Sublethal concentrations of conventional nematicides alter the physiological activities of Meloidogyne incognita and suppress parasitism
Reducing nematicide dose rates could be a useful strategy for mitigating their negative effects on health and the environment. In this study, enzymatic activities and the parasitic ability of Meloidogyne incognita after exposure to sub-lethal concentrations (0.25, 1, 2, and 5 ppm) of ethoprophos, fe...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; p. 229 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.01.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Reducing nematicide dose rates could be a useful strategy for mitigating their negative effects on health and the environment. In this study, enzymatic activities and the parasitic ability of
Meloidogyne incognita
after exposure to sub-lethal concentrations (0.25, 1, 2, and 5 ppm) of ethoprophos, fenamiphos, and oxamyl were investigated. Although the tested concentrations did not show nematicidal properties in vitro, they reduced root galls by at least 30% at 0.25 ppm and up to 67% at 5 ppm in pots, besides disrupting nematode fertility. For all three nematicides at 2 ppm, a chemotaxis assay showed that ≤ 11% of the nematode population was successfully oriented to the host roots, compared to 44% in the control. Ethoprophos and fenamiphos at 5 ppm showed poor inhibitory effects on acetylcholinesterase (AChE) activity (5.6% and 12.5%, respectively). In contrast, the same nematicides were shown to be strong ATPase inhibitors, causing 82.4% and 82.8% inhibition, respectively. At the same concentration, oxamyl moderately inhibited AChE and ATPase-specific activities, the inhibition being 22.5% and 35.2%, respectively. This study suggests that the use of very low nematicide concentrations could be a promising strategy for nematode management. Furthermore, it has also highlighted the role of ATPases as a possible target site for suppressing nematode activity in the development of future nematicides. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-022-27270-z |