Meteorological factors had more impact on airborne bacterial communities than air pollutants

Airborne bacteria have gained increasing attention because they affect ecological balance and pose potential risks on human health. Recently, some studies have focused on the abundance and composition of airborne bacteria under heavy, hazy polluted weather in China, but they reached different conclu...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 601-602; pp. 703 - 712
Main Authors Zhen, Quan, Deng, Ye, Wang, Yaqing, Wang, Xiaoke, Zhang, Hongxing, Sun, Xu, Ouyang, Zhiyun
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.12.2017
Subjects
Online AccessGet full text
ISSN0048-9697
1879-1026
1879-1026
DOI10.1016/j.scitotenv.2017.05.049

Cover

Loading…
Abstract Airborne bacteria have gained increasing attention because they affect ecological balance and pose potential risks on human health. Recently, some studies have focused on the abundance and composition of airborne bacteria under heavy, hazy polluted weather in China, but they reached different conclusions about the comparisons with non-polluted days. In this study, we tested the hypothesis that meteorological factors could have a higher impact on shaping airborne bacterial communities than air pollutants by systematically monitoring the communities for 1year. Total suspended particles in Beijing were sampled for 20 consecutive days in each season of 2015. Bacterial abundance varied from 8.71×103 to 2.14×107 ribosomal operons per cubic meter according to the quantitative PCR analysis. There were relatively higher bacterial counts in spring and in autumn than in winter and summer. Airborne bacterial communities displayed a strong seasonality, according to the hierarchical cluster analysis. Only two exceptions overtook the seasonal trend, and both occurred in or after violent meteorological changes (sandstorm or rain). Aggregated boosted tree analysis performed on bacterial abundance showed that the dominant factors shaping bacterial communities were meteorological. They were air pressure in winter, air temperature and relative humidity in spring, RH in summer, and vapor pressure in autumn. Variation partition analysis on community structure showed that meteorological factors explained more variations than air pollutants. Therefore, both of the two models verified our hypothesis that the differences in airborne bacterial communities in polluted days or non-polluted days were mainly driven by the discrepancies of meteorological factors rather than by the presence of air pollutants. [Display omitted] •The airborne bacteria concentrations and community structure showed strong seasonality.•However, violent weather events broke seasonal trends of bacteria community.•Within season, meteorological factors explained more variations in bacteria community structure than air pollution.
AbstractList Airborne bacteria have gained increasing attention because they affect ecological balance and pose potential risks on human health. Recently, some studies have focused on the abundance and composition of airborne bacteria under heavy, hazy polluted weather in China, but they reached different conclusions about the comparisons with non-polluted days. In this study, we tested the hypothesis that meteorological factors could have a higher impact on shaping airborne bacterial communities than air pollutants by systematically monitoring the communities for 1year. Total suspended particles in Beijing were sampled for 20 consecutive days in each season of 2015. Bacterial abundance varied from 8.71×103 to 2.14×107 ribosomal operons per cubic meter according to the quantitative PCR analysis. There were relatively higher bacterial counts in spring and in autumn than in winter and summer. Airborne bacterial communities displayed a strong seasonality, according to the hierarchical cluster analysis. Only two exceptions overtook the seasonal trend, and both occurred in or after violent meteorological changes (sandstorm or rain). Aggregated boosted tree analysis performed on bacterial abundance showed that the dominant factors shaping bacterial communities were meteorological. They were air pressure in winter, air temperature and relative humidity in spring, RH in summer, and vapor pressure in autumn. Variation partition analysis on community structure showed that meteorological factors explained more variations than air pollutants. Therefore, both of the two models verified our hypothesis that the differences in airborne bacterial communities in polluted days or non-polluted days were mainly driven by the discrepancies of meteorological factors rather than by the presence of air pollutants.Airborne bacteria have gained increasing attention because they affect ecological balance and pose potential risks on human health. Recently, some studies have focused on the abundance and composition of airborne bacteria under heavy, hazy polluted weather in China, but they reached different conclusions about the comparisons with non-polluted days. In this study, we tested the hypothesis that meteorological factors could have a higher impact on shaping airborne bacterial communities than air pollutants by systematically monitoring the communities for 1year. Total suspended particles in Beijing were sampled for 20 consecutive days in each season of 2015. Bacterial abundance varied from 8.71×103 to 2.14×107 ribosomal operons per cubic meter according to the quantitative PCR analysis. There were relatively higher bacterial counts in spring and in autumn than in winter and summer. Airborne bacterial communities displayed a strong seasonality, according to the hierarchical cluster analysis. Only two exceptions overtook the seasonal trend, and both occurred in or after violent meteorological changes (sandstorm or rain). Aggregated boosted tree analysis performed on bacterial abundance showed that the dominant factors shaping bacterial communities were meteorological. They were air pressure in winter, air temperature and relative humidity in spring, RH in summer, and vapor pressure in autumn. Variation partition analysis on community structure showed that meteorological factors explained more variations than air pollutants. Therefore, both of the two models verified our hypothesis that the differences in airborne bacterial communities in polluted days or non-polluted days were mainly driven by the discrepancies of meteorological factors rather than by the presence of air pollutants.
Airborne bacteria have gained increasing attention because they affect ecological balance and pose potential risks on human health. Recently, some studies have focused on the abundance and composition of airborne bacteria under heavy, hazy polluted weather in China, but they reached different conclusions about the comparisons with non-polluted days. In this study, we tested the hypothesis that meteorological factors could have a higher impact on shaping airborne bacterial communities than air pollutants by systematically monitoring the communities for 1year. Total suspended particles in Beijing were sampled for 20 consecutive days in each season of 2015. Bacterial abundance varied from 8.71×103 to 2.14×107 ribosomal operons per cubic meter according to the quantitative PCR analysis. There were relatively higher bacterial counts in spring and in autumn than in winter and summer. Airborne bacterial communities displayed a strong seasonality, according to the hierarchical cluster analysis. Only two exceptions overtook the seasonal trend, and both occurred in or after violent meteorological changes (sandstorm or rain). Aggregated boosted tree analysis performed on bacterial abundance showed that the dominant factors shaping bacterial communities were meteorological. They were air pressure in winter, air temperature and relative humidity in spring, RH in summer, and vapor pressure in autumn. Variation partition analysis on community structure showed that meteorological factors explained more variations than air pollutants. Therefore, both of the two models verified our hypothesis that the differences in airborne bacterial communities in polluted days or non-polluted days were mainly driven by the discrepancies of meteorological factors rather than by the presence of air pollutants. [Display omitted] •The airborne bacteria concentrations and community structure showed strong seasonality.•However, violent weather events broke seasonal trends of bacteria community.•Within season, meteorological factors explained more variations in bacteria community structure than air pollution.
Airborne bacteria have gained increasing attention because they affect ecological balance and pose potential risks on human health. Recently, some studies have focused on the abundance and composition of airborne bacteria under heavy, hazy polluted weather in China, but they reached different conclusions about the comparisons with non-polluted days. In this study, we tested the hypothesis that meteorological factors could have a higher impact on shaping airborne bacterial communities than air pollutants by systematically monitoring the communities for 1year. Total suspended particles in Beijing were sampled for 20 consecutive days in each season of 2015. Bacterial abundance varied from 8.71×103 to 2.14×107 ribosomal operons per cubic meter according to the quantitative PCR analysis. There were relatively higher bacterial counts in spring and in autumn than in winter and summer. Airborne bacterial communities displayed a strong seasonality, according to the hierarchical cluster analysis. Only two exceptions overtook the seasonal trend, and both occurred in or after violent meteorological changes (sandstorm or rain). Aggregated boosted tree analysis performed on bacterial abundance showed that the dominant factors shaping bacterial communities were meteorological. They were air pressure in winter, air temperature and relative humidity in spring, RH in summer, and vapor pressure in autumn. Variation partition analysis on community structure showed that meteorological factors explained more variations than air pollutants. Therefore, both of the two models verified our hypothesis that the differences in airborne bacterial communities in polluted days or non-polluted days were mainly driven by the discrepancies of meteorological factors rather than by the presence of air pollutants.
Airborne bacteria have gained increasing attention because they affect ecological balance and pose potential risks on human health. Recently, some studies have focused on the abundance and composition of airborne bacteria under heavy, hazy polluted weather in China, but they reached different conclusions about the comparisons with non-polluted days. In this study, we tested the hypothesis that meteorological factors could have a higher impact on shaping airborne bacterial communities than air pollutants by systematically monitoring the communities for 1year. Total suspended particles in Beijing were sampled for 20 consecutive days in each season of 2015. Bacterial abundance varied from 8.71×10 to 2.14×10 ribosomal operons per cubic meter according to the quantitative PCR analysis. There were relatively higher bacterial counts in spring and in autumn than in winter and summer. Airborne bacterial communities displayed a strong seasonality, according to the hierarchical cluster analysis. Only two exceptions overtook the seasonal trend, and both occurred in or after violent meteorological changes (sandstorm or rain). Aggregated boosted tree analysis performed on bacterial abundance showed that the dominant factors shaping bacterial communities were meteorological. They were air pressure in winter, air temperature and relative humidity in spring, RH in summer, and vapor pressure in autumn. Variation partition analysis on community structure showed that meteorological factors explained more variations than air pollutants. Therefore, both of the two models verified our hypothesis that the differences in airborne bacterial communities in polluted days or non-polluted days were mainly driven by the discrepancies of meteorological factors rather than by the presence of air pollutants.
Author Deng, Ye
Zhang, Hongxing
Ouyang, Zhiyun
Sun, Xu
Wang, Yaqing
Wang, Xiaoke
Zhen, Quan
Author_xml – sequence: 1
  givenname: Quan
  surname: Zhen
  fullname: Zhen, Quan
  organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
– sequence: 2
  givenname: Ye
  surname: Deng
  fullname: Deng, Ye
  organization: CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
– sequence: 3
  givenname: Yaqing
  surname: Wang
  fullname: Wang, Yaqing
  organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
– sequence: 4
  givenname: Xiaoke
  surname: Wang
  fullname: Wang, Xiaoke
  organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
– sequence: 5
  givenname: Hongxing
  surname: Zhang
  fullname: Zhang, Hongxing
  organization: Beijing Urban Ecosystem Research Station, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
– sequence: 6
  givenname: Xu
  surname: Sun
  fullname: Sun, Xu
  organization: Beijing Urban Ecosystem Research Station, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
– sequence: 7
  givenname: Zhiyun
  surname: Ouyang
  fullname: Ouyang, Zhiyun
  email: zyouyang@rcees.ac.cn
  organization: State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28577405$$D View this record in MEDLINE/PubMed
BookMark eNqNkctuFTEMhiNURE8LrwCzZDND7pcFi6riJhWxgR1SlMl4aI5mkkOSqcTbk8MpXbAp9sKS9f2W7f8CncUUAaFXBA8EE_lmPxQfaqoQ7waKiRqwGDA3T9COaGV6gqk8QzuMue6NNOocXZSyxy2UJs_QOdVCKY7FDn3_DBVSTkv6Ebxbutn5mnLpbt3UrSlDF9ZDa3Updi7kMeUI3dgakEOjfVrXLYYaoHT11v1hukNalq26WMtz9HR2S4EX9_USfXv_7uv1x_7my4dP11c3vecK155NSijtJKdkbMtqo7yY8Ugp45wRMcLMNSUt6ciklnjGDEuqfbvUM6M5u0SvT3MPOf3coFS7huJhWVyEtBVL2-FCUMnUoygxWBJmjKENfXmPbuMKkz3ksLr8y_59XgPUCfA5lZJhfkAItkeb7N4-2GSPNlksbLOpKd_-o2yYqyHFml1Y_kN_ddJD--pdgHzkIHqYQgZf7ZTCozN-A_P3s1g
CitedBy_id crossref_primary_10_1016_j_scitotenv_2022_154665
crossref_primary_10_1111_1462_2920_16023
crossref_primary_10_3390_ijerph15102295
crossref_primary_10_1007_s11356_022_21563_6
crossref_primary_10_1016_j_envint_2018_01_007
crossref_primary_10_1016_j_envpol_2023_122473
crossref_primary_10_1021_acs_est_0c06332
crossref_primary_10_3390_atmos13020207
crossref_primary_10_1088_1755_1315_714_2_022024
crossref_primary_10_1016_j_envpol_2024_123834
crossref_primary_10_1016_j_scitotenv_2023_163266
crossref_primary_10_1029_2024JD040792
crossref_primary_10_1007_s10453_022_09777_0
crossref_primary_10_3390_atmos15101155
crossref_primary_10_1038_s41522_023_00459_4
crossref_primary_10_1007_s11783_020_1334_x
crossref_primary_10_3390_atmos13060869
crossref_primary_10_3390_atmos14101470
crossref_primary_10_1080_02786826_2023_2283480
crossref_primary_10_3390_atmos13060909
crossref_primary_10_1007_s42979_021_00525_8
crossref_primary_10_1080_09593330_2022_2109993
crossref_primary_10_1016_j_scitotenv_2021_148713
crossref_primary_10_1016_j_scitotenv_2018_05_006
crossref_primary_10_3390_f11050561
crossref_primary_10_1016_j_scitotenv_2019_01_367
crossref_primary_10_1021_acs_est_0c06201
crossref_primary_10_1016_j_scitotenv_2024_176184
crossref_primary_10_1016_j_scitotenv_2023_168818
crossref_primary_10_1007_s11802_018_3307_2
crossref_primary_10_1016_j_atmosenv_2022_119572
crossref_primary_10_1016_j_atmosenv_2023_120143
crossref_primary_10_1016_j_jes_2024_04_017
crossref_primary_10_1016_j_ecoenv_2024_117294
crossref_primary_10_1080_10643389_2021_2006537
crossref_primary_10_1016_j_envpol_2020_114741
crossref_primary_10_1029_2021JD035408
crossref_primary_10_1128_aem_01367_22
crossref_primary_10_1039_D4EA00093E
crossref_primary_10_1016_j_envpol_2020_114188
crossref_primary_10_1016_j_envpol_2020_116124
crossref_primary_10_3390_w17010066
crossref_primary_10_1007_s11356_023_29931_6
crossref_primary_10_2478_acee_2023_0057
crossref_primary_10_1016_j_uclim_2023_101650
crossref_primary_10_1007_s11783_022_1552_5
crossref_primary_10_1007_s11356_020_09070_y
crossref_primary_10_1016_j_ecoenv_2019_109543
crossref_primary_10_1016_j_envint_2020_105721
crossref_primary_10_1111_ina_12807
crossref_primary_10_2139_ssrn_4107087
crossref_primary_10_3390_atmos14101529
crossref_primary_10_1007_s10453_020_09680_6
crossref_primary_10_1016_j_envpol_2019_07_033
crossref_primary_10_1039_D3EA00141E
crossref_primary_10_1175_JAMC_D_18_0142_1
crossref_primary_10_1007_s11802_023_5243_z
crossref_primary_10_1016_j_jes_2023_12_028
crossref_primary_10_1007_s41810_022_00144_7
crossref_primary_10_1016_j_scitotenv_2022_155969
crossref_primary_10_1007_s10453_023_09803_9
crossref_primary_10_3390_atmos11121296
crossref_primary_10_3390_microorganisms11071835
crossref_primary_10_3390_ijms24076756
crossref_primary_10_1016_j_scitotenv_2019_03_412
crossref_primary_10_1002_imt2_140
crossref_primary_10_1016_j_scitotenv_2021_149147
crossref_primary_10_1021_acs_estlett_7b00561
crossref_primary_10_1016_j_jhazmat_2020_122984
crossref_primary_10_1016_j_buildenv_2020_106690
crossref_primary_10_1111_kykl_12418
crossref_primary_10_1016_j_envint_2022_107137
crossref_primary_10_1016_j_envint_2021_106539
crossref_primary_10_1080_01490451_2022_2064945
crossref_primary_10_1007_s11356_021_12709_z
crossref_primary_10_1016_j_envres_2020_109540
crossref_primary_10_3389_fmicb_2018_01741
crossref_primary_10_1016_j_heliyon_2023_e15355
crossref_primary_10_1016_j_jaerosci_2017_11_001
crossref_primary_10_1016_j_aeaoa_2021_100137
crossref_primary_10_3389_fmicb_2024_1422637
crossref_primary_10_1016_j_scitotenv_2019_01_318
crossref_primary_10_1021_acs_est_3c00026
crossref_primary_10_1016_j_scitotenv_2024_178158
crossref_primary_10_1016_j_envint_2020_106156
crossref_primary_10_1016_j_marenvres_2024_106765
crossref_primary_10_3390_atmos12070809
crossref_primary_10_3390_atmos11080802
crossref_primary_10_3390_microorganisms11020411
crossref_primary_10_1016_j_envint_2022_107127
crossref_primary_10_1016_j_apr_2022_101323
crossref_primary_10_1016_j_scitotenv_2023_164797
crossref_primary_10_1016_j_buildenv_2023_111003
crossref_primary_10_3390_app14188250
crossref_primary_10_1002_jobm_202000575
crossref_primary_10_1007_s11356_021_17532_0
crossref_primary_10_1016_j_envres_2022_113097
crossref_primary_10_1016_j_scitotenv_2024_173038
crossref_primary_10_1016_j_watres_2019_115324
crossref_primary_10_1016_j_jhazmat_2019_121515
crossref_primary_10_1007_s11356_019_06720_8
crossref_primary_10_1016_j_jes_2023_07_029
crossref_primary_10_48022_mbl_2112_12005
crossref_primary_10_5194_bg_19_71_2022
crossref_primary_10_7717_peerj_8424
crossref_primary_10_1016_j_jhazmat_2024_134459
crossref_primary_10_1155_2022_8762936
crossref_primary_10_1016_j_jtbi_2022_111134
crossref_primary_10_1021_acs_est_8b04630
crossref_primary_10_1016_j_scitotenv_2020_138899
crossref_primary_10_1029_2021JD036299
crossref_primary_10_1016_j_jclepro_2022_131094
crossref_primary_10_1371_journal_pone_0242969
crossref_primary_10_1007_s11356_021_17028_x
crossref_primary_10_3390_agriculture13091752
crossref_primary_10_1016_j_atmosres_2024_107453
crossref_primary_10_1016_j_ecolind_2024_112950
crossref_primary_10_1016_j_jhazmat_2021_125722
crossref_primary_10_1016_j_jhazmat_2020_122256
crossref_primary_10_1007_s10453_023_09779_6
crossref_primary_10_1016_j_ecoenv_2023_114712
crossref_primary_10_1016_j_scitotenv_2019_134020
crossref_primary_10_1016_j_atmosres_2021_105906
crossref_primary_10_1016_j_scitotenv_2023_166799
crossref_primary_10_1007_s10661_024_12442_3
crossref_primary_10_3389_fmicb_2021_732961
crossref_primary_10_3390_ani14243649
crossref_primary_10_1021_acs_est_9b07623
crossref_primary_10_1007_s11869_022_01154_7
crossref_primary_10_1016_j_atmosres_2019_104676
crossref_primary_10_1016_j_fmre_2022_10_004
crossref_primary_10_1007_s11783_020_1336_8
crossref_primary_10_1016_j_scitotenv_2024_173096
crossref_primary_10_1016_j_envpol_2019_05_004
crossref_primary_10_1016_j_envpol_2024_125611
crossref_primary_10_1093_gbe_evy134
crossref_primary_10_1016_j_envint_2019_105318
crossref_primary_10_1016_j_scitotenv_2020_143743
crossref_primary_10_1007_s10453_022_09744_9
crossref_primary_10_1016_j_envpol_2018_09_051
crossref_primary_10_1016_j_envint_2020_105625
crossref_primary_10_1016_j_jhazmat_2022_130597
crossref_primary_10_1016_j_scitotenv_2018_11_268
crossref_primary_10_1016_j_scitotenv_2023_162581
crossref_primary_10_21307_PM_2020_59_2_009
crossref_primary_10_1108_K_05_2020_0284
crossref_primary_10_1038_s41598_019_51073_4
Cites_doi 10.1038/nature13774
10.1016/j.ajic.2007.10.021
10.1016/0195-6701(82)90004-4
10.1007/s11356-014-3347-0
10.1111/j.1751-1097.1997.tb01884.x
10.1007/s00248-010-9742-2
10.1128/AEM.00062-07
10.1093/bioinformatics/btr507
10.1038/nmeth.f.303
10.1007/s00248-007-9216-3
10.4209/aaqr.2016.02.0087
10.1038/ismej.2013.79
10.1016/j.scitotenv.2005.01.032
10.1007/s11356-014-3675-0
10.1264/jsme2.ME13080
10.1016/j.scitotenv.2014.09.079
10.1016/j.scitotenv.2016.01.137
10.1016/j.atmosenv.2016.05.038
10.1007/s00253-013-4901-2
10.1007/s00253-014-6348-5
10.1021/acs.est.5b06348
10.1099/00221287-148-1-257
10.1016/j.atmosenv.2015.08.004
10.1128/AEM.70.5.2867-2879.2004
10.1128/AEM.59.8.2589-2593.1993
10.1016/j.atmosenv.2015.09.070
10.1111/j.1462-2920.2010.02387.x
10.1007/s00253-012-4450-0
10.1038/nmeth.2604
10.1038/ismej.2012.139
10.3390/atmos3010087
10.1111/j.1365-2656.2008.01390.x
10.1023/A:1007607614544
10.1016/j.atmosenv.2016.06.034
10.1093/bioinformatics/btp636
10.1021/es4048472
10.1007/s00484-013-0748-6
10.1016/j.atmosenv.2012.10.031
10.1016/j.atmosenv.2012.01.005
10.1073/pnas.0806852106
10.1016/S1352-2310(96)00235-X
10.1038/ismej.2011.107
10.1128/AEM.03006-05
10.1016/j.atmosenv.2013.03.047
10.1016/j.scitotenv.2015.10.001
10.1098/rsif.2009.0227.focus
10.1038/ismej.2010.167
10.1007/s00253-010-3048-7
10.1016/j.scitotenv.2011.06.001
10.1016/j.scitotenv.2003.11.021
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2017.05.049
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
EndPage 712
ExternalDocumentID 28577405
10_1016_j_scitotenv_2017_05_049
S004896971731149X
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SEN
SEW
SSH
WUQ
XPP
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c470t-3d7578a6421b697897c5f0b22344315bef48212122b36860f030628c879c39843
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Sep 05 06:07:03 EDT 2025
Thu Sep 04 20:24:51 EDT 2025
Wed Feb 19 02:40:26 EST 2025
Tue Jul 01 01:21:13 EDT 2025
Thu Apr 24 23:03:04 EDT 2025
Fri Feb 23 02:22:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Abundance
Meteorological factors
Air pollutants
Airborne bacterial community
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-3d7578a6421b697897c5f0b22344315bef48212122b36860f030628c879c39843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28577405
PQID 1906139992
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2000552637
proquest_miscellaneous_1906139992
pubmed_primary_28577405
crossref_primary_10_1016_j_scitotenv_2017_05_049
crossref_citationtrail_10_1016_j_scitotenv_2017_05_049
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2017_05_049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
2017-12-00
2017-Dec-01
20171201
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Science of the total environment
PublicationTitleAlternate Sci Total Environ
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yamaguchi, Park, Kodama, Ichijo, Baba, Nasu (bb0265) 2014; 29
Zhong, Qi, Li, Dong, Gao (bb0285) 2016; 140
Bertolini, Gandolfi, Ambrosini, Bestetti, Innocente, Rampazzo, Franzetti (bb0010) 2013; 97
Sharma, Hudson (bb0210) 2008; 36
Cao, Jiang, Wang, Fang, Lang, Tian, Jiang, Zhu (bb0035) 2014; 48
Tong, Lighthart (bb0235) 1997; 65
Huang, Zhang, Bozzetti, Ho, Cao, Han (bb0125) 2014; 514
Almaguer, Aira, Rodríguez-Rajo, Rojas (bb0005) 2013; 58
Wei, Zou, Zheng, Li, Shen, Wu, Wu, Hu, Yao (bb0250) 2016; 550
Vos, Garrity, Jones, Krieg, Ludwig, Rainey, Schleifer, Whitman (bb0240) 2009
Bowers, McCubbin, Hallar, Fierer (bb0025) 2012; 50
Gao, Jia, Qiu, Han, Song, Wang (bb0100) 2015; 118
Theunissen, Lemmens-den Toom, Burggraaf, Stolz, Michel (bb0225) 1993; 59
Jones, Harrison (bb0135) 2004; 326
Wang, Garrity, Tiedje, Cole (bb0245) 2007; 73
Gandolfi, Bertolini, Ambrosini, Bestetti, Franzetti (bb0090) 2013; 97
Li, Qi, Zhang, Huang, Li, Gao (bb0145) 2011; 409
Polymenakou (bb0195) 2012; 3
Magoc, Salzberg (bb0165) 2011; 27
Rosenberg, DeLong, Lory, Stackebrandt, Thompson (bb0200) 2014
DeSantis, Hugenholtz, Larsen, Rojas, Brodie, Keller (bb0050) 2006; 72
Yuan, Zhang, Shi, Li, Yang, Yu (bb0275) 2016
Kuang, Huang, Chen, Hua, Li, Hu, Li, Shu (bb0140) 2013; 7
Nadkarni, Martin, Jacques, Hunter (bb0185) 2002; 148
Zhang, Quan, Tie, Li, Liu, Gao, Zhao (bb0280) 2015; 502
Bowers, McLetchie, Knight, Fierer (bb0020) 2011; 5
Lipson, Schmidt (bb0155) 2004; 70
ter Braak, Smilauer (bb0030) 2002
Liu, Hu, Wang, Wu, Gao, Wang (bb0160) 2015; 22
Matthias-Maser, Jaenicke (bb0170) 2000; 16
Gilbert, Steele, Caporaso, Steinbruck, Reeder, Temperton (bb0115) 2012; 6
Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello, Fierer, Pena (bb0045) 2010; 7
Elith, Leathwick, Hastie (bb0065) 2008; 77
Gandolfi, Bertolini, Bestetti, Ambrosini, Innocente, Rampazzo (bb0095) 2015; 99
Tong, Lighthart (bb0230) 1997; 31
Gao, Fan, Li, Pan (bb0110) 2017; 17
Caporaso, Bittinger, Bushman, DeSantis, Andersen, Knight (bb0040) 2010; 26
Fortunato, Eiler, Herfort, Needoba, Peterson, Crump (bb0080) 2013; 7
Jackson, Denney (bb0130) 2010; 61
Woo, Brar, Chan, Lau, Leung, Scott (bb0260) 2013; 74
Smets, Moretti, Denys, Lebeer (bb0215) 2016; 139
Li, Fu, Wang, Liu, Meng, Wang (bb0150) 2015; 122
Tang (bb0220) 2009; 6
Edgar (bb0060) 2013; 10
Fang, Ouyang, Hu, Wang, Zheng, Lin (bb0070) 2005; 350
Fang, Ouyang, Zheng, Wang, Hu (bb0075) 2007; 54
Gao, Qiu, Jia, Han, Song, Wang (bb0105) 2015; 22
Mazar, Cytryn, Erel, Rudich (bb0175) 2016; 50
Newton, McMahon (bb0190) 2011; 13
Dong, Qi, Shao, Zhong, Gao, Cao (bb0055) 2016; 541
Haas, Galler, Luxner, Zarfel, Buzina, Friedl (bb0120) 2013; 65
Yin, He (bb0270) 2015; 41
Shaman, Kohn (bb0205) 2009; 106
Whyte, Hodgson, Tinkler (bb0255) 1982; 3
Franzetti, Gandolfi, Gaspari, Ambrosini, Bestetti (bb0085) 2011; 90
Borcard, Gillet, Legendre (bb0015) 2011
DeSantis (10.1016/j.scitotenv.2017.05.049_bb0050) 2006; 72
Franzetti (10.1016/j.scitotenv.2017.05.049_bb0085) 2011; 90
Cao (10.1016/j.scitotenv.2017.05.049_bb0035) 2014; 48
Elith (10.1016/j.scitotenv.2017.05.049_bb0065) 2008; 77
Wang (10.1016/j.scitotenv.2017.05.049_bb0245) 2007; 73
Matthias-Maser (10.1016/j.scitotenv.2017.05.049_bb0170) 2000; 16
Newton (10.1016/j.scitotenv.2017.05.049_bb0190) 2011; 13
Mazar (10.1016/j.scitotenv.2017.05.049_bb0175) 2016; 50
Zhong (10.1016/j.scitotenv.2017.05.049_bb0285) 2016; 140
Huang (10.1016/j.scitotenv.2017.05.049_bb0125) 2014; 514
Kuang (10.1016/j.scitotenv.2017.05.049_bb0140) 2013; 7
Nadkarni (10.1016/j.scitotenv.2017.05.049_bb0185) 2002; 148
Sharma (10.1016/j.scitotenv.2017.05.049_bb0210) 2008; 36
Fang (10.1016/j.scitotenv.2017.05.049_bb0070) 2005; 350
Li (10.1016/j.scitotenv.2017.05.049_bb0150) 2015; 122
Whyte (10.1016/j.scitotenv.2017.05.049_bb0255) 1982; 3
Tong (10.1016/j.scitotenv.2017.05.049_bb0235) 1997; 65
Polymenakou (10.1016/j.scitotenv.2017.05.049_bb0195) 2012; 3
Gandolfi (10.1016/j.scitotenv.2017.05.049_bb0090) 2013; 97
Fortunato (10.1016/j.scitotenv.2017.05.049_bb0080) 2013; 7
Bowers (10.1016/j.scitotenv.2017.05.049_bb0020) 2011; 5
Bowers (10.1016/j.scitotenv.2017.05.049_bb0025) 2012; 50
Yin (10.1016/j.scitotenv.2017.05.049_bb0270) 2015; 41
ter Braak (10.1016/j.scitotenv.2017.05.049_bb0030) 2002
Dong (10.1016/j.scitotenv.2017.05.049_bb0055) 2016; 541
Fang (10.1016/j.scitotenv.2017.05.049_bb0075) 2007; 54
Tang (10.1016/j.scitotenv.2017.05.049_bb0220) 2009; 6
Magoc (10.1016/j.scitotenv.2017.05.049_bb0165) 2011; 27
Caporaso (10.1016/j.scitotenv.2017.05.049_bb0045) 2010; 7
Jones (10.1016/j.scitotenv.2017.05.049_bb0135) 2004; 326
Wei (10.1016/j.scitotenv.2017.05.049_bb0250) 2016; 550
Gao (10.1016/j.scitotenv.2017.05.049_bb0105) 2015; 22
Smets (10.1016/j.scitotenv.2017.05.049_bb0215) 2016; 139
Gilbert (10.1016/j.scitotenv.2017.05.049_bb0115) 2012; 6
Yuan (10.1016/j.scitotenv.2017.05.049_bb0275) 2016
Li (10.1016/j.scitotenv.2017.05.049_bb0145) 2011; 409
Lipson (10.1016/j.scitotenv.2017.05.049_bb0155) 2004; 70
Rosenberg (10.1016/j.scitotenv.2017.05.049_bb0200) 2014
Theunissen (10.1016/j.scitotenv.2017.05.049_bb0225) 1993; 59
Jackson (10.1016/j.scitotenv.2017.05.049_bb0130) 2010; 61
Gao (10.1016/j.scitotenv.2017.05.049_bb0100) 2015; 118
Gandolfi (10.1016/j.scitotenv.2017.05.049_bb0095) 2015; 99
Bertolini (10.1016/j.scitotenv.2017.05.049_bb0010) 2013; 97
Caporaso (10.1016/j.scitotenv.2017.05.049_bb0040) 2010; 26
Liu (10.1016/j.scitotenv.2017.05.049_bb0160) 2015; 22
Vos (10.1016/j.scitotenv.2017.05.049_bb0240) 2009
Edgar (10.1016/j.scitotenv.2017.05.049_bb0060) 2013; 10
Gao (10.1016/j.scitotenv.2017.05.049_bb0110) 2017; 17
Haas (10.1016/j.scitotenv.2017.05.049_bb0120) 2013; 65
Borcard (10.1016/j.scitotenv.2017.05.049_bb0015) 2011
Yamaguchi (10.1016/j.scitotenv.2017.05.049_bb0265) 2014; 29
Almaguer (10.1016/j.scitotenv.2017.05.049_bb0005) 2013; 58
Tong (10.1016/j.scitotenv.2017.05.049_bb0230) 1997; 31
Woo (10.1016/j.scitotenv.2017.05.049_bb0260) 2013; 74
Shaman (10.1016/j.scitotenv.2017.05.049_bb0205) 2009; 106
Zhang (10.1016/j.scitotenv.2017.05.049_bb0280) 2015; 502
References_xml – volume: 90
  start-page: 745
  year: 2011
  end-page: 753
  ident: bb0085
  article-title: Seasonal variability of bacteria in fine and coarse urban air particulate matter
  publication-title: Appl. Microbiol. Biotechnol.
– year: 2009
  ident: bb0240
  article-title: Bergey's manual of systematic bacteriology volume 3
  publication-title: The Firmicutes
– year: 2014
  ident: bb0200
  article-title: The prokaryotes:
– volume: 65
  start-page: 103
  year: 1997
  end-page: 106
  ident: bb0235
  article-title: Solar radiation is shown to select for pigmented bacteria in the ambient outdoor atmosphere
  publication-title: Photochem. Photobiol.
– volume: 41
  start-page: 514
  year: 2015
  end-page: 520
  ident: bb0270
  article-title: Analysis of the January 2015 atmospheric circulation and weather
  publication-title: Meteorol. Mon.
– volume: 541
  start-page: 1011
  year: 2016
  end-page: 1018
  ident: bb0055
  article-title: Concentration and size distribution of total airborne microbes in hazy and foggy weather
  publication-title: Sci. Total Environ.
– volume: 6
  start-page: 737
  year: 2009
  end-page: 746
  ident: bb0220
  article-title: The effect of environmental parameters on the survival of airborne infectious agents
  publication-title: J. R. Soc. Interface
– volume: 48
  start-page: 1499
  year: 2014
  end-page: 1507
  ident: bb0035
  article-title: Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event
  publication-title: Environ. Sci. Technol.
– volume: 3
  start-page: 123
  year: 1982
  end-page: 135
  ident: bb0255
  article-title: The importance of airborne bacterial contamination of wounds
  publication-title: J. Hosp. Infect.
– volume: 118
  start-page: 203
  year: 2015
  end-page: 210
  ident: bb0100
  article-title: Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days
  publication-title: Atmos. Environ.
– volume: 22
  start-page: 627
  year: 2015
  end-page: 642
  ident: bb0160
  article-title: Seasonal and diurnal variation in particulate matter (PM
  publication-title: Environ. Sci. Pollut. Res.
– volume: 16
  start-page: 207
  year: 2000
  end-page: 210
  ident: bb0170
  article-title: The size distribution of primary biological aerosol particles in the multiphase atmosphere
  publication-title: Aerobiologia
– volume: 22
  start-page: 4359
  year: 2015
  end-page: 4368
  ident: bb0105
  article-title: Concentration and size distribution of viable bioaerosols during non-haze and haze days in Beijing
  publication-title: Environ. Sci. Pollut. Res.
– volume: 514
  start-page: 218
  year: 2014
  end-page: 222
  ident: bb0125
  article-title: High secondary aerosol contribution to particulate pollution during haze events in China
  publication-title: Nature
– volume: 7
  start-page: 1038
  year: 2013
  end-page: 1050
  ident: bb0140
  article-title: Contemporary environmental variation determines microbial diversity patterns in acid mine drainage
  publication-title: ISME J.
– volume: 3
  start-page: 87
  year: 2012
  end-page: 102
  ident: bb0195
  article-title: Atmosphere: a source of pathogenic or beneficial microbes?
  publication-title: Atmosphere
– volume: 59
  start-page: 2589
  year: 1993
  end-page: 2593
  ident: bb0225
  article-title: Influence of temperature and relative humidity on the survival of chlamydia pneumoniae in aerosols
  publication-title: Appl. Environ. Microbiol.
– volume: 27
  start-page: 2957
  year: 2011
  end-page: 2963
  ident: bb0165
  article-title: FLASH: fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
– volume: 61
  start-page: 113
  year: 2010
  end-page: 122
  ident: bb0130
  article-title: Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern Magnolia (
  publication-title: Microb. Ecol.
– volume: 31
  start-page: 897
  year: 1997
  end-page: 900
  ident: bb0230
  article-title: Solar radiation has a lethal effect on natural populations of culturable outdoor atmospheric bacteria
  publication-title: Atmos. Environ.
– volume: 122
  start-page: 439
  year: 2015
  end-page: 447
  ident: bb0150
  article-title: Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi'an, China
  publication-title: Atmos. Environ.
– volume: 72
  start-page: 5069
  year: 2006
  end-page: 5072
  ident: bb0050
  article-title: Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB
  publication-title: Appl. Environ. Microbiol.
– volume: 6
  start-page: 298
  year: 2012
  end-page: 308
  ident: bb0115
  article-title: Defining seasonal marine microbial community dynamics
  publication-title: ISME J.
– volume: 26
  start-page: 266
  year: 2010
  end-page: 267
  ident: bb0040
  article-title: PyNAST: a flexible tool for aligning sequences to a template alignment
  publication-title: Bioinformatics
– year: 2002
  ident: bb0030
  article-title: CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (Version 4.5)
– volume: 140
  start-page: 506
  year: 2016
  end-page: 513
  ident: bb0285
  article-title: Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region
  publication-title: Atmos. Environ.
– volume: 5
  start-page: 601
  year: 2011
  end-page: 612
  ident: bb0020
  article-title: Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments
  publication-title: ISME J.
– volume: 550
  start-page: 751
  year: 2016
  end-page: 759
  ident: bb0250
  article-title: Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing
  publication-title: Sci. Total Environ.
– volume: 65
  start-page: 215
  year: 2013
  end-page: 222
  ident: bb0120
  article-title: The concentrations of culturable microorganisms in relation to particulate matter in urban air
  publication-title: Atmos. Environ.
– volume: 50
  start-page: 41
  year: 2012
  end-page: 49
  ident: bb0025
  article-title: Seasonal variability in airborne bacterial communities at a high-elevation site
  publication-title: Atmos. Environ.
– volume: 36
  start-page: 559
  year: 2008
  end-page: 563
  ident: bb0210
  article-title: Ozone gas is an effective and practical antibacterial agent
  publication-title: Am. J. Infect. Control
– volume: 326
  start-page: 151
  year: 2004
  end-page: 180
  ident: bb0135
  article-title: The effects of meteorological factors on atmospheric bioaerosol concentrations—a review
  publication-title: Sci. Total Environ.
– volume: 17
  start-page: 788
  year: 2017
  end-page: 798
  ident: bb0110
  article-title: Airborne bacterial communities of PM
  publication-title: Aerosol Air Qual. Res.
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  ident: bb0045
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
– year: 2011
  ident: bb0015
  article-title: Numerical Ecology with R
– volume: 50
  start-page: 4194
  year: 2016
  end-page: 4202
  ident: bb0175
  article-title: Effect of dust storms on the atmospheric microbiome in the eastern Mediterranean
  publication-title: Environ. Sci. Technol.
– volume: 106
  start-page: 3243
  year: 2009
  end-page: 3248
  ident: bb0205
  article-title: Absolute humidity modulates influenza survival, transmission, and seasonality
  publication-title: Proc. Natl. Acad. Sci.
– volume: 58
  start-page: 1459
  year: 2013
  end-page: 1470
  ident: bb0005
  article-title: Temporal dynamics of airborne fungi in Havana (Cuba) during dry and rainy seasons: influence of meteorological parameters
  publication-title: Int. J. Biometeorol.
– volume: 97
  start-page: 6561
  year: 2013
  end-page: 6570
  ident: bb0010
  article-title: Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of northern Italy
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 13
  start-page: 887
  year: 2011
  end-page: 899
  ident: bb0190
  article-title: Seasonal differences in bacterial community composition following nutrient additions in a eutrophic lake
  publication-title: Environ. Microbiol.
– volume: 10
  start-page: 996
  year: 2013
  end-page: 998
  ident: bb0060
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nat. Methods
– volume: 70
  start-page: 2867
  year: 2004
  end-page: 2879
  ident: bb0155
  article-title: Seasonal changes in an alpine soil bacterial community in the Colorado rocky mountains
  publication-title: Appl. Environ. Microbiol.
– volume: 502
  start-page: 578
  year: 2015
  end-page: 584
  ident: bb0280
  article-title: Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China
  publication-title: Sci. Total Environ.
– year: 2016
  ident: bb0275
  article-title: Cell concentration, viability and culture composition of airborne bacteria during a dust event in Beijing
  publication-title: J. Environ. Sci.
– volume: 350
  start-page: 47
  year: 2005
  end-page: 58
  ident: bb0070
  article-title: Culturable airborne fungi in outdoor environments in Beijing, China
  publication-title: Sci. Total Environ.
– volume: 99
  start-page: 4867
  year: 2015
  end-page: 4877
  ident: bb0095
  article-title: Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 73
  start-page: 5261
  year: 2007
  end-page: 5267
  ident: bb0245
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl. Environ. Microbiol.
– volume: 139
  start-page: 214
  year: 2016
  end-page: 221
  ident: bb0215
  article-title: Airborne bacteria in the atmosphere: presence, purpose, and potential
  publication-title: Atmos. Environ.
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  ident: bb0065
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
– volume: 29
  start-page: 82
  year: 2014
  end-page: 88
  ident: bb0265
  article-title: Changes in the airborne bacterial Community in Outdoor Environments following Asian dust events
  publication-title: Microbes Environ.
– volume: 409
  start-page: 3812
  year: 2011
  end-page: 3819
  ident: bb0145
  article-title: Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region
  publication-title: Sci. Total Environ.
– volume: 97
  start-page: 4727
  year: 2013
  end-page: 4736
  ident: bb0090
  article-title: Unravelling the bacterial diversity in the atmosphere
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 148
  start-page: 257
  year: 2002
  end-page: 266
  ident: bb0185
  article-title: Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set
  publication-title: Microbiology
– volume: 74
  start-page: 291
  year: 2013
  end-page: 300
  ident: bb0260
  article-title: Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape
  publication-title: Atmos. Environ.
– volume: 7
  start-page: 1899
  year: 2013
  end-page: 1911
  ident: bb0080
  article-title: Determining indicator taxa across spatial and seasonal gradients in the Columbia River coastal margin
  publication-title: ISME J.
– volume: 54
  start-page: 487
  year: 2007
  end-page: 496
  ident: bb0075
  article-title: Culturable airborne bacteria in outdoor environments in Beijing, China
  publication-title: Microb. Ecol.
– volume: 514
  start-page: 218
  year: 2014
  ident: 10.1016/j.scitotenv.2017.05.049_bb0125
  article-title: High secondary aerosol contribution to particulate pollution during haze events in China
  publication-title: Nature
  doi: 10.1038/nature13774
– volume: 36
  start-page: 559
  year: 2008
  ident: 10.1016/j.scitotenv.2017.05.049_bb0210
  article-title: Ozone gas is an effective and practical antibacterial agent
  publication-title: Am. J. Infect. Control
  doi: 10.1016/j.ajic.2007.10.021
– volume: 3
  start-page: 123
  year: 1982
  ident: 10.1016/j.scitotenv.2017.05.049_bb0255
  article-title: The importance of airborne bacterial contamination of wounds
  publication-title: J. Hosp. Infect.
  doi: 10.1016/0195-6701(82)90004-4
– volume: 22
  start-page: 627
  year: 2015
  ident: 10.1016/j.scitotenv.2017.05.049_bb0160
  article-title: Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: analyses from a 9-year study
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3347-0
– volume: 65
  start-page: 103
  year: 1997
  ident: 10.1016/j.scitotenv.2017.05.049_bb0235
  article-title: Solar radiation is shown to select for pigmented bacteria in the ambient outdoor atmosphere
  publication-title: Photochem. Photobiol.
  doi: 10.1111/j.1751-1097.1997.tb01884.x
– volume: 61
  start-page: 113
  year: 2010
  ident: 10.1016/j.scitotenv.2017.05.049_bb0130
  article-title: Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern Magnolia (Magnolia grandiflora)
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-010-9742-2
– volume: 73
  start-page: 5261
  year: 2007
  ident: 10.1016/j.scitotenv.2017.05.049_bb0245
  article-title: Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.00062-07
– volume: 27
  start-page: 2957
  year: 2011
  ident: 10.1016/j.scitotenv.2017.05.049_bb0165
  article-title: FLASH: fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr507
– volume: 7
  start-page: 335
  year: 2010
  ident: 10.1016/j.scitotenv.2017.05.049_bb0045
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.f.303
– volume: 54
  start-page: 487
  year: 2007
  ident: 10.1016/j.scitotenv.2017.05.049_bb0075
  article-title: Culturable airborne bacteria in outdoor environments in Beijing, China
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-007-9216-3
– volume: 17
  start-page: 788
  year: 2017
  ident: 10.1016/j.scitotenv.2017.05.049_bb0110
  article-title: Airborne bacterial communities of PM2.5 in Beijing-Tianjin-Hebei megalopolis, China as revealed by Illumina MiSeq sequencing: a case study
  publication-title: Aerosol Air Qual. Res.
  doi: 10.4209/aaqr.2016.02.0087
– volume: 7
  start-page: 1899
  year: 2013
  ident: 10.1016/j.scitotenv.2017.05.049_bb0080
  article-title: Determining indicator taxa across spatial and seasonal gradients in the Columbia River coastal margin
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.79
– volume: 350
  start-page: 47
  year: 2005
  ident: 10.1016/j.scitotenv.2017.05.049_bb0070
  article-title: Culturable airborne fungi in outdoor environments in Beijing, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2005.01.032
– volume: 22
  start-page: 4359
  year: 2015
  ident: 10.1016/j.scitotenv.2017.05.049_bb0105
  article-title: Concentration and size distribution of viable bioaerosols during non-haze and haze days in Beijing
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-014-3675-0
– volume: 29
  start-page: 82
  year: 2014
  ident: 10.1016/j.scitotenv.2017.05.049_bb0265
  article-title: Changes in the airborne bacterial Community in Outdoor Environments following Asian dust events
  publication-title: Microbes Environ.
  doi: 10.1264/jsme2.ME13080
– volume: 502
  start-page: 578
  year: 2015
  ident: 10.1016/j.scitotenv.2017.05.049_bb0280
  article-title: Effects of meteorology and secondary particle formation on visibility during heavy haze events in Beijing, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2014.09.079
– year: 2014
  ident: 10.1016/j.scitotenv.2017.05.049_bb0200
– volume: 550
  start-page: 751
  year: 2016
  ident: 10.1016/j.scitotenv.2017.05.049_bb0250
  article-title: Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.01.137
– volume: 139
  start-page: 214
  year: 2016
  ident: 10.1016/j.scitotenv.2017.05.049_bb0215
  article-title: Airborne bacteria in the atmosphere: presence, purpose, and potential
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.05.038
– volume: 97
  start-page: 4727
  year: 2013
  ident: 10.1016/j.scitotenv.2017.05.049_bb0090
  article-title: Unravelling the bacterial diversity in the atmosphere
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-4901-2
– volume: 99
  start-page: 4867
  year: 2015
  ident: 10.1016/j.scitotenv.2017.05.049_bb0095
  article-title: Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-6348-5
– volume: 50
  start-page: 4194
  year: 2016
  ident: 10.1016/j.scitotenv.2017.05.049_bb0175
  article-title: Effect of dust storms on the atmospheric microbiome in the eastern Mediterranean
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b06348
– volume: 148
  start-page: 257
  year: 2002
  ident: 10.1016/j.scitotenv.2017.05.049_bb0185
  article-title: Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set
  publication-title: Microbiology
  doi: 10.1099/00221287-148-1-257
– volume: 118
  start-page: 203
  year: 2015
  ident: 10.1016/j.scitotenv.2017.05.049_bb0100
  article-title: Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.08.004
– volume: 70
  start-page: 2867
  year: 2004
  ident: 10.1016/j.scitotenv.2017.05.049_bb0155
  article-title: Seasonal changes in an alpine soil bacterial community in the Colorado rocky mountains
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.70.5.2867-2879.2004
– volume: 59
  start-page: 2589
  year: 1993
  ident: 10.1016/j.scitotenv.2017.05.049_bb0225
  article-title: Influence of temperature and relative humidity on the survival of chlamydia pneumoniae in aerosols
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.59.8.2589-2593.1993
– volume: 122
  start-page: 439
  year: 2015
  ident: 10.1016/j.scitotenv.2017.05.049_bb0150
  article-title: Characteristics of bacterial and fungal aerosols during the autumn haze days in Xi'an, China
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2015.09.070
– year: 2016
  ident: 10.1016/j.scitotenv.2017.05.049_bb0275
  article-title: Cell concentration, viability and culture composition of airborne bacteria during a dust event in Beijing
  publication-title: J. Environ. Sci.
– volume: 13
  start-page: 887
  year: 2011
  ident: 10.1016/j.scitotenv.2017.05.049_bb0190
  article-title: Seasonal differences in bacterial community composition following nutrient additions in a eutrophic lake
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2010.02387.x
– volume: 97
  start-page: 6561
  year: 2013
  ident: 10.1016/j.scitotenv.2017.05.049_bb0010
  article-title: Temporal variability and effect of environmental variables on airborne bacterial communities in an urban area of northern Italy
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-012-4450-0
– volume: 10
  start-page: 996
  year: 2013
  ident: 10.1016/j.scitotenv.2017.05.049_bb0060
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2604
– volume: 7
  start-page: 1038
  year: 2013
  ident: 10.1016/j.scitotenv.2017.05.049_bb0140
  article-title: Contemporary environmental variation determines microbial diversity patterns in acid mine drainage
  publication-title: ISME J.
  doi: 10.1038/ismej.2012.139
– volume: 3
  start-page: 87
  year: 2012
  ident: 10.1016/j.scitotenv.2017.05.049_bb0195
  article-title: Atmosphere: a source of pathogenic or beneficial microbes?
  publication-title: Atmosphere
  doi: 10.3390/atmos3010087
– year: 2002
  ident: 10.1016/j.scitotenv.2017.05.049_bb0030
– volume: 77
  start-page: 802
  year: 2008
  ident: 10.1016/j.scitotenv.2017.05.049_bb0065
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– volume: 16
  start-page: 207
  year: 2000
  ident: 10.1016/j.scitotenv.2017.05.049_bb0170
  article-title: The size distribution of primary biological aerosol particles in the multiphase atmosphere
  publication-title: Aerobiologia
  doi: 10.1023/A:1007607614544
– volume: 140
  start-page: 506
  year: 2016
  ident: 10.1016/j.scitotenv.2017.05.049_bb0285
  article-title: Seasonal distribution of microbial activity in bioaerosols in the outdoor environment of the Qingdao coastal region
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2016.06.034
– volume: 26
  start-page: 266
  year: 2010
  ident: 10.1016/j.scitotenv.2017.05.049_bb0040
  article-title: PyNAST: a flexible tool for aligning sequences to a template alignment
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp636
– year: 2011
  ident: 10.1016/j.scitotenv.2017.05.049_bb0015
– volume: 48
  start-page: 1499
  year: 2014
  ident: 10.1016/j.scitotenv.2017.05.049_bb0035
  article-title: Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es4048472
– volume: 58
  start-page: 1459
  year: 2013
  ident: 10.1016/j.scitotenv.2017.05.049_bb0005
  article-title: Temporal dynamics of airborne fungi in Havana (Cuba) during dry and rainy seasons: influence of meteorological parameters
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-013-0748-6
– volume: 65
  start-page: 215
  year: 2013
  ident: 10.1016/j.scitotenv.2017.05.049_bb0120
  article-title: The concentrations of culturable microorganisms in relation to particulate matter in urban air
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.10.031
– volume: 50
  start-page: 41
  year: 2012
  ident: 10.1016/j.scitotenv.2017.05.049_bb0025
  article-title: Seasonal variability in airborne bacterial communities at a high-elevation site
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2012.01.005
– volume: 106
  start-page: 3243
  year: 2009
  ident: 10.1016/j.scitotenv.2017.05.049_bb0205
  article-title: Absolute humidity modulates influenza survival, transmission, and seasonality
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0806852106
– year: 2009
  ident: 10.1016/j.scitotenv.2017.05.049_bb0240
  article-title: Bergey's manual of systematic bacteriology volume 3
– volume: 31
  start-page: 897
  year: 1997
  ident: 10.1016/j.scitotenv.2017.05.049_bb0230
  article-title: Solar radiation has a lethal effect on natural populations of culturable outdoor atmospheric bacteria
  publication-title: Atmos. Environ.
  doi: 10.1016/S1352-2310(96)00235-X
– volume: 6
  start-page: 298
  year: 2012
  ident: 10.1016/j.scitotenv.2017.05.049_bb0115
  article-title: Defining seasonal marine microbial community dynamics
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.107
– volume: 72
  start-page: 5069
  year: 2006
  ident: 10.1016/j.scitotenv.2017.05.049_bb0050
  article-title: Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03006-05
– volume: 74
  start-page: 291
  year: 2013
  ident: 10.1016/j.scitotenv.2017.05.049_bb0260
  article-title: Temporal variation in airborne microbial populations and microbially-derived allergens in a tropical urban landscape
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.03.047
– volume: 41
  start-page: 514
  year: 2015
  ident: 10.1016/j.scitotenv.2017.05.049_bb0270
  article-title: Analysis of the January 2015 atmospheric circulation and weather
  publication-title: Meteorol. Mon.
– volume: 541
  start-page: 1011
  year: 2016
  ident: 10.1016/j.scitotenv.2017.05.049_bb0055
  article-title: Concentration and size distribution of total airborne microbes in hazy and foggy weather
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.10.001
– volume: 6
  start-page: 737
  year: 2009
  ident: 10.1016/j.scitotenv.2017.05.049_bb0220
  article-title: The effect of environmental parameters on the survival of airborne infectious agents
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2009.0227.focus
– volume: 5
  start-page: 601
  year: 2011
  ident: 10.1016/j.scitotenv.2017.05.049_bb0020
  article-title: Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments
  publication-title: ISME J.
  doi: 10.1038/ismej.2010.167
– volume: 90
  start-page: 745
  year: 2011
  ident: 10.1016/j.scitotenv.2017.05.049_bb0085
  article-title: Seasonal variability of bacteria in fine and coarse urban air particulate matter
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-010-3048-7
– volume: 409
  start-page: 3812
  year: 2011
  ident: 10.1016/j.scitotenv.2017.05.049_bb0145
  article-title: Concentration and size distribution of bioaerosols in an outdoor environment in the Qingdao coastal region
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2011.06.001
– volume: 326
  start-page: 151
  year: 2004
  ident: 10.1016/j.scitotenv.2017.05.049_bb0135
  article-title: The effects of meteorological factors on atmospheric bioaerosol concentrations—a review
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2003.11.021
SSID ssj0000781
Score 2.6021516
Snippet Airborne bacteria have gained increasing attention because they affect ecological balance and pose potential risks on human health. Recently, some studies have...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 703
SubjectTerms Abundance
Air Microbiology
Air pollutants
Air Pollutants - analysis
air pollution
air temperature
Airborne bacterial community
airborne microorganisms
atmospheric pressure
autumn
Bacteria
bacterial communities
Beijing
China
community structure
ecological balance
Environmental Monitoring
human health
Meteorological Concepts
Meteorological factors
monitoring
operon
plate count
quantitative polymerase chain reaction
rain
relative humidity
risk
spring
statistical analysis
summer
vapor pressure
winter
Title Meteorological factors had more impact on airborne bacterial communities than air pollutants
URI https://dx.doi.org/10.1016/j.scitotenv.2017.05.049
https://www.ncbi.nlm.nih.gov/pubmed/28577405
https://www.proquest.com/docview/1906139992
https://www.proquest.com/docview/2000552637
Volume 601-602
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PSxwxFH6IUigU0bXW1Sop9DqaziQziTcRZe2ih1JxD0JIMhm6IjPL7ip46d_e9zYzK0LFg6edHV6GTF5-fJO873sA3633wua5T1xVykRkDq-4skmlpeJp4LpYbA1cXuWDa_FzJEcrcNpxYSissp3745y-mK3bO0dtax5NxmPi-Aqlc03HyAjq9YgY7KIg_fzDv89hHiRmE0-ZcWCj9YsYL3zuvEFs-kgxXlHCk0Q1_79CvYZAFyvR-QastxCSncRabsJKqHvwISaVfOrB9tkzdw3N2sE768GnuEXHIvNoC24vETA30272Y23qHfbHlozCb1lkULKmZnY8xb5SB-aiuDNa-8gsIT1WRtvvZMMmlDiZ8hLPPsP1-dnv00HSJltIvCj4PMlKUra3xHt12ExKF15W3CF6EIgxpAuVULjM_UhTl-Uq5xV9bKTKq0L7TCuRbcNq3dRhB1hInZfOldKKUngRbMatRuAh6YiwEKIPedfAxrdK5JQQ4950IWd3ZukZQ54xXBr0TB_4suAkinG8XeS486B50a8MLhlvF_7W-dzgqKOjFFuH5mFm8G0QByG4Tl-3IRKUlGmeFX34EjvMstapkoi7udx9T_X24CP9i8E1X2F1Pn0I-wiR5u5gMQYOYO3kYji4ot_hr5vhPxLSE1Y
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-6lrHBGFu2rum6TYO9mmq2ZEt7K6UlXZs8tZCHgZBkmWUMOyRpYf_97iI5pdDSh74Z-87Iug_9LN0HwDfrvbBl6TPX1DIThcMrrmzWaKl4Hriu1lsD40k5uhI_p3K6Bcd9LgyFVSbfH3362lunO4dpNg_nsxnl-AqlS03HyAjq9fQZ7FB1KlT2naOz89Hk1iFXKjbOE2jbyHAnzAtfveoQnt5QmFes4kl1Ne9fpB4CoevF6PQNvE4okh3Fgb6FrdAO4HnsK_lvALsnt-lrSJbsdzmAV3GXjsXko3fwa4yYuVv0DpCl7jvst60ZReCymETJupbZ2QLVpQ3MxfrOSO1jcgmVZGW0A080bE69k6k18fI9XJ2eXB6PstRvIfOi4qusqKm4vaXUV4fTpHTlZcMdAgiBMEO60AiFK933PHdFqUre0P9GrryqtC-0EsUubLddG_aAhdx56VwtraiFF8EW3GrEHpJOCSshhlD2E2x8KkZOPTH-mj7q7I_ZSMaQZAyXBiUzBL5hnMd6HI-z_OglaO6olsFV43Hmr73MDRoenabYNnTXS4Nfg1AI8XX-MA3lQUmZl0U1hA9RYTajzpVE6M3l_lOG9wVejC7HF-bibHL-EV7SkxhrcwDbq8V1-ISIaeU-J4v4D9HpFGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meteorological+factors+had+more+impact+on+airborne+bacterial+communities+than+air+pollutants&rft.jtitle=The+Science+of+the+total+environment&rft.au=Zhen%2C+Quan&rft.au=Deng%2C+Ye&rft.au=Wang%2C+Yaqing&rft.au=Wang%2C+Xiaoke&rft.date=2017-12-01&rft.eissn=1879-1026&rft.volume=601-602&rft.spage=703&rft_id=info:doi/10.1016%2Fj.scitotenv.2017.05.049&rft_id=info%3Apmid%2F28577405&rft.externalDocID=28577405
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon