwak, St-Hilaire, Chebana, Kim (bb0100) 2017; 9 Jonsson, Jonsson (bb0095) 2009; 75 Cao (10.1016/j.scitotenv.2018.09.344_bb0025) 2016; 30 Neitsch (10.1016/j.scitotenv.2018.09.344_bb0130) 2011 Kwak (10.1016/j.scitotenv.2018.09.344_bb0100) 2017; 9 Caldwell (10.1016/j.scitotenv.2018.09.344_bb0020) 2015; 29 Hawkins (10.1016/j.scitotenv.2018.09.344_bb0090) 2009; 90 Scinocca (10.1016/j.scitotenv.2018.09.344_bb0150) 2016; 29 Null (10.1016/j.scitotenv.2018.09.344_bb0135) 2013; 116 Taylor (10.1016/j.scitotenv.2018.09.344_bb0170) 2011; 93 Edinger (10.1016/j.scitotenv.2018.09.344_bb0060) 1974 Punzet (10.1016/j.scitotenv.2018.09.344_bb0145) 2012; 13 Eum (10.1016/j.scitotenv.2018.09.344_bb0065) 2017; 544 Ozaki (10.1016/j.scitotenv.2018.09.344_bb0140) 2008; 215 Bustillo (10.1016/j.scitotenv.2018.09.344_bb0010) 2014; 28 Murdock (10.1016/j.scitotenv.2018.09.344_bb0125) 2013 Arnold (10.1016/j.scitotenv.2018.09.344_bb9505) 2012 Caissie (10.1016/j.scitotenv.2018.09.344_bb0015) 2007; 336 Eaton (10.1016/j.scitotenv.2018.09.344_bb0055) 1995; 20 Loveland (10.1016/j.scitotenv.2018.09.344_bb0110) 2000; 21 Dile (10.1016/j.scitotenv.2018.09.344_bb0040) 2014; 50 Shrestha (10.1016/j.scitotenv.2018.09.344_bb0155) 2018 Shrestha (10.1016/j.scitotenv.2018.09.344_bb0160) 2018; 625 Zhu (10.1016/j.scitotenv.2018.09.344_bb0185) 2018 Du (10.1016/j.scitotenv.2018.09.344_bb0045) 2016; 44 Armour (10.1016/j.scitotenv.2018.09.344_bb0005) 1993 Ficklin (10.1016/j.scitotenv.2018.09.344_bb0080) 2014; 18 Lutz (10.1016/j.scitotenv.2018.09.344_bb0115) 2016; 36 Mohseni (10.1016/j.scitotenv.2018.09.344_bb0120) 1998; 34 Ficklin (10.1016/j.scitotenv.2018.09.344_bb0070) 2012; 48 Dibike (10.1016/j.scitotenv.2018.09.344_bb0035) 2018; 15 Du (10.1016/j.scitotenv.2018.09.344_bb0050) 2018; 22 Shrestha (10.1016/j.scitotenv.2018.09.344_bb0165) 2017; 601 van Vliet (10.1016/j.scitotenv.2018.09.344_bb0175) 2011; 47 Harvey (10.1016/j.scitotenv.2018.09.344_bb0085) 2009 Cianfrani (10.1016/j.scitotenv.2018.09.344_bb0030) 2015; 313 Jonsson (10.1016/j.scitotenv.2018.09.344_bb0095) 2009; 75 Ficklin (10.1016/j.scitotenv.2018.09.344_bb0075) 2013; 49 Lebel (10.1016/j.scitotenv.2018.09.344_bb0105) 2011 van Vliet (10.1016/j.scitotenv.2018.09.344_bb0180) 2013; 23 |
References_xml | – year: 2018 ident: bb0155 article-title: Modelling nitrous oxide (N2O) emission from soils using the Soil and Water Assessment Tool (SWAT) publication-title: 2018 SWAT Conference, 10–12 January 2018, Chennai, India – volume: 93 start-page: 485 year: 2011 end-page: 498 ident: bb0170 article-title: An overview of CMIP5 and the experiment design publication-title: Bull. Am. Meteorol. Soc. – volume: 49 start-page: 2765 year: 2013 end-page: 2782 ident: bb0075 article-title: Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California publication-title: Water Resour. Res. – volume: 9 start-page: 346 year: 2017 ident: bb0100 article-title: Summer season water temperature modeling under the climate change: case study for Fourchue River, Quebec, Canada publication-title: Water – year: 2011 ident: bb0130 article-title: Soil and Water Assessment Tool Theoretical Documentation Version 2009 – volume: 48 year: 2012 ident: bb0070 article-title: Development and application of a hydroclimatological stream temperature model within the Soil and Water Assessment Tool publication-title: Water Resour. Res. – volume: 50 start-page: 1226 year: 2014 end-page: 1241 ident: bb0040 article-title: Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: an application in the Blue Nile River Basin publication-title: J. Am. Water Resour. Assoc. – volume: 116 start-page: 149 year: 2013 end-page: 170 ident: bb0135 article-title: Stream temperature sensitivity to climate warming in California's Sierra Nevada: impacts to Coldwater habitat publication-title: Clim. Chang. – year: 2012 ident: bb9505 article-title: Soil and water assessment tool input/output documentation: Version 2012 – year: 2013 ident: bb0125 article-title: Statistical Downscaling of Future Climate Projections, Pacific Climate Impacts Consortium (PCIC) – volume: 625 start-page: 1030 year: 2018 end-page: 1045 ident: bb0160 article-title: Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate publication-title: Sci. Total Environ. – volume: 75 start-page: 2381 year: 2009 end-page: 2447 ident: bb0095 article-title: A review of the likely effects of climate change on anadromous Atlantic salmon publication-title: J. Fish Biol. – year: 1993 ident: bb0005 article-title: Evaluating Temperature Regimes for Protection of Walleye – volume: 21 start-page: 1303 year: 2000 end-page: 1330 ident: bb0110 article-title: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data publication-title: Int. J. Remote Sens. – year: 2011 ident: bb0105 article-title: Securing environmental flows in the Athabasca River publication-title: Report – volume: 36 start-page: 3988 year: 2016 end-page: 4005 ident: bb0115 article-title: Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach publication-title: Int. J. Climatol. – volume: 336 start-page: 303 year: 2007 end-page: 315 ident: bb0015 article-title: Predicting water temperatures using a deterministic model: application on Miramichi River catchments (New Brunswick, Canada) publication-title: J. Hydrol. – volume: 47 year: 2011 ident: bb0175 article-title: Global river temperatures and sensitivity to atmospheric warming and changes in river flow publication-title: Water Resour. Res. – volume: 601 start-page: 425 year: 2017 end-page: 440 ident: bb0165 article-title: Assessing climate change impacts on fresh water resources of the Athabasca River basin, Canada publication-title: Sci. Total Environ. – volume: 215 start-page: 159 year: 2008 end-page: 169 ident: bb0140 article-title: Simulation of the effects of the alteration of the river basin land use on river water temperature using the multi-layer mesh-typed runoff model publication-title: Ecol. Model. – volume: 20 start-page: 10 year: 1995 end-page: 18 ident: bb0055 article-title: A field information-based system for estimating fish temperature tolerances publication-title: Fisheries – volume: 30 start-page: 2286 year: 2016 end-page: 2304 ident: bb0025 article-title: Climate and land cover effects on the temperature of Puget Sound streams publication-title: Hydrol. Process. – volume: 544 start-page: 327 year: 2017 end-page: 342 ident: bb0065 article-title: Climate-induced alteration of hydrologic indicators in the Athabasca River Basin, Alberta, Canada publication-title: J. Hydrol. – year: 1974 ident: bb0060 article-title: Heat exchange and transport in the environment publication-title: Report No. 14. Johns Hopkins Univ., Baltimore, MD (USA) – volume: 29 start-page: 2196 year: 2015 end-page: 2211 ident: bb0020 article-title: Short-term stream water temperature observations permit rapid assessment of potential climate change impacts publication-title: Hydrol. Process. – volume: 15 start-page: 134 year: 2018 end-page: 148 ident: bb0035 article-title: Modelling the Athabasca watershed snow response to a changing climate publication-title: J. Hydrol. Reg. Stud. – volume: 90 start-page: 1095 year: 2009 end-page: 1107 ident: bb0090 article-title: The potential to narrow uncertainty in regional climate predictions publication-title: Bull. Am. Meteorol. Soc. – volume: 23 start-page: 450 year: 2013 end-page: 464 ident: bb0180 article-title: Global river discharge and water temperature under climate change publication-title: Glob. Environ. Chang. – volume: 22 start-page: 2343 year: 2018 end-page: 2357 ident: bb0050 article-title: Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model publication-title: Hydrol. Earth Syst. Sci. – year: 2009 ident: bb0085 article-title: A Biological Synopsis of Northern Pike ( – volume: 44 start-page: 247 year: 2016 end-page: 255 ident: bb0045 article-title: Modeling and evaluating of non-point source pollution in a semi-arid watershed: implications for watershed management publication-title: Clean: Soil, Air, Water – volume: 18 start-page: 4897 year: 2014 ident: bb0080 article-title: Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers publication-title: Hydrol. Earth Syst. Sci. – volume: 34 start-page: 2685 year: 1998 end-page: 2692 ident: bb0120 article-title: A nonlinear regression model for weekly stream temperatures publication-title: Water Resour. Res. – volume: 29 start-page: 17 year: 2016 end-page: 35 ident: bb0150 article-title: Coordinated global and regional climate modeling publication-title: J. Clim. – volume: 13 start-page: 1052 year: 2012 end-page: 1065 ident: bb0145 article-title: A global approach to assess the potential impact of climate change on stream water temperatures and related in-stream first-order decay rates publication-title: J. Hydrometeorol. – year: 2018 ident: bb0185 article-title: Incorporation of the simplified equilibrium temperature approach in a hydrodynamic and water quality model–CE-QUAL-W2 publication-title: Water Sci. Technol. Water Supply – volume: 313 start-page: 1 year: 2015 end-page: 12 ident: bb0030 article-title: A spatial modelling framework for assessing climate change impacts on freshwater ecosystems: response of brown trout (Salmo trutta L.) biomass to warming water temperature publication-title: Ecol. Model. – volume: 28 start-page: 1507 year: 2014 end-page: 1524 ident: bb0010 article-title: A multimodel comparison for assessing water temperatures under changing climate conditions via the equilibrium temperature concept: case study of the middle Loire River, France publication-title: Hydrol. Process. – volume: 21 start-page: 1303 year: 2000 ident: 10.1016/j.scitotenv.2018.09.344_bb0110 article-title: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data publication-title: Int. J. Remote Sens. doi: 10.1080/014311600210191 – volume: 36 start-page: 3988 year: 2016 ident: 10.1016/j.scitotenv.2018.09.344_bb0115 article-title: Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach publication-title: Int. J. Climatol. doi: 10.1002/joc.4608 – volume: 625 start-page: 1030 year: 2018 ident: 10.1016/j.scitotenv.2018.09.344_bb0160 article-title: Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.347 – volume: 29 start-page: 2196 year: 2015 ident: 10.1016/j.scitotenv.2018.09.344_bb0020 article-title: Short-term stream water temperature observations permit rapid assessment of potential climate change impacts publication-title: Hydrol. Process. doi: 10.1002/hyp.10358 – volume: 93 start-page: 485 year: 2011 ident: 10.1016/j.scitotenv.2018.09.344_bb0170 article-title: An overview of CMIP5 and the experiment design publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-11-00094.1 – volume: 50 start-page: 1226 year: 2014 ident: 10.1016/j.scitotenv.2018.09.344_bb0040 article-title: Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: an application in the Blue Nile River Basin publication-title: J. Am. Water Resour. Assoc. doi: 10.1111/jawr.12182 – volume: 544 start-page: 327 year: 2017 ident: 10.1016/j.scitotenv.2018.09.344_bb0065 article-title: Climate-induced alteration of hydrologic indicators in the Athabasca River Basin, Alberta, Canada publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.11.034 – volume: 601 start-page: 425 year: 2017 ident: 10.1016/j.scitotenv.2018.09.344_bb0165 article-title: Assessing climate change impacts on fresh water resources of the Athabasca River basin, Canada publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.05.013 – year: 1993 ident: 10.1016/j.scitotenv.2018.09.344_bb0005 – volume: 13 start-page: 1052 year: 2012 ident: 10.1016/j.scitotenv.2018.09.344_bb0145 article-title: A global approach to assess the potential impact of climate change on stream water temperatures and related in-stream first-order decay rates publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-11-0138.1 – year: 2018 ident: 10.1016/j.scitotenv.2018.09.344_bb0155 article-title: Modelling nitrous oxide (N2O) emission from soils using the Soil and Water Assessment Tool (SWAT) – year: 2012 ident: 10.1016/j.scitotenv.2018.09.344_bb9505 – volume: 34 start-page: 2685 year: 1998 ident: 10.1016/j.scitotenv.2018.09.344_bb0120 article-title: A nonlinear regression model for weekly stream temperatures publication-title: Water Resour. Res. doi: 10.1029/98WR01877 – volume: 116 start-page: 149 year: 2013 ident: 10.1016/j.scitotenv.2018.09.344_bb0135 article-title: Stream temperature sensitivity to climate warming in California's Sierra Nevada: impacts to Coldwater habitat publication-title: Clim. Chang. doi: 10.1007/s10584-012-0459-8 – year: 2011 ident: 10.1016/j.scitotenv.2018.09.344_bb0130 – volume: 23 start-page: 450 year: 2013 ident: 10.1016/j.scitotenv.2018.09.344_bb0180 article-title: Global river discharge and water temperature under climate change publication-title: Glob. Environ. Chang. doi: 10.1016/j.gloenvcha.2012.11.002 – volume: 20 start-page: 10 year: 1995 ident: 10.1016/j.scitotenv.2018.09.344_bb0055 article-title: A field information-based system for estimating fish temperature tolerances publication-title: Fisheries doi: 10.1577/1548-8446(1995)020<0010:AFISFE>2.0.CO;2 – volume: 336 start-page: 303 year: 2007 ident: 10.1016/j.scitotenv.2018.09.344_bb0015 article-title: Predicting water temperatures using a deterministic model: application on Miramichi River catchments (New Brunswick, Canada) publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.01.008 – volume: 48 year: 2012 ident: 10.1016/j.scitotenv.2018.09.344_bb0070 article-title: Development and application of a hydroclimatological stream temperature model within the Soil and Water Assessment Tool publication-title: Water Resour. Res. doi: 10.1029/2011WR011256 – volume: 215 start-page: 159 year: 2008 ident: 10.1016/j.scitotenv.2018.09.344_bb0140 article-title: Simulation of the effects of the alteration of the river basin land use on river water temperature using the multi-layer mesh-typed runoff model publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2008.02.030 – volume: 90 start-page: 1095 year: 2009 ident: 10.1016/j.scitotenv.2018.09.344_bb0090 article-title: The potential to narrow uncertainty in regional climate predictions publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/2009BAMS2607.1 – year: 2009 ident: 10.1016/j.scitotenv.2018.09.344_bb0085 – year: 2018 ident: 10.1016/j.scitotenv.2018.09.344_bb0185 article-title: Incorporation of the simplified equilibrium temperature approach in a hydrodynamic and water quality model–CE-QUAL-W2 publication-title: Water Sci. Technol. Water Supply – volume: 49 start-page: 2765 year: 2013 ident: 10.1016/j.scitotenv.2018.09.344_bb0075 article-title: Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California publication-title: Water Resour. Res. doi: 10.1002/wrcr.20248 – volume: 29 start-page: 17 year: 2016 ident: 10.1016/j.scitotenv.2018.09.344_bb0150 article-title: Coordinated global and regional climate modeling publication-title: J. Clim. doi: 10.1175/JCLI-D-15-0161.1 – volume: 28 start-page: 1507 year: 2014 ident: 10.1016/j.scitotenv.2018.09.344_bb0010 article-title: A multimodel comparison for assessing water temperatures under changing climate conditions via the equilibrium temperature concept: case study of the middle Loire River, France publication-title: Hydrol. Process. doi: 10.1002/hyp.9683 – volume: 30 start-page: 2286 year: 2016 ident: 10.1016/j.scitotenv.2018.09.344_bb0025 article-title: Climate and land cover effects on the temperature of Puget Sound streams publication-title: Hydrol. Process. doi: 10.1002/hyp.10784 – volume: 18 start-page: 4897 year: 2014 ident: 10.1016/j.scitotenv.2018.09.344_bb0080 article-title: Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-18-4897-2014 – year: 1974 ident: 10.1016/j.scitotenv.2018.09.344_bb0060 article-title: Heat exchange and transport in the environment – volume: 22 start-page: 2343 year: 2018 ident: 10.1016/j.scitotenv.2018.09.344_bb0050 article-title: Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-22-2343-2018 – year: 2011 ident: 10.1016/j.scitotenv.2018.09.344_bb0105 article-title: Securing environmental flows in the Athabasca River – volume: 9 start-page: 346 year: 2017 ident: 10.1016/j.scitotenv.2018.09.344_bb0100 article-title: Summer season water temperature modeling under the climate change: case study for Fourchue River, Quebec, Canada publication-title: Water doi: 10.3390/w9050346 – year: 2013 ident: 10.1016/j.scitotenv.2018.09.344_bb0125 – volume: 15 start-page: 134 year: 2018 ident: 10.1016/j.scitotenv.2018.09.344_bb0035 article-title: Modelling the Athabasca watershed snow response to a changing climate publication-title: J. Hydrol. Reg. Stud. doi: 10.1016/j.ejrh.2018.01.003 – volume: 44 start-page: 247 year: 2016 ident: 10.1016/j.scitotenv.2018.09.344_bb0045 article-title: Modeling and evaluating of non-point source pollution in a semi-arid watershed: implications for watershed management publication-title: Clean: Soil, Air, Water – volume: 313 start-page: 1 year: 2015 ident: 10.1016/j.scitotenv.2018.09.344_bb0030 article-title: A spatial modelling framework for assessing climate change impacts on freshwater ecosystems: response of brown trout (Salmo trutta L.) biomass to warming water temperature publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2015.06.023 – volume: 75 start-page: 2381 year: 2009 ident: 10.1016/j.scitotenv.2018.09.344_bb0095 article-title: A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow publication-title: J. Fish Biol. doi: 10.1111/j.1095-8649.2009.02380.x – volume: 47 year: 2011 ident: 10.1016/j.scitotenv.2018.09.344_bb0175 article-title: Global river temperatures and sensitivity to atmospheric warming and changes in river flow publication-title: Water Resour. Res. doi: 10.1029/2010WR009198 |
SSID | ssj0000781 |
Score | 2.5130804 |
Snippet | Stream temperatures, which influence dynamics and distributions of the aquatic species and kinetics of biochemical reactions, are expected to be altered by the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1872 |
SubjectTerms | aquatic organisms basins Canada chemical reactions climate change Climate change impact assessment climate models cold cold zones dissolved oxygen ecosystems Equilibrium temperature approach evapotranspiration meteorological parameters prediction Soil and Water Assessment Tool model stream flow Stream temperature modeling streams summer water management water quality water temperature watersheds |
Title | Assessing climate change impacts on stream temperature in the Athabasca River Basin using SWAT equilibrium temperature model and its potential impacts on stream ecosystem |
URI | https://dx.doi.org/10.1016/j.scitotenv.2018.09.344 https://www.ncbi.nlm.nih.gov/pubmed/30286353 https://www.proquest.com/docview/2116851076 https://www.proquest.com/docview/2189552291 |
Volume | 650 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VrZCQECoLheWjMhLX0MSxE5vbUrVaWNFDadXeLNtx1KAlu7AJUi_9QfxKxnGy1UqUHjhFiWzHyoxn3sTzxgDvZGksGv48ynlSRkwLFhnr0sglBeWuEFQbT3D-cpJNz9nnS365BYcDF8anVfa2P9j0zlr3Tw76r3mwrCrP8WVCZhKNK4ZZaIo9g53lXsvf39ymefhiNmGXGRc2tt7I8cJxmwVi018-x0v4gqcpY3d5qLsQaOeJjnfhcQ8hySTM8glsuXoED8Khktcj2Du65a5hs37xrkbwKPyiI4F59BR-hw1f9F3EzitEro4EGjAJ1MkVWdTEc0n0d-IrWPXll0lVE0SNZNJcafSBVpNTn9tBPmocirTdeF8vJmfE_WirjlHQbvbvDt8hui5Ihe9Y-i-DZmb-l7diaBwqTT-D8-Ojs8Np1B_dEFmWx03ECplZzaX1ObQxesqypFZyy1lZiMxiDKY1jy1GT9wkJqFaUy2EtjQr0lxame7Bdr2o3QsgOrVUcEtRzoZxU5gSoxwnrHY0KXPKxpAN4lK2r2vuj9eYqyGB7Ztay1l5OatYKpTzGOJ1x2Uo7XF_lw-DPqgNLVXogO7v_HbQIIVr2G_M6Not2pXCIDxD5Bvn2b_aCMkRLMtkDM-D-q1nnSJIROCYvvyf6b2Ch3gnfUZ6Er-G7eZn694g4GrMfrei9mFn8mk2PfHX2enF7A_hPzJV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED6NTohJCEFh0DHASLxGSxw7sXnrpk0d2_oAndib5TiOCCppRxMk_hK_knOcdKq0sQdek5xj-ey775L77gA-yCIzaPjTIOVRETAtWJAZGwc2yim3uaA6cwTni2kyuWSfrvjVFhz1XBiXVtnZfm_TW2vdXTnoVvNgWZaO48uETCQaVwyz0BQ_gG1XnYoPYHt8ejaZ3hjkVPjGeQzPNgpspHnh0PUC4ekvl-YlXM3TmLG7nNRdILR1RidP4UmHIsnYT_QZbNlqCA99X8nfQ9g9vqGv4WPd-V0N4bH_Skc8-eg5_PH_fNF9ETMvEbxa4pnAxLMnV2RREUcn0T-IK2LVVWAmZUUQOJJx_U2jGzSafHbpHeRQ41Ckacf78nU8I_a6KVtSQbMp3_bfIbrKSYnvWLqVQUszv-WtGB37YtMv4PLkeHY0CbruDYFhaVgHLJeJ0Vwal0YborMsCmokN5wVuUgMhmFa89BgAMWzKIuo1lQLoQ1N8jiVRsa7MKgWlX0FRMeGCm4oqjpjPMuzAgMdK4y2NCpSykaQ9OpSpitt7jpszFWfw_ZdrfWsnJ5VKBXqeQThWnDpq3vcL_Kx3w9qY6Mq9EH3C7_vd5DCY-z-zejKLpqVwjg8QfAbpsm_nhGSI16W0Qhe-u23nnWMOBGxY7z3P9N7B48ms4tzdX46PXsNO3hHugT1KNyHQf2zsW8Qf9XZ2-58_QWepDNj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+climate+change+impacts+on+stream+temperature+in+the+Athabasca+River+Basin+using+SWAT+equilibrium+temperature+model+and+its+potential+impacts+on+stream+ecosystem&rft.jtitle=The+Science+of+the+total+environment&rft.au=Du%2C+Xinzhong&rft.au=Shrestha%2C+Narayan+Kumar&rft.au=Wang%2C+Junye&rft.date=2019-02-10&rft.issn=0048-9697&rft.volume=650&rft.spage=1872&rft.epage=1881&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.09.344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2018_09_344 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |