Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China's cities using spatial regression and the geographical detector technique
•The direction and strength of the link between PM2.5 level and their drivers are analyzed.•Spatial regression and geographical detector techniques are used.•A spatial agglomeration effect was identified in city-level PM2.5 level.•Population density, industrial structure, industrial dust, and road d...
Saved in:
Published in | The Science of the total environment Vol. 619-620; pp. 436 - 445 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The direction and strength of the link between PM2.5 level and their drivers are analyzed.•Spatial regression and geographical detector techniques are used.•A spatial agglomeration effect was identified in city-level PM2.5 level.•Population density, industrial structure, industrial dust, and road density increase PM2.5 level.•Trade openness and electricity consumption have no significant effect on PM2.5 level.
[Display omitted]
The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to human health. In addition to pollutant emissions and meteorological conditions, fine particulate matter (PM2.5) is also influenced by socioeconomic development. Thus, identifying the potential effects of socioeconomic development on PM2.5 variations can provide insights into particulate pollution control. This study applied spatial regression and the geographical detector technique for assessing the directions and strength of association between socioeconomic factors and PM2.5 concentrations, using data collected from 945 monitoring stations in 190 Chinese cities in 2014. The results indicated that the annual average PM2.5 concentrations is 61±20μg/m3, and cites with more than 75μg/m3 were mainly located in North China, especially in Tianjin and Hebei province. We also identified a marked seasonal variation in concentrations levels, with the highest level in winter due to coal consumption, lower temperatures, and less rainfall than in summer. Monthly variations followed a “U-shaped” pattern, with a down trend from January and an inflection point in September and then an increasing trend from October. The results of spatial regression indicated that population density, industrial structure, industrial soot (dust) emissions, and road density have a significantly positive effect on PM2.5 concentrations, with a significantly negative influence exerted only by economic growth. In addition, trade openness and electricity consumption were found to have no significant impact on PM2.5 concentrations. Using the geographical detector technique, the strength of association between the five significant drivers and PM2.5 concentrations was further analyzed. We found notable differences among the variables, with industrial soot (dust) emissions playing a greater role in the PM2.5 concentrations than the other variables. These results will be helpful in understanding the dynamics and the underlying mechanisms at work in PM2.5 concentrations in China at the city level, and thereby assisting the Chinese government in employing effective strategies to tackle pollution. |
---|---|
AbstractList | The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to human health. In addition to pollutant emissions and meteorological conditions, fine particulate matter (PM2.5) is also influenced by socioeconomic development. Thus, identifying the potential effects of socioeconomic development on PM2.5 variations can provide insights into particulate pollution control. This study applied spatial regression and the geographical detector technique for assessing the directions and strength of association between socioeconomic factors and PM2.5 concentrations, using data collected from 945 monitoring stations in 190 Chinese cities in 2014. The results indicated that the annual average PM2.5 concentrations is 61±20μg/m3, and cites with more than 75μg/m3 were mainly located in North China, especially in Tianjin and Hebei province. We also identified a marked seasonal variation in concentrations levels, with the highest level in winter due to coal consumption, lower temperatures, and less rainfall than in summer. Monthly variations followed a "U-shaped" pattern, with a down trend from January and an inflection point in September and then an increasing trend from October. The results of spatial regression indicated that population density, industrial structure, industrial soot (dust) emissions, and road density have a significantly positive effect on PM2.5 concentrations, with a significantly negative influence exerted only by economic growth. In addition, trade openness and electricity consumption were found to have no significant impact on PM2.5 concentrations. Using the geographical detector technique, the strength of association between the five significant drivers and PM2.5 concentrations was further analyzed. We found notable differences among the variables, with industrial soot (dust) emissions playing a greater role in the PM2.5 concentrations than the other variables. These results will be helpful in understanding the dynamics and the underlying mechanisms at work in PM2.5 concentrations in China at the city level, and thereby assisting the Chinese government in employing effective strategies to tackle pollution.The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to human health. In addition to pollutant emissions and meteorological conditions, fine particulate matter (PM2.5) is also influenced by socioeconomic development. Thus, identifying the potential effects of socioeconomic development on PM2.5 variations can provide insights into particulate pollution control. This study applied spatial regression and the geographical detector technique for assessing the directions and strength of association between socioeconomic factors and PM2.5 concentrations, using data collected from 945 monitoring stations in 190 Chinese cities in 2014. The results indicated that the annual average PM2.5 concentrations is 61±20μg/m3, and cites with more than 75μg/m3 were mainly located in North China, especially in Tianjin and Hebei province. We also identified a marked seasonal variation in concentrations levels, with the highest level in winter due to coal consumption, lower temperatures, and less rainfall than in summer. Monthly variations followed a "U-shaped" pattern, with a down trend from January and an inflection point in September and then an increasing trend from October. The results of spatial regression indicated that population density, industrial structure, industrial soot (dust) emissions, and road density have a significantly positive effect on PM2.5 concentrations, with a significantly negative influence exerted only by economic growth. In addition, trade openness and electricity consumption were found to have no significant impact on PM2.5 concentrations. Using the geographical detector technique, the strength of association between the five significant drivers and PM2.5 concentrations was further analyzed. We found notable differences among the variables, with industrial soot (dust) emissions playing a greater role in the PM2.5 concentrations than the other variables. These results will be helpful in understanding the dynamics and the underlying mechanisms at work in PM2.5 concentrations in China at the city level, and thereby assisting the Chinese government in employing effective strategies to tackle pollution. The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to human health. In addition to pollutant emissions and meteorological conditions, fine particulate matter (PM ) is also influenced by socioeconomic development. Thus, identifying the potential effects of socioeconomic development on PM variations can provide insights into particulate pollution control. This study applied spatial regression and the geographical detector technique for assessing the directions and strength of association between socioeconomic factors and PM concentrations, using data collected from 945 monitoring stations in 190 Chinese cities in 2014. The results indicated that the annual average PM concentrations is 61±20μg/m , and cites with more than 75μg/m were mainly located in North China, especially in Tianjin and Hebei province. We also identified a marked seasonal variation in concentrations levels, with the highest level in winter due to coal consumption, lower temperatures, and less rainfall than in summer. Monthly variations followed a "U-shaped" pattern, with a down trend from January and an inflection point in September and then an increasing trend from October. The results of spatial regression indicated that population density, industrial structure, industrial soot (dust) emissions, and road density have a significantly positive effect on PM concentrations, with a significantly negative influence exerted only by economic growth. In addition, trade openness and electricity consumption were found to have no significant impact on PM concentrations. Using the geographical detector technique, the strength of association between the five significant drivers and PM concentrations was further analyzed. We found notable differences among the variables, with industrial soot (dust) emissions playing a greater role in the PM concentrations than the other variables. These results will be helpful in understanding the dynamics and the underlying mechanisms at work in PM concentrations in China at the city level, and thereby assisting the Chinese government in employing effective strategies to tackle pollution. •The direction and strength of the link between PM2.5 level and their drivers are analyzed.•Spatial regression and geographical detector techniques are used.•A spatial agglomeration effect was identified in city-level PM2.5 level.•Population density, industrial structure, industrial dust, and road density increase PM2.5 level.•Trade openness and electricity consumption have no significant effect on PM2.5 level. [Display omitted] The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to human health. In addition to pollutant emissions and meteorological conditions, fine particulate matter (PM2.5) is also influenced by socioeconomic development. Thus, identifying the potential effects of socioeconomic development on PM2.5 variations can provide insights into particulate pollution control. This study applied spatial regression and the geographical detector technique for assessing the directions and strength of association between socioeconomic factors and PM2.5 concentrations, using data collected from 945 monitoring stations in 190 Chinese cities in 2014. The results indicated that the annual average PM2.5 concentrations is 61±20μg/m3, and cites with more than 75μg/m3 were mainly located in North China, especially in Tianjin and Hebei province. We also identified a marked seasonal variation in concentrations levels, with the highest level in winter due to coal consumption, lower temperatures, and less rainfall than in summer. Monthly variations followed a “U-shaped” pattern, with a down trend from January and an inflection point in September and then an increasing trend from October. The results of spatial regression indicated that population density, industrial structure, industrial soot (dust) emissions, and road density have a significantly positive effect on PM2.5 concentrations, with a significantly negative influence exerted only by economic growth. In addition, trade openness and electricity consumption were found to have no significant impact on PM2.5 concentrations. Using the geographical detector technique, the strength of association between the five significant drivers and PM2.5 concentrations was further analyzed. We found notable differences among the variables, with industrial soot (dust) emissions playing a greater role in the PM2.5 concentrations than the other variables. These results will be helpful in understanding the dynamics and the underlying mechanisms at work in PM2.5 concentrations in China at the city level, and thereby assisting the Chinese government in employing effective strategies to tackle pollution. The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to human health. In addition to pollutant emissions and meteorological conditions, fine particulate matter (PM₂.₅) is also influenced by socioeconomic development. Thus, identifying the potential effects of socioeconomic development on PM₂.₅ variations can provide insights into particulate pollution control. This study applied spatial regression and the geographical detector technique for assessing the directions and strength of association between socioeconomic factors and PM₂.₅ concentrations, using data collected from 945 monitoring stations in 190 Chinese cities in 2014. The results indicated that the annual average PM₂.₅ concentrations is 61±20μg/m³, and cites with more than 75μg/m³ were mainly located in North China, especially in Tianjin and Hebei province. We also identified a marked seasonal variation in concentrations levels, with the highest level in winter due to coal consumption, lower temperatures, and less rainfall than in summer. Monthly variations followed a “U-shaped” pattern, with a down trend from January and an inflection point in September and then an increasing trend from October. The results of spatial regression indicated that population density, industrial structure, industrial soot (dust) emissions, and road density have a significantly positive effect on PM₂.₅ concentrations, with a significantly negative influence exerted only by economic growth. In addition, trade openness and electricity consumption were found to have no significant impact on PM₂.₅ concentrations. Using the geographical detector technique, the strength of association between the five significant drivers and PM₂.₅ concentrations was further analyzed. We found notable differences among the variables, with industrial soot (dust) emissions playing a greater role in the PM₂.₅ concentrations than the other variables. These results will be helpful in understanding the dynamics and the underlying mechanisms at work in PM₂.₅ concentrations in China at the city level, and thereby assisting the Chinese government in employing effective strategies to tackle pollution. |
Author | Wang, Shaojian Zhou, Chunshan Chen, Jing |
Author_xml | – sequence: 1 givenname: Chunshan surname: Zhou fullname: Zhou, Chunshan – sequence: 2 givenname: Jing surname: Chen fullname: Chen, Jing – sequence: 3 givenname: Shaojian orcidid: 0000-0001-9082-8562 surname: Wang fullname: Wang, Shaojian email: wangshj8@mail.sysu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29156264$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFVwDvKIsEXydxkgWLalR-pCJYwNryONczHiV2sJ0RvBGPiYdpWbAZb-7C37nn6pwrcuG8Q0JeASuBgXi7L6O2ySd0h5IzaEuAEnj9hKyga_sCGBcXZMVY3RW96NtLchXjnuXXdvCMXPIeGsFFvSK_736qyTrrtjTtkKIxqFOk3tDotfWovfOT1XTAA45-ntAl6h011iGdVUhWL6NKSCeVEgZ68_UzL5s31Dq63lmnXkea77QY6RKPHnFWyaqRBtwGjNHmVcoNf6236LdBzTur8_-AKd_hA81j5-yPBZ-Tp0aNEV88zGvy_f3dt_XH4v7Lh0_r2_tC1y1LRa0b02Crq0ozBkPPTbuBXrB-6LFjSphNr2oNyBUONYiuqjO-ESDMwA3ytromN6e9c_DZNiY52ahxHJVDv0TJmWhzfELAWTT7ir5roKoz-vIBXTYTDnIOdlLhl3wsIgPvToAOPsaARubcclbepaDsKIHJY_FyL_8VL4_FSwCZi8_69j_9o8V55e1JiTnVg8Vw5NBpHGzIHcjB27M7_gDuf9De |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2022_155512 crossref_primary_10_1109_JSTARS_2021_3119383 crossref_primary_10_1016_j_jclepro_2019_02_229 crossref_primary_10_3390_ijerph18179107 crossref_primary_10_3390_ijerph20021183 crossref_primary_10_5194_acp_24_4651_2024 crossref_primary_10_1016_j_ecolind_2022_109802 crossref_primary_10_1007_s10668_023_02923_9 crossref_primary_10_1016_j_envpol_2020_114690 crossref_primary_10_1016_j_jclepro_2021_127077 crossref_primary_10_1016_j_uclim_2022_101268 crossref_primary_10_3390_w16010115 crossref_primary_10_3390_rs10111696 crossref_primary_10_1016_j_jclepro_2019_118065 crossref_primary_10_1111_cwe_12354 crossref_primary_10_3390_ijerph18126261 crossref_primary_10_1007_s11356_020_10847_4 crossref_primary_10_3390_ijerph17030817 crossref_primary_10_1016_j_jclepro_2021_126769 crossref_primary_10_3390_rs13153011 crossref_primary_10_3390_ijerph16071149 crossref_primary_10_1080_02726351_2023_2179561 crossref_primary_10_3390_ijerph15030529 crossref_primary_10_1016_j_trd_2024_104111 crossref_primary_10_3390_en14113232 crossref_primary_10_1016_j_uclim_2022_101273 crossref_primary_10_3390_su12093550 crossref_primary_10_3390_atmos10020055 crossref_primary_10_1016_j_jclepro_2019_118615 crossref_primary_10_1016_j_jclepro_2018_10_080 crossref_primary_10_1038_s41598_022_08086_3 crossref_primary_10_1007_s11356_022_22422_0 crossref_primary_10_1016_j_ecolind_2021_108333 crossref_primary_10_2139_ssrn_4147626 crossref_primary_10_1016_j_jclepro_2021_126793 crossref_primary_10_1016_j_ecolind_2022_109823 crossref_primary_10_3390_rs14164012 crossref_primary_10_3390_su15108014 crossref_primary_10_3390_rs14184545 crossref_primary_10_1007_s10653_020_00799_6 crossref_primary_10_1007_s10661_020_08749_6 crossref_primary_10_1016_j_envpol_2020_114910 crossref_primary_10_1080_00167428_2021_1884979 crossref_primary_10_1080_10807039_2020_1789841 crossref_primary_10_3390_atmos15040443 crossref_primary_10_1016_j_buildenv_2025_112746 crossref_primary_10_3390_land11050629 crossref_primary_10_1016_j_scitotenv_2020_140155 crossref_primary_10_3390_rs13152858 crossref_primary_10_1016_j_energy_2023_127247 crossref_primary_10_1016_j_scitotenv_2021_150929 crossref_primary_10_3389_fpubh_2022_1051116 crossref_primary_10_3390_atmos13040627 crossref_primary_10_1111_tgis_12580 crossref_primary_10_1016_j_jenvman_2020_110703 crossref_primary_10_1016_j_scitotenv_2023_168593 crossref_primary_10_3390_su12072910 crossref_primary_10_1016_j_scitotenv_2019_01_310 crossref_primary_10_1007_s11356_021_12825_w crossref_primary_10_1016_j_scitotenv_2018_12_402 crossref_primary_10_1016_j_apr_2022_101567 crossref_primary_10_5194_acp_23_9837_2023 crossref_primary_10_1016_j_esr_2024_101505 crossref_primary_10_1016_j_ufug_2020_126623 crossref_primary_10_1016_j_envpol_2018_05_083 crossref_primary_10_1016_j_jclepro_2019_05_342 crossref_primary_10_3390_ijerph18179019 crossref_primary_10_1007_s11769_023_1331_7 crossref_primary_10_1016_j_scitotenv_2020_138135 crossref_primary_10_1016_j_envpol_2019_113012 crossref_primary_10_1007_s11356_021_12763_7 crossref_primary_10_1016_j_buildenv_2019_03_007 crossref_primary_10_1016_j_trd_2018_03_009 crossref_primary_10_1016_j_jclepro_2021_125945 crossref_primary_10_1016_j_psep_2021_04_005 crossref_primary_10_1016_j_heliyon_2021_e07915 crossref_primary_10_3390_atmos15040416 crossref_primary_10_1016_j_heliyon_2021_e06820 crossref_primary_10_3390_en15196975 crossref_primary_10_1016_j_uclim_2024_101935 crossref_primary_10_1016_j_jclepro_2019_01_322 crossref_primary_10_1016_j_heliyon_2023_e17609 crossref_primary_10_1016_j_resconrec_2022_106467 crossref_primary_10_1016_j_seps_2022_101381 crossref_primary_10_3390_ijerph16060914 crossref_primary_10_1007_s12145_023_01002_x crossref_primary_10_1007_s11356_022_22602_y crossref_primary_10_1016_j_eiar_2024_107437 crossref_primary_10_1007_s11356_020_10907_9 crossref_primary_10_1016_j_ecolind_2021_107795 crossref_primary_10_1016_j_scitotenv_2018_12_056 crossref_primary_10_1016_j_envint_2020_106168 crossref_primary_10_1016_j_scitotenv_2019_135481 crossref_primary_10_1016_j_ecolind_2021_108407 crossref_primary_10_1175_JCLI_D_18_0587_1 crossref_primary_10_1016_j_scs_2019_101593 crossref_primary_10_3390_atmos14020381 crossref_primary_10_1007_s40812_023_00282_0 crossref_primary_10_3389_feart_2022_1032578 crossref_primary_10_1007_s00477_024_02819_8 crossref_primary_10_1016_j_scitotenv_2024_170071 crossref_primary_10_1016_j_scitotenv_2018_10_041 crossref_primary_10_1016_j_jenvman_2019_05_041 crossref_primary_10_3390_atmos15050568 crossref_primary_10_1016_j_jclepro_2019_04_231 crossref_primary_10_1016_j_atmosenv_2024_120390 crossref_primary_10_1016_j_resourpol_2020_101655 crossref_primary_10_4236_gep_2022_101015 crossref_primary_10_1016_j_jclepro_2018_11_159 crossref_primary_10_1016_j_scitotenv_2024_174323 crossref_primary_10_3390_air3010009 crossref_primary_10_1007_s10668_024_05130_2 crossref_primary_10_1016_j_chemosphere_2020_126491 crossref_primary_10_1016_j_buildenv_2019_04_058 crossref_primary_10_3390_su13031428 crossref_primary_10_3390_su151914172 crossref_primary_10_1002_sd_1915 crossref_primary_10_1016_j_envpol_2022_119639 crossref_primary_10_3390_rs14112643 crossref_primary_10_3390_atmos13091352 crossref_primary_10_1016_j_envpol_2021_117038 crossref_primary_10_1016_j_heliyon_2023_e14047 crossref_primary_10_1016_j_eti_2021_101578 crossref_primary_10_1016_j_envint_2022_107304 crossref_primary_10_2139_ssrn_4049830 crossref_primary_10_1016_j_ecoenv_2018_09_012 crossref_primary_10_1016_j_envpol_2022_120392 crossref_primary_10_1007_s11356_021_17030_3 crossref_primary_10_3390_land10080833 crossref_primary_10_1016_j_jenvman_2021_113172 crossref_primary_10_1016_j_jenvman_2020_110532 crossref_primary_10_1016_j_energy_2023_126685 crossref_primary_10_3390_ijerph16244973 crossref_primary_10_1016_j_jclepro_2021_126822 crossref_primary_10_1016_j_jclepro_2021_129779 crossref_primary_10_3390_rs13245079 crossref_primary_10_1016_j_jclepro_2019_118430 crossref_primary_10_1016_j_jclepro_2023_136706 crossref_primary_10_3390_land10101010 crossref_primary_10_1007_s11356_023_28525_6 crossref_primary_10_1016_j_scitotenv_2020_143266 crossref_primary_10_3233_JIFS_210074 crossref_primary_10_3390_ijerph16203891 crossref_primary_10_1007_s11356_023_30981_z crossref_primary_10_1016_j_apenergy_2020_115246 crossref_primary_10_1016_j_apr_2020_03_010 crossref_primary_10_1016_j_jclepro_2024_142306 crossref_primary_10_1016_j_envint_2023_107889 crossref_primary_10_3389_fenvs_2022_1037979 crossref_primary_10_1016_j_ecolind_2021_107705 crossref_primary_10_1016_j_apenergy_2018_08_089 crossref_primary_10_3390_ijerph182010869 crossref_primary_10_1080_10807039_2022_2134093 crossref_primary_10_1016_j_spc_2021_09_012 crossref_primary_10_3390_rs14010007 crossref_primary_10_1016_j_envpol_2020_114257 crossref_primary_10_1007_s40333_024_0051_x crossref_primary_10_1016_j_ecolind_2021_107491 crossref_primary_10_1016_j_renene_2022_09_084 crossref_primary_10_1016_j_scitotenv_2024_174365 crossref_primary_10_1016_j_cities_2021_103440 crossref_primary_10_1016_j_scitotenv_2018_05_322 crossref_primary_10_1016_j_jenvman_2021_114073 crossref_primary_10_1016_j_ecolind_2021_107937 crossref_primary_10_3390_ijerph18052222 crossref_primary_10_3390_ijerph20032316 crossref_primary_10_3390_rs15133356 crossref_primary_10_3390_ijerph17030906 crossref_primary_10_3390_ijerph16071099 crossref_primary_10_1016_j_ecolind_2022_109069 crossref_primary_10_1016_j_ecolind_2021_108374 crossref_primary_10_1007_s11356_019_06339_9 crossref_primary_10_3390_land9050142 crossref_primary_10_3390_ijerph15081565 crossref_primary_10_3390_ijerph16193522 crossref_primary_10_1016_j_resconrec_2020_104880 crossref_primary_10_3390_su16219242 crossref_primary_10_3390_ijerph19084597 crossref_primary_10_1016_j_jclepro_2020_124149 crossref_primary_10_3390_su12093523 crossref_primary_10_1016_j_atmosenv_2021_118805 crossref_primary_10_1016_j_scitotenv_2019_136170 crossref_primary_10_1016_j_envres_2024_118444 crossref_primary_10_1007_s11356_021_17706_w crossref_primary_10_3390_f10090729 crossref_primary_10_5814_j_issn_1674_764x_2023_06_007 crossref_primary_10_1016_j_jag_2022_102982 crossref_primary_10_3390_ijerph19148390 crossref_primary_10_3389_fevo_2023_1339265 crossref_primary_10_3390_atmos10090517 crossref_primary_10_1016_j_atmosenv_2023_119816 crossref_primary_10_3389_fpubh_2025_1518327 crossref_primary_10_3390_min11050502 crossref_primary_10_1016_j_jenvman_2019_109564 |
Cites_doi | 10.1016/j.scitotenv.2015.10.027 10.1289/ehp.0800360 10.1016/j.envint.2015.10.016 10.3390/ijerph13100928 10.1016/j.envpol.2006.06.013 10.1021/es049352m 10.1289/ehp.1205284 10.1016/j.rse.2015.12.008 10.1016/j.tranpol.2012.11.005 10.1016/j.apenergy.2017.05.085 10.1016/j.jaerosci.2011.12.001 10.1016/j.jclepro.2016.11.104 10.1021/es0261978 10.1016/j.atmosres.2013.01.011 10.3390/ijerph110100173 10.5094/APR.2013.037 10.1088/1748-9326/9/2/024010 10.1016/j.rser.2015.10.140 10.1175/JAMC-D-12-0163.1 10.1016/j.chemosphere.2015.12.118 10.1080/13658810802443457 10.1016/j.envint.2011.03.003 10.1007/s11135-015-0301-2 10.1007/s11356-011-0546-9 10.1016/j.apgeog.2015.07.011 10.3155/1047-3289.59.6.645 10.2307/143141 10.1016/j.apgeog.2016.12.003 10.1016/j.scitotenv.2016.12.145 10.1016/j.envint.2016.02.003 10.1016/j.atmosenv.2015.03.046 10.1177/0042098013477707 10.1006/jeem.1999.1095 10.1371/journal.pone.0135749 10.1016/j.envres.2012.11.003 10.1016/j.ecolind.2014.10.004 10.1016/j.scitotenv.2011.12.064 10.1016/j.envpol.2014.07.022 10.1016/j.atmosenv.2009.03.009 10.1016/j.atmosenv.2006.03.016 10.1016/j.apenergy.2016.10.052 10.1007/s11270-012-1373-4 10.1016/j.jenvman.2006.12.034 10.1021/es2025752 10.1016/j.jclepro.2015.05.005 10.1016/j.landurbplan.2017.09.019 10.1038/462159b 10.1016/j.rse.2016.07.015 10.1016/j.apenergy.2014.09.059 10.1021/es302673e 10.1016/j.rse.2010.05.034 10.1016/j.envint.2015.11.003 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2017.11.124 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
EndPage | 445 |
ExternalDocumentID | 29156264 10_1016_j_scitotenv_2017_11_124 S0048969717331820 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SEN SEW SSH WUQ XPP ZXP ZY4 NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-4c5f5e7c33c001d92f7b19609d9e80a6fb9a4c1e2aed416834f5eb616fd2fe273 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Thu Jul 10 22:24:54 EDT 2025 Mon Jul 21 10:25:15 EDT 2025 Wed Feb 19 02:42:07 EST 2025 Tue Jul 01 01:21:25 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Fri Feb 23 02:46:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PM2.5 concentrations Geographical detector technique Spatial regression China PM(2.5) concentrations |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-4c5f5e7c33c001d92f7b19609d9e80a6fb9a4c1e2aed416834f5eb616fd2fe273 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9082-8562 |
PMID | 29156264 |
PQID | 1966985134 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2067291661 proquest_miscellaneous_1966985134 pubmed_primary_29156264 crossref_citationtrail_10_1016_j_scitotenv_2017_11_124 crossref_primary_10_1016_j_scitotenv_2017_11_124 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2017_11_124 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 2018-04-00 2018-Apr-01 20180401 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2018 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Van, Martin, Brauer, Boys (bb0235) 2015 Kloog, Nordio, Coull, Schwartz (bb0095) 2012; 46 Hu, Waller, Al-Hamdan, Crosson, Estes, Estes, Quattrochi, Samat, Liu (bb0080) 2013; 121 GBD MAPS Working Group (bb0035) 2016 Shao, Li, Cao, Yang (bb0200) 2016; 9 Fang, Guan, Lu, Zhou, Deng (bb0030) 2013; 13 Chen, Chai, Duan, Xue, Li, Liu (bb0015) 2003; 16 Kan, Chen, Tong (bb0090) 2012; 42 Zhao, Zhang, Xu, Xu, Meng, Pu (bb0315) 2009; 43 Liu, Sarnat, Kilaru, Jacob, Koutrakis (bb0120) 2005; 39 Rohde, Muller (bb0195) 2015; 10 Redman, Friman, Garling, Hartig (bb0185) 2013; 25 Hao, Liu (bb0060) 2016; 112 Hua, Cheng, Wang, Jiang, Chen, Cai, Fu, Fu, Chen, Xu, Fu, Chen, Xu, Yu (bb0085) 2015; 123 Guan, Reiner (bb0040) 2009; 462 Zhao, Yu, Yin, He, Liu, Qu, Xiao (bb0325) 2016; 86 Wang, Li, Fang, Zhou (bb0280) 2016; 542 He, Lin (bb0070) 2017; 38 Wang, Xua, Spurr, Wang, Drury (bb0255) 2010; 114 Remoundaki, Papayannis, Kassomenos, Mantas, Kokkalis, Tsezos (bb0190) 2013; 224 Wang, Fang (bb0240) 2016; 148 Barker (bb0005) 2013; 52 Wang, Zhou, Wang, Feng, Hubacek (bb0290) 2017; 142 Wang, Xu (bb0250) 2017; 1 Wang, Liu, Zhou, Hu, Ou (bb0285) 2017; 185 Liang, Duan, He, Ma (bb0105) 2016; 86 Wu, Yao, Li, Si (bb0300) 2016; 184 Gupta, Christopher, Wang, Gehrig, Lee, Kumar (bb0050) 2006; 40 National Bureau of Statistics of China (bb0155) 2015 China Electricity Council (CEC) (bb0025) 2015 Paatero, Hopke, Hoppenstock, Eberly (bb0165) 2003; 37 Onat, Stakeeva (bb0160) 2013; 4 Ma, Zhang (bb0130) 2014; 4 Wang, Fang, Wang, Huang, Ma (bb0270) 2015; 49 Zhou, Lu, Tan, Yan, Ou, Liu, Luo, Li, Zhang, Zhang, Zhu (bb0330) 2017; 1 Lin, Fu, Jiang, Hu, Dong, Huang, Zhao (bb0110) 2014; 11 Zhang, Chen, Li, Ding, Lin (bb0310) 2015; 63 Li, Li, Jiang, Liu (bb0100) 2014; Z1 Pateraki, Asimakopoulos, Flocas, Maggos, Vasilakos (bb0175) 2012; 419 National Ambient Air Quality Standard (NAAQS) (bb0150) 2012 Tiwari, Srivastava, Bisht, Parmita, Srivastava, Attri (bb0220) 2013; 125 Ma, Du, Gao, Zhao, Wu (bb0135) 2014; 2 Madrigano, Kloog, Goldberg, Coull, Mittleman, Schwartz (bb0140) 2013; 121 Hao, Wang, Shen, Li, Hu (bb0065) 2007; 147 Zhao, Jiang, Cui (bb0320) 2014; 35 Wang, Li, Christakos, Liao, Zhang, Gu, Zheng (bb0260) 2010; 24 Wang, Fang, Guan, Pang (bb0265) 2014; 136 Liu, Liang, Li, Xu, Ou, Chen, Li, Wang, Pei (bb9005) 2017; 168 List, Co (bb0115) 2000; 1 Mao, Qiu, Kusano, Xu (bb0145) 2012; 19 Brauer, Amann, Burnett, Cohe, Dentener, Ezzati, Henderson, Krzyzanowski, Martin, Dingenen (bb0010) 2012; 46 Squizzato, Masiol, Innocente, Pecorari, Rampazzo, Pavoni (bb0205) 2012; 46 Sun, Wang, Li, Lai (bb0215) 2015; 6 Tobler (bb0225) 1970; 46 Han, Zhou, Li, Li (bb0055) 2014; 194 Paciorek, Liu (bb0170) 2009; 117 Stone (bb0210) 2008; 86 Cheng, Luo, Wang, Wang, Shama, Shimadera, Wang, Bressi, Miranda, Jiang, Zhou, Fajardo, Yan, Hao (bb0020) 2016; 89 Lou, Liu, Li, Li (bb0125) 2016; 13 Tong, Wang (bb0230) 2014; 5 Peng, Chen, Lü, Liu, Wu (bb0180) 2016; 174 Hoff, Christopher (bb0075) 2009; 59 Wang, Liu (bb0245) 2017; 200 Yang, Wang, Zhang, Zhan, Li (bb0305) 2017; 584–585 Guan, Su, Zhang, Peters, Liu, Lei, He (bb0045) 2014; 9 Wang, Fang, Wang (bb0275) 2016; 55 Li, Chen, Liu, Liang, Wang, Chen, Pei, Xu (bb9000) 2017; 107 Wang, Wang, Li, Zhang, Jin, Su, Wu (bb0295) 2017; 79 China Electricity Council (CEC) (10.1016/j.scitotenv.2017.11.124_bb0025) Guan (10.1016/j.scitotenv.2017.11.124_bb0045) 2014; 9 Han (10.1016/j.scitotenv.2017.11.124_bb0055) 2014; 194 Guan (10.1016/j.scitotenv.2017.11.124_bb0040) 2009; 462 Sun (10.1016/j.scitotenv.2017.11.124_bb0215) 2015; 6 Wang (10.1016/j.scitotenv.2017.11.124_bb0280) 2016; 542 Zhang (10.1016/j.scitotenv.2017.11.124_bb0310) 2015; 63 Hao (10.1016/j.scitotenv.2017.11.124_bb0060) 2016; 112 He (10.1016/j.scitotenv.2017.11.124_bb0070) 2017; 38 Li (10.1016/j.scitotenv.2017.11.124_bb9000) 2017; 107 Rohde (10.1016/j.scitotenv.2017.11.124_bb0195) 2015; 10 Wang (10.1016/j.scitotenv.2017.11.124_bb0240) 2016; 148 Barker (10.1016/j.scitotenv.2017.11.124_bb0005) 2013; 52 Ma (10.1016/j.scitotenv.2017.11.124_bb0130) 2014; 4 Paatero (10.1016/j.scitotenv.2017.11.124_bb0165) 2003; 37 Li (10.1016/j.scitotenv.2017.11.124_bb0100) 2014; Z1 Liu (10.1016/j.scitotenv.2017.11.124_bb9005) 2017; 168 GBD MAPS Working Group (10.1016/j.scitotenv.2017.11.124_bb0035) 2016 Remoundaki (10.1016/j.scitotenv.2017.11.124_bb0190) 2013; 224 Wang (10.1016/j.scitotenv.2017.11.124_bb0255) 2010; 114 Zhao (10.1016/j.scitotenv.2017.11.124_bb0325) 2016; 86 Wang (10.1016/j.scitotenv.2017.11.124_bb0250) 2017; 1 Wu (10.1016/j.scitotenv.2017.11.124_bb0300) 2016; 184 Hoff (10.1016/j.scitotenv.2017.11.124_bb0075) 2009; 59 Tobler (10.1016/j.scitotenv.2017.11.124_bb0225) 1970; 46 Gupta (10.1016/j.scitotenv.2017.11.124_bb0050) 2006; 40 Brauer (10.1016/j.scitotenv.2017.11.124_bb0010) 2012; 46 Squizzato (10.1016/j.scitotenv.2017.11.124_bb0205) 2012; 46 Madrigano (10.1016/j.scitotenv.2017.11.124_bb0140) 2013; 121 Liang (10.1016/j.scitotenv.2017.11.124_bb0105) 2016; 86 Wang (10.1016/j.scitotenv.2017.11.124_bb0245) 2017; 200 Paciorek (10.1016/j.scitotenv.2017.11.124_bb0170) 2009; 117 Wang (10.1016/j.scitotenv.2017.11.124_bb0290) 2017; 142 Hao (10.1016/j.scitotenv.2017.11.124_bb0065) 2007; 147 Kan (10.1016/j.scitotenv.2017.11.124_bb0090) 2012; 42 Lou (10.1016/j.scitotenv.2017.11.124_bb0125) 2016; 13 Kloog (10.1016/j.scitotenv.2017.11.124_bb0095) 2012; 46 Chen (10.1016/j.scitotenv.2017.11.124_bb0015) 2003; 16 List (10.1016/j.scitotenv.2017.11.124_bb0115) 2000; 1 Redman (10.1016/j.scitotenv.2017.11.124_bb0185) 2013; 25 Wang (10.1016/j.scitotenv.2017.11.124_bb0275) 2016; 55 Zhao (10.1016/j.scitotenv.2017.11.124_bb0320) 2014; 35 Cheng (10.1016/j.scitotenv.2017.11.124_bb0020) 2016; 89 Tong (10.1016/j.scitotenv.2017.11.124_bb0230) 2014; 5 Tiwari (10.1016/j.scitotenv.2017.11.124_bb0220) 2013; 125 Stone (10.1016/j.scitotenv.2017.11.124_bb0210) 2008; 86 National Bureau of Statistics of China (10.1016/j.scitotenv.2017.11.124_bb0155) Wang (10.1016/j.scitotenv.2017.11.124_bb0260) 2010; 24 Fang (10.1016/j.scitotenv.2017.11.124_bb0030) 2013; 13 Peng (10.1016/j.scitotenv.2017.11.124_bb0180) 2016; 174 Zhao (10.1016/j.scitotenv.2017.11.124_bb0315) 2009; 43 Ma (10.1016/j.scitotenv.2017.11.124_bb0135) 2014; 2 Wang (10.1016/j.scitotenv.2017.11.124_bb0295) 2017; 79 Wang (10.1016/j.scitotenv.2017.11.124_bb0285) 2017; 185 Hua (10.1016/j.scitotenv.2017.11.124_bb0085) 2015; 123 Lin (10.1016/j.scitotenv.2017.11.124_bb0110) 2014; 11 Hu (10.1016/j.scitotenv.2017.11.124_bb0080) 2013; 121 National Ambient Air Quality Standard (NAAQS) (10.1016/j.scitotenv.2017.11.124_bb0150) Onat (10.1016/j.scitotenv.2017.11.124_bb0160) 2013; 4 Zhou (10.1016/j.scitotenv.2017.11.124_bb0330) 2017; 1 Liu (10.1016/j.scitotenv.2017.11.124_bb0120) 2005; 39 Pateraki (10.1016/j.scitotenv.2017.11.124_bb0175) 2012; 419 Van (10.1016/j.scitotenv.2017.11.124_bb0235) 2015 Mao (10.1016/j.scitotenv.2017.11.124_bb0145) 2012; 19 Yang (10.1016/j.scitotenv.2017.11.124_bb0305) 2017; 584–585 Wang (10.1016/j.scitotenv.2017.11.124_bb0270) 2015; 49 Shao (10.1016/j.scitotenv.2017.11.124_bb0200) 2016; 9 Wang (10.1016/j.scitotenv.2017.11.124_bb0265) 2014; 136 |
References_xml | – volume: 1 start-page: 1 year: 2000 end-page: 20 ident: bb0115 article-title: The effects of environmental regulations on foreign direct investment publication-title: J. Environ. Econ. Manag. – volume: 59 start-page: 645 year: 2009 end-page: 675 ident: bb0075 article-title: Remote sensing of particulate pollution from space: have we reached the promised land? publication-title: J. Air Waste Manage. Assoc. – volume: 123 start-page: 380 year: 2015 end-page: 391 ident: bb0085 article-title: Characteristics and source apportionment of PM publication-title: Atmos. Environ. – volume: 584–585 start-page: 318 year: 2017 end-page: 328 ident: bb0305 article-title: The impact of anthropogenic emissions and meteorological conditions on the spatial variation of ambient SO2 concentrations: a panel study of 113 Chinese cities publication-title: Sci. Total Environ. – volume: 185 start-page: 189 year: 2017 end-page: 200 ident: bb0285 article-title: Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities publication-title: Appl. Energy – volume: 194 start-page: 163 year: 2014 end-page: 170 ident: bb0055 article-title: Impact of urbanization level on urban air quality: a case of fine particles (PM publication-title: Environ. Pollut. – volume: 89 start-page: 212 year: 2016 end-page: 221 ident: bb0020 article-title: Status and characteristics of ambient PM publication-title: Environ. Int. – volume: 1 start-page: 199 year: 2017 end-page: 218 ident: bb0330 article-title: A stochastic equilibrium chance-constrained programming model for municipal solid waste management of the City of Dalian, China publication-title: Qual. Quant. – start-page: 20 year: 2016 ident: bb0035 article-title: Burden of Disease Attributable to Coal-burning and Other Major Sources of Air Pollution in China. Special Report – volume: 13 start-page: 928 year: 2016 ident: bb0125 article-title: Socioeconomic drivers of PM publication-title: Int. J. Environ. Res. Public Health – volume: 121 start-page: 192 year: 2013 end-page: 196 ident: bb0140 article-title: Long-term exposure to PM publication-title: Environ. Health Perspect. – volume: 419 start-page: 124 year: 2012 end-page: 135 ident: bb0175 article-title: The role of meteorology on different sized aerosol fractions (PM publication-title: Sci. Total Environ. – volume: 148 start-page: 148 year: 2016 end-page: 162 ident: bb0240 article-title: Spatial-temporal characteristics and determinants of PM publication-title: Chemosphere – volume: 112 start-page: 1443 year: 2016 end-page: 1453 ident: bb0060 article-title: The influential factors of urban PM publication-title: J. Clean. Prod. – volume: 1 start-page: 116 year: 2017 end-page: 134 ident: bb0250 article-title: Geodetector: principle and prospective publication-title: Acta Geograplica Sin. – volume: 24 start-page: 107 year: 2010 end-page: 127 ident: bb0260 article-title: Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China publication-title: Int. J. Geogr. Inf. Sci. – volume: 13 start-page: 2766 year: 2013 end-page: 2790 ident: bb0030 article-title: Input-output efficiency of urban agglomerations in China: an application of Data Envelopment Analysis (DEA) publication-title: Urban Stud. – volume: 38 start-page: 22 year: 2017 end-page: 32 ident: bb0070 article-title: Interactive effects of the influencing factors on the changes of PM publication-title: Environ. Sci. – volume: 55 start-page: 505 year: 2016 end-page: 515 ident: bb0275 article-title: Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: an empirical analysis based on provincial panel data publication-title: Renew. Sust. Energ. Rev. – volume: 86 start-page: 688 year: 2008 end-page: 698 ident: bb0210 article-title: Urban sprawl and air quality in large US cities publication-title: J. Environ. Manag. – volume: 46 start-page: 234 year: 1970 end-page: 240 ident: bb0225 article-title: A computer movie simulating urban growth in the Detroit region publication-title: Econ. Geogr. – volume: 184 start-page: 316 year: 2016 end-page: 328 ident: bb0300 article-title: VIIRS-based remote sensing estimation of ground-level PM2.5 concentrations in Beijing-Tianjin-Hebei: a spatiotemporal statistical model publication-title: Remote Sens. Environ. – volume: 6 start-page: 25 year: 2015 end-page: 27 ident: bb0215 article-title: Emission reduction and detection technology of PM publication-title: Jilin Electr. Power – volume: 86 start-page: 92 year: 2016 end-page: 106 ident: bb0325 article-title: Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center publication-title: Environ. Int. – volume: 117 start-page: 904 year: 2009 end-page: 909 ident: bb0170 article-title: Limitations of remotely sensed aerosol as a spatial proxy for fine particulate matter publication-title: Environ. Health Perspect. – volume: 79 start-page: 26 year: 2017 end-page: 36 ident: bb0295 article-title: Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique publication-title: Appl. Geogr. – volume: 46 start-page: 64 year: 2012 end-page: 76 ident: bb0205 article-title: A procedure to assess local and long-range transport contributions to PM publication-title: J. Aerosol Sci. – volume: 4 start-page: 19 year: 2014 end-page: 31 ident: bb0130 article-title: The spatial effect of China's haze pollution and the impact from economic change and energy structure publication-title: China Ind. Econ. – year: 2012 ident: bb0150 – volume: 16 start-page: 46 year: 2003 end-page: 52 ident: bb0015 article-title: Study on air quality impact in Beijing from thermal power planning for the northern passageway of the west-east power transfer project publication-title: Res. Environ. Sci. – volume: 37 start-page: 2460 year: 2003 end-page: 2476 ident: bb0165 article-title: Advanced factor analysis of spatial distributions of PM publication-title: Environ. Sci. Technol. – volume: 25 start-page: 119 year: 2013 end-page: 127 ident: bb0185 article-title: Quality attributes of public transport that attract car users: a research review publication-title: Transp. Policy – volume: Z1 start-page: 75 year: 2014 end-page: 77 ident: bb0100 article-title: International experience study: explored the strategy of mitigation of traffic pollution publication-title: Environ. Prot. – volume: 2 start-page: 103 year: 2014 end-page: 107 ident: bb0135 article-title: Experiment study on PM publication-title: Energy Conserv. Technol. – volume: 49 start-page: 121 year: 2015 end-page: 131 ident: bb0270 article-title: Quantifying the relationship between urban development intensity and carbon dioxide emissions using a panel data analysis publication-title: Ecol. Indic. – year: 2015 ident: bb0235 article-title: Use of Satellite Observations for Long-term Exposure Assessment of Global Concentrations of Fine Particulate Matter – volume: 147 start-page: 401 year: 2007 end-page: 408 ident: bb0065 article-title: Air quality impacts of power plant emissions in Beijing publication-title: Environ. Pollut. – volume: 9 start-page: 73 year: 2016 end-page: 88 ident: bb0200 article-title: China's economic policy choices for governing smog pollution based on spatial spillover effects publication-title: Econ. Res. J. – volume: 121 start-page: 1 year: 2013 end-page: 10 ident: bb0080 article-title: Estimating ground-level PM (2.5) concentrations in the southeastern US using geographically weighted regression publication-title: Environ. Res. – volume: 168 start-page: 94 year: 2017 end-page: 116 ident: bb9005 article-title: A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects publication-title: Landsc. Urban Plan. – year: 2015 ident: bb0025 – volume: 35 start-page: 4387 year: 2014 end-page: 4394 ident: bb0320 article-title: Shifting path of industrial pollution gravity centers and its driving mechanism in pan-Yangtze River Delta publication-title: Huan Jing Ke Xue – volume: 46 start-page: 652 year: 2012 end-page: 660 ident: bb0010 article-title: Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution publication-title: Environ. Sci. Technol. – volume: 40 start-page: 5880 year: 2006 end-page: 5892 ident: bb0050 article-title: Satellite remote sensing of particulate matter and air quality assessment over global cities publication-title: Atmos. Environ. – volume: 86 start-page: 150 year: 2016 end-page: 170 ident: bb0105 article-title: Review on recent progress in observations, source identifications and countermeasures of PM publication-title: Environ. Int. – year: 2015 ident: bb0155 – volume: 142 start-page: 1800 year: 2017 end-page: 1809 ident: bb0290 article-title: The characteristics and drivers of fine particulate matter (PM publication-title: J. Clean. Prod. – volume: 11 start-page: 173 year: 2014 end-page: 186 ident: bb0110 article-title: Spatio-temporal variation of PM publication-title: Int. J. Environ. Res. Public Health – volume: 4 start-page: 329 year: 2013 end-page: 335 ident: bb0160 article-title: Personal exposure of commuters in public transport to PM publication-title: Atmos. Pollut. Res. – volume: 136 start-page: 738 year: 2014 end-page: 749 ident: bb0265 article-title: Urbanization, energy consumption, and CO2 emissions in China: a panel data analysis of China's province publication-title: Appl. Energy – volume: 42 start-page: 10 year: 2012 end-page: 19 ident: bb0090 article-title: Ambient air pollution, climate change, and population health in China publication-title: Environ. Int. – volume: 114 start-page: 2575 year: 2010 end-page: 2583 ident: bb0255 article-title: Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China publication-title: Remote Sens. Environ. – volume: 542 start-page: 360 year: 2016 end-page: 371 ident: bb0280 article-title: The relationship between economic growth, energy consumption, and CO2 emissions: empirical evidence from China publication-title: Sci. Total Environ. – volume: 5 start-page: 4 year: 2014 end-page: 10 ident: bb0230 article-title: The interaction mechanism of urban population and Haze in China publication-title: Social Sciences of Beijing – volume: 174 start-page: 109 year: 2016 end-page: 121 ident: bb0180 article-title: Spatiotemporal patterns of remotely sensed PM 2.5 concentration in China from 1999 to 2011 publication-title: Remote Sens. Environ. – volume: 224 start-page: 1373 year: 2013 ident: bb0190 article-title: Influence of Saharan dust transport events on PM publication-title: Water Air Soil Pollut. – volume: 63 start-page: 326 year: 2015 end-page: 336 ident: bb0310 article-title: A virtual geographic environment system for multiscale air quality analysis and decision making: a case study of SO2 concentration simulation publication-title: Appl. Geogr. – volume: 43 start-page: 2893 year: 2009 end-page: 2900 ident: bb0315 article-title: Seasonal and diurnal variations of ambient PM publication-title: Atmos. Environ. – volume: 107 start-page: 1040 year: 2017 end-page: 1059 ident: bb9000 article-title: A new global land-Use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human-environment interactions publication-title: Ann. Am. Assoc. Geogr. – volume: 19 start-page: 128 year: 2012 end-page: 138 ident: bb0145 article-title: Predicting regional space-time variation of PM2.5 with land-use regression model and MODIS data publication-title: Environ. Sci. Pollut. Res. – volume: 9 start-page: 1 year: 2014 end-page: 9 ident: bb0045 article-title: The socioeconomic drivers of China's primary PM publication-title: Environ. Res. Lett. – volume: 52 start-page: 660 year: 2013 end-page: 667 ident: bb0005 article-title: Isolating the industrial contribution of PM publication-title: J. Appl. Meteorol. Climatol. – volume: 10 year: 2015 ident: bb0195 article-title: Air pollution in China: mapping of concentrations and sources publication-title: PLoS One – volume: 125 start-page: 50 year: 2013 end-page: 62 ident: bb0220 article-title: Diurnal and seasonal variations of black carbon and PM publication-title: Atmos. Res. – volume: 46 start-page: 11913 year: 2012 end-page: 11921 ident: bb0095 article-title: Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2. 5 exposures in the Mid-Atlantic states publication-title: Environ. Sci. Technol. – volume: 39 start-page: 3269 year: 2005 end-page: 3278 ident: bb0120 article-title: Estimating ground-level PM publication-title: Environ. Sci. Technol. – volume: 200 start-page: 204 year: 2017 end-page: 214 ident: bb0245 article-title: China's city-level energy-related CO2 emissions: spatiotemporal patterns and driving forces publication-title: Appl. Energy – volume: 462 start-page: 159 year: 2009 ident: bb0040 article-title: Emissions affected by trade among developing countries publication-title: Nature – volume: 542 start-page: 360 year: 2016 ident: 10.1016/j.scitotenv.2017.11.124_bb0280 article-title: The relationship between economic growth, energy consumption, and CO2 emissions: empirical evidence from China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.10.027 – volume: 117 start-page: 904 year: 2009 ident: 10.1016/j.scitotenv.2017.11.124_bb0170 article-title: Limitations of remotely sensed aerosol as a spatial proxy for fine particulate matter publication-title: Environ. Health Perspect. doi: 10.1289/ehp.0800360 – volume: 86 start-page: 150 year: 2016 ident: 10.1016/j.scitotenv.2017.11.124_bb0105 article-title: Review on recent progress in observations, source identifications and countermeasures of PM2.5 publication-title: Environ. Int. doi: 10.1016/j.envint.2015.10.016 – volume: 13 start-page: 928 year: 2016 ident: 10.1016/j.scitotenv.2017.11.124_bb0125 article-title: Socioeconomic drivers of PM2.5 in the accumulation phase of air pollution episodes in the Yangtze River Delta of China publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph13100928 – volume: 147 start-page: 401 year: 2007 ident: 10.1016/j.scitotenv.2017.11.124_bb0065 article-title: Air quality impacts of power plant emissions in Beijing publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2006.06.013 – volume: 39 start-page: 3269 year: 2005 ident: 10.1016/j.scitotenv.2017.11.124_bb0120 article-title: Estimating ground-level PM2. 5 in the eastern United States using satellite remote sensing publication-title: Environ. Sci. Technol. doi: 10.1021/es049352m – volume: 121 start-page: 192 year: 2013 ident: 10.1016/j.scitotenv.2017.11.124_bb0140 article-title: Long-term exposure to PM2.5 and incidence of acute myocardial infarction publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1205284 – volume: 174 start-page: 109 year: 2016 ident: 10.1016/j.scitotenv.2017.11.124_bb0180 article-title: Spatiotemporal patterns of remotely sensed PM 2.5 concentration in China from 1999 to 2011 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.008 – volume: 25 start-page: 119 year: 2013 ident: 10.1016/j.scitotenv.2017.11.124_bb0185 article-title: Quality attributes of public transport that attract car users: a research review publication-title: Transp. Policy doi: 10.1016/j.tranpol.2012.11.005 – volume: 200 start-page: 204 year: 2017 ident: 10.1016/j.scitotenv.2017.11.124_bb0245 article-title: China's city-level energy-related CO2 emissions: spatiotemporal patterns and driving forces publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.085 – volume: 2 start-page: 103 year: 2014 ident: 10.1016/j.scitotenv.2017.11.124_bb0135 article-title: Experiment study on PM2.5 concentration emission characteristics of 220 MW pulverized coal boilers publication-title: Energy Conserv. Technol. – volume: 46 start-page: 64 year: 2012 ident: 10.1016/j.scitotenv.2017.11.124_bb0205 article-title: A procedure to assess local and long-range transport contributions to PM2.5 and secondary inorganic aerosol publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2011.12.001 – volume: 6 start-page: 25 year: 2015 ident: 10.1016/j.scitotenv.2017.11.124_bb0215 article-title: Emission reduction and detection technology of PM2.5 in coal-fired power plants publication-title: Jilin Electr. Power – volume: 142 start-page: 1800 year: 2017 ident: 10.1016/j.scitotenv.2017.11.124_bb0290 article-title: The characteristics and drivers of fine particulate matter (PM2.5) distribution in China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.11.104 – volume: 37 start-page: 2460 year: 2003 ident: 10.1016/j.scitotenv.2017.11.124_bb0165 article-title: Advanced factor analysis of spatial distributions of PM2.5 in the eastern United States publication-title: Environ. Sci. Technol. doi: 10.1021/es0261978 – volume: 125 start-page: 50 year: 2013 ident: 10.1016/j.scitotenv.2017.11.124_bb0220 article-title: Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: influence of meteorology publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2013.01.011 – volume: 11 start-page: 173 year: 2014 ident: 10.1016/j.scitotenv.2017.11.124_bb0110 article-title: Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph110100173 – volume: 4 start-page: 329 year: 2013 ident: 10.1016/j.scitotenv.2017.11.124_bb0160 article-title: Personal exposure of commuters in public transport to PM2.5 and fine particle counts publication-title: Atmos. Pollut. Res. doi: 10.5094/APR.2013.037 – volume: 9 start-page: 1 year: 2014 ident: 10.1016/j.scitotenv.2017.11.124_bb0045 article-title: The socioeconomic drivers of China's primary PM2.5 emissions publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/2/024010 – volume: Z1 start-page: 75 year: 2014 ident: 10.1016/j.scitotenv.2017.11.124_bb0100 article-title: International experience study: explored the strategy of mitigation of traffic pollution publication-title: Environ. Prot. – volume: 5 start-page: 4 year: 2014 ident: 10.1016/j.scitotenv.2017.11.124_bb0230 article-title: The interaction mechanism of urban population and Haze in China publication-title: Social Sciences of Beijing – volume: 55 start-page: 505 year: 2016 ident: 10.1016/j.scitotenv.2017.11.124_bb0275 article-title: Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: an empirical analysis based on provincial panel data publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2015.10.140 – start-page: 20 year: 2016 ident: 10.1016/j.scitotenv.2017.11.124_bb0035 – ident: 10.1016/j.scitotenv.2017.11.124_bb0155 – volume: 52 start-page: 660 year: 2013 ident: 10.1016/j.scitotenv.2017.11.124_bb0005 article-title: Isolating the industrial contribution of PM2.5 in Hamilton and Burlington, Ontario publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-12-0163.1 – volume: 148 start-page: 148 year: 2016 ident: 10.1016/j.scitotenv.2017.11.124_bb0240 article-title: Spatial-temporal characteristics and determinants of PM2.5 in the Bo hai Rim urban agglomeration publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.12.118 – volume: 24 start-page: 107 year: 2010 ident: 10.1016/j.scitotenv.2017.11.124_bb0260 article-title: Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810802443457 – volume: 38 start-page: 22 year: 2017 ident: 10.1016/j.scitotenv.2017.11.124_bb0070 article-title: Interactive effects of the influencing factors on the changes of PM2.5 concentration based on GAM model publication-title: Environ. Sci. – volume: 42 start-page: 10 year: 2012 ident: 10.1016/j.scitotenv.2017.11.124_bb0090 article-title: Ambient air pollution, climate change, and population health in China publication-title: Environ. Int. doi: 10.1016/j.envint.2011.03.003 – ident: 10.1016/j.scitotenv.2017.11.124_bb0150 – volume: 1 start-page: 199 year: 2017 ident: 10.1016/j.scitotenv.2017.11.124_bb0330 article-title: A stochastic equilibrium chance-constrained programming model for municipal solid waste management of the City of Dalian, China publication-title: Qual. Quant. doi: 10.1007/s11135-015-0301-2 – volume: 19 start-page: 128 year: 2012 ident: 10.1016/j.scitotenv.2017.11.124_bb0145 article-title: Predicting regional space-time variation of PM2.5 with land-use regression model and MODIS data publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-011-0546-9 – volume: 63 start-page: 326 year: 2015 ident: 10.1016/j.scitotenv.2017.11.124_bb0310 article-title: A virtual geographic environment system for multiscale air quality analysis and decision making: a case study of SO2 concentration simulation publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2015.07.011 – volume: 9 start-page: 73 year: 2016 ident: 10.1016/j.scitotenv.2017.11.124_bb0200 article-title: China's economic policy choices for governing smog pollution based on spatial spillover effects publication-title: Econ. Res. J. – volume: 59 start-page: 645 year: 2009 ident: 10.1016/j.scitotenv.2017.11.124_bb0075 article-title: Remote sensing of particulate pollution from space: have we reached the promised land? publication-title: J. Air Waste Manage. Assoc. doi: 10.3155/1047-3289.59.6.645 – volume: 4 start-page: 19 year: 2014 ident: 10.1016/j.scitotenv.2017.11.124_bb0130 article-title: The spatial effect of China's haze pollution and the impact from economic change and energy structure publication-title: China Ind. Econ. – volume: 46 start-page: 234 year: 1970 ident: 10.1016/j.scitotenv.2017.11.124_bb0225 article-title: A computer movie simulating urban growth in the Detroit region publication-title: Econ. Geogr. doi: 10.2307/143141 – ident: 10.1016/j.scitotenv.2017.11.124_bb0025 – volume: 79 start-page: 26 year: 2017 ident: 10.1016/j.scitotenv.2017.11.124_bb0295 article-title: Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2016.12.003 – volume: 584–585 start-page: 318 year: 2017 ident: 10.1016/j.scitotenv.2017.11.124_bb0305 article-title: The impact of anthropogenic emissions and meteorological conditions on the spatial variation of ambient SO2 concentrations: a panel study of 113 Chinese cities publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.12.145 – volume: 89 start-page: 212 year: 2016 ident: 10.1016/j.scitotenv.2017.11.124_bb0020 article-title: Status and characteristics of ambient PM 2.5 pollution in global megacities publication-title: Environ. Int. doi: 10.1016/j.envint.2016.02.003 – volume: 107 start-page: 1040 year: 2017 ident: 10.1016/j.scitotenv.2017.11.124_bb9000 article-title: A new global land-Use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human-environment interactions publication-title: Ann. Am. Assoc. Geogr. – volume: 1 start-page: 116 year: 2017 ident: 10.1016/j.scitotenv.2017.11.124_bb0250 article-title: Geodetector: principle and prospective publication-title: Acta Geograplica Sin. – volume: 16 start-page: 46 year: 2003 ident: 10.1016/j.scitotenv.2017.11.124_bb0015 article-title: Study on air quality impact in Beijing from thermal power planning for the northern passageway of the west-east power transfer project publication-title: Res. Environ. Sci. – volume: 123 start-page: 380 year: 2015 ident: 10.1016/j.scitotenv.2017.11.124_bb0085 article-title: Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2015.03.046 – volume: 13 start-page: 2766 year: 2013 ident: 10.1016/j.scitotenv.2017.11.124_bb0030 article-title: Input-output efficiency of urban agglomerations in China: an application of Data Envelopment Analysis (DEA) publication-title: Urban Stud. doi: 10.1177/0042098013477707 – volume: 1 start-page: 1 year: 2000 ident: 10.1016/j.scitotenv.2017.11.124_bb0115 article-title: The effects of environmental regulations on foreign direct investment publication-title: J. Environ. Econ. Manag. doi: 10.1006/jeem.1999.1095 – volume: 10 year: 2015 ident: 10.1016/j.scitotenv.2017.11.124_bb0195 article-title: Air pollution in China: mapping of concentrations and sources publication-title: PLoS One doi: 10.1371/journal.pone.0135749 – volume: 121 start-page: 1 year: 2013 ident: 10.1016/j.scitotenv.2017.11.124_bb0080 article-title: Estimating ground-level PM (2.5) concentrations in the southeastern US using geographically weighted regression publication-title: Environ. Res. doi: 10.1016/j.envres.2012.11.003 – volume: 49 start-page: 121 year: 2015 ident: 10.1016/j.scitotenv.2017.11.124_bb0270 article-title: Quantifying the relationship between urban development intensity and carbon dioxide emissions using a panel data analysis publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2014.10.004 – volume: 419 start-page: 124 year: 2012 ident: 10.1016/j.scitotenv.2017.11.124_bb0175 article-title: The role of meteorology on different sized aerosol fractions (PM10, PM2.5, PM2.5–10) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2011.12.064 – volume: 194 start-page: 163 year: 2014 ident: 10.1016/j.scitotenv.2017.11.124_bb0055 article-title: Impact of urbanization level on urban air quality: a case of fine particles (PM2.5) in Chinese cities publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2014.07.022 – volume: 43 start-page: 2893 year: 2009 ident: 10.1016/j.scitotenv.2017.11.124_bb0315 article-title: Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2009.03.009 – volume: 35 start-page: 4387 year: 2014 ident: 10.1016/j.scitotenv.2017.11.124_bb0320 article-title: Shifting path of industrial pollution gravity centers and its driving mechanism in pan-Yangtze River Delta publication-title: Huan Jing Ke Xue – volume: 40 start-page: 5880 year: 2006 ident: 10.1016/j.scitotenv.2017.11.124_bb0050 article-title: Satellite remote sensing of particulate matter and air quality assessment over global cities publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2006.03.016 – volume: 185 start-page: 189 year: 2017 ident: 10.1016/j.scitotenv.2017.11.124_bb0285 article-title: Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.10.052 – volume: 224 start-page: 1373 year: 2013 ident: 10.1016/j.scitotenv.2017.11.124_bb0190 article-title: Influence of Saharan dust transport events on PM2.5 concentrations and composition over Athens publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-012-1373-4 – volume: 86 start-page: 688 year: 2008 ident: 10.1016/j.scitotenv.2017.11.124_bb0210 article-title: Urban sprawl and air quality in large US cities publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2006.12.034 – volume: 46 start-page: 652 year: 2012 ident: 10.1016/j.scitotenv.2017.11.124_bb0010 article-title: Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution publication-title: Environ. Sci. Technol. doi: 10.1021/es2025752 – volume: 112 start-page: 1443 year: 2016 ident: 10.1016/j.scitotenv.2017.11.124_bb0060 article-title: The influential factors of urban PM2.5 concentrations in China: a spatial econometric analysis publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2015.05.005 – volume: 168 start-page: 94 year: 2017 ident: 10.1016/j.scitotenv.2017.11.124_bb9005 article-title: A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects publication-title: Landsc. Urban Plan. doi: 10.1016/j.landurbplan.2017.09.019 – volume: 462 start-page: 159 year: 2009 ident: 10.1016/j.scitotenv.2017.11.124_bb0040 article-title: Emissions affected by trade among developing countries publication-title: Nature doi: 10.1038/462159b – volume: 184 start-page: 316 year: 2016 ident: 10.1016/j.scitotenv.2017.11.124_bb0300 article-title: VIIRS-based remote sensing estimation of ground-level PM2.5 concentrations in Beijing-Tianjin-Hebei: a spatiotemporal statistical model publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.07.015 – volume: 136 start-page: 738 year: 2014 ident: 10.1016/j.scitotenv.2017.11.124_bb0265 article-title: Urbanization, energy consumption, and CO2 emissions in China: a panel data analysis of China's province publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.09.059 – volume: 46 start-page: 11913 issue: 21 year: 2012 ident: 10.1016/j.scitotenv.2017.11.124_bb0095 article-title: Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2. 5 exposures in the Mid-Atlantic states publication-title: Environ. Sci. Technol. doi: 10.1021/es302673e – volume: 114 start-page: 2575 year: 2010 ident: 10.1016/j.scitotenv.2017.11.124_bb0255 article-title: Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.05.034 – year: 2015 ident: 10.1016/j.scitotenv.2017.11.124_bb0235 – volume: 86 start-page: 92 year: 2016 ident: 10.1016/j.scitotenv.2017.11.124_bb0325 article-title: Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center publication-title: Environ. Int. doi: 10.1016/j.envint.2015.11.003 |
SSID | ssj0000781 |
Score | 2.619453 |
Snippet | •The direction and strength of the link between PM2.5 level and their drivers are analyzed.•Spatial regression and geographical detector techniques are used.•A... The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to human health. In addition to pollutant emissions and... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 436 |
SubjectTerms | China cities coal data collection dust electric energy consumption emissions Geographical detector technique human health monitoring particulates PM2.5 concentrations pollutants pollution pollution control population density rain seasonal variation socioeconomic development socioeconomic factors soot Spatial regression summer temperature trade winter |
Title | Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China's cities using spatial regression and the geographical detector technique |
URI | https://dx.doi.org/10.1016/j.scitotenv.2017.11.124 https://www.ncbi.nlm.nih.gov/pubmed/29156264 https://www.proquest.com/docview/1966985134 https://www.proquest.com/docview/2067291661 |
Volume | 619-620 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqIiQkhGChsHxUg4QEHLJdJ44Tc6uqrRZWrRCiorfIie3VojZZddOqXPg9_Exm7GRXPZQeOEWJ7MTyjO3n-M0bxt7lPLM8dSriRpeR4NZEGvfYUVomY6tTaStO0chHx3J6Ir6cpqdb7KCPhSFaZTf3hzndz9bdk72uN_eWiwXF-IpcSUXHyAnJkFMEu8jIy0e_NzQPErMJp8w4sLH0DY4XvrdtEJteEccrw-ljxGNx2wp1GwL1K9HhY_aog5CwH1r5hG3ZesDuh6SSvwZsZ7KJXcNi3eBdDdjD8IsOQuTRU_Zncq3PfX4IQBQIHbMDGgdkscZ2IctgNrwiaGpwiEth6fuIUn9ZOPcSnfDh61E8Sj_CogaflPv9Ciov1wrErZ_Dirjb2KALOw_c2xp0bfyn5yETO7FCzvBzrT9JgLW87DN2cjj5fjCNusQNUSWycRuJKnWpzaokqXAVNCp2WclJ2s4om4-1dKXSouI21tYgIMwTgcVLyaUzsbMIqHbYdt3U9gUDJUgxzplEJaVAn1KIFytFKofaZakxQyZ7YxVVp2pOyTXOip6-9rNYW7kgK-Oep0ArD9l4XXEZhD3urvKp94biho8WuPzcXflt7z8FjmA6ltG1bS5XBfaMVAh8k3-UIZH9GJG85EP2PDjfutX4HEGsFC__p3mv2AO8ywMn6TXbbi8u7RuEW22568fTLru3_3k2Pabr7NuP2V_twDA_ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTggkhKAwKD8PCQl4yFYnjhPzNk2dOrZWPGzS3iwntquiLanWDMF_xJ_JOU5b7WHsgdfETizf-fwl_u47gI85yyxLnYyY0UXEmTWRpm_sKC2SodWpsCXz2ciTqRif8W_n6fkWHKxyYTytsov9Iaa30bq7stfN5t5iPvc5vjyXQvpj5MTLkN-Dba9OlfZge__oeDzdBOQsD4XzOK1t6nCD5kWPbmqCpz89zSujCLLLYn7bJnUbCG03o8Mn8LhDkbgfBvoUtmzVh_uhruTvPuyMNulr1Kxbv8s-PAp_6TAkHz2DP6Nf-rItEYEEBLEjd2Dt0Buttl3WMpoNtQjrCh1BU1y00-Srf1m8bFU68fP3SbybfsF5hW1d7k9LLFvFVvT0-hkuPX2bBnRlZ4F-W6GuTPvqWSjG7okhF_S6pj1MwLXC7HM4OxydHoyjrnZDVPJs2ES8TF1qszJJStoIjYxdVjCvbmekzYdauEJqXjIba2sIE-YJp-aFYMKZ2FnCVDvQq-rKvgSU3IvGOZPIpODkVpIgYym90KF2WWrMAMTKWKrshM19fY0LtWKw_VBrKytvZfrsUWTlAQzXHRdB2-PuLl9X3qBuuKmiHejuzh9W_qNoEfuTGV3Z-nqpaGaEJOyb_KON19mPCcwLNoAXwfnWo6brhGMFf_U_w3sPD8ankxN1cjQ9fg0P6U4eKEpvoNdcXdu3hL6a4l23uv4CrNcxTQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Examining+the+effects+of+socioeconomic+development+on+fine+particulate+matter+%28PM2.5%29+in+China%27s+cities+using+spatial+regression+and+the+geographical+detector+technique&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhou%2C+Chunshan&rft.au=Chen%2C+Jing&rft.au=Wang%2C+Shaojian&rft.date=2018-04-01&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=619-620&rft.spage=436&rft_id=info:doi/10.1016%2Fj.scitotenv.2017.11.124&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |