Assessing climate change impacts on stream temperature in the Athabasca River Basin using SWAT equilibrium temperature model and its potential impacts on stream ecosystem

Stream temperatures, which influence dynamics and distributions of the aquatic species and kinetics of biochemical reactions, are expected to be altered by the climate change. Therefore, predicting the impacts of climate change on stream temperature is helpful for integrated water resources manageme...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 650; no. Pt 2; pp. 1872 - 1881
Main Authors Du, Xinzhong, Shrestha, Narayan Kumar, Wang, Junye
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 10.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Stream temperatures, which influence dynamics and distributions of the aquatic species and kinetics of biochemical reactions, are expected to be altered by the climate change. Therefore, predicting the impacts of climate change on stream temperature is helpful for integrated water resources management. In this study, our previously developed Soil and Water Assessment Tool (SWAT) equilibrium temperature model, which considers both the impacts of meteorological condition and hydrological processes, was used to assess the climate change impact on the stream temperature regimes in the Athabasca River Basin (ARB), a cold climate region watershed of western Canada. The streamflow and stream temperatures were calibrated and validated first in the baseline period, using multi-site observed data in the ARB. Then, climate change impact assessments were conducted based on three climate models under the Representative Concentration Pathways 4.6 and 8.5 scenarios. Results showed that warmer and wetter future condition would prevail in the ARB. As a result, streamflow in the basin would increase despite the projected increases in evapotranspiration due to warmer condition. On the basin scale, annual stream temperatures are expected to increase by 0.8 to 1.1 °C in mid-century and by 1.6 to 3.1 °C in late century. Moreover, the stream temperature changes showed a marked temporal pattern with the highest increases (2.0 to 7.4 °C) in summer. The increasing stream temperatures would affect water quality dynamics in the ARB by decreasing dissolved oxygen concentrations and increasing biochemical reaction rates in the streams. Such spatial-temporal changes in stream temperature regimes in future period would also affect aquatic species, thus require appropriate management measures to attenuate the impacts. [Display omitted] •Climate change impact on the stream temperature regimes in the Athabasca River Basin was assessed.•Stream temperatures are expected to increase in the basin due to the warmer climate.•Stream temperature changes showed marked temporal pattern with highest increases in summer.•Future warmer stream temperatures would affect the fish species and water quality dynamics.
AbstractList Stream temperatures, which influence dynamics and distributions of the aquatic species and kinetics of biochemical reactions, are expected to be altered by the climate change. Therefore, predicting the impacts of climate change on stream temperature is helpful for integrated water resources management. In this study, our previously developed Soil and Water Assessment Tool (SWAT) equilibrium temperature model, which considers both the impacts of meteorological condition and hydrological processes, was used to assess the climate change impact on the stream temperature regimes in the Athabasca River Basin (ARB), a cold climate region watershed of western Canada. The streamflow and stream temperatures were calibrated and validated first in the baseline period, using multi-site observed data in the ARB. Then, climate change impact assessments were conducted based on three climate models under the Representative Concentration Pathways 4.6 and 8.5 scenarios. Results showed that warmer and wetter future condition would prevail in the ARB. As a result, streamflow in the basin would increase despite the projected increases in evapotranspiration due to warmer condition. On the basin scale, annual stream temperatures are expected to increase by 0.8 to 1.1 °C in mid-century and by 1.6 to 3.1 °C in late century. Moreover, the stream temperature changes showed a marked temporal pattern with the highest increases (2.0 to 7.4 °C) in summer. The increasing stream temperatures would affect water quality dynamics in the ARB by decreasing dissolved oxygen concentrations and increasing biochemical reaction rates in the streams. Such spatial-temporal changes in stream temperature regimes in future period would also affect aquatic species, thus require appropriate management measures to attenuate the impacts.
Stream temperatures, which influence dynamics and distributions of the aquatic species and kinetics of biochemical reactions, are expected to be altered by the climate change. Therefore, predicting the impacts of climate change on stream temperature is helpful for integrated water resources management. In this study, our previously developed Soil and Water Assessment Tool (SWAT) equilibrium temperature model, which considers both the impacts of meteorological condition and hydrological processes, was used to assess the climate change impact on the stream temperature regimes in the Athabasca River Basin (ARB), a cold climate region watershed of western Canada. The streamflow and stream temperatures were calibrated and validated first in the baseline period, using multi-site observed data in the ARB. Then, climate change impact assessments were conducted based on three climate models under the Representative Concentration Pathways 4.6 and 8.5 scenarios. Results showed that warmer and wetter future condition would prevail in the ARB. As a result, streamflow in the basin would increase despite the projected increases in evapotranspiration due to warmer condition. On the basin scale, annual stream temperatures are expected to increase by 0.8 to 1.1 °C in mid-century and by 1.6 to 3.1 °C in late century. Moreover, the stream temperature changes showed a marked temporal pattern with the highest increases (2.0 to 7.4 °C) in summer. The increasing stream temperatures would affect water quality dynamics in the ARB by decreasing dissolved oxygen concentrations and increasing biochemical reaction rates in the streams. Such spatial-temporal changes in stream temperature regimes in future period would also affect aquatic species, thus require appropriate management measures to attenuate the impacts. [Display omitted] •Climate change impact on the stream temperature regimes in the Athabasca River Basin was assessed.•Stream temperatures are expected to increase in the basin due to the warmer climate.•Stream temperature changes showed marked temporal pattern with highest increases in summer.•Future warmer stream temperatures would affect the fish species and water quality dynamics.
Stream temperatures, which influence dynamics and distributions of the aquatic species and kinetics of biochemical reactions, are expected to be altered by the climate change. Therefore, predicting the impacts of climate change on stream temperature is helpful for integrated water resources management. In this study, our previously developed Soil and Water Assessment Tool (SWAT) equilibrium temperature model, which considers both the impacts of meteorological condition and hydrological processes, was used to assess the climate change impact on the stream temperature regimes in the Athabasca River Basin (ARB), a cold climate region watershed of western Canada. The streamflow and stream temperatures were calibrated and validated first in the baseline period, using multi-site observed data in the ARB. Then, climate change impact assessments were conducted based on three climate models under the Representative Concentration Pathways 4.6 and 8.5 scenarios. Results showed that warmer and wetter future condition would prevail in the ARB. As a result, streamflow in the basin would increase despite the projected increases in evapotranspiration due to warmer condition. On the basin scale, annual stream temperatures are expected to increase by 0.8 to 1.1 °C in mid-century and by 1.6 to 3.1 °C in late century. Moreover, the stream temperature changes showed a marked temporal pattern with the highest increases (2.0 to 7.4 °C) in summer. The increasing stream temperatures would affect water quality dynamics in the ARB by decreasing dissolved oxygen concentrations and increasing biochemical reaction rates in the streams. Such spatial-temporal changes in stream temperature regimes in future period would also affect aquatic species, thus require appropriate management measures to attenuate the impacts.Stream temperatures, which influence dynamics and distributions of the aquatic species and kinetics of biochemical reactions, are expected to be altered by the climate change. Therefore, predicting the impacts of climate change on stream temperature is helpful for integrated water resources management. In this study, our previously developed Soil and Water Assessment Tool (SWAT) equilibrium temperature model, which considers both the impacts of meteorological condition and hydrological processes, was used to assess the climate change impact on the stream temperature regimes in the Athabasca River Basin (ARB), a cold climate region watershed of western Canada. The streamflow and stream temperatures were calibrated and validated first in the baseline period, using multi-site observed data in the ARB. Then, climate change impact assessments were conducted based on three climate models under the Representative Concentration Pathways 4.6 and 8.5 scenarios. Results showed that warmer and wetter future condition would prevail in the ARB. As a result, streamflow in the basin would increase despite the projected increases in evapotranspiration due to warmer condition. On the basin scale, annual stream temperatures are expected to increase by 0.8 to 1.1 °C in mid-century and by 1.6 to 3.1 °C in late century. Moreover, the stream temperature changes showed a marked temporal pattern with the highest increases (2.0 to 7.4 °C) in summer. The increasing stream temperatures would affect water quality dynamics in the ARB by decreasing dissolved oxygen concentrations and increasing biochemical reaction rates in the streams. Such spatial-temporal changes in stream temperature regimes in future period would also affect aquatic species, thus require appropriate management measures to attenuate the impacts.
Author Wang, Junye
Shrestha, Narayan Kumar
Du, Xinzhong
Author_xml – sequence: 1
  givenname: Xinzhong
  surname: Du
  fullname: Du, Xinzhong
– sequence: 2
  givenname: Narayan Kumar
  surname: Shrestha
  fullname: Shrestha, Narayan Kumar
– sequence: 3
  givenname: Junye
  orcidid: 0000-0001-5562-1400
  surname: Wang
  fullname: Wang, Junye
  email: junyew@athabascau.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30286353$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAUhi1URKeFVwAv2STYuTj2gkWoykWqhARFLK0T56TjUeKktjNSX4mnxMO0SCCk4o0X_v7_yOc7IydudkjIK85yzrh4s8uDsXGO6PZ5wbjMmcrLqnpCNlw2KuOsECdkw1glMyVUc0rOQtixdBrJn5HTkhVSlHW5IT_aEDAE626oGe0EEanZgrtBaqcFTAx0djREjzDRiNOCHuLq06ujcYu0jVvoIBigX-wePX0HqYquv_q-fm-vKd6udrSdt-uf-WnucaTgemrTjOXwk2hh_MdUNHO4Cyn7nDwdYAz44v4-J9_eX15ffMyuPn_4dNFeZaZqWMyqXgkDtTJMiIaVFR-Gwqja1NXQS2F4JQFqZgQTdcc7XgAUICWYQvRlo4wqz8nrY-_i59sVQ9STDQbHERzOa9AFl6qui0Lx_0C5kDVnjUjoy3t07Sbs9eLTtv2dflCRgLdHwPg5BI-DToYh2tlFD3bUnOmDer3Tv9Xrg3rNlE7qU775K_8w4vFke0xi2ureoj9w6Az21qOJup_tox0_AcFR0gM
CitedBy_id crossref_primary_10_3390_app142310900
crossref_primary_10_1016_j_scitotenv_2019_01_239
crossref_primary_10_1007_s00704_023_04546_6
crossref_primary_10_1007_s40710_024_00716_4
crossref_primary_10_3390_w14081200
crossref_primary_10_1007_s10661_023_11070_7
crossref_primary_10_1016_j_envsoft_2023_105935
crossref_primary_10_3389_fenvs_2021_619092
crossref_primary_10_3390_w14091458
crossref_primary_10_1016_j_jhydrol_2021_126629
crossref_primary_10_1016_j_wsee_2021_04_001
crossref_primary_10_3390_app12083848
crossref_primary_10_1016_j_jhydrol_2020_125898
crossref_primary_10_1080_09613218_2021_1977908
crossref_primary_10_3389_fenvs_2021_723997
crossref_primary_10_1002_ece3_9056
crossref_primary_10_32438_WPE_23021
crossref_primary_10_2208_jscejhe_77_2_I_985
crossref_primary_10_1016_j_jglr_2020_10_009
crossref_primary_10_1007_s11442_025_2316_5
crossref_primary_10_1016_j_jhydrol_2020_125065
crossref_primary_10_5194_essd_15_2827_2023
crossref_primary_10_3390_w12010271
crossref_primary_10_3390_su13042193
crossref_primary_10_2139_ssrn_4192413
crossref_primary_10_3390_data8030048
crossref_primary_10_1016_j_jhydrol_2021_126016
crossref_primary_10_1038_s41598_022_12996_7
crossref_primary_10_3390_w12041112
crossref_primary_10_1007_s12665_019_8202_7
crossref_primary_10_1016_j_jhydrol_2021_127303
crossref_primary_10_3390_w12041075
crossref_primary_10_1016_j_jsames_2025_105420
crossref_primary_10_1029_2019WR025959
crossref_primary_10_1007_s10333_024_00994_6
crossref_primary_10_1007_s10661_022_10007_w
crossref_primary_10_1016_j_atmosenv_2019_04_014
crossref_primary_10_1016_j_scitotenv_2020_139092
crossref_primary_10_1016_j_ecolmodel_2019_108718
crossref_primary_10_1016_j_watres_2019_115296
crossref_primary_10_3390_environments12010025
crossref_primary_10_3390_w11102130
crossref_primary_10_1016_j_engappai_2024_108605
crossref_primary_10_7831_ras_13_1_1
crossref_primary_10_1515_eng_2022_0027
crossref_primary_10_1080_19942060_2025_2450477
crossref_primary_10_3390_w13040518
crossref_primary_10_1007_s11356_022_22930_z
crossref_primary_10_1016_j_jhydrol_2019_124513
crossref_primary_10_1002_rra_4072
crossref_primary_10_5194_hess_26_1063_2022
crossref_primary_10_1016_j_ejrh_2024_101682
crossref_primary_10_3390_jmse11020259
crossref_primary_10_1007_s11600_020_00480_7
crossref_primary_10_1016_j_aej_2020_02_017
crossref_primary_10_1016_j_jhydrol_2020_124952
crossref_primary_10_1007_s13201_023_01932_3
crossref_primary_10_1016_j_ecolind_2024_111918
crossref_primary_10_1016_j_ejrh_2021_100847
crossref_primary_10_1139_er_2018_0055
crossref_primary_10_1016_j_scitotenv_2020_139729
Cites_doi 10.1080/014311600210191
10.1002/joc.4608
10.1016/j.scitotenv.2017.12.347
10.1002/hyp.10358
10.1175/BAMS-D-11-00094.1
10.1111/jawr.12182
10.1016/j.jhydrol.2016.11.034
10.1016/j.scitotenv.2017.05.013
10.1175/JHM-D-11-0138.1
10.1029/98WR01877
10.1007/s10584-012-0459-8
10.1016/j.gloenvcha.2012.11.002
10.1577/1548-8446(1995)020<0010:AFISFE>2.0.CO;2
10.1016/j.jhydrol.2007.01.008
10.1029/2011WR011256
10.1016/j.ecolmodel.2008.02.030
10.1175/2009BAMS2607.1
10.1002/wrcr.20248
10.1175/JCLI-D-15-0161.1
10.1002/hyp.9683
10.1002/hyp.10784
10.5194/hess-18-4897-2014
10.5194/hess-22-2343-2018
10.3390/w9050346
10.1016/j.ejrh.2018.01.003
10.1016/j.ecolmodel.2015.06.023
10.1111/j.1095-8649.2009.02380.x
10.1029/2010WR009198
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2018.09.344
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 1881
ExternalDocumentID 30286353
10_1016_j_scitotenv_2018_09_344
S0048969718338130
Genre Journal Article
GeographicLocations Canada
GeographicLocations_xml – name: Canada
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c470t-4d96ca59c06670341ff2c95c54fd86c148aa50c6065b1b12aa2a88ac26d379c93
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Jul 11 11:25:18 EDT 2025
Fri Jul 11 09:12:52 EDT 2025
Thu Apr 03 06:53:39 EDT 2025
Tue Jul 01 01:21:54 EDT 2025
Thu Apr 24 22:55:26 EDT 2025
Fri Feb 23 02:47:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords Equilibrium temperature approach
Stream temperature modeling
Climate change impact assessment
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-4d96ca59c06670341ff2c95c54fd86c148aa50c6065b1b12aa2a88ac26d379c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5562-1400
PMID 30286353
PQID 2116851076
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2189552291
proquest_miscellaneous_2116851076
pubmed_primary_30286353
crossref_citationtrail_10_1016_j_scitotenv_2018_09_344
crossref_primary_10_1016_j_scitotenv_2018_09_344
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2018_09_344
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-10
PublicationDateYYYYMMDD 2019-02-10
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-10
  day: 10
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ficklin, Stewart, Maurer (bb0075) 2013; 49
Bustillo, Moatar, Ducharne, Thiéry, Poirel (bb0010) 2014; 28
Shrestha, Wang (bb0155) 2018
Zhu, Du, Luo (bb0185) 2018
Loveland, Reed, Brown, Ohlen, Zhu, Yang (bb0110) 2000; 21
Null, Viers, Deas, Tanaka, Mount (bb0135) 2013; 116
Murdock, Cannon, Sobie (bb0125) 2013
Caissie, Satish, El-Jabi (bb0015) 2007; 336
Hawkins, Sutton (bb0090) 2009; 90
van Vliet, Franssen, Yearsley, Ludwig, Haddeland, Lettenmaier (bb0180) 2013; 23
Lutz, ter Maat, Biemans, Shrestha, Wester, Immerzeel (bb0115) 2016; 36
Arnold, Kiniry, Srinivasan, William, Haney, Neitsch (bb9505) 2012
Eum, Dibike, Prowse (bb0065) 2017; 544
Ozaki, Fukushima, Kojiri (bb0140) 2008; 215
Edinger, Brady, Geyer (bb0060) 1974
Punzet, Voß, Voß, Kynast, Bärlund (bb0145) 2012; 13
Scinocca, Kharin, Jiao, Qian, Lazare, Solheim (bb0150) 2016; 29
Harvey (bb0085) 2009
Shrestha, Wang (bb0160) 2018; 625
Du, Shrestha, Ficklin, Wang (bb0050) 2018; 22
Armour (bb0005) 1993
Dibike, Eum, Prowse (bb0035) 2018; 15
Lebel, Maas, Powell (bb0105) 2011
Neitsch, Arnold, Kiniry, Williams (bb0130) 2011
Dile, Srinivasan (bb0040) 2014; 50
Eaton, McCormick, Goodno, O'brien, Stefany, Hondzo (bb0055) 1995; 20
Ficklin, Barnhart, Knouft, Stewart, Maurer, Letsinger (bb0080) 2014; 18
Shrestha, Du, Wang (bb0165) 2017; 601
Cao, Sun, Yearsley, Nijssen, Lettenmaier (bb0025) 2016; 30
Mohseni, Stefan, Erickson (bb0120) 1998; 34
Caldwell, Segura, Gull Laird, Sun, McNulty, Sandercock (bb0020) 2015; 29
Ficklin, Luo, Stewart, Maurer (bb0070) 2012; 48
van Vliet, Ludwig, Zwolsman, Weedon, Kabat (bb0175) 2011; 47
Taylor, Stouffer, Meehl (bb0170) 2011; 93
Cianfrani, Satizábal, Randin (bb0030) 2015; 313
Du, Su, Li, Zhang (bb0045) 2016; 44
Kwak, St-Hilaire, Chebana, Kim (bb0100) 2017; 9
Jonsson, Jonsson (bb0095) 2009; 75
Cao (10.1016/j.scitotenv.2018.09.344_bb0025) 2016; 30
Neitsch (10.1016/j.scitotenv.2018.09.344_bb0130) 2011
Kwak (10.1016/j.scitotenv.2018.09.344_bb0100) 2017; 9
Caldwell (10.1016/j.scitotenv.2018.09.344_bb0020) 2015; 29
Hawkins (10.1016/j.scitotenv.2018.09.344_bb0090) 2009; 90
Scinocca (10.1016/j.scitotenv.2018.09.344_bb0150) 2016; 29
Null (10.1016/j.scitotenv.2018.09.344_bb0135) 2013; 116
Taylor (10.1016/j.scitotenv.2018.09.344_bb0170) 2011; 93
Edinger (10.1016/j.scitotenv.2018.09.344_bb0060) 1974
Punzet (10.1016/j.scitotenv.2018.09.344_bb0145) 2012; 13
Eum (10.1016/j.scitotenv.2018.09.344_bb0065) 2017; 544
Ozaki (10.1016/j.scitotenv.2018.09.344_bb0140) 2008; 215
Bustillo (10.1016/j.scitotenv.2018.09.344_bb0010) 2014; 28
Murdock (10.1016/j.scitotenv.2018.09.344_bb0125) 2013
Arnold (10.1016/j.scitotenv.2018.09.344_bb9505) 2012
Caissie (10.1016/j.scitotenv.2018.09.344_bb0015) 2007; 336
Eaton (10.1016/j.scitotenv.2018.09.344_bb0055) 1995; 20
Loveland (10.1016/j.scitotenv.2018.09.344_bb0110) 2000; 21
Dile (10.1016/j.scitotenv.2018.09.344_bb0040) 2014; 50
Shrestha (10.1016/j.scitotenv.2018.09.344_bb0155) 2018
Shrestha (10.1016/j.scitotenv.2018.09.344_bb0160) 2018; 625
Zhu (10.1016/j.scitotenv.2018.09.344_bb0185) 2018
Du (10.1016/j.scitotenv.2018.09.344_bb0045) 2016; 44
Armour (10.1016/j.scitotenv.2018.09.344_bb0005) 1993
Ficklin (10.1016/j.scitotenv.2018.09.344_bb0080) 2014; 18
Lutz (10.1016/j.scitotenv.2018.09.344_bb0115) 2016; 36
Mohseni (10.1016/j.scitotenv.2018.09.344_bb0120) 1998; 34
Ficklin (10.1016/j.scitotenv.2018.09.344_bb0070) 2012; 48
Dibike (10.1016/j.scitotenv.2018.09.344_bb0035) 2018; 15
Du (10.1016/j.scitotenv.2018.09.344_bb0050) 2018; 22
Shrestha (10.1016/j.scitotenv.2018.09.344_bb0165) 2017; 601
van Vliet (10.1016/j.scitotenv.2018.09.344_bb0175) 2011; 47
Harvey (10.1016/j.scitotenv.2018.09.344_bb0085) 2009
Cianfrani (10.1016/j.scitotenv.2018.09.344_bb0030) 2015; 313
Jonsson (10.1016/j.scitotenv.2018.09.344_bb0095) 2009; 75
Ficklin (10.1016/j.scitotenv.2018.09.344_bb0075) 2013; 49
Lebel (10.1016/j.scitotenv.2018.09.344_bb0105) 2011
van Vliet (10.1016/j.scitotenv.2018.09.344_bb0180) 2013; 23
References_xml – year: 2018
  ident: bb0155
  article-title: Modelling nitrous oxide (N2O) emission from soils using the Soil and Water Assessment Tool (SWAT)
  publication-title: 2018 SWAT Conference, 10–12 January 2018, Chennai, India
– volume: 93
  start-page: 485
  year: 2011
  end-page: 498
  ident: bb0170
  article-title: An overview of CMIP5 and the experiment design
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 49
  start-page: 2765
  year: 2013
  end-page: 2782
  ident: bb0075
  article-title: Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California
  publication-title: Water Resour. Res.
– volume: 9
  start-page: 346
  year: 2017
  ident: bb0100
  article-title: Summer season water temperature modeling under the climate change: case study for Fourchue River, Quebec, Canada
  publication-title: Water
– year: 2011
  ident: bb0130
  article-title: Soil and Water Assessment Tool Theoretical Documentation Version 2009
– volume: 48
  year: 2012
  ident: bb0070
  article-title: Development and application of a hydroclimatological stream temperature model within the Soil and Water Assessment Tool
  publication-title: Water Resour. Res.
– volume: 50
  start-page: 1226
  year: 2014
  end-page: 1241
  ident: bb0040
  article-title: Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: an application in the Blue Nile River Basin
  publication-title: J. Am. Water Resour. Assoc.
– volume: 116
  start-page: 149
  year: 2013
  end-page: 170
  ident: bb0135
  article-title: Stream temperature sensitivity to climate warming in California's Sierra Nevada: impacts to Coldwater habitat
  publication-title: Clim. Chang.
– year: 2012
  ident: bb9505
  article-title: Soil and water assessment tool input/output documentation: Version 2012
– year: 2013
  ident: bb0125
  article-title: Statistical Downscaling of Future Climate Projections, Pacific Climate Impacts Consortium (PCIC)
– volume: 625
  start-page: 1030
  year: 2018
  end-page: 1045
  ident: bb0160
  article-title: Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate
  publication-title: Sci. Total Environ.
– volume: 75
  start-page: 2381
  year: 2009
  end-page: 2447
  ident: bb0095
  article-title: A review of the likely effects of climate change on anadromous Atlantic salmon
  publication-title: J. Fish Biol.
– year: 1993
  ident: bb0005
  article-title: Evaluating Temperature Regimes for Protection of Walleye
– volume: 21
  start-page: 1303
  year: 2000
  end-page: 1330
  ident: bb0110
  article-title: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data
  publication-title: Int. J. Remote Sens.
– year: 2011
  ident: bb0105
  article-title: Securing environmental flows in the Athabasca River
  publication-title: Report
– volume: 36
  start-page: 3988
  year: 2016
  end-page: 4005
  ident: bb0115
  article-title: Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach
  publication-title: Int. J. Climatol.
– volume: 336
  start-page: 303
  year: 2007
  end-page: 315
  ident: bb0015
  article-title: Predicting water temperatures using a deterministic model: application on Miramichi River catchments (New Brunswick, Canada)
  publication-title: J. Hydrol.
– volume: 47
  year: 2011
  ident: bb0175
  article-title: Global river temperatures and sensitivity to atmospheric warming and changes in river flow
  publication-title: Water Resour. Res.
– volume: 601
  start-page: 425
  year: 2017
  end-page: 440
  ident: bb0165
  article-title: Assessing climate change impacts on fresh water resources of the Athabasca River basin, Canada
  publication-title: Sci. Total Environ.
– volume: 215
  start-page: 159
  year: 2008
  end-page: 169
  ident: bb0140
  article-title: Simulation of the effects of the alteration of the river basin land use on river water temperature using the multi-layer mesh-typed runoff model
  publication-title: Ecol. Model.
– volume: 20
  start-page: 10
  year: 1995
  end-page: 18
  ident: bb0055
  article-title: A field information-based system for estimating fish temperature tolerances
  publication-title: Fisheries
– volume: 30
  start-page: 2286
  year: 2016
  end-page: 2304
  ident: bb0025
  article-title: Climate and land cover effects on the temperature of Puget Sound streams
  publication-title: Hydrol. Process.
– volume: 544
  start-page: 327
  year: 2017
  end-page: 342
  ident: bb0065
  article-title: Climate-induced alteration of hydrologic indicators in the Athabasca River Basin, Alberta, Canada
  publication-title: J. Hydrol.
– year: 1974
  ident: bb0060
  article-title: Heat exchange and transport in the environment
  publication-title: Report No. 14. Johns Hopkins Univ., Baltimore, MD (USA)
– volume: 29
  start-page: 2196
  year: 2015
  end-page: 2211
  ident: bb0020
  article-title: Short-term stream water temperature observations permit rapid assessment of potential climate change impacts
  publication-title: Hydrol. Process.
– volume: 15
  start-page: 134
  year: 2018
  end-page: 148
  ident: bb0035
  article-title: Modelling the Athabasca watershed snow response to a changing climate
  publication-title: J. Hydrol. Reg. Stud.
– volume: 90
  start-page: 1095
  year: 2009
  end-page: 1107
  ident: bb0090
  article-title: The potential to narrow uncertainty in regional climate predictions
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 23
  start-page: 450
  year: 2013
  end-page: 464
  ident: bb0180
  article-title: Global river discharge and water temperature under climate change
  publication-title: Glob. Environ. Chang.
– volume: 22
  start-page: 2343
  year: 2018
  end-page: 2357
  ident: bb0050
  article-title: Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model
  publication-title: Hydrol. Earth Syst. Sci.
– year: 2009
  ident: bb0085
  article-title: A Biological Synopsis of Northern Pike (
– volume: 44
  start-page: 247
  year: 2016
  end-page: 255
  ident: bb0045
  article-title: Modeling and evaluating of non-point source pollution in a semi-arid watershed: implications for watershed management
  publication-title: Clean: Soil, Air, Water
– volume: 18
  start-page: 4897
  year: 2014
  ident: bb0080
  article-title: Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 34
  start-page: 2685
  year: 1998
  end-page: 2692
  ident: bb0120
  article-title: A nonlinear regression model for weekly stream temperatures
  publication-title: Water Resour. Res.
– volume: 29
  start-page: 17
  year: 2016
  end-page: 35
  ident: bb0150
  article-title: Coordinated global and regional climate modeling
  publication-title: J. Clim.
– volume: 13
  start-page: 1052
  year: 2012
  end-page: 1065
  ident: bb0145
  article-title: A global approach to assess the potential impact of climate change on stream water temperatures and related in-stream first-order decay rates
  publication-title: J. Hydrometeorol.
– year: 2018
  ident: bb0185
  article-title: Incorporation of the simplified equilibrium temperature approach in a hydrodynamic and water quality model–CE-QUAL-W2
  publication-title: Water Sci. Technol. Water Supply
– volume: 313
  start-page: 1
  year: 2015
  end-page: 12
  ident: bb0030
  article-title: A spatial modelling framework for assessing climate change impacts on freshwater ecosystems: response of brown trout (Salmo trutta L.) biomass to warming water temperature
  publication-title: Ecol. Model.
– volume: 28
  start-page: 1507
  year: 2014
  end-page: 1524
  ident: bb0010
  article-title: A multimodel comparison for assessing water temperatures under changing climate conditions via the equilibrium temperature concept: case study of the middle Loire River, France
  publication-title: Hydrol. Process.
– volume: 21
  start-page: 1303
  year: 2000
  ident: 10.1016/j.scitotenv.2018.09.344_bb0110
  article-title: Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600210191
– volume: 36
  start-page: 3988
  year: 2016
  ident: 10.1016/j.scitotenv.2018.09.344_bb0115
  article-title: Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.4608
– volume: 625
  start-page: 1030
  year: 2018
  ident: 10.1016/j.scitotenv.2018.09.344_bb0160
  article-title: Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.347
– volume: 29
  start-page: 2196
  year: 2015
  ident: 10.1016/j.scitotenv.2018.09.344_bb0020
  article-title: Short-term stream water temperature observations permit rapid assessment of potential climate change impacts
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10358
– volume: 93
  start-page: 485
  year: 2011
  ident: 10.1016/j.scitotenv.2018.09.344_bb0170
  article-title: An overview of CMIP5 and the experiment design
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-11-00094.1
– volume: 50
  start-page: 1226
  year: 2014
  ident: 10.1016/j.scitotenv.2018.09.344_bb0040
  article-title: Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: an application in the Blue Nile River Basin
  publication-title: J. Am. Water Resour. Assoc.
  doi: 10.1111/jawr.12182
– volume: 544
  start-page: 327
  year: 2017
  ident: 10.1016/j.scitotenv.2018.09.344_bb0065
  article-title: Climate-induced alteration of hydrologic indicators in the Athabasca River Basin, Alberta, Canada
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.11.034
– volume: 601
  start-page: 425
  year: 2017
  ident: 10.1016/j.scitotenv.2018.09.344_bb0165
  article-title: Assessing climate change impacts on fresh water resources of the Athabasca River basin, Canada
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.05.013
– year: 1993
  ident: 10.1016/j.scitotenv.2018.09.344_bb0005
– volume: 13
  start-page: 1052
  year: 2012
  ident: 10.1016/j.scitotenv.2018.09.344_bb0145
  article-title: A global approach to assess the potential impact of climate change on stream water temperatures and related in-stream first-order decay rates
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-11-0138.1
– year: 2018
  ident: 10.1016/j.scitotenv.2018.09.344_bb0155
  article-title: Modelling nitrous oxide (N2O) emission from soils using the Soil and Water Assessment Tool (SWAT)
– year: 2012
  ident: 10.1016/j.scitotenv.2018.09.344_bb9505
– volume: 34
  start-page: 2685
  year: 1998
  ident: 10.1016/j.scitotenv.2018.09.344_bb0120
  article-title: A nonlinear regression model for weekly stream temperatures
  publication-title: Water Resour. Res.
  doi: 10.1029/98WR01877
– volume: 116
  start-page: 149
  year: 2013
  ident: 10.1016/j.scitotenv.2018.09.344_bb0135
  article-title: Stream temperature sensitivity to climate warming in California's Sierra Nevada: impacts to Coldwater habitat
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-012-0459-8
– year: 2011
  ident: 10.1016/j.scitotenv.2018.09.344_bb0130
– volume: 23
  start-page: 450
  year: 2013
  ident: 10.1016/j.scitotenv.2018.09.344_bb0180
  article-title: Global river discharge and water temperature under climate change
  publication-title: Glob. Environ. Chang.
  doi: 10.1016/j.gloenvcha.2012.11.002
– volume: 20
  start-page: 10
  year: 1995
  ident: 10.1016/j.scitotenv.2018.09.344_bb0055
  article-title: A field information-based system for estimating fish temperature tolerances
  publication-title: Fisheries
  doi: 10.1577/1548-8446(1995)020<0010:AFISFE>2.0.CO;2
– volume: 336
  start-page: 303
  year: 2007
  ident: 10.1016/j.scitotenv.2018.09.344_bb0015
  article-title: Predicting water temperatures using a deterministic model: application on Miramichi River catchments (New Brunswick, Canada)
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.01.008
– volume: 48
  year: 2012
  ident: 10.1016/j.scitotenv.2018.09.344_bb0070
  article-title: Development and application of a hydroclimatological stream temperature model within the Soil and Water Assessment Tool
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR011256
– volume: 215
  start-page: 159
  year: 2008
  ident: 10.1016/j.scitotenv.2018.09.344_bb0140
  article-title: Simulation of the effects of the alteration of the river basin land use on river water temperature using the multi-layer mesh-typed runoff model
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2008.02.030
– volume: 90
  start-page: 1095
  year: 2009
  ident: 10.1016/j.scitotenv.2018.09.344_bb0090
  article-title: The potential to narrow uncertainty in regional climate predictions
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/2009BAMS2607.1
– year: 2009
  ident: 10.1016/j.scitotenv.2018.09.344_bb0085
– year: 2018
  ident: 10.1016/j.scitotenv.2018.09.344_bb0185
  article-title: Incorporation of the simplified equilibrium temperature approach in a hydrodynamic and water quality model–CE-QUAL-W2
  publication-title: Water Sci. Technol. Water Supply
– volume: 49
  start-page: 2765
  year: 2013
  ident: 10.1016/j.scitotenv.2018.09.344_bb0075
  article-title: Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20248
– volume: 29
  start-page: 17
  year: 2016
  ident: 10.1016/j.scitotenv.2018.09.344_bb0150
  article-title: Coordinated global and regional climate modeling
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-15-0161.1
– volume: 28
  start-page: 1507
  year: 2014
  ident: 10.1016/j.scitotenv.2018.09.344_bb0010
  article-title: A multimodel comparison for assessing water temperatures under changing climate conditions via the equilibrium temperature concept: case study of the middle Loire River, France
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.9683
– volume: 30
  start-page: 2286
  year: 2016
  ident: 10.1016/j.scitotenv.2018.09.344_bb0025
  article-title: Climate and land cover effects on the temperature of Puget Sound streams
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10784
– volume: 18
  start-page: 4897
  year: 2014
  ident: 10.1016/j.scitotenv.2018.09.344_bb0080
  article-title: Climate change and stream temperature projections in the Columbia River basin: habitat implications of spatial variation in hydrologic drivers
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-18-4897-2014
– year: 1974
  ident: 10.1016/j.scitotenv.2018.09.344_bb0060
  article-title: Heat exchange and transport in the environment
– volume: 22
  start-page: 2343
  year: 2018
  ident: 10.1016/j.scitotenv.2018.09.344_bb0050
  article-title: Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-22-2343-2018
– year: 2011
  ident: 10.1016/j.scitotenv.2018.09.344_bb0105
  article-title: Securing environmental flows in the Athabasca River
– volume: 9
  start-page: 346
  year: 2017
  ident: 10.1016/j.scitotenv.2018.09.344_bb0100
  article-title: Summer season water temperature modeling under the climate change: case study for Fourchue River, Quebec, Canada
  publication-title: Water
  doi: 10.3390/w9050346
– year: 2013
  ident: 10.1016/j.scitotenv.2018.09.344_bb0125
– volume: 15
  start-page: 134
  year: 2018
  ident: 10.1016/j.scitotenv.2018.09.344_bb0035
  article-title: Modelling the Athabasca watershed snow response to a changing climate
  publication-title: J. Hydrol. Reg. Stud.
  doi: 10.1016/j.ejrh.2018.01.003
– volume: 44
  start-page: 247
  year: 2016
  ident: 10.1016/j.scitotenv.2018.09.344_bb0045
  article-title: Modeling and evaluating of non-point source pollution in a semi-arid watershed: implications for watershed management
  publication-title: Clean: Soil, Air, Water
– volume: 313
  start-page: 1
  year: 2015
  ident: 10.1016/j.scitotenv.2018.09.344_bb0030
  article-title: A spatial modelling framework for assessing climate change impacts on freshwater ecosystems: response of brown trout (Salmo trutta L.) biomass to warming water temperature
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2015.06.023
– volume: 75
  start-page: 2381
  year: 2009
  ident: 10.1016/j.scitotenv.2018.09.344_bb0095
  article-title: A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow
  publication-title: J. Fish Biol.
  doi: 10.1111/j.1095-8649.2009.02380.x
– volume: 47
  year: 2011
  ident: 10.1016/j.scitotenv.2018.09.344_bb0175
  article-title: Global river temperatures and sensitivity to atmospheric warming and changes in river flow
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009198
SSID ssj0000781
Score 2.5130804
Snippet Stream temperatures, which influence dynamics and distributions of the aquatic species and kinetics of biochemical reactions, are expected to be altered by the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1872
SubjectTerms aquatic organisms
basins
Canada
chemical reactions
climate change
Climate change impact assessment
climate models
cold
cold zones
dissolved oxygen
ecosystems
Equilibrium temperature approach
evapotranspiration
meteorological parameters
prediction
Soil and Water Assessment Tool model
stream flow
Stream temperature modeling
streams
summer
water management
water quality
water temperature
watersheds
Title Assessing climate change impacts on stream temperature in the Athabasca River Basin using SWAT equilibrium temperature model and its potential impacts on stream ecosystem
URI https://dx.doi.org/10.1016/j.scitotenv.2018.09.344
https://www.ncbi.nlm.nih.gov/pubmed/30286353
https://www.proquest.com/docview/2116851076
https://www.proquest.com/docview/2189552291
Volume 650
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1VrZCQECoLheWjMhLX0MSxE5vbUrVaWNFDadXeLNtx1KAlu7AJUi_9QfxKxnGy1UqUHjhFiWzHyoxn3sTzxgDvZGksGv48ynlSRkwLFhnr0sglBeWuEFQbT3D-cpJNz9nnS365BYcDF8anVfa2P9j0zlr3Tw76r3mwrCrP8WVCZhKNK4ZZaIo9g53lXsvf39ymefhiNmGXGRc2tt7I8cJxmwVi018-x0v4gqcpY3d5qLsQaOeJjnfhcQ8hySTM8glsuXoED8Khktcj2Du65a5hs37xrkbwKPyiI4F59BR-hw1f9F3EzitEro4EGjAJ1MkVWdTEc0n0d-IrWPXll0lVE0SNZNJcafSBVpNTn9tBPmocirTdeF8vJmfE_WirjlHQbvbvDt8hui5Ihe9Y-i-DZmb-l7diaBwqTT-D8-Ojs8Np1B_dEFmWx03ECplZzaX1ObQxesqypFZyy1lZiMxiDKY1jy1GT9wkJqFaUy2EtjQr0lxame7Bdr2o3QsgOrVUcEtRzoZxU5gSoxwnrHY0KXPKxpAN4lK2r2vuj9eYqyGB7Ztay1l5OatYKpTzGOJ1x2Uo7XF_lw-DPqgNLVXogO7v_HbQIIVr2G_M6Not2pXCIDxD5Bvn2b_aCMkRLMtkDM-D-q1nnSJIROCYvvyf6b2Ch3gnfUZ6Er-G7eZn694g4GrMfrei9mFn8mk2PfHX2enF7A_hPzJV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Rb9MwED6NTohJCEFh0DHASLxGSxw7sXnrpk0d2_oAndib5TiOCCppRxMk_hK_knOcdKq0sQdek5xj-ey775L77gA-yCIzaPjTIOVRETAtWJAZGwc2yim3uaA6cwTni2kyuWSfrvjVFhz1XBiXVtnZfm_TW2vdXTnoVvNgWZaO48uETCQaVwyz0BQ_gG1XnYoPYHt8ejaZ3hjkVPjGeQzPNgpspHnh0PUC4ekvl-YlXM3TmLG7nNRdILR1RidP4UmHIsnYT_QZbNlqCA99X8nfQ9g9vqGv4WPd-V0N4bH_Skc8-eg5_PH_fNF9ETMvEbxa4pnAxLMnV2RREUcn0T-IK2LVVWAmZUUQOJJx_U2jGzSafHbpHeRQ41Ckacf78nU8I_a6KVtSQbMp3_bfIbrKSYnvWLqVQUszv-WtGB37YtMv4PLkeHY0CbruDYFhaVgHLJeJ0Vwal0YborMsCmokN5wVuUgMhmFa89BgAMWzKIuo1lQLoQ1N8jiVRsa7MKgWlX0FRMeGCm4oqjpjPMuzAgMdK4y2NCpSykaQ9OpSpitt7jpszFWfw_ZdrfWsnJ5VKBXqeQThWnDpq3vcL_Kx3w9qY6Mq9EH3C7_vd5DCY-z-zejKLpqVwjg8QfAbpsm_nhGSI16W0Qhe-u23nnWMOBGxY7z3P9N7B48ms4tzdX46PXsNO3hHugT1KNyHQf2zsW8Qf9XZ2-58_QWepDNj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+climate+change+impacts+on+stream+temperature+in+the+Athabasca+River+Basin+using+SWAT+equilibrium+temperature+model+and+its+potential+impacts+on+stream+ecosystem&rft.jtitle=The+Science+of+the+total+environment&rft.au=Du%2C+Xinzhong&rft.au=Shrestha%2C+Narayan+Kumar&rft.au=Wang%2C+Junye&rft.date=2019-02-10&rft.issn=0048-9697&rft.volume=650&rft.spage=1872&rft.epage=1881&rft_id=info:doi/10.1016%2Fj.scitotenv.2018.09.344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2018_09_344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon