E2ENNet: An end-to-end neural network for emotional brain-computer interface
Objectve: Emotional brain-computer interface can recognize or regulate human emotions for workload detection and auxiliary diagnosis of mental illness. However, the existing EEG emotion recognition is carried out step by step in feature engineering and classification, resulting in high engineering c...
Saved in:
Published in | Frontiers in computational neuroscience Vol. 16; p. 942979 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Frontiers Research Foundation
12.08.2022
Frontiers Media S.A |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objectve: Emotional brain-computer interface can recognize or regulate human emotions for workload detection and auxiliary diagnosis of mental illness. However, the existing EEG emotion recognition is carried out step by step in feature engineering and classification, resulting in high engineering complexity and limiting practical applications in traditional EEG emotion recognition tasks. We propose an end-to-end neural network, i.e., E2ENNet. Methods: Baseline removal and sliding window slice used for preprocessing of the raw EEG signal, convolution blocks extracted features, LSTM network obtained the correlations of features, and the softmax function classified emotions. Results: Extensive experiments in subject-dependent experimental protocol are conducted to evaluate the performance of the proposed E2ENNet, achieves state-of-the-art accuracy on three public datasets, i.e., 96.28% of 2-category experiment on DEAP dataset, 98.1% of 2-category experiment on DREAMER dataset, and 41.73% of 7-category experiment on MPED dataset. Conclusion: Experimental results show that E2ENNet can directly extract more discriminative features from raw EEG signals. Significance: This study provides a methodology for implementing a plug-and-play emotional brain-computer interface system. |
---|---|
AbstractList | ObjectveEmotional brain-computer interface can recognize or regulate human emotions for workload detection and auxiliary diagnosis of mental illness. However, the existing EEG emotion recognition is carried out step by step in feature engineering and classification, resulting in high engineering complexity and limiting practical applications in traditional EEG emotion recognition tasks. We propose an end-to-end neural network, i.e., E2ENNet.MethodsBaseline removal and sliding window slice used for preprocessing of the raw EEG signal, convolution blocks extracted features, LSTM network obtained the correlations of features, and the softmax function classified emotions.ResultsExtensive experiments in subject-dependent experimental protocol are conducted to evaluate the performance of the proposed E2ENNet, achieves state-of-the-art accuracy on three public datasets, i.e., 96.28% of 2-category experiment on DEAP dataset, 98.1% of 2-category experiment on DREAMER dataset, and 41.73% of 7-category experiment on MPED dataset.ConclusionExperimental results show that E2ENNet can directly extract more discriminative features from raw EEG signals.SignificanceThis study provides a methodology for implementing a plug-and-play emotional brain-computer interface system. Objectve: Emotional brain-computer interface can recognize or regulate human emotions for workload detection and auxiliary diagnosis of mental illness. However, the existing EEG emotion recognition is carried out step by step in feature engineering and classification, resulting in high engineering complexity and limiting practical applications in traditional EEG emotion recognition tasks. We propose an end-to-end neural network, i.e., E2ENNet. Methods: Baseline removal and sliding window slice used for preprocessing of the raw EEG signal, convolution blocks extracted features, LSTM network obtained the correlations of features, and the softmax function classified emotions. Results: Extensive experiments in subject-dependent experimental protocol are conducted to evaluate the performance of the proposed E2ENNet, achieves state-of-the-art accuracy on three public datasets, i.e., 96.28% of 2-category experiment on DEAP dataset, 98.1% of 2-category experiment on DREAMER dataset, and 41.73% of 7-category experiment on MPED dataset. Conclusion: Experimental results show that E2ENNet can directly extract more discriminative features from raw EEG signals. Significance: This study provides a methodology for implementing a plug-and-play emotional brain-computer interface system. Emotional brain-computer interface can recognize or regulate human emotions for workload detection and auxiliary diagnosis of mental illness. However, the existing EEG emotion recognition is carried out step by step in feature engineering and classification, resulting in high engineering complexity and limiting practical applications in traditional EEG emotion recognition tasks. We propose an end-to-end neural network, i.e., E2ENNet.ObjectveEmotional brain-computer interface can recognize or regulate human emotions for workload detection and auxiliary diagnosis of mental illness. However, the existing EEG emotion recognition is carried out step by step in feature engineering and classification, resulting in high engineering complexity and limiting practical applications in traditional EEG emotion recognition tasks. We propose an end-to-end neural network, i.e., E2ENNet.Baseline removal and sliding window slice used for preprocessing of the raw EEG signal, convolution blocks extracted features, LSTM network obtained the correlations of features, and the softmax function classified emotions.MethodsBaseline removal and sliding window slice used for preprocessing of the raw EEG signal, convolution blocks extracted features, LSTM network obtained the correlations of features, and the softmax function classified emotions.Extensive experiments in subject-dependent experimental protocol are conducted to evaluate the performance of the proposed E2ENNet, achieves state-of-the-art accuracy on three public datasets, i.e., 96.28% of 2-category experiment on DEAP dataset, 98.1% of 2-category experiment on DREAMER dataset, and 41.73% of 7-category experiment on MPED dataset.ResultsExtensive experiments in subject-dependent experimental protocol are conducted to evaluate the performance of the proposed E2ENNet, achieves state-of-the-art accuracy on three public datasets, i.e., 96.28% of 2-category experiment on DEAP dataset, 98.1% of 2-category experiment on DREAMER dataset, and 41.73% of 7-category experiment on MPED dataset.Experimental results show that E2ENNet can directly extract more discriminative features from raw EEG signals.ConclusionExperimental results show that E2ENNet can directly extract more discriminative features from raw EEG signals.This study provides a methodology for implementing a plug-and-play emotional brain-computer interface system.SignificanceThis study provides a methodology for implementing a plug-and-play emotional brain-computer interface system. |
Author | Shao, Yongbin Han, Zhichao Chang, Hongli Wang, Lili Zhou, Xiaoyan Wang, Jihao |
AuthorAffiliation | 2 The Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Southeast University , Nanjing , China 1 School of Electronic and Information Engineering, Nanjing University of Information Science and Technology , Nanjing , China |
AuthorAffiliation_xml | – name: 2 The Key Laboratory of Child Development and Learning Science of Ministry of Education, Southeast University, Southeast University , Nanjing , China – name: 1 School of Electronic and Information Engineering, Nanjing University of Information Science and Technology , Nanjing , China |
Author_xml | – sequence: 1 givenname: Zhichao surname: Han fullname: Han, Zhichao – sequence: 2 givenname: Hongli surname: Chang fullname: Chang, Hongli – sequence: 3 givenname: Xiaoyan surname: Zhou fullname: Zhou, Xiaoyan – sequence: 4 givenname: Jihao surname: Wang fullname: Wang, Jihao – sequence: 5 givenname: Lili surname: Wang fullname: Wang, Lili – sequence: 6 givenname: Yongbin surname: Shao fullname: Shao, Yongbin |
BookMark | eNp1UctuFDEQtFAQecAHcBuJC5dZ_BzbHJCiaEkircIFzpbH7gleZuzF4wni7_HuBolE4uKyuquq1V3n6CSmCAi9JXjFmNIfhujStKKY0pXmVEv9Ap2RrqOtIEqd_PM_RefzvMW4o53Ar9Ap6zDjmokztFnT9d0dlI_NZWwg-raktkITYcl2rFB-pfyjGVJuYEolpFirfbYhtnX2bimQmxDrO1gHr9HLwY4zvHnEC_Tt8_rr1U27-XJ9e3W5aR2XuLScMdtTEMC4cBj3Snineoe5tCC8p9wzYonSSjnnOe486Z2lXijC8ODBswt0e_T1yW7NLofJ5t8m2WAOhZTvjc0luBGM5NQRIaQdMOHMgvaaSE8ZcbgTlkL1-nT02i39BN5BLHXxJ6ZPOzF8N_fpwWhOmGKyGrx_NMjp5wJzMVOYHYyjjZCW2VCJpZKcdHvqu2fUbVpyveiBRRihipDKkkeWy2meMwzGhWL3p6_zw2gINvv0zSF9s0_fHNOvSvJM-XeN_2v-AKvwtAs |
CitedBy_id | crossref_primary_10_1016_j_dsp_2023_104278 crossref_primary_10_3390_s24154837 crossref_primary_10_3389_fnins_2023_1183132 crossref_primary_10_3389_fnins_2023_1213099 crossref_primary_10_3390_brainsci13070977 crossref_primary_10_3390_s23020915 |
Cites_doi | 10.1109/TAFFC.2020.3025777 10.1109/TCDS.2020.2999337 10.1007/s10726-008-9153-7 10.1109/ICRA.2016.7487478 10.1109/TNSRE.2019.2914916 10.1080/2326263X.2014.912881 10.1016/j.neuroimage.2005.11.027 10.1016/j.tics.2012.09.005 10.1109/TNSRE.2019.2956488 10.1109/TNNLS.2021.3118468 10.1088/1742-6596/1966/1/012043 10.1109/JBHI.2017.2688239 10.1109/NER.2013.6695876 10.1016/j.neunet.2014.06.012 10.1109/ICICS.2018.00071 10.14569/IJACSA.2017.081046 10.1109/TAFFC.2018.2885474 10.1016/j.asoc.2020.106954 10.1007/978-3-030-36808-1_75 10.1109/34.954607 10.1109/ACCESS.2019.2949707 10.1109/T-AFFC.2011.15 10.1162/neco.1997.9.8.1735 10.15171/icnj.2017.01 10.3778/j.issn.1002-8331.2010-0263 10.48550/arXiv.1505.07818 10.1016/j.tics.2010.11.004 10.1088/1741-2552/aace8c 10.1109/BIBM.2018.8621147 10.1109/TAFFC.2017.2714671 10.3969/j.issn.0255-8297.2021.03.001 10.1109/ACCESS.2019.2891579 10.1109/79.911197 10.1016/j.neucom.2017.08.039 10.1109/TCYB.2017.2788081 |
ContentType | Journal Article |
Copyright | 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2022 Han, Chang, Zhou, Wang, Wang and Shao. Copyright © 2022 Han, Chang, Zhou, Wang, Wang and Shao. 2022 Han, Chang, Zhou, Wang, Wang and Shao |
Copyright_xml | – notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2022 Han, Chang, Zhou, Wang, Wang and Shao. – notice: Copyright © 2022 Han, Chang, Zhou, Wang, Wang and Shao. 2022 Han, Chang, Zhou, Wang, Wang and Shao |
DBID | AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3389/fncom.2022.942979 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1662-5188 |
ExternalDocumentID | oai_doaj_org_article_742c1557af0143ae9d917d231c065a2e PMC9413837 10_3389_fncom_2022_942979 |
GroupedDBID | --- 29H 2WC 53G 5GY 5VS 8FE 8FH 9T4 AAFWJ AAYXX ABUWG ACGFO ACGFS ACXDI ADBBV ADMLS ADRAZ AEGXH AENEX AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ CITATION CS3 DIK E3Z F5P GROUPED_DOAJ GX1 HCIFZ HYE KQ8 LK8 M2P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PIMPY PQQKQ PROAC RNS RPM TR2 3V. 7XB 88I 8FK CCPQU DWQXO GNUQQ PHGZM PHGZT PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c470t-433ab2e5e345c00b85dc8bc047ae5dd24d31a18988ccd406d1bca2d58130fded3 |
IEDL.DBID | DOA |
ISSN | 1662-5188 |
IngestDate | Wed Aug 27 01:24:52 EDT 2025 Thu Aug 21 18:45:36 EDT 2025 Fri Jul 11 11:16:58 EDT 2025 Mon Jun 30 09:58:08 EDT 2025 Tue Jul 01 02:18:17 EDT 2025 Thu Apr 24 23:01:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-433ab2e5e345c00b85dc8bc047ae5dd24d31a18988ccd406d1bca2d58130fded3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by: Petia D. Koprinkova-Hristova, Institute of Information and Communication Technologies (BAS), Bulgaria These authors have contributed equally to this work Reviewed by: Pallavi Pandey, KR Mangalam University, India; Jing Jin, East China University of Science and Technology, China |
OpenAccessLink | https://doaj.org/article/742c1557af0143ae9d917d231c065a2e |
PMID | 36034935 |
PQID | 2701312811 |
PQPubID | 4424409 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_742c1557af0143ae9d917d231c065a2e pubmedcentral_primary_oai_pubmedcentral_nih_gov_9413837 proquest_miscellaneous_2707874167 proquest_journals_2701312811 crossref_citationtrail_10_3389_fncom_2022_942979 crossref_primary_10_3389_fncom_2022_942979 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-12 |
PublicationDateYYYYMMDD | 2022-08-12 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Frontiers in computational neuroscience |
PublicationYear | 2022 |
Publisher | Frontiers Research Foundation Frontiers Media S.A |
Publisher_xml | – name: Frontiers Research Foundation – name: Frontiers Media S.A |
References | B44 Jia (B14) Li (B22) 2018 Duan (B7) 2013 Jin (B16) 2020; 28 Lawhern (B19) 2016; 15 Ganin (B9) 2016; 17 Lindquist (B24) 2012; 16 Liu (B26) 2018; 275 Li (B23) 2021; 12 Martinovski (B29) 2009; 18 Zhang (B43) 2019; 49 Wang (B39) 2016 Stamos (B34) 2017; 22 Alhagry (B2) 2017; 8 Hao (B10) 2021; 39 Song (B31) 2019; 7 Li (B20) 2019; 7 Jain (B13) 2016 Jia (B15) Jin (B17) 2021 B12 Soroush (B33) 2017; 4 B36 Li (B21) 2020; 13 Chen (B4) 2021; 58 Lotfi (B27) 2014; 59 Yu (B42) 2019; 27 Picard (B30) 2001; 23 Cowie (B6) 2002; 18 Waldron (B38) 1994; 17 Ma (B28) 2021; 1966 Christian (B5) 2014; 1 Britton (B3) 2006; 31 Liu (B25) 2019 Tao (B37) 2020; 99 Yang (B40) 2018 Etkin (B8) 2011; 15 Yin (B41) 2021; 100 Song (B32) 2018; 11 Hochreiter (B11) 1997; 9 Koelstra (B18) 2012; 3 Sulthan (B35) 2018; 16 Alarcao (B1) 2019; 10 |
References_xml | – ident: B12 – volume: 99 start-page: 3025777 year: 2020 ident: B37 article-title: Eeg-based emotion recognition via channel-wise attention and self attention publication-title: IEEE Trans. Affect. Comput doi: 10.1109/TAFFC.2020.3025777 – volume: 13 start-page: 354 year: 2020 ident: B21 article-title: A novel bi-hemispheric discrepancy model for eeg emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst doi: 10.1109/TCDS.2020.2999337 – volume: 18 start-page: 235 year: 2009 ident: B29 article-title: Emotion as an argumentation engine: modeling the role of emotion in negotiation publication-title: Group Decis. Negotiat doi: 10.1007/s10726-008-9153-7 – start-page: 532 volume-title: 2016 IEEE International Conference on Robotics and Automation (ICRA) year: 2016 ident: B13 article-title: Recurrent neural networks for driver activity anticipation via sensory-fusion architecture doi: 10.1109/ICRA.2016.7487478 – volume: 17 start-page: 236 year: 1994 ident: B38 article-title: Once more, with feeling: Reconsidering the role of emotion in work publication-title: Ann. Int. Commun. Assoc – volume: 27 start-page: 1292 year: 2019 ident: B42 article-title: An asynchronous hybrid spelling approach based on eeg-eog signals for chinese character input publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2019.2914916 – volume: 1 start-page: 66 year: 2014 ident: B5 article-title: A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges publication-title: Brain Comput. Interfaces doi: 10.1080/2326263X.2014.912881 – volume: 31 start-page: 397 year: 2006 ident: B3 article-title: Neural correlates of social and nonsocial emotions: an fmri study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.11.027 – volume: 16 start-page: 33 year: 2012 ident: B24 article-title: A functional architecture of the human brain: emerging insights from the science of emotion publication-title: Trends Cogn. Sci doi: 10.1016/j.tics.2012.09.005 – volume: 28 start-page: 3 year: 2020 ident: B16 article-title: The study of generic model set for reducing calibration time in p300-based brain-computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng doi: 10.1109/TNSRE.2019.2956488 – volume-title: IEEE Trans. Neural Netw. Learn. Syst year: 2021 ident: B17 article-title: Robust similarity measurement based on a novel time filter for SSVEPs detection doi: 10.1109/TNNLS.2021.3118468 – volume: 1966 start-page: 012043 year: 2021 ident: B28 article-title: Eeg emotion recognition based on optimal feature selection publication-title: J. Phys doi: 10.1088/1742-6596/1966/1/012043 – volume: 22 start-page: 98 year: 2017 ident: B34 article-title: Dreamer: a database for emotion recognition through eeg and ecg signals from wireless low-cost off-the-shelf devices publication-title: IEEE J. Biomed. Health Inform doi: 10.1109/JBHI.2017.2688239 – start-page: 81 volume-title: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER) year: 2013 ident: B7 article-title: Differential entropy feature for eeg-based emotion classification doi: 10.1109/NER.2013.6695876 – volume: 59 start-page: 61 year: 2014 ident: B27 article-title: Practical emotional neural networks publication-title: Neural Netw doi: 10.1016/j.neunet.2014.06.012 – volume: 16 start-page: 315 year: 2018 ident: B35 article-title: Emotion recognition using brain signals publication-title: Int. Conf. Intell. Circ. Syst doi: 10.1109/ICICS.2018.00071 – volume: 8 start-page: 345 year: 2017 ident: B2 article-title: Emotion recognition based on eeg using lstm recurrent neural network publication-title: Int. J. Adv. Comput. Sci. Appl doi: 10.14569/IJACSA.2017.081046 – volume: 12 start-page: 494 year: 2021 ident: B23 article-title: A bi-hemisphere domain adversarial neural network model for eeg emotion recognition publication-title: IEEE Trans. Affect. Comput doi: 10.1109/TAFFC.2018.2885474 – volume: 100 start-page: 106954 year: 2021 ident: B41 article-title: Eeg emotion recognition using fusion model of graph convolutional neural networks and lstm publication-title: Appl. Soft. Comput doi: 10.1016/j.asoc.2020.106954 – start-page: 1324 volume-title: Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence IJCAI-PRICAI-20 ident: B15 article-title: Graphsleepnet: “Adaptive spatial-temporal graph convolutional networks for sleep stage classification,” – volume-title: Neural Information Processing year: 2019 ident: B25 article-title: Sparse graphic attention LSTM for EEG emotion recognition doi: 10.1007/978-3-030-36808-1_75 – volume: 23 start-page: 1175 year: 2001 ident: B30 article-title: Toward machine emotional intelligence: analysis of affective physiological state publication-title: IEEE Trans. Pattern Anal. Mach. Intell doi: 10.1109/34.954607 – ident: B36 – start-page: 2909 volume-title: MM '20: The 28th ACM International Conference on Multimedia ident: B14 article-title: Sst-emotionnet: spatial-spectral-temporal based attention 3d dense network for EEG emotion recognition – volume: 7 start-page: 155724 year: 2019 ident: B20 article-title: The fusion of electroencephalography and facial expression for continuous emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2949707 – volume: 3 start-page: 18 year: 2012 ident: B18 article-title: Deap: a database for emotion analysis ;using physiological signals publication-title: IEEE Trans. Affect. Comput doi: 10.1109/T-AFFC.2011.15 – volume: 9 start-page: 1735 year: 1997 ident: B11 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – start-page: 2378 volume-title: CVPR 2016 IEEE Conference on Computer Vision and Pattern Recognition 2016 year: 2016 ident: B39 article-title: Recurrent face aging – volume: 4 start-page: 118 year: 2017 ident: B33 article-title: A review on eeg signals based emotion recognition publication-title: Int. Clin. Neurosci. J doi: 10.15171/icnj.2017.01 – ident: B44 – volume: 58 start-page: 175 year: 2021 ident: B4 article-title: Emotion recognition of EEG based on ensemble capsnet publication-title: Comput. Eng. Appl doi: 10.3778/j.issn.1002-8331.2010-0263 – volume: 17 start-page: 2096 year: 2016 ident: B9 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res doi: 10.48550/arXiv.1505.07818 – volume: 15 start-page: 85 year: 2011 ident: B8 article-title: Emotional processing in anterior cingulate and medial prefrontal cortex publication-title: Trends Cognit doi: 10.1016/j.tics.2010.11.004 – volume: 15 start-page: 056013.1 year: 2016 ident: B19 article-title: EEGNet: a compact convolutional network for eeg-based brain-computer interfaces publication-title: J. Neural Eng doi: 10.1088/1741-2552/aace8c – volume: 11 start-page: 532 year: 2018 ident: B32 article-title: Eeg emotion recognition using dynamical graph convolutional neural networks publication-title: IEEE Trans. Affect. Comput doi: 10.1109/BIBM.2018.8621147 – volume: 10 start-page: 374 year: 2019 ident: B1 article-title: Emotions recognition using EEG signals: a survey publication-title: IEEE Trans. Affect. Comput doi: 10.1109/TAFFC.2017.2714671 – start-page: 1 volume-title: 2018 International Joint Conference on Neural Networks (IJCNN) year: 2018 ident: B40 article-title: Emotion recognition from multi-channel eeg through parallel convolutional recurrent neural network – volume: 39 start-page: 347 year: 2021 ident: B10 article-title: Emotion classification based on eeg deep learning publication-title: J. Appl. Sci doi: 10.3969/j.issn.0255-8297.2021.03.001 – volume: 7 start-page: 12177 year: 2019 ident: B31 article-title: Mped: A multi-modal physiological emotion database for discrete emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2891579 – volume: 18 start-page: 32 year: 2002 ident: B6 article-title: Emotion recognition in human-computer interaction publication-title: IEEE Signal Process. Mag doi: 10.1109/79.911197 – start-page: 1561 volume-title: Twenty-Seventh International Joint Conference on Artificial Intelligence IJCAI-18 year: 2018 ident: B22 article-title: A novel neural network model based on cerebral hemispheric asymmetry for EEG emotion recognition – volume: 275 start-page: 288 year: 2018 ident: B26 article-title: Deep learning based on batch normalization for p300 signal detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.039 – volume: 49 start-page: 839 year: 2019 ident: B43 article-title: Spatial-temporal recurrent neural network for emotion recognition publication-title: IEEE Trans. Cybern doi: 10.1109/TCYB.2017.2788081 |
SSID | ssj0062650 |
Score | 2.3501103 |
Snippet | Objectve: Emotional brain-computer interface can recognize or regulate human emotions for workload detection and auxiliary diagnosis of mental illness.... Emotional brain-computer interface can recognize or regulate human emotions for workload detection and auxiliary diagnosis of mental illness. However, the... ObjectveEmotional brain-computer interface can recognize or regulate human emotions for workload detection and auxiliary diagnosis of mental illness. However,... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 942979 |
SubjectTerms | Accuracy Brain Classification Computer applications Datasets Deep learning depthwise separable convolution EEG Electrodes electroencephalogram (EEG) Electroencephalography emotional brain-computer interface Emotions Experiments Implants long short-term memory Mental disorders Neural networks neurocognitive Neuroscience |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgvXBBhYIIFGQkxAHJNPE6scMFbdFWFUIrhKjUm2WPHUACp2zTQ_89M4l3aS49RXKcr7E982Y8ecPYm9AZp2LpBJpuLZT3jfCAQK4ybXBN1xBpHWVbrJuzc_X5or7IAbernFa51Ymjog49UIz8WGpihpGmqj5e_hVUNYp2V3MJjftsH1WwQedr_2S1_vptq4sRrdd5LxNdsfa4S5Qigv6-fN-iIqb8rVvWaCTtnyHNeZ7kLcNzesAeZsTIl9MQP2L3YnrMDpcJveU_N_wtH3M4x-D4Ifuykqv1Og4f-DLxmIIYeoEHTqyVeI805XxzBKo8TvV7sNVTlQgBubwDJwKJTecgPmHnp6vvn85ErpcgQOlyoJ-fnJexjgtVQ1l6UwcwHkqlXaxDkCosKoeDYAxAQEMeKg9OhtqgHetCDIunbC_1KT5jPJSdh7ioAZRRUrs2dAFFr7oGWu18VbByKzcLmUycalr8tuhUkKjtKGpLoraTqAv2bnfJ5cSkcVfnExqMXUciwR4b-s0Pm9eURa8eEA5p1xFJoYttQN8zIGAFxFVOxoIdbYfS5pV5Zf_Po4K93p3GNUUbJS7F_nrsg3oMoaoumJ5NgdkLzc-kXz9Hdu4WYQF6_c_vfvgL9oA-l6LTlTxie8PmOr5EeDP4V3kO_wOq8P09 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB9q--KLqG0xWmWF4kMhNdlsshtB5JQrpdR76kHflv1Uoe7pmYL9751JcoeB4pNPgf0I2Zndnd_sTn4DcOyjMiIUJkfTLXNhbZNbh0CuVK03TWyItI6iLRbN-VJcXNfXO7BJbzUK8Ne9rh3lk1qub05__7z7gAv-PXmcaG_fxkSBH-jF89MWt1fZPoA9NEyS1ulnsb1UQOhejxeb93ebmKaewX8CO6dBk39ZobPH8GiEj2w26PsJ7IT0FPZnCV3n73fsDesDOvuT8n24nPP5YhG6d2yWWEg-71Y5PhhRWOI70hAAzhC1sjAk88FSSykjcjfmemDEJrGOxoUDWJ7Nrz6d52PyhNwJWXT0J5SxPNShErUrCqtq75R1hZAm1N5z4avSoEaUcs6jVfeldYb7WqFRiz746hB20yqFZ8B8Ea0LVe2cUIJL0_roFfpRsXGtNLbMoNjITbuRWZwSXNxo9DBI1LoXtSZR60HUGZxsu_wYaDX-1fgjKWPbkBix-4LV-oseF5hGF98hNpImEmOhCa1HR9QjenUIsgwPGRxtVKk3s0xzSXRDHAeTwettNS4wujUxKaxu-za4qSFulRnIyRSYfNC0Jn372lN1t4gRVCWf_48RvICHJBQ60C75Eex269vwEhFRZ1_18_wP-6kMjg priority: 102 providerName: Scholars Portal |
Title | E2ENNet: An end-to-end neural network for emotional brain-computer interface |
URI | https://www.proquest.com/docview/2701312811 https://www.proquest.com/docview/2707874167 https://pubmed.ncbi.nlm.nih.gov/PMC9413837 https://doaj.org/article/742c1557af0143ae9d917d231c065a2e |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bi9QwFH7IevEi6ipW1yWCeBDqtpm0Sb3NyqyL6CDiwtxCkpegoBlZuwf_ve-1nWF60YuXFpq0JK-ved_Xvn4P4AUm41SsXEmhW5fK-7b0gYBcbTp0bWpZtI6zLdbt5ZV6v2k2B6W-OCdslAceDXdG1C1QzNMusRKdix0SwUBCJYGCp5ORV1-KeTsyNa7BhNKb6RsmUbDuLGVODSGeL193tABz3tZBFBrE-mcIc54feRBwLu7B3QkpiuU4wvtwK-YHcLzMxJJ__BYvxZC7ObwUP4YPK7lar2P_RiyziBnLflvSTrBaJV0jj7neggCqiGPdHjrquTpEGaayDoKFI66TC_EhXF2svry9LKc6CWVQuur5pyfnZWziQjWhqrxpMBgfKqVdbBClwkXtyPjGhIAUwLH2wUlsDMWvhBEXj-Aob3N8DAKr5ENcNCEoo6R2HSY0RJlSGzrtfF1AtbObDZOIONey-G6JTLCp7WBqy6a2o6kLeLU_5eeooPG3zud8M_YdWfx6OEAuYSeXsP9yiQJOdrfSTk_kLys1KwtJmkwBz_fN9CzxBxKX4_Zm6EPrF0FUXYCeucBsQPOW_O3roMrdERwgtv_kf8zgKdxho_C761qewFF_fROfEfjp_SncPl-tP30-Hfydtu82NW0_KvMHuNsHKg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuCCiIQAEjAQek0MRx4gQJoS1staVLhFAr9eb6FUCCbNmmQv1T_EZm8liaS289RUqcxBmPZ76xJ98AvHBVroWPdIiuW4bCmCw0FoFcnBdOZ1VGpHWUbVFm8yPx6Tg93oC_w78wlFY52MTWULulpTXyHS6JGYbncfz-9HdIVaNod3UoodGpxYG_-IMh29m7_Y84vi8535sdfpiHfVWB0AoZNfSLkDbcpz4RqY0ik6fO5sZGQmqfOseFS2KNXc1zax26Oxcbq7lLc7T2lfMuwefegE2RYCgzgc3dWfnl62D7MTpI-71TDP2KnaqmlBSOfvJNgYaf8sUueb-2SMAI2Y7zMi85ur07cLtHqGzaqdRd2PD1Pdia1hid_7pgr1ibM9ouxm_BYsZnZembt2xaM1-7sFmGeGDEkonPqLscc4bAmPmuXhCeNVSVIrR9OQlGhBWrSlt_H46uRZIPYFIva_8QmIsqY32SWitywaUuXOVwqEWV2UJqEwcQDXJTticvpxoaPxUGMSRq1YpakahVJ-oAXq9vOe2YO65qvEuDsW5IpNvtieXqm-rnsJKCW4RfUldEiqh94TDWdQiQLeI4zX0A28NQqt4SnKn_ehvA8_VlnMO0MaNrvzxv26DdRGgsA5AjFRh1aHyl_vG9ZQMvEIbkiXx09cufwc354eeFWuyXB4_hFn06rYzHfBsmzercP0Fo1ZinvT4zOLnuKfQP1mk7Mw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFcQXUasYrbqC-iDESzabbCKIXO0drS1HEQt9i_tZBU3qNUX6r_nXOZOPs3npW58CySbZzM7O_GZ38huAV9bnSrhIhei6ZSi0zkJtEMjFeWFV5jMiraNsi2W2dyw-n6QnG_B3-BeG0ioHm9gaalsbWiOfcknMMDyP46nv0yKOdhcfz36HVEGKdlqHchqdihy4yz8Yvp1_2N_FsX7N-WL-9dNe2FcYCI2QUUO_CynNXeoSkZoo0nlqTa5NJKRyqbVc2CRW2O08N8ai67OxNorbNEfL762zCT73FmxKjIqiCWzuzJdHXwY_gJFC2u-jYhhYTH1F6Skcfea7Ap0A5Y5d8YRtwYARyh3naF5xeot7cLdHq2zWqdd92HDVA9iaVRip_7pkb1ibP9ouzG_B4ZzPl0vXvGezirnKhk0d4oERYyY-o-ryzRmCZOa62kF4VlOFitD0pSUYkVesvDLuIRzfiCQfwaSqK_cYmI28Ni5JjRG54FIV1lscduEzU0il4wCiQW6l6YnMqZ7GzxIDGhJ12Yq6JFGXnagDeLu-5axj8biu8Q4NxrohEXC3J-rVadnP51IKbhCKSeWJIFG5wmLcaxEsG8R0irsAtoehLHurcF7-1-EAXq4v43ymTRpVufqibYM2FGGyDECOVGDUofGV6sf3lhm8QEiSJ_LJ9S9_Abdx6pSH-8uDp3CHvpwWyWO-DZNmdeGeIcpq9PNenRl8u-kZ9A8v1j9o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=E2ENNet%3A+An+end-to-end+neural+network+for+emotional+brain-computer+interface&rft.jtitle=Frontiers+in+computational+neuroscience&rft.au=Zhichao+Han&rft.au=Hongli+Chang&rft.au=Xiaoyan+Zhou&rft.au=Jihao+Wang&rft.date=2022-08-12&rft.pub=Frontiers+Media+S.A&rft.eissn=1662-5188&rft.volume=16&rft_id=info:doi/10.3389%2Ffncom.2022.942979&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_742c1557af0143ae9d917d231c065a2e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5188&client=summon |