Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China's cities using spatial regression and the geographical detector technique

•The direction and strength of the link between PM2.5 level and their drivers are analyzed.•Spatial regression and geographical detector techniques are used.•A spatial agglomeration effect was identified in city-level PM2.5 level.•Population density, industrial structure, industrial dust, and road d...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 619-620; pp. 436 - 445
Main Authors Zhou, Chunshan, Chen, Jing, Wang, Shaojian
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The direction and strength of the link between PM2.5 level and their drivers are analyzed.•Spatial regression and geographical detector techniques are used.•A spatial agglomeration effect was identified in city-level PM2.5 level.•Population density, industrial structure, industrial dust, and road density increase PM2.5 level.•Trade openness and electricity consumption have no significant effect on PM2.5 level. [Display omitted] The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to human health. In addition to pollutant emissions and meteorological conditions, fine particulate matter (PM2.5) is also influenced by socioeconomic development. Thus, identifying the potential effects of socioeconomic development on PM2.5 variations can provide insights into particulate pollution control. This study applied spatial regression and the geographical detector technique for assessing the directions and strength of association between socioeconomic factors and PM2.5 concentrations, using data collected from 945 monitoring stations in 190 Chinese cities in 2014. The results indicated that the annual average PM2.5 concentrations is 61±20μg/m3, and cites with more than 75μg/m3 were mainly located in North China, especially in Tianjin and Hebei province. We also identified a marked seasonal variation in concentrations levels, with the highest level in winter due to coal consumption, lower temperatures, and less rainfall than in summer. Monthly variations followed a “U-shaped” pattern, with a down trend from January and an inflection point in September and then an increasing trend from October. The results of spatial regression indicated that population density, industrial structure, industrial soot (dust) emissions, and road density have a significantly positive effect on PM2.5 concentrations, with a significantly negative influence exerted only by economic growth. In addition, trade openness and electricity consumption were found to have no significant impact on PM2.5 concentrations. Using the geographical detector technique, the strength of association between the five significant drivers and PM2.5 concentrations was further analyzed. We found notable differences among the variables, with industrial soot (dust) emissions playing a greater role in the PM2.5 concentrations than the other variables. These results will be helpful in understanding the dynamics and the underlying mechanisms at work in PM2.5 concentrations in China at the city level, and thereby assisting the Chinese government in employing effective strategies to tackle pollution.
AbstractList The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to human health. In addition to pollutant emissions and meteorological conditions, fine particulate matter (PM2.5) is also influenced by socioeconomic development. Thus, identifying the potential effects of socioeconomic development on PM2.5 variations can provide insights into particulate pollution control. This study applied spatial regression and the geographical detector technique for assessing the directions and strength of association between socioeconomic factors and PM2.5 concentrations, using data collected from 945 monitoring stations in 190 Chinese cities in 2014. The results indicated that the annual average PM2.5 concentrations is 61±20μg/m3, and cites with more than 75μg/m3 were mainly located in North China, especially in Tianjin and Hebei province. We also identified a marked seasonal variation in concentrations levels, with the highest level in winter due to coal consumption, lower temperatures, and less rainfall than in summer. Monthly variations followed a "U-shaped" pattern, with a down trend from January and an inflection point in September and then an increasing trend from October. The results of spatial regression indicated that population density, industrial structure, industrial soot (dust) emissions, and road density have a significantly positive effect on PM2.5 concentrations, with a significantly negative influence exerted only by economic growth. In addition, trade openness and electricity consumption were found to have no significant impact on PM2.5 concentrations. Using the geographical detector technique, the strength of association between the five significant drivers and PM2.5 concentrations was further analyzed. We found notable differences among the variables, with industrial soot (dust) emissions playing a greater role in the PM2.5 concentrations than the other variables. These results will be helpful in understanding the dynamics and the underlying mechanisms at work in PM2.5 concentrations in China at the city level, and thereby assisting the Chinese government in employing effective strategies to tackle pollution.The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to human health. In addition to pollutant emissions and meteorological conditions, fine particulate matter (PM2.5) is also influenced by socioeconomic development. Thus, identifying the potential effects of socioeconomic development on PM2.5 variations can provide insights into particulate pollution control. This study applied spatial regression and the geographical detector technique for assessing the directions and strength of association between socioeconomic factors and PM2.5 concentrations, using data collected from 945 monitoring stations in 190 Chinese cities in 2014. The results indicated that the annual average PM2.5 concentrations is 61±20μg/m3, and cites with more than 75μg/m3 were mainly located in North China, especially in Tianjin and Hebei province. We also identified a marked seasonal variation in concentrations levels, with the highest level in winter due to coal consumption, lower temperatures, and less rainfall than in summer. Monthly variations followed a "U-shaped" pattern, with a down trend from January and an inflection point in September and then an increasing trend from October. The results of spatial regression indicated that population density, industrial structure, industrial soot (dust) emissions, and road density have a significantly positive effect on PM2.5 concentrations, with a significantly negative influence exerted only by economic growth. In addition, trade openness and electricity consumption were found to have no significant impact on PM2.5 concentrations. Using the geographical detector technique, the strength of association between the five significant drivers and PM2.5 concentrations was further analyzed. We found notable differences among the variables, with industrial soot (dust) emissions playing a greater role in the PM2.5 concentrations than the other variables. These results will be helpful in understanding the dynamics and the underlying mechanisms at work in PM2.5 concentrations in China at the city level, and thereby assisting the Chinese government in employing effective strategies to tackle pollution.
The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to human health. In addition to pollutant emissions and meteorological conditions, fine particulate matter (PM ) is also influenced by socioeconomic development. Thus, identifying the potential effects of socioeconomic development on PM variations can provide insights into particulate pollution control. This study applied spatial regression and the geographical detector technique for assessing the directions and strength of association between socioeconomic factors and PM concentrations, using data collected from 945 monitoring stations in 190 Chinese cities in 2014. The results indicated that the annual average PM concentrations is 61±20μg/m , and cites with more than 75μg/m were mainly located in North China, especially in Tianjin and Hebei province. We also identified a marked seasonal variation in concentrations levels, with the highest level in winter due to coal consumption, lower temperatures, and less rainfall than in summer. Monthly variations followed a "U-shaped" pattern, with a down trend from January and an inflection point in September and then an increasing trend from October. The results of spatial regression indicated that population density, industrial structure, industrial soot (dust) emissions, and road density have a significantly positive effect on PM concentrations, with a significantly negative influence exerted only by economic growth. In addition, trade openness and electricity consumption were found to have no significant impact on PM concentrations. Using the geographical detector technique, the strength of association between the five significant drivers and PM concentrations was further analyzed. We found notable differences among the variables, with industrial soot (dust) emissions playing a greater role in the PM concentrations than the other variables. These results will be helpful in understanding the dynamics and the underlying mechanisms at work in PM concentrations in China at the city level, and thereby assisting the Chinese government in employing effective strategies to tackle pollution.
•The direction and strength of the link between PM2.5 level and their drivers are analyzed.•Spatial regression and geographical detector techniques are used.•A spatial agglomeration effect was identified in city-level PM2.5 level.•Population density, industrial structure, industrial dust, and road density increase PM2.5 level.•Trade openness and electricity consumption have no significant effect on PM2.5 level. [Display omitted] The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to human health. In addition to pollutant emissions and meteorological conditions, fine particulate matter (PM2.5) is also influenced by socioeconomic development. Thus, identifying the potential effects of socioeconomic development on PM2.5 variations can provide insights into particulate pollution control. This study applied spatial regression and the geographical detector technique for assessing the directions and strength of association between socioeconomic factors and PM2.5 concentrations, using data collected from 945 monitoring stations in 190 Chinese cities in 2014. The results indicated that the annual average PM2.5 concentrations is 61±20μg/m3, and cites with more than 75μg/m3 were mainly located in North China, especially in Tianjin and Hebei province. We also identified a marked seasonal variation in concentrations levels, with the highest level in winter due to coal consumption, lower temperatures, and less rainfall than in summer. Monthly variations followed a “U-shaped” pattern, with a down trend from January and an inflection point in September and then an increasing trend from October. The results of spatial regression indicated that population density, industrial structure, industrial soot (dust) emissions, and road density have a significantly positive effect on PM2.5 concentrations, with a significantly negative influence exerted only by economic growth. In addition, trade openness and electricity consumption were found to have no significant impact on PM2.5 concentrations. Using the geographical detector technique, the strength of association between the five significant drivers and PM2.5 concentrations was further analyzed. We found notable differences among the variables, with industrial soot (dust) emissions playing a greater role in the PM2.5 concentrations than the other variables. These results will be helpful in understanding the dynamics and the underlying mechanisms at work in PM2.5 concentrations in China at the city level, and thereby assisting the Chinese government in employing effective strategies to tackle pollution.
The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to human health. In addition to pollutant emissions and meteorological conditions, fine particulate matter (PM₂.₅) is also influenced by socioeconomic development. Thus, identifying the potential effects of socioeconomic development on PM₂.₅ variations can provide insights into particulate pollution control. This study applied spatial regression and the geographical detector technique for assessing the directions and strength of association between socioeconomic factors and PM₂.₅ concentrations, using data collected from 945 monitoring stations in 190 Chinese cities in 2014. The results indicated that the annual average PM₂.₅ concentrations is 61±20μg/m³, and cites with more than 75μg/m³ were mainly located in North China, especially in Tianjin and Hebei province. We also identified a marked seasonal variation in concentrations levels, with the highest level in winter due to coal consumption, lower temperatures, and less rainfall than in summer. Monthly variations followed a “U-shaped” pattern, with a down trend from January and an inflection point in September and then an increasing trend from October. The results of spatial regression indicated that population density, industrial structure, industrial soot (dust) emissions, and road density have a significantly positive effect on PM₂.₅ concentrations, with a significantly negative influence exerted only by economic growth. In addition, trade openness and electricity consumption were found to have no significant impact on PM₂.₅ concentrations. Using the geographical detector technique, the strength of association between the five significant drivers and PM₂.₅ concentrations was further analyzed. We found notable differences among the variables, with industrial soot (dust) emissions playing a greater role in the PM₂.₅ concentrations than the other variables. These results will be helpful in understanding the dynamics and the underlying mechanisms at work in PM₂.₅ concentrations in China at the city level, and thereby assisting the Chinese government in employing effective strategies to tackle pollution.
Author Wang, Shaojian
Zhou, Chunshan
Chen, Jing
Author_xml – sequence: 1
  givenname: Chunshan
  surname: Zhou
  fullname: Zhou, Chunshan
– sequence: 2
  givenname: Jing
  surname: Chen
  fullname: Chen, Jing
– sequence: 3
  givenname: Shaojian
  orcidid: 0000-0001-9082-8562
  surname: Wang
  fullname: Wang, Shaojian
  email: wangshj8@mail.sysu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29156264$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFVwDvKIsEXydxkgWLalR-pCJYwNryONczHiV2sJ0RvBGPiYdpWbAZb-7C37nn6pwrcuG8Q0JeASuBgXi7L6O2ySd0h5IzaEuAEnj9hKyga_sCGBcXZMVY3RW96NtLchXjnuXXdvCMXPIeGsFFvSK_736qyTrrtjTtkKIxqFOk3tDotfWovfOT1XTAA45-ntAl6h011iGdVUhWL6NKSCeVEgZ68_UzL5s31Dq63lmnXkea77QY6RKPHnFWyaqRBtwGjNHmVcoNf6236LdBzTur8_-AKd_hA81j5-yPBZ-Tp0aNEV88zGvy_f3dt_XH4v7Lh0_r2_tC1y1LRa0b02Crq0ozBkPPTbuBXrB-6LFjSphNr2oNyBUONYiuqjO-ESDMwA3ytromN6e9c_DZNiY52ahxHJVDv0TJmWhzfELAWTT7ir5roKoz-vIBXTYTDnIOdlLhl3wsIgPvToAOPsaARubcclbepaDsKIHJY_FyL_8VL4_FSwCZi8_69j_9o8V55e1JiTnVg8Vw5NBpHGzIHcjB27M7_gDuf9De
CitedBy_id crossref_primary_10_1016_j_scitotenv_2022_155512
crossref_primary_10_1109_JSTARS_2021_3119383
crossref_primary_10_1016_j_jclepro_2019_02_229
crossref_primary_10_3390_ijerph18179107
crossref_primary_10_3390_ijerph20021183
crossref_primary_10_5194_acp_24_4651_2024
crossref_primary_10_1016_j_ecolind_2022_109802
crossref_primary_10_1007_s10668_023_02923_9
crossref_primary_10_1016_j_envpol_2020_114690
crossref_primary_10_1016_j_jclepro_2021_127077
crossref_primary_10_1016_j_uclim_2022_101268
crossref_primary_10_3390_w16010115
crossref_primary_10_3390_rs10111696
crossref_primary_10_1016_j_jclepro_2019_118065
crossref_primary_10_1111_cwe_12354
crossref_primary_10_3390_ijerph18126261
crossref_primary_10_1007_s11356_020_10847_4
crossref_primary_10_3390_ijerph17030817
crossref_primary_10_1016_j_jclepro_2021_126769
crossref_primary_10_3390_rs13153011
crossref_primary_10_3390_ijerph16071149
crossref_primary_10_1080_02726351_2023_2179561
crossref_primary_10_3390_ijerph15030529
crossref_primary_10_1016_j_trd_2024_104111
crossref_primary_10_3390_en14113232
crossref_primary_10_1016_j_uclim_2022_101273
crossref_primary_10_3390_su12093550
crossref_primary_10_3390_atmos10020055
crossref_primary_10_1016_j_jclepro_2019_118615
crossref_primary_10_1016_j_jclepro_2018_10_080
crossref_primary_10_1038_s41598_022_08086_3
crossref_primary_10_1007_s11356_022_22422_0
crossref_primary_10_1016_j_ecolind_2021_108333
crossref_primary_10_2139_ssrn_4147626
crossref_primary_10_1016_j_jclepro_2021_126793
crossref_primary_10_1016_j_ecolind_2022_109823
crossref_primary_10_3390_rs14164012
crossref_primary_10_3390_su15108014
crossref_primary_10_3390_rs14184545
crossref_primary_10_1007_s10653_020_00799_6
crossref_primary_10_1007_s10661_020_08749_6
crossref_primary_10_1016_j_envpol_2020_114910
crossref_primary_10_1080_00167428_2021_1884979
crossref_primary_10_1080_10807039_2020_1789841
crossref_primary_10_3390_atmos15040443
crossref_primary_10_1016_j_buildenv_2025_112746
crossref_primary_10_3390_land11050629
crossref_primary_10_1016_j_scitotenv_2020_140155
crossref_primary_10_3390_rs13152858
crossref_primary_10_1016_j_energy_2023_127247
crossref_primary_10_1016_j_scitotenv_2021_150929
crossref_primary_10_3389_fpubh_2022_1051116
crossref_primary_10_3390_atmos13040627
crossref_primary_10_1111_tgis_12580
crossref_primary_10_1016_j_jenvman_2020_110703
crossref_primary_10_1016_j_scitotenv_2023_168593
crossref_primary_10_3390_su12072910
crossref_primary_10_1016_j_scitotenv_2019_01_310
crossref_primary_10_1007_s11356_021_12825_w
crossref_primary_10_1016_j_scitotenv_2018_12_402
crossref_primary_10_1016_j_apr_2022_101567
crossref_primary_10_5194_acp_23_9837_2023
crossref_primary_10_1016_j_esr_2024_101505
crossref_primary_10_1016_j_ufug_2020_126623
crossref_primary_10_1016_j_envpol_2018_05_083
crossref_primary_10_1016_j_jclepro_2019_05_342
crossref_primary_10_3390_ijerph18179019
crossref_primary_10_1007_s11769_023_1331_7
crossref_primary_10_1016_j_scitotenv_2020_138135
crossref_primary_10_1016_j_envpol_2019_113012
crossref_primary_10_1007_s11356_021_12763_7
crossref_primary_10_1016_j_buildenv_2019_03_007
crossref_primary_10_1016_j_trd_2018_03_009
crossref_primary_10_1016_j_jclepro_2021_125945
crossref_primary_10_1016_j_psep_2021_04_005
crossref_primary_10_1016_j_heliyon_2021_e07915
crossref_primary_10_3390_atmos15040416
crossref_primary_10_1016_j_heliyon_2021_e06820
crossref_primary_10_3390_en15196975
crossref_primary_10_1016_j_uclim_2024_101935
crossref_primary_10_1016_j_jclepro_2019_01_322
crossref_primary_10_1016_j_heliyon_2023_e17609
crossref_primary_10_1016_j_resconrec_2022_106467
crossref_primary_10_1016_j_seps_2022_101381
crossref_primary_10_3390_ijerph16060914
crossref_primary_10_1007_s12145_023_01002_x
crossref_primary_10_1007_s11356_022_22602_y
crossref_primary_10_1016_j_eiar_2024_107437
crossref_primary_10_1007_s11356_020_10907_9
crossref_primary_10_1016_j_ecolind_2021_107795
crossref_primary_10_1016_j_scitotenv_2018_12_056
crossref_primary_10_1016_j_envint_2020_106168
crossref_primary_10_1016_j_scitotenv_2019_135481
crossref_primary_10_1016_j_ecolind_2021_108407
crossref_primary_10_1175_JCLI_D_18_0587_1
crossref_primary_10_1016_j_scs_2019_101593
crossref_primary_10_3390_atmos14020381
crossref_primary_10_1007_s40812_023_00282_0
crossref_primary_10_3389_feart_2022_1032578
crossref_primary_10_1007_s00477_024_02819_8
crossref_primary_10_1016_j_scitotenv_2024_170071
crossref_primary_10_1016_j_scitotenv_2018_10_041
crossref_primary_10_1016_j_jenvman_2019_05_041
crossref_primary_10_3390_atmos15050568
crossref_primary_10_1016_j_jclepro_2019_04_231
crossref_primary_10_1016_j_atmosenv_2024_120390
crossref_primary_10_1016_j_resourpol_2020_101655
crossref_primary_10_4236_gep_2022_101015
crossref_primary_10_1016_j_jclepro_2018_11_159
crossref_primary_10_1016_j_scitotenv_2024_174323
crossref_primary_10_3390_air3010009
crossref_primary_10_1007_s10668_024_05130_2
crossref_primary_10_1016_j_chemosphere_2020_126491
crossref_primary_10_1016_j_buildenv_2019_04_058
crossref_primary_10_3390_su13031428
crossref_primary_10_3390_su151914172
crossref_primary_10_1002_sd_1915
crossref_primary_10_1016_j_envpol_2022_119639
crossref_primary_10_3390_rs14112643
crossref_primary_10_3390_atmos13091352
crossref_primary_10_1016_j_envpol_2021_117038
crossref_primary_10_1016_j_heliyon_2023_e14047
crossref_primary_10_1016_j_eti_2021_101578
crossref_primary_10_1016_j_envint_2022_107304
crossref_primary_10_2139_ssrn_4049830
crossref_primary_10_1016_j_ecoenv_2018_09_012
crossref_primary_10_1016_j_envpol_2022_120392
crossref_primary_10_1007_s11356_021_17030_3
crossref_primary_10_3390_land10080833
crossref_primary_10_1016_j_jenvman_2021_113172
crossref_primary_10_1016_j_jenvman_2020_110532
crossref_primary_10_1016_j_energy_2023_126685
crossref_primary_10_3390_ijerph16244973
crossref_primary_10_1016_j_jclepro_2021_126822
crossref_primary_10_1016_j_jclepro_2021_129779
crossref_primary_10_3390_rs13245079
crossref_primary_10_1016_j_jclepro_2019_118430
crossref_primary_10_1016_j_jclepro_2023_136706
crossref_primary_10_3390_land10101010
crossref_primary_10_1007_s11356_023_28525_6
crossref_primary_10_1016_j_scitotenv_2020_143266
crossref_primary_10_3233_JIFS_210074
crossref_primary_10_3390_ijerph16203891
crossref_primary_10_1007_s11356_023_30981_z
crossref_primary_10_1016_j_apenergy_2020_115246
crossref_primary_10_1016_j_apr_2020_03_010
crossref_primary_10_1016_j_jclepro_2024_142306
crossref_primary_10_1016_j_envint_2023_107889
crossref_primary_10_3389_fenvs_2022_1037979
crossref_primary_10_1016_j_ecolind_2021_107705
crossref_primary_10_1016_j_apenergy_2018_08_089
crossref_primary_10_3390_ijerph182010869
crossref_primary_10_1080_10807039_2022_2134093
crossref_primary_10_1016_j_spc_2021_09_012
crossref_primary_10_3390_rs14010007
crossref_primary_10_1016_j_envpol_2020_114257
crossref_primary_10_1007_s40333_024_0051_x
crossref_primary_10_1016_j_ecolind_2021_107491
crossref_primary_10_1016_j_renene_2022_09_084
crossref_primary_10_1016_j_scitotenv_2024_174365
crossref_primary_10_1016_j_cities_2021_103440
crossref_primary_10_1016_j_scitotenv_2018_05_322
crossref_primary_10_1016_j_jenvman_2021_114073
crossref_primary_10_1016_j_ecolind_2021_107937
crossref_primary_10_3390_ijerph18052222
crossref_primary_10_3390_ijerph20032316
crossref_primary_10_3390_rs15133356
crossref_primary_10_3390_ijerph17030906
crossref_primary_10_3390_ijerph16071099
crossref_primary_10_1016_j_ecolind_2022_109069
crossref_primary_10_1016_j_ecolind_2021_108374
crossref_primary_10_1007_s11356_019_06339_9
crossref_primary_10_3390_land9050142
crossref_primary_10_3390_ijerph15081565
crossref_primary_10_3390_ijerph16193522
crossref_primary_10_1016_j_resconrec_2020_104880
crossref_primary_10_3390_su16219242
crossref_primary_10_3390_ijerph19084597
crossref_primary_10_1016_j_jclepro_2020_124149
crossref_primary_10_3390_su12093523
crossref_primary_10_1016_j_atmosenv_2021_118805
crossref_primary_10_1016_j_scitotenv_2019_136170
crossref_primary_10_1016_j_envres_2024_118444
crossref_primary_10_1007_s11356_021_17706_w
crossref_primary_10_3390_f10090729
crossref_primary_10_5814_j_issn_1674_764x_2023_06_007
crossref_primary_10_1016_j_jag_2022_102982
crossref_primary_10_3390_ijerph19148390
crossref_primary_10_3389_fevo_2023_1339265
crossref_primary_10_3390_atmos10090517
crossref_primary_10_1016_j_atmosenv_2023_119816
crossref_primary_10_3389_fpubh_2025_1518327
crossref_primary_10_3390_min11050502
crossref_primary_10_1016_j_jenvman_2019_109564
Cites_doi 10.1016/j.scitotenv.2015.10.027
10.1289/ehp.0800360
10.1016/j.envint.2015.10.016
10.3390/ijerph13100928
10.1016/j.envpol.2006.06.013
10.1021/es049352m
10.1289/ehp.1205284
10.1016/j.rse.2015.12.008
10.1016/j.tranpol.2012.11.005
10.1016/j.apenergy.2017.05.085
10.1016/j.jaerosci.2011.12.001
10.1016/j.jclepro.2016.11.104
10.1021/es0261978
10.1016/j.atmosres.2013.01.011
10.3390/ijerph110100173
10.5094/APR.2013.037
10.1088/1748-9326/9/2/024010
10.1016/j.rser.2015.10.140
10.1175/JAMC-D-12-0163.1
10.1016/j.chemosphere.2015.12.118
10.1080/13658810802443457
10.1016/j.envint.2011.03.003
10.1007/s11135-015-0301-2
10.1007/s11356-011-0546-9
10.1016/j.apgeog.2015.07.011
10.3155/1047-3289.59.6.645
10.2307/143141
10.1016/j.apgeog.2016.12.003
10.1016/j.scitotenv.2016.12.145
10.1016/j.envint.2016.02.003
10.1016/j.atmosenv.2015.03.046
10.1177/0042098013477707
10.1006/jeem.1999.1095
10.1371/journal.pone.0135749
10.1016/j.envres.2012.11.003
10.1016/j.ecolind.2014.10.004
10.1016/j.scitotenv.2011.12.064
10.1016/j.envpol.2014.07.022
10.1016/j.atmosenv.2009.03.009
10.1016/j.atmosenv.2006.03.016
10.1016/j.apenergy.2016.10.052
10.1007/s11270-012-1373-4
10.1016/j.jenvman.2006.12.034
10.1021/es2025752
10.1016/j.jclepro.2015.05.005
10.1016/j.landurbplan.2017.09.019
10.1038/462159b
10.1016/j.rse.2016.07.015
10.1016/j.apenergy.2014.09.059
10.1021/es302673e
10.1016/j.rse.2010.05.034
10.1016/j.envint.2015.11.003
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2017.11.124
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 445
ExternalDocumentID 29156264
10_1016_j_scitotenv_2017_11_124
S0048969717331820
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c470t-4c5f5e7c33c001d92f7b19609d9e80a6fb9a4c1e2aed416834f5eb616fd2fe273
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Thu Jul 10 22:24:54 EDT 2025
Mon Jul 21 10:25:15 EDT 2025
Wed Feb 19 02:42:07 EST 2025
Tue Jul 01 01:21:25 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Fri Feb 23 02:46:17 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords PM2.5 concentrations
Geographical detector technique
Spatial regression
China
PM(2.5) concentrations
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-4c5f5e7c33c001d92f7b19609d9e80a6fb9a4c1e2aed416834f5eb616fd2fe273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9082-8562
PMID 29156264
PQID 1966985134
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2067291661
proquest_miscellaneous_1966985134
pubmed_primary_29156264
crossref_citationtrail_10_1016_j_scitotenv_2017_11_124
crossref_primary_10_1016_j_scitotenv_2017_11_124
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2017_11_124
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
2018-04-00
2018-Apr-01
20180401
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Van, Martin, Brauer, Boys (bb0235) 2015
Kloog, Nordio, Coull, Schwartz (bb0095) 2012; 46
Hu, Waller, Al-Hamdan, Crosson, Estes, Estes, Quattrochi, Samat, Liu (bb0080) 2013; 121
GBD MAPS Working Group (bb0035) 2016
Shao, Li, Cao, Yang (bb0200) 2016; 9
Fang, Guan, Lu, Zhou, Deng (bb0030) 2013; 13
Chen, Chai, Duan, Xue, Li, Liu (bb0015) 2003; 16
Kan, Chen, Tong (bb0090) 2012; 42
Zhao, Zhang, Xu, Xu, Meng, Pu (bb0315) 2009; 43
Liu, Sarnat, Kilaru, Jacob, Koutrakis (bb0120) 2005; 39
Rohde, Muller (bb0195) 2015; 10
Redman, Friman, Garling, Hartig (bb0185) 2013; 25
Hao, Liu (bb0060) 2016; 112
Hua, Cheng, Wang, Jiang, Chen, Cai, Fu, Fu, Chen, Xu, Fu, Chen, Xu, Yu (bb0085) 2015; 123
Guan, Reiner (bb0040) 2009; 462
Zhao, Yu, Yin, He, Liu, Qu, Xiao (bb0325) 2016; 86
Wang, Li, Fang, Zhou (bb0280) 2016; 542
He, Lin (bb0070) 2017; 38
Wang, Xua, Spurr, Wang, Drury (bb0255) 2010; 114
Remoundaki, Papayannis, Kassomenos, Mantas, Kokkalis, Tsezos (bb0190) 2013; 224
Wang, Fang (bb0240) 2016; 148
Barker (bb0005) 2013; 52
Wang, Zhou, Wang, Feng, Hubacek (bb0290) 2017; 142
Wang, Xu (bb0250) 2017; 1
Wang, Liu, Zhou, Hu, Ou (bb0285) 2017; 185
Liang, Duan, He, Ma (bb0105) 2016; 86
Wu, Yao, Li, Si (bb0300) 2016; 184
Gupta, Christopher, Wang, Gehrig, Lee, Kumar (bb0050) 2006; 40
National Bureau of Statistics of China (bb0155) 2015
China Electricity Council (CEC) (bb0025) 2015
Paatero, Hopke, Hoppenstock, Eberly (bb0165) 2003; 37
Onat, Stakeeva (bb0160) 2013; 4
Ma, Zhang (bb0130) 2014; 4
Wang, Fang, Wang, Huang, Ma (bb0270) 2015; 49
Zhou, Lu, Tan, Yan, Ou, Liu, Luo, Li, Zhang, Zhang, Zhu (bb0330) 2017; 1
Lin, Fu, Jiang, Hu, Dong, Huang, Zhao (bb0110) 2014; 11
Zhang, Chen, Li, Ding, Lin (bb0310) 2015; 63
Li, Li, Jiang, Liu (bb0100) 2014; Z1
Pateraki, Asimakopoulos, Flocas, Maggos, Vasilakos (bb0175) 2012; 419
National Ambient Air Quality Standard (NAAQS) (bb0150) 2012
Tiwari, Srivastava, Bisht, Parmita, Srivastava, Attri (bb0220) 2013; 125
Ma, Du, Gao, Zhao, Wu (bb0135) 2014; 2
Madrigano, Kloog, Goldberg, Coull, Mittleman, Schwartz (bb0140) 2013; 121
Hao, Wang, Shen, Li, Hu (bb0065) 2007; 147
Zhao, Jiang, Cui (bb0320) 2014; 35
Wang, Li, Christakos, Liao, Zhang, Gu, Zheng (bb0260) 2010; 24
Wang, Fang, Guan, Pang (bb0265) 2014; 136
Liu, Liang, Li, Xu, Ou, Chen, Li, Wang, Pei (bb9005) 2017; 168
List, Co (bb0115) 2000; 1
Mao, Qiu, Kusano, Xu (bb0145) 2012; 19
Brauer, Amann, Burnett, Cohe, Dentener, Ezzati, Henderson, Krzyzanowski, Martin, Dingenen (bb0010) 2012; 46
Squizzato, Masiol, Innocente, Pecorari, Rampazzo, Pavoni (bb0205) 2012; 46
Sun, Wang, Li, Lai (bb0215) 2015; 6
Tobler (bb0225) 1970; 46
Han, Zhou, Li, Li (bb0055) 2014; 194
Paciorek, Liu (bb0170) 2009; 117
Stone (bb0210) 2008; 86
Cheng, Luo, Wang, Wang, Shama, Shimadera, Wang, Bressi, Miranda, Jiang, Zhou, Fajardo, Yan, Hao (bb0020) 2016; 89
Lou, Liu, Li, Li (bb0125) 2016; 13
Tong, Wang (bb0230) 2014; 5
Peng, Chen, Lü, Liu, Wu (bb0180) 2016; 174
Hoff, Christopher (bb0075) 2009; 59
Wang, Liu (bb0245) 2017; 200
Yang, Wang, Zhang, Zhan, Li (bb0305) 2017; 584–585
Guan, Su, Zhang, Peters, Liu, Lei, He (bb0045) 2014; 9
Wang, Fang, Wang (bb0275) 2016; 55
Li, Chen, Liu, Liang, Wang, Chen, Pei, Xu (bb9000) 2017; 107
Wang, Wang, Li, Zhang, Jin, Su, Wu (bb0295) 2017; 79
China Electricity Council (CEC) (10.1016/j.scitotenv.2017.11.124_bb0025)
Guan (10.1016/j.scitotenv.2017.11.124_bb0045) 2014; 9
Han (10.1016/j.scitotenv.2017.11.124_bb0055) 2014; 194
Guan (10.1016/j.scitotenv.2017.11.124_bb0040) 2009; 462
Sun (10.1016/j.scitotenv.2017.11.124_bb0215) 2015; 6
Wang (10.1016/j.scitotenv.2017.11.124_bb0280) 2016; 542
Zhang (10.1016/j.scitotenv.2017.11.124_bb0310) 2015; 63
Hao (10.1016/j.scitotenv.2017.11.124_bb0060) 2016; 112
He (10.1016/j.scitotenv.2017.11.124_bb0070) 2017; 38
Li (10.1016/j.scitotenv.2017.11.124_bb9000) 2017; 107
Rohde (10.1016/j.scitotenv.2017.11.124_bb0195) 2015; 10
Wang (10.1016/j.scitotenv.2017.11.124_bb0240) 2016; 148
Barker (10.1016/j.scitotenv.2017.11.124_bb0005) 2013; 52
Ma (10.1016/j.scitotenv.2017.11.124_bb0130) 2014; 4
Paatero (10.1016/j.scitotenv.2017.11.124_bb0165) 2003; 37
Li (10.1016/j.scitotenv.2017.11.124_bb0100) 2014; Z1
Liu (10.1016/j.scitotenv.2017.11.124_bb9005) 2017; 168
GBD MAPS Working Group (10.1016/j.scitotenv.2017.11.124_bb0035) 2016
Remoundaki (10.1016/j.scitotenv.2017.11.124_bb0190) 2013; 224
Wang (10.1016/j.scitotenv.2017.11.124_bb0255) 2010; 114
Zhao (10.1016/j.scitotenv.2017.11.124_bb0325) 2016; 86
Wang (10.1016/j.scitotenv.2017.11.124_bb0250) 2017; 1
Wu (10.1016/j.scitotenv.2017.11.124_bb0300) 2016; 184
Hoff (10.1016/j.scitotenv.2017.11.124_bb0075) 2009; 59
Tobler (10.1016/j.scitotenv.2017.11.124_bb0225) 1970; 46
Gupta (10.1016/j.scitotenv.2017.11.124_bb0050) 2006; 40
Brauer (10.1016/j.scitotenv.2017.11.124_bb0010) 2012; 46
Squizzato (10.1016/j.scitotenv.2017.11.124_bb0205) 2012; 46
Madrigano (10.1016/j.scitotenv.2017.11.124_bb0140) 2013; 121
Liang (10.1016/j.scitotenv.2017.11.124_bb0105) 2016; 86
Wang (10.1016/j.scitotenv.2017.11.124_bb0245) 2017; 200
Paciorek (10.1016/j.scitotenv.2017.11.124_bb0170) 2009; 117
Wang (10.1016/j.scitotenv.2017.11.124_bb0290) 2017; 142
Hao (10.1016/j.scitotenv.2017.11.124_bb0065) 2007; 147
Kan (10.1016/j.scitotenv.2017.11.124_bb0090) 2012; 42
Lou (10.1016/j.scitotenv.2017.11.124_bb0125) 2016; 13
Kloog (10.1016/j.scitotenv.2017.11.124_bb0095) 2012; 46
Chen (10.1016/j.scitotenv.2017.11.124_bb0015) 2003; 16
List (10.1016/j.scitotenv.2017.11.124_bb0115) 2000; 1
Redman (10.1016/j.scitotenv.2017.11.124_bb0185) 2013; 25
Wang (10.1016/j.scitotenv.2017.11.124_bb0275) 2016; 55
Zhao (10.1016/j.scitotenv.2017.11.124_bb0320) 2014; 35
Cheng (10.1016/j.scitotenv.2017.11.124_bb0020) 2016; 89
Tong (10.1016/j.scitotenv.2017.11.124_bb0230) 2014; 5
Tiwari (10.1016/j.scitotenv.2017.11.124_bb0220) 2013; 125
Stone (10.1016/j.scitotenv.2017.11.124_bb0210) 2008; 86
National Bureau of Statistics of China (10.1016/j.scitotenv.2017.11.124_bb0155)
Wang (10.1016/j.scitotenv.2017.11.124_bb0260) 2010; 24
Fang (10.1016/j.scitotenv.2017.11.124_bb0030) 2013; 13
Peng (10.1016/j.scitotenv.2017.11.124_bb0180) 2016; 174
Zhao (10.1016/j.scitotenv.2017.11.124_bb0315) 2009; 43
Ma (10.1016/j.scitotenv.2017.11.124_bb0135) 2014; 2
Wang (10.1016/j.scitotenv.2017.11.124_bb0295) 2017; 79
Wang (10.1016/j.scitotenv.2017.11.124_bb0285) 2017; 185
Hua (10.1016/j.scitotenv.2017.11.124_bb0085) 2015; 123
Lin (10.1016/j.scitotenv.2017.11.124_bb0110) 2014; 11
Hu (10.1016/j.scitotenv.2017.11.124_bb0080) 2013; 121
National Ambient Air Quality Standard (NAAQS) (10.1016/j.scitotenv.2017.11.124_bb0150)
Onat (10.1016/j.scitotenv.2017.11.124_bb0160) 2013; 4
Zhou (10.1016/j.scitotenv.2017.11.124_bb0330) 2017; 1
Liu (10.1016/j.scitotenv.2017.11.124_bb0120) 2005; 39
Pateraki (10.1016/j.scitotenv.2017.11.124_bb0175) 2012; 419
Van (10.1016/j.scitotenv.2017.11.124_bb0235) 2015
Mao (10.1016/j.scitotenv.2017.11.124_bb0145) 2012; 19
Yang (10.1016/j.scitotenv.2017.11.124_bb0305) 2017; 584–585
Wang (10.1016/j.scitotenv.2017.11.124_bb0270) 2015; 49
Shao (10.1016/j.scitotenv.2017.11.124_bb0200) 2016; 9
Wang (10.1016/j.scitotenv.2017.11.124_bb0265) 2014; 136
References_xml – volume: 1
  start-page: 1
  year: 2000
  end-page: 20
  ident: bb0115
  article-title: The effects of environmental regulations on foreign direct investment
  publication-title: J. Environ. Econ. Manag.
– volume: 59
  start-page: 645
  year: 2009
  end-page: 675
  ident: bb0075
  article-title: Remote sensing of particulate pollution from space: have we reached the promised land?
  publication-title: J. Air Waste Manage. Assoc.
– volume: 123
  start-page: 380
  year: 2015
  end-page: 391
  ident: bb0085
  article-title: Characteristics and source apportionment of PM
  publication-title: Atmos. Environ.
– volume: 584–585
  start-page: 318
  year: 2017
  end-page: 328
  ident: bb0305
  article-title: The impact of anthropogenic emissions and meteorological conditions on the spatial variation of ambient SO2 concentrations: a panel study of 113 Chinese cities
  publication-title: Sci. Total Environ.
– volume: 185
  start-page: 189
  year: 2017
  end-page: 200
  ident: bb0285
  article-title: Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities
  publication-title: Appl. Energy
– volume: 194
  start-page: 163
  year: 2014
  end-page: 170
  ident: bb0055
  article-title: Impact of urbanization level on urban air quality: a case of fine particles (PM
  publication-title: Environ. Pollut.
– volume: 89
  start-page: 212
  year: 2016
  end-page: 221
  ident: bb0020
  article-title: Status and characteristics of ambient PM
  publication-title: Environ. Int.
– volume: 1
  start-page: 199
  year: 2017
  end-page: 218
  ident: bb0330
  article-title: A stochastic equilibrium chance-constrained programming model for municipal solid waste management of the City of Dalian, China
  publication-title: Qual. Quant.
– start-page: 20
  year: 2016
  ident: bb0035
  article-title: Burden of Disease Attributable to Coal-burning and Other Major Sources of Air Pollution in China. Special Report
– volume: 13
  start-page: 928
  year: 2016
  ident: bb0125
  article-title: Socioeconomic drivers of PM
  publication-title: Int. J. Environ. Res. Public Health
– volume: 121
  start-page: 192
  year: 2013
  end-page: 196
  ident: bb0140
  article-title: Long-term exposure to PM
  publication-title: Environ. Health Perspect.
– volume: 419
  start-page: 124
  year: 2012
  end-page: 135
  ident: bb0175
  article-title: The role of meteorology on different sized aerosol fractions (PM
  publication-title: Sci. Total Environ.
– volume: 148
  start-page: 148
  year: 2016
  end-page: 162
  ident: bb0240
  article-title: Spatial-temporal characteristics and determinants of PM
  publication-title: Chemosphere
– volume: 112
  start-page: 1443
  year: 2016
  end-page: 1453
  ident: bb0060
  article-title: The influential factors of urban PM
  publication-title: J. Clean. Prod.
– volume: 1
  start-page: 116
  year: 2017
  end-page: 134
  ident: bb0250
  article-title: Geodetector: principle and prospective
  publication-title: Acta Geograplica Sin.
– volume: 24
  start-page: 107
  year: 2010
  end-page: 127
  ident: bb0260
  article-title: Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 13
  start-page: 2766
  year: 2013
  end-page: 2790
  ident: bb0030
  article-title: Input-output efficiency of urban agglomerations in China: an application of Data Envelopment Analysis (DEA)
  publication-title: Urban Stud.
– volume: 38
  start-page: 22
  year: 2017
  end-page: 32
  ident: bb0070
  article-title: Interactive effects of the influencing factors on the changes of PM
  publication-title: Environ. Sci.
– volume: 55
  start-page: 505
  year: 2016
  end-page: 515
  ident: bb0275
  article-title: Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: an empirical analysis based on provincial panel data
  publication-title: Renew. Sust. Energ. Rev.
– volume: 86
  start-page: 688
  year: 2008
  end-page: 698
  ident: bb0210
  article-title: Urban sprawl and air quality in large US cities
  publication-title: J. Environ. Manag.
– volume: 46
  start-page: 234
  year: 1970
  end-page: 240
  ident: bb0225
  article-title: A computer movie simulating urban growth in the Detroit region
  publication-title: Econ. Geogr.
– volume: 184
  start-page: 316
  year: 2016
  end-page: 328
  ident: bb0300
  article-title: VIIRS-based remote sensing estimation of ground-level PM2.5 concentrations in Beijing-Tianjin-Hebei: a spatiotemporal statistical model
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 25
  year: 2015
  end-page: 27
  ident: bb0215
  article-title: Emission reduction and detection technology of PM
  publication-title: Jilin Electr. Power
– volume: 86
  start-page: 92
  year: 2016
  end-page: 106
  ident: bb0325
  article-title: Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center
  publication-title: Environ. Int.
– volume: 117
  start-page: 904
  year: 2009
  end-page: 909
  ident: bb0170
  article-title: Limitations of remotely sensed aerosol as a spatial proxy for fine particulate matter
  publication-title: Environ. Health Perspect.
– volume: 79
  start-page: 26
  year: 2017
  end-page: 36
  ident: bb0295
  article-title: Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique
  publication-title: Appl. Geogr.
– volume: 46
  start-page: 64
  year: 2012
  end-page: 76
  ident: bb0205
  article-title: A procedure to assess local and long-range transport contributions to PM
  publication-title: J. Aerosol Sci.
– volume: 4
  start-page: 19
  year: 2014
  end-page: 31
  ident: bb0130
  article-title: The spatial effect of China's haze pollution and the impact from economic change and energy structure
  publication-title: China Ind. Econ.
– year: 2012
  ident: bb0150
– volume: 16
  start-page: 46
  year: 2003
  end-page: 52
  ident: bb0015
  article-title: Study on air quality impact in Beijing from thermal power planning for the northern passageway of the west-east power transfer project
  publication-title: Res. Environ. Sci.
– volume: 37
  start-page: 2460
  year: 2003
  end-page: 2476
  ident: bb0165
  article-title: Advanced factor analysis of spatial distributions of PM
  publication-title: Environ. Sci. Technol.
– volume: 25
  start-page: 119
  year: 2013
  end-page: 127
  ident: bb0185
  article-title: Quality attributes of public transport that attract car users: a research review
  publication-title: Transp. Policy
– volume: Z1
  start-page: 75
  year: 2014
  end-page: 77
  ident: bb0100
  article-title: International experience study: explored the strategy of mitigation of traffic pollution
  publication-title: Environ. Prot.
– volume: 2
  start-page: 103
  year: 2014
  end-page: 107
  ident: bb0135
  article-title: Experiment study on PM
  publication-title: Energy Conserv. Technol.
– volume: 49
  start-page: 121
  year: 2015
  end-page: 131
  ident: bb0270
  article-title: Quantifying the relationship between urban development intensity and carbon dioxide emissions using a panel data analysis
  publication-title: Ecol. Indic.
– year: 2015
  ident: bb0235
  article-title: Use of Satellite Observations for Long-term Exposure Assessment of Global Concentrations of Fine Particulate Matter
– volume: 147
  start-page: 401
  year: 2007
  end-page: 408
  ident: bb0065
  article-title: Air quality impacts of power plant emissions in Beijing
  publication-title: Environ. Pollut.
– volume: 9
  start-page: 73
  year: 2016
  end-page: 88
  ident: bb0200
  article-title: China's economic policy choices for governing smog pollution based on spatial spillover effects
  publication-title: Econ. Res. J.
– volume: 121
  start-page: 1
  year: 2013
  end-page: 10
  ident: bb0080
  article-title: Estimating ground-level PM (2.5) concentrations in the southeastern US using geographically weighted regression
  publication-title: Environ. Res.
– volume: 168
  start-page: 94
  year: 2017
  end-page: 116
  ident: bb9005
  article-title: A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects
  publication-title: Landsc. Urban Plan.
– year: 2015
  ident: bb0025
– volume: 35
  start-page: 4387
  year: 2014
  end-page: 4394
  ident: bb0320
  article-title: Shifting path of industrial pollution gravity centers and its driving mechanism in pan-Yangtze River Delta
  publication-title: Huan Jing Ke Xue
– volume: 46
  start-page: 652
  year: 2012
  end-page: 660
  ident: bb0010
  article-title: Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution
  publication-title: Environ. Sci. Technol.
– volume: 40
  start-page: 5880
  year: 2006
  end-page: 5892
  ident: bb0050
  article-title: Satellite remote sensing of particulate matter and air quality assessment over global cities
  publication-title: Atmos. Environ.
– volume: 86
  start-page: 150
  year: 2016
  end-page: 170
  ident: bb0105
  article-title: Review on recent progress in observations, source identifications and countermeasures of PM
  publication-title: Environ. Int.
– year: 2015
  ident: bb0155
– volume: 142
  start-page: 1800
  year: 2017
  end-page: 1809
  ident: bb0290
  article-title: The characteristics and drivers of fine particulate matter (PM
  publication-title: J. Clean. Prod.
– volume: 11
  start-page: 173
  year: 2014
  end-page: 186
  ident: bb0110
  article-title: Spatio-temporal variation of PM
  publication-title: Int. J. Environ. Res. Public Health
– volume: 4
  start-page: 329
  year: 2013
  end-page: 335
  ident: bb0160
  article-title: Personal exposure of commuters in public transport to PM
  publication-title: Atmos. Pollut. Res.
– volume: 136
  start-page: 738
  year: 2014
  end-page: 749
  ident: bb0265
  article-title: Urbanization, energy consumption, and CO2 emissions in China: a panel data analysis of China's province
  publication-title: Appl. Energy
– volume: 42
  start-page: 10
  year: 2012
  end-page: 19
  ident: bb0090
  article-title: Ambient air pollution, climate change, and population health in China
  publication-title: Environ. Int.
– volume: 114
  start-page: 2575
  year: 2010
  end-page: 2583
  ident: bb0255
  article-title: Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China
  publication-title: Remote Sens. Environ.
– volume: 542
  start-page: 360
  year: 2016
  end-page: 371
  ident: bb0280
  article-title: The relationship between economic growth, energy consumption, and CO2 emissions: empirical evidence from China
  publication-title: Sci. Total Environ.
– volume: 5
  start-page: 4
  year: 2014
  end-page: 10
  ident: bb0230
  article-title: The interaction mechanism of urban population and Haze in China
  publication-title: Social Sciences of Beijing
– volume: 174
  start-page: 109
  year: 2016
  end-page: 121
  ident: bb0180
  article-title: Spatiotemporal patterns of remotely sensed PM 2.5 concentration in China from 1999 to 2011
  publication-title: Remote Sens. Environ.
– volume: 224
  start-page: 1373
  year: 2013
  ident: bb0190
  article-title: Influence of Saharan dust transport events on PM
  publication-title: Water Air Soil Pollut.
– volume: 63
  start-page: 326
  year: 2015
  end-page: 336
  ident: bb0310
  article-title: A virtual geographic environment system for multiscale air quality analysis and decision making: a case study of SO2 concentration simulation
  publication-title: Appl. Geogr.
– volume: 43
  start-page: 2893
  year: 2009
  end-page: 2900
  ident: bb0315
  article-title: Seasonal and diurnal variations of ambient PM
  publication-title: Atmos. Environ.
– volume: 107
  start-page: 1040
  year: 2017
  end-page: 1059
  ident: bb9000
  article-title: A new global land-Use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human-environment interactions
  publication-title: Ann. Am. Assoc. Geogr.
– volume: 19
  start-page: 128
  year: 2012
  end-page: 138
  ident: bb0145
  article-title: Predicting regional space-time variation of PM2.5 with land-use regression model and MODIS data
  publication-title: Environ. Sci. Pollut. Res.
– volume: 9
  start-page: 1
  year: 2014
  end-page: 9
  ident: bb0045
  article-title: The socioeconomic drivers of China's primary PM
  publication-title: Environ. Res. Lett.
– volume: 52
  start-page: 660
  year: 2013
  end-page: 667
  ident: bb0005
  article-title: Isolating the industrial contribution of PM
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 10
  year: 2015
  ident: bb0195
  article-title: Air pollution in China: mapping of concentrations and sources
  publication-title: PLoS One
– volume: 125
  start-page: 50
  year: 2013
  end-page: 62
  ident: bb0220
  article-title: Diurnal and seasonal variations of black carbon and PM
  publication-title: Atmos. Res.
– volume: 46
  start-page: 11913
  year: 2012
  end-page: 11921
  ident: bb0095
  article-title: Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2. 5 exposures in the Mid-Atlantic states
  publication-title: Environ. Sci. Technol.
– volume: 39
  start-page: 3269
  year: 2005
  end-page: 3278
  ident: bb0120
  article-title: Estimating ground-level PM
  publication-title: Environ. Sci. Technol.
– volume: 200
  start-page: 204
  year: 2017
  end-page: 214
  ident: bb0245
  article-title: China's city-level energy-related CO2 emissions: spatiotemporal patterns and driving forces
  publication-title: Appl. Energy
– volume: 462
  start-page: 159
  year: 2009
  ident: bb0040
  article-title: Emissions affected by trade among developing countries
  publication-title: Nature
– volume: 542
  start-page: 360
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.124_bb0280
  article-title: The relationship between economic growth, energy consumption, and CO2 emissions: empirical evidence from China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.10.027
– volume: 117
  start-page: 904
  year: 2009
  ident: 10.1016/j.scitotenv.2017.11.124_bb0170
  article-title: Limitations of remotely sensed aerosol as a spatial proxy for fine particulate matter
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.0800360
– volume: 86
  start-page: 150
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.124_bb0105
  article-title: Review on recent progress in observations, source identifications and countermeasures of PM2.5
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2015.10.016
– volume: 13
  start-page: 928
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.124_bb0125
  article-title: Socioeconomic drivers of PM2.5 in the accumulation phase of air pollution episodes in the Yangtze River Delta of China
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph13100928
– volume: 147
  start-page: 401
  year: 2007
  ident: 10.1016/j.scitotenv.2017.11.124_bb0065
  article-title: Air quality impacts of power plant emissions in Beijing
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2006.06.013
– volume: 39
  start-page: 3269
  year: 2005
  ident: 10.1016/j.scitotenv.2017.11.124_bb0120
  article-title: Estimating ground-level PM2. 5 in the eastern United States using satellite remote sensing
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es049352m
– volume: 121
  start-page: 192
  year: 2013
  ident: 10.1016/j.scitotenv.2017.11.124_bb0140
  article-title: Long-term exposure to PM2.5 and incidence of acute myocardial infarction
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1205284
– volume: 174
  start-page: 109
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.124_bb0180
  article-title: Spatiotemporal patterns of remotely sensed PM 2.5 concentration in China from 1999 to 2011
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.008
– volume: 25
  start-page: 119
  year: 2013
  ident: 10.1016/j.scitotenv.2017.11.124_bb0185
  article-title: Quality attributes of public transport that attract car users: a research review
  publication-title: Transp. Policy
  doi: 10.1016/j.tranpol.2012.11.005
– volume: 200
  start-page: 204
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.124_bb0245
  article-title: China's city-level energy-related CO2 emissions: spatiotemporal patterns and driving forces
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.085
– volume: 2
  start-page: 103
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.124_bb0135
  article-title: Experiment study on PM2.5 concentration emission characteristics of 220 MW pulverized coal boilers
  publication-title: Energy Conserv. Technol.
– volume: 46
  start-page: 64
  year: 2012
  ident: 10.1016/j.scitotenv.2017.11.124_bb0205
  article-title: A procedure to assess local and long-range transport contributions to PM2.5 and secondary inorganic aerosol
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2011.12.001
– volume: 6
  start-page: 25
  year: 2015
  ident: 10.1016/j.scitotenv.2017.11.124_bb0215
  article-title: Emission reduction and detection technology of PM2.5 in coal-fired power plants
  publication-title: Jilin Electr. Power
– volume: 142
  start-page: 1800
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.124_bb0290
  article-title: The characteristics and drivers of fine particulate matter (PM2.5) distribution in China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.11.104
– volume: 37
  start-page: 2460
  year: 2003
  ident: 10.1016/j.scitotenv.2017.11.124_bb0165
  article-title: Advanced factor analysis of spatial distributions of PM2.5 in the eastern United States
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0261978
– volume: 125
  start-page: 50
  year: 2013
  ident: 10.1016/j.scitotenv.2017.11.124_bb0220
  article-title: Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: influence of meteorology
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2013.01.011
– volume: 11
  start-page: 173
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.124_bb0110
  article-title: Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph110100173
– volume: 4
  start-page: 329
  year: 2013
  ident: 10.1016/j.scitotenv.2017.11.124_bb0160
  article-title: Personal exposure of commuters in public transport to PM2.5 and fine particle counts
  publication-title: Atmos. Pollut. Res.
  doi: 10.5094/APR.2013.037
– volume: 9
  start-page: 1
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.124_bb0045
  article-title: The socioeconomic drivers of China's primary PM2.5 emissions
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/2/024010
– volume: Z1
  start-page: 75
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.124_bb0100
  article-title: International experience study: explored the strategy of mitigation of traffic pollution
  publication-title: Environ. Prot.
– volume: 5
  start-page: 4
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.124_bb0230
  article-title: The interaction mechanism of urban population and Haze in China
  publication-title: Social Sciences of Beijing
– volume: 55
  start-page: 505
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.124_bb0275
  article-title: Spatiotemporal variations of energy-related CO2 emissions in China and its influencing factors: an empirical analysis based on provincial panel data
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2015.10.140
– start-page: 20
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.124_bb0035
– ident: 10.1016/j.scitotenv.2017.11.124_bb0155
– volume: 52
  start-page: 660
  year: 2013
  ident: 10.1016/j.scitotenv.2017.11.124_bb0005
  article-title: Isolating the industrial contribution of PM2.5 in Hamilton and Burlington, Ontario
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-12-0163.1
– volume: 148
  start-page: 148
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.124_bb0240
  article-title: Spatial-temporal characteristics and determinants of PM2.5 in the Bo hai Rim urban agglomeration
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.12.118
– volume: 24
  start-page: 107
  year: 2010
  ident: 10.1016/j.scitotenv.2017.11.124_bb0260
  article-title: Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658810802443457
– volume: 38
  start-page: 22
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.124_bb0070
  article-title: Interactive effects of the influencing factors on the changes of PM2.5 concentration based on GAM model
  publication-title: Environ. Sci.
– volume: 42
  start-page: 10
  year: 2012
  ident: 10.1016/j.scitotenv.2017.11.124_bb0090
  article-title: Ambient air pollution, climate change, and population health in China
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2011.03.003
– ident: 10.1016/j.scitotenv.2017.11.124_bb0150
– volume: 1
  start-page: 199
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.124_bb0330
  article-title: A stochastic equilibrium chance-constrained programming model for municipal solid waste management of the City of Dalian, China
  publication-title: Qual. Quant.
  doi: 10.1007/s11135-015-0301-2
– volume: 19
  start-page: 128
  year: 2012
  ident: 10.1016/j.scitotenv.2017.11.124_bb0145
  article-title: Predicting regional space-time variation of PM2.5 with land-use regression model and MODIS data
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-011-0546-9
– volume: 63
  start-page: 326
  year: 2015
  ident: 10.1016/j.scitotenv.2017.11.124_bb0310
  article-title: A virtual geographic environment system for multiscale air quality analysis and decision making: a case study of SO2 concentration simulation
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2015.07.011
– volume: 9
  start-page: 73
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.124_bb0200
  article-title: China's economic policy choices for governing smog pollution based on spatial spillover effects
  publication-title: Econ. Res. J.
– volume: 59
  start-page: 645
  year: 2009
  ident: 10.1016/j.scitotenv.2017.11.124_bb0075
  article-title: Remote sensing of particulate pollution from space: have we reached the promised land?
  publication-title: J. Air Waste Manage. Assoc.
  doi: 10.3155/1047-3289.59.6.645
– volume: 4
  start-page: 19
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.124_bb0130
  article-title: The spatial effect of China's haze pollution and the impact from economic change and energy structure
  publication-title: China Ind. Econ.
– volume: 46
  start-page: 234
  year: 1970
  ident: 10.1016/j.scitotenv.2017.11.124_bb0225
  article-title: A computer movie simulating urban growth in the Detroit region
  publication-title: Econ. Geogr.
  doi: 10.2307/143141
– ident: 10.1016/j.scitotenv.2017.11.124_bb0025
– volume: 79
  start-page: 26
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.124_bb0295
  article-title: Identifying the determinants of housing prices in China using spatial regression and the geographical detector technique
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2016.12.003
– volume: 584–585
  start-page: 318
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.124_bb0305
  article-title: The impact of anthropogenic emissions and meteorological conditions on the spatial variation of ambient SO2 concentrations: a panel study of 113 Chinese cities
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.12.145
– volume: 89
  start-page: 212
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.124_bb0020
  article-title: Status and characteristics of ambient PM 2.5 pollution in global megacities
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2016.02.003
– volume: 107
  start-page: 1040
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.124_bb9000
  article-title: A new global land-Use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human-environment interactions
  publication-title: Ann. Am. Assoc. Geogr.
– volume: 1
  start-page: 116
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.124_bb0250
  article-title: Geodetector: principle and prospective
  publication-title: Acta Geograplica Sin.
– volume: 16
  start-page: 46
  year: 2003
  ident: 10.1016/j.scitotenv.2017.11.124_bb0015
  article-title: Study on air quality impact in Beijing from thermal power planning for the northern passageway of the west-east power transfer project
  publication-title: Res. Environ. Sci.
– volume: 123
  start-page: 380
  year: 2015
  ident: 10.1016/j.scitotenv.2017.11.124_bb0085
  article-title: Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.03.046
– volume: 13
  start-page: 2766
  year: 2013
  ident: 10.1016/j.scitotenv.2017.11.124_bb0030
  article-title: Input-output efficiency of urban agglomerations in China: an application of Data Envelopment Analysis (DEA)
  publication-title: Urban Stud.
  doi: 10.1177/0042098013477707
– volume: 1
  start-page: 1
  year: 2000
  ident: 10.1016/j.scitotenv.2017.11.124_bb0115
  article-title: The effects of environmental regulations on foreign direct investment
  publication-title: J. Environ. Econ. Manag.
  doi: 10.1006/jeem.1999.1095
– volume: 10
  year: 2015
  ident: 10.1016/j.scitotenv.2017.11.124_bb0195
  article-title: Air pollution in China: mapping of concentrations and sources
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0135749
– volume: 121
  start-page: 1
  year: 2013
  ident: 10.1016/j.scitotenv.2017.11.124_bb0080
  article-title: Estimating ground-level PM (2.5) concentrations in the southeastern US using geographically weighted regression
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2012.11.003
– volume: 49
  start-page: 121
  year: 2015
  ident: 10.1016/j.scitotenv.2017.11.124_bb0270
  article-title: Quantifying the relationship between urban development intensity and carbon dioxide emissions using a panel data analysis
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2014.10.004
– volume: 419
  start-page: 124
  year: 2012
  ident: 10.1016/j.scitotenv.2017.11.124_bb0175
  article-title: The role of meteorology on different sized aerosol fractions (PM10, PM2.5, PM2.5–10)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2011.12.064
– volume: 194
  start-page: 163
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.124_bb0055
  article-title: Impact of urbanization level on urban air quality: a case of fine particles (PM2.5) in Chinese cities
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2014.07.022
– volume: 43
  start-page: 2893
  year: 2009
  ident: 10.1016/j.scitotenv.2017.11.124_bb0315
  article-title: Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2009.03.009
– volume: 35
  start-page: 4387
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.124_bb0320
  article-title: Shifting path of industrial pollution gravity centers and its driving mechanism in pan-Yangtze River Delta
  publication-title: Huan Jing Ke Xue
– volume: 40
  start-page: 5880
  year: 2006
  ident: 10.1016/j.scitotenv.2017.11.124_bb0050
  article-title: Satellite remote sensing of particulate matter and air quality assessment over global cities
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2006.03.016
– volume: 185
  start-page: 189
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.124_bb0285
  article-title: Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.052
– volume: 224
  start-page: 1373
  year: 2013
  ident: 10.1016/j.scitotenv.2017.11.124_bb0190
  article-title: Influence of Saharan dust transport events on PM2.5 concentrations and composition over Athens
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-012-1373-4
– volume: 86
  start-page: 688
  year: 2008
  ident: 10.1016/j.scitotenv.2017.11.124_bb0210
  article-title: Urban sprawl and air quality in large US cities
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2006.12.034
– volume: 46
  start-page: 652
  year: 2012
  ident: 10.1016/j.scitotenv.2017.11.124_bb0010
  article-title: Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es2025752
– volume: 112
  start-page: 1443
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.124_bb0060
  article-title: The influential factors of urban PM2.5 concentrations in China: a spatial econometric analysis
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.05.005
– volume: 168
  start-page: 94
  year: 2017
  ident: 10.1016/j.scitotenv.2017.11.124_bb9005
  article-title: A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects
  publication-title: Landsc. Urban Plan.
  doi: 10.1016/j.landurbplan.2017.09.019
– volume: 462
  start-page: 159
  year: 2009
  ident: 10.1016/j.scitotenv.2017.11.124_bb0040
  article-title: Emissions affected by trade among developing countries
  publication-title: Nature
  doi: 10.1038/462159b
– volume: 184
  start-page: 316
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.124_bb0300
  article-title: VIIRS-based remote sensing estimation of ground-level PM2.5 concentrations in Beijing-Tianjin-Hebei: a spatiotemporal statistical model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.07.015
– volume: 136
  start-page: 738
  year: 2014
  ident: 10.1016/j.scitotenv.2017.11.124_bb0265
  article-title: Urbanization, energy consumption, and CO2 emissions in China: a panel data analysis of China's province
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.09.059
– volume: 46
  start-page: 11913
  issue: 21
  year: 2012
  ident: 10.1016/j.scitotenv.2017.11.124_bb0095
  article-title: Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2. 5 exposures in the Mid-Atlantic states
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es302673e
– volume: 114
  start-page: 2575
  year: 2010
  ident: 10.1016/j.scitotenv.2017.11.124_bb0255
  article-title: Improved algorithm for MODIS satellite retrievals of aerosol optical thickness over land in dusty atmosphere: Implications for air quality monitoring in China
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.05.034
– year: 2015
  ident: 10.1016/j.scitotenv.2017.11.124_bb0235
– volume: 86
  start-page: 92
  year: 2016
  ident: 10.1016/j.scitotenv.2017.11.124_bb0325
  article-title: Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2015.11.003
SSID ssj0000781
Score 2.619453
Snippet •The direction and strength of the link between PM2.5 level and their drivers are analyzed.•Spatial regression and geographical detector techniques are used.•A...
The frequent occurrence of extreme smog episodes in recent years has begun to present a serious threat to human health. In addition to pollutant emissions and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 436
SubjectTerms China
cities
coal
data collection
dust
electric energy consumption
emissions
Geographical detector technique
human health
monitoring
particulates
PM2.5 concentrations
pollutants
pollution
pollution control
population density
rain
seasonal variation
socioeconomic development
socioeconomic factors
soot
Spatial regression
summer
temperature
trade
winter
Title Examining the effects of socioeconomic development on fine particulate matter (PM2.5) in China's cities using spatial regression and the geographical detector technique
URI https://dx.doi.org/10.1016/j.scitotenv.2017.11.124
https://www.ncbi.nlm.nih.gov/pubmed/29156264
https://www.proquest.com/docview/1966985134
https://www.proquest.com/docview/2067291661
Volume 619-620
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqIiQkhGChsHxUg4QEHLJdJ44Tc6uqrRZWrRCiorfIie3VojZZddOqXPg9_Exm7GRXPZQeOEWJ7MTyjO3n-M0bxt7lPLM8dSriRpeR4NZEGvfYUVomY6tTaStO0chHx3J6Ir6cpqdb7KCPhSFaZTf3hzndz9bdk72uN_eWiwXF-IpcSUXHyAnJkFMEu8jIy0e_NzQPErMJp8w4sLH0DY4XvrdtEJteEccrw-ljxGNx2wp1GwL1K9HhY_aog5CwH1r5hG3ZesDuh6SSvwZsZ7KJXcNi3eBdDdjD8IsOQuTRU_Zncq3PfX4IQBQIHbMDGgdkscZ2IctgNrwiaGpwiEth6fuIUn9ZOPcSnfDh61E8Sj_CogaflPv9Ciov1wrErZ_Dirjb2KALOw_c2xp0bfyn5yETO7FCzvBzrT9JgLW87DN2cjj5fjCNusQNUSWycRuJKnWpzaokqXAVNCp2WclJ2s4om4-1dKXSouI21tYgIMwTgcVLyaUzsbMIqHbYdt3U9gUDJUgxzplEJaVAn1KIFytFKofaZakxQyZ7YxVVp2pOyTXOip6-9rNYW7kgK-Oep0ArD9l4XXEZhD3urvKp94biho8WuPzcXflt7z8FjmA6ltG1bS5XBfaMVAh8k3-UIZH9GJG85EP2PDjfutX4HEGsFC__p3mv2AO8ywMn6TXbbi8u7RuEW22568fTLru3_3k2Pabr7NuP2V_twDA_
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6NTggkhKAwKD8PCQl4yFYnjhPzNk2dOrZWPGzS3iwntquiLanWDMF_xJ_JOU5b7WHsgdfETizf-fwl_u47gI85yyxLnYyY0UXEmTWRpm_sKC2SodWpsCXz2ciTqRif8W_n6fkWHKxyYTytsov9Iaa30bq7stfN5t5iPvc5vjyXQvpj5MTLkN-Dba9OlfZge__oeDzdBOQsD4XzOK1t6nCD5kWPbmqCpz89zSujCLLLYn7bJnUbCG03o8Mn8LhDkbgfBvoUtmzVh_uhruTvPuyMNulr1Kxbv8s-PAp_6TAkHz2DP6Nf-rItEYEEBLEjd2Dt0Buttl3WMpoNtQjrCh1BU1y00-Srf1m8bFU68fP3SbybfsF5hW1d7k9LLFvFVvT0-hkuPX2bBnRlZ4F-W6GuTPvqWSjG7okhF_S6pj1MwLXC7HM4OxydHoyjrnZDVPJs2ES8TF1qszJJStoIjYxdVjCvbmekzYdauEJqXjIba2sIE-YJp-aFYMKZ2FnCVDvQq-rKvgSU3IvGOZPIpODkVpIgYym90KF2WWrMAMTKWKrshM19fY0LtWKw_VBrKytvZfrsUWTlAQzXHRdB2-PuLl9X3qBuuKmiHejuzh9W_qNoEfuTGV3Z-nqpaGaEJOyb_KON19mPCcwLNoAXwfnWo6brhGMFf_U_w3sPD8ankxN1cjQ9fg0P6U4eKEpvoNdcXdu3hL6a4l23uv4CrNcxTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Examining+the+effects+of+socioeconomic+development+on+fine+particulate+matter+%28PM2.5%29+in+China%27s+cities+using+spatial+regression+and+the+geographical+detector+technique&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhou%2C+Chunshan&rft.au=Chen%2C+Jing&rft.au=Wang%2C+Shaojian&rft.date=2018-04-01&rft.issn=1879-1026&rft.eissn=1879-1026&rft.volume=619-620&rft.spage=436&rft_id=info:doi/10.1016%2Fj.scitotenv.2017.11.124&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon