Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates
Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by m...
Saved in:
Published in | Communications biology Vol. 1; no. 1; p. 172 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones.
Marina Shenkman et al. show that the ERAD mannosidases EDEM1 and EDEM2 have bona fide mannosidase activity in vitro. The activity of these enzymes is substantially faster when their glycoprotein substrates are in the unfolded state, suggesting a mechanism for efficient ERAD targeting of unfolded or misfolded glycoproteins. |
---|---|
AbstractList | Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones. Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones. Marina Shenkman et al. show that the ERAD mannosidases EDEM1 and EDEM2 have bona fide mannosidase activity in vitro. The activity of these enzymes is substantially faster when their glycoprotein substrates are in the unfolded state, suggesting a mechanism for efficient ERAD targeting of unfolded or misfolded glycoproteins. Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones.Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones. Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones.Marina Shenkman et al. show that the ERAD mannosidases EDEM1 and EDEM2 have bona fide mannosidase activity in vitro. The activity of these enzymes is substantially faster when their glycoprotein substrates are in the unfolded state, suggesting a mechanism for efficient ERAD targeting of unfolded or misfolded glycoproteins. |
ArticleNumber | 172 |
Author | Ron, Efrat Benyair, Ron Khalaila, Isam Shenkman, Marina Lederkremer, Gerardo Z. Yehuda, Rivka |
Author_xml | – sequence: 1 givenname: Marina surname: Shenkman fullname: Shenkman, Marina organization: School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University – sequence: 2 givenname: Efrat surname: Ron fullname: Ron, Efrat organization: School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University – sequence: 3 givenname: Rivka surname: Yehuda fullname: Yehuda, Rivka organization: Avram and Stella Goldstein–Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev – sequence: 4 givenname: Ron surname: Benyair fullname: Benyair, Ron organization: School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University – sequence: 5 givenname: Isam surname: Khalaila fullname: Khalaila, Isam organization: Avram and Stella Goldstein–Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev – sequence: 6 givenname: Gerardo Z. surname: Lederkremer fullname: Lederkremer, Gerardo Z. email: gerardo@post.tau.ac.il organization: School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30374462$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctuFDEQtFAQCSEfwAVZ4sJlwK8Z2xckFJaHlIgLnC2P3bNxNGsvtifS_n28bAIhEhysbrmrqsuu5-gopggIvaTkLSVcvSuCEcI7QlU7UnTqCTphXOuOD4IdPeiP0Vkp14QQqrUeuHiGjjnhUoiBnSC4tDGmErwtgK2r4SbUHU4TXn1cXVJso__VMexhC9EXnGK7xEuc0uzB41JthT2-XkHIeD3vXNrmVCFEXJax1Nzm5QV6Otm5wNldPUU_Pq2-n3_pLr59_nr-4aJzQpLacU57OvXK61Y9d7a3iinnOAg6acFGb0cyMjY6JrUbRj4Qp6SVXNjeE0v4KXp_0N0u4wa8g9j2z2abw8bmnUk2mL8nMVyZdboxA9WCMtEE3twJ5PRzgVLNJhQH82wjpKUYRplkhAnZN-jrR9DrtOTYnmcYV3rQvVS6oV49dPTbyn0CDSAPAJdTKRkm40L705D2BsNsKDH7uM0hbtPiNvu4jWpM-oh5L_4_DjtwSsPGNeQ_pv9NugWErLul |
CitedBy_id | crossref_primary_10_4052_tigg_2108_2E crossref_primary_10_7554_eLife_53455 crossref_primary_10_1002_chem_202004158 crossref_primary_10_1016_j_tibs_2019_04_012 crossref_primary_10_4052_tigg_2108_2J crossref_primary_10_3389_fpls_2022_952246 crossref_primary_10_1016_j_mcpro_2021_100125 crossref_primary_10_1111_gtc_13117 crossref_primary_10_1534_g3_119_400868 crossref_primary_10_1016_j_sbi_2020_11_004 crossref_primary_10_1039_D1OB00428J crossref_primary_10_1177_17534259211030563 crossref_primary_10_1016_j_bbrc_2022_04_094 crossref_primary_10_1016_j_ajhg_2021_05_010 crossref_primary_10_1007_s11033_022_07932_x crossref_primary_10_3389_fgene_2023_1215984 crossref_primary_10_1099_jgv_0_001980 crossref_primary_10_1096_fj_202100856R crossref_primary_10_3390_cells9092138 crossref_primary_10_3390_ijms21103468 crossref_primary_10_1016_j_bbagen_2020_129812 crossref_primary_10_3390_cimb46040197 crossref_primary_10_7554_eLife_70357 crossref_primary_10_3390_ijms22042172 crossref_primary_10_1111_sji_13307 crossref_primary_10_3390_ijms23010117 crossref_primary_10_3390_ijms241512171 crossref_primary_10_1155_2019_8384913 crossref_primary_10_1016_j_isci_2020_100973 crossref_primary_10_1093_plcell_koae141 crossref_primary_10_1165_rcmb_2021_0114OC crossref_primary_10_1007_s10930_019_09831_w crossref_primary_10_1371_journal_pcbi_1008654 crossref_primary_10_1038_s41580_023_00633_8 crossref_primary_10_3390_biology11020199 crossref_primary_10_1038_s41467_024_49998_0 crossref_primary_10_3389_fpls_2020_625033 crossref_primary_10_1016_j_mce_2019_110630 crossref_primary_10_3390_ijms20061307 crossref_primary_10_1073_pnas_2322927121 |
Cites_doi | 10.1006/abio.1997.2199 10.1083/jcb.201404075 10.1074/jbc.M112.438275 10.1093/glycob/cwq001 10.1074/jbc.M512191200 10.1093/jb/mvu008 10.1016/j.molcel.2011.01.021 10.1126/science.1159293 10.1093/glycob/cwp175 10.3390/molecules20022475 10.1074/jbc.M110.154849 10.1074/jbc.RA118.003129 10.1002/cbic.201700081 10.1038/nrm4073 10.1083/jcb.200809198 10.1074/jbc.M115.703256 10.1038/ncomms11786 10.1080/07924259.2000.9652402 10.1186/s12860-015-0047-7 10.1007/s10719-009-9268-3 10.1016/j.sbi.2009.06.004 10.1016/j.bbrc.2006.08.186 10.1073/pnas.94.21.11363 10.1074/jbc.M111.311290 10.1091/mbc.e07-05-0505 10.1073/pnas.1611213113 10.1016/j.semcdb.2014.11.006 10.1016/j.semcdb.2014.12.001 10.1074/jbc.M809725200 10.1016/j.jmb.2016.04.020 10.1016/j.molcel.2011.04.027 10.1371/journal.pone.0042998 10.1073/pnas.1608795113 10.1007/s10719-011-9362-1 10.1091/mbc.e10-12-0944 10.1091/mbc.e14-06-1152 10.1091/mbc.12.6.1711 10.1074/jbc.M305929200 10.1016/j.str.2017.04.001 10.1074/jbc.271.24.14496 10.3791/1899 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s42003-018-0174-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2399-3642 |
ExternalDocumentID | PMC6194124 30374462 10_1038_s42003_018_0174_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Israel Science Foundation (ISF) grantid: 1593/16 funderid: https://doi.org/10.13039/501100003977 – fundername: ; grantid: 1593/16 |
GroupedDBID | 0R~ 53G 88I ABDBF ABUWG ACGFS ACUHS ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI C6C CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ H13 HCIFZ HYE M2P M7P M~E NAO O9- OK1 PGMZT PIMPY RNT RPM AAYXX CITATION PHGZM PHGZT AAJSJ AASML AJTQC EBLON EJD NPM SNYQT 3V. 7XB 8FE 8FH 8FK LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c470t-33151f58d9151d3ca5a828cc3e41f942bdab0b22bc279c6b360c87a734a5d0a03 |
IEDL.DBID | C6C |
ISSN | 2399-3642 |
IngestDate | Thu Aug 21 14:05:56 EDT 2025 Fri Jul 11 10:45:40 EDT 2025 Fri Jul 25 11:46:02 EDT 2025 Thu Apr 03 07:02:27 EDT 2025 Thu Apr 24 22:59:50 EDT 2025 Tue Jul 01 03:01:16 EDT 2025 Fri Feb 21 02:40:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-33151f58d9151d3ca5a828cc3e41f942bdab0b22bc279c6b360c87a734a5d0a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s42003-018-0174-8 |
PMID | 30374462 |
PQID | 2389695789 |
PQPubID | 4669726 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6194124 proquest_miscellaneous_2127202475 proquest_journals_2389695789 pubmed_primary_30374462 crossref_citationtrail_10_1038_s42003_018_0174_8 crossref_primary_10_1038_s42003_018_0174_8 springer_journals_10_1038_s42003_018_0174_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Communications biology |
PublicationTitleAbbrev | Commun Biol |
PublicationTitleAlternate | Commun Biol |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Hagiwara (CR29) 2011; 41 Marin (CR32) 2012; 7 Olivari (CR15) 2006; 349 Timms (CR27) 2016; 7 Ushioda (CR31) 2008; 321 Shenkman, Ogen-Shtern, Lederkremer (CR39) 2017; 7 Hosokawa, Kamiya, Kamiya, Kato, Nagata (CR8) 2009; 284 Kuribara (CR36) 2017; 18 Abdu, Yehezkel, Sagi (CR41) 2000; 37 Tannous, Pisoni, Hebert, Molinari (CR5) 2015; 41 Roth (CR26) 2010; 27 Ogen-Shtern, Avezov, Shenkman, Benyair, Lederkremer (CR13) 2016; 428 Kuster, Wheeler, Hunter, Dwek, Harvey (CR42) 1997; 250 Benyair (CR14) 2015; 26 Liu, Fujimori, Weissman (CR21) 2016; 113 Shenkman (CR33) 2013; 288 Lai, Otero, Hendershot, Snapp (CR28) 2012; 287 Lederkremer (CR4) 2009; 19 Maegawa (CR30) 2017; 25 Ninagawa (CR12) 2014; 206 Mikami (CR9) 2010; 20 Frenkel, Gregory, Kornfeld, Lederkremer (CR2) 2003; 278 Kamhi-Nesher (CR25) 2001; 12 Hosokawa (CR11) 2010; 20 Gauss, Kanehara, Carvalho, Ng, Aebi (CR20) 2011; 42 Tolchinsky, Yuk, Ayalon, Lodish, Lederkremer (CR24) 1996; 271 Yu, Ito, Wada, Hosokawa (CR18) 2018; 293 Aikawa, Matsuo, Ito (CR37) 2012; 29 Clerc (CR19) 2009; 184 Shenkman, Ayalon, Lederkremer (CR23) 1997; 94 Hirao (CR17) 2006; 281 CR40 Sokolowska, Pilka, Sandvig, Wegrzyn, Slominska-Wojewodzka (CR34) 2015; 16 Satoh, Yamaguchi, Kato (CR10) 2015; 20 Xiang, Karaveg, Moremen (CR35) 2016; 113 Xu, Ng (CR6) 2015; 16 Aikawa, Takeda, Matsuo, Ito (CR38) 2014; 155 Groisman, Shenkman, Ron, Lederkremer (CR7) 2011; 286 Benyair, Ogen-Shtern, Lederkremer (CR3) 2015; 41 Ron (CR16) 2011; 22 Pfeiffer (CR22) 2016; 291 Avezov, Frenkel, Ehrlich, Herscovics, Lederkremer (CR1) 2008; 19 RT Timms (174_CR27) 2016; 7 J Aikawa (174_CR37) 2012; 29 B Groisman (174_CR7) 2011; 286 T Satoh (174_CR10) 2015; 20 MB Marin (174_CR32) 2012; 7 E Avezov (174_CR1) 2008; 19 N Hosokawa (174_CR11) 2010; 20 GZ Lederkremer (174_CR4) 2009; 19 J Aikawa (174_CR38) 2014; 155 M Shenkman (174_CR33) 2013; 288 U Abdu (174_CR41) 2000; 37 A Pfeiffer (174_CR22) 2016; 291 S Tolchinsky (174_CR24) 1996; 271 M Shenkman (174_CR23) 1997; 94 K Hirao (174_CR17) 2006; 281 S Clerc (174_CR19) 2009; 184 T Kuribara (174_CR36) 2017; 18 Z Frenkel (174_CR2) 2003; 278 R Gauss (174_CR20) 2011; 42 YC Liu (174_CR21) 2016; 113 K Mikami (174_CR9) 2010; 20 174_CR40 S Olivari (174_CR15) 2006; 349 S Kamhi-Nesher (174_CR25) 2001; 12 I Sokolowska (174_CR34) 2015; 16 A Tannous (174_CR5) 2015; 41 S Ninagawa (174_CR12) 2014; 206 KI Maegawa (174_CR30) 2017; 25 S Yu (174_CR18) 2018; 293 Y Xiang (174_CR35) 2016; 113 R Ushioda (174_CR31) 2008; 321 M Hagiwara (174_CR29) 2011; 41 Z Roth (174_CR26) 2010; 27 N Ogen-Shtern (174_CR13) 2016; 428 C Xu (174_CR6) 2015; 16 N Hosokawa (174_CR8) 2009; 284 R Benyair (174_CR3) 2015; 41 CW Lai (174_CR28) 2012; 287 R Benyair (174_CR14) 2015; 26 M Shenkman (174_CR39) 2017; 7 E Ron (174_CR16) 2011; 22 B Kuster (174_CR42) 1997; 250 |
References_xml | – volume: 250 start-page: 82 year: 1997 end-page: 101 ident: CR42 article-title: Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography publication-title: Anal. Biochem. doi: 10.1006/abio.1997.2199 – volume: 206 start-page: 347 year: 2014 end-page: 356 ident: CR12 article-title: EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step publication-title: J. Cell Biol. doi: 10.1083/jcb.201404075 – volume: 288 start-page: 2167 year: 2013 end-page: 2178 ident: CR33 article-title: . A shared endoplasmic reticulum-associated degradation pathway involving the EDEM1 protein for glycosylated and nonglycosylated proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.438275 – volume: 20 start-page: 567 year: 2010 end-page: 575 ident: CR11 article-title: EDEM1 accelerates the trimming ofalpha1,2-linked mannose on the C branch of N-glycans publication-title: Glycobiology doi: 10.1093/glycob/cwq001 – volume: 281 start-page: 9650 year: 2006 end-page: 9658 ident: CR17 article-title: EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming publication-title: J. Biol. Chem. doi: 10.1074/jbc.M512191200 – volume: 155 start-page: 375 year: 2014 end-page: 384 ident: CR38 article-title: Trimming of glucosylated N-glycans by human ERalpha1,2-mannosidase I publication-title: J. Biochem. doi: 10.1093/jb/mvu008 – volume: 41 start-page: 432 year: 2011 end-page: 444 ident: CR29 article-title: Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.01.021 – volume: 321 start-page: 569 year: 2008 end-page: 572 ident: CR31 article-title: ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER publication-title: Sci. (New Y., N. Y.) doi: 10.1126/science.1159293 – volume: 20 start-page: 310 year: 2010 end-page: 321 ident: CR9 article-title: The sugar-binding ability of human OS-9 and its involvement in ER-associated degradation publication-title: Glycobiology doi: 10.1093/glycob/cwp175 – volume: 20 start-page: 2475 year: 2015 end-page: 2491 ident: CR10 article-title: Emerging structural insights into glycoprotein quality control coupled with N-glycan processing in the endoplasmic reticulum publication-title: Molecules doi: 10.3390/molecules20022475 – volume: 286 start-page: 1292 year: 2011 end-page: 1300 ident: CR7 article-title: Mannose trimming is required for delivery of a glycoprotein from EDEM1 to XTP3-B and to late endoplasmic reticulum-associated degradation steps publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.154849 – volume: 293 start-page: 10663 year: 2018 end-page: 10674 ident: CR18 article-title: ER-resident protein 46 (ERp46) triggers the mannose-trimming activity of ER degradation-enhancing alpha-mannosidase-like protein 3 (EDEM3) publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.003129 – volume: 18 start-page: 1027 year: 2017 end-page: 1035 ident: CR36 article-title: Selective manipulation of discrete mannosidase activities in the endoplasmic reticulum by using reciprocally selective inhibitors publication-title: Chembiochem doi: 10.1002/cbic.201700081 – volume: 16 start-page: 742 year: 2015 end-page: 752 ident: CR6 article-title: Glycosylation-directed quality control of protein folding publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4073 – volume: 184 start-page: 159 year: 2009 end-page: 172 ident: CR19 article-title: Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum publication-title: J. Cell Biol. doi: 10.1083/jcb.200809198 – volume: 291 start-page: 12195 year: 2016 end-page: 12207 ident: CR22 article-title: A complex of Htm1 and the oxidoreductase Pdi1 accelerates degradation of Misfolded glycoproteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.703256 – volume: 7 year: 2016 ident: CR27 article-title: Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens publication-title: Nat. Commun. doi: 10.1038/ncomms11786 – volume: 37 start-page: 75 year: 2000 end-page: 83 ident: CR41 article-title: Oocyte development and polypeptide dynamics during ovarian maturation in the red-claw crayfish Cherax quadricarinatus publication-title: Invert. Reprod. Dev. doi: 10.1080/07924259.2000.9652402 – volume: 16 year: 2015 ident: CR34 article-title: Hydrophobicity of protein determinants influences the recognition of substrates by EDEM1 and EDEM2 in human cells publication-title: BMC Cell Biol. doi: 10.1186/s12860-015-0047-7 – volume: 27 start-page: 159 year: 2010 end-page: 169 ident: CR26 article-title: N-glycan moieties of the crustacean egg yolk protein and their glycosylation sites publication-title: Glycoconj. J. doi: 10.1007/s10719-009-9268-3 – ident: CR40 – volume: 19 start-page: 515 year: 2009 end-page: 523 ident: CR4 article-title: Glycoprotein folding, quality control and ER-associated degradation publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2009.06.004 – volume: 349 start-page: 1278 year: 2006 end-page: 1284 ident: CR15 article-title: EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation publication-title: Biochem Biophys. Res Commun. doi: 10.1016/j.bbrc.2006.08.186 – volume: 94 start-page: 11363 year: 1997 end-page: 11368 ident: CR23 article-title: Endoplasmic reticulum quality control of asialoglycoprotein receptor H2a involves a determinant for retention and not retrieval publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.21.11363 – volume: 287 start-page: 7969 year: 2012 end-page: 7978 ident: CR28 article-title: ERdj4 protein is a soluble endoplasmic reticulum (ER) DnaJ family protein that interacts with ER-associated degradation machinery publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.311290 – volume: 19 start-page: 216 year: 2008 end-page: 225 ident: CR1 article-title: Endoplasmic reticulum (ER) mannosidase I is compartmentalized and required for N-glycan trimming to Man5-6GlcNAc2 in glycoprotein ER-associated degradation publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-05-0505 – volume: 7 start-page: e2393 year: 2017 ident: CR39 article-title: [2-3H]Mannose-labeling and analysis of N-linked oligosaccharides publication-title: Bioprotocol – volume: 113 start-page: E7890 year: 2016 end-page: e7899 ident: CR35 article-title: Substrate recognition and catalysis by GH47 alpha-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1611213113 – volume: 41 start-page: 99 year: 2015 end-page: 109 ident: CR3 article-title: Glycan regulation of ER-associated degradation through compartmentalization publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2014.11.006 – volume: 41 start-page: 79 year: 2015 end-page: 89 ident: CR5 article-title: N-linked sugar-regulated protein folding and quality control in the ER publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2014.12.001 – volume: 284 start-page: 17061 year: 2009 end-page: 17068 ident: CR8 article-title: Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans publication-title: J. Biol. Chem. doi: 10.1074/jbc.M809725200 – volume: 428 start-page: 3194 year: 2016 end-page: 3205 ident: CR13 article-title: Mannosidase IA is in quality control vesicles and participates in glycoprotein targeting to ERAD publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2016.04.020 – volume: 42 start-page: 782 year: 2011 end-page: 793 ident: CR20 article-title: A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.04.027 – volume: 7 start-page: e42998 year: 2012 ident: CR32 article-title: Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region publication-title: PloS ONE doi: 10.1371/journal.pone.0042998 – volume: 113 start-page: E4015 year: 2016 end-page: 4024 ident: CR21 article-title: Htm1p-Pdi1p is a folding-sensitive mannosidase that marks N-glycoproteins for ER-associated protein degradation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1608795113 – volume: 29 start-page: 35 year: 2012 end-page: 45 ident: CR37 article-title: In vitro mannose trimming property of human ER alpha-1,2 mannosidase I publication-title: Glycoconj. J. doi: 10.1007/s10719-011-9362-1 – volume: 22 start-page: 3945 year: 2011 end-page: 3954 ident: CR16 article-title: Bypass of glycan-dependent glycoprotein delivery to ERAD by up-regulated EDEM1 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e10-12-0944 – volume: 26 start-page: 172 year: 2015 end-page: 184 ident: CR14 article-title: Mammalian ER mannosidase I resides in quality control vesicles, where it encounters its glycoprotein substrates publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e14-06-1152 – volume: 12 start-page: 1711 year: 2001 end-page: 1723 ident: CR25 article-title: A novel quality control compartment derived from the endoplasmic reticulum publication-title: Mol. Biol. Cell doi: 10.1091/mbc.12.6.1711 – volume: 278 start-page: 34119 year: 2003 end-page: 34124 ident: CR2 article-title: Endoplasmic reticulum-associated degradation of mammalian glycoproteins involves sugar chain trimming to Man6-5GlcNAc2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M305929200 – volume: 25 start-page: 846 year: 2017 end-page: 857 ident: CR30 article-title: The highly dynamic nature of ERdj5 is key to efficient elimination of aberrant protein oligomers through ER-associated degradation publication-title: Structure doi: 10.1016/j.str.2017.04.001 – volume: 271 start-page: 14496 year: 1996 end-page: 14503 ident: CR24 article-title: Membrane-bound versus secreted forms of human asialoglycoprotein receptor subunits–role of a juxtamembrane pentapeptide publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.24.14496 – volume: 206 start-page: 347 year: 2014 ident: 174_CR12 publication-title: J. Cell Biol. doi: 10.1083/jcb.201404075 – volume: 286 start-page: 1292 year: 2011 ident: 174_CR7 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.154849 – volume: 94 start-page: 11363 year: 1997 ident: 174_CR23 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.21.11363 – volume: 113 start-page: E4015 year: 2016 ident: 174_CR21 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1608795113 – volume: 349 start-page: 1278 year: 2006 ident: 174_CR15 publication-title: Biochem Biophys. Res Commun. doi: 10.1016/j.bbrc.2006.08.186 – volume: 41 start-page: 79 year: 2015 ident: 174_CR5 publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2014.12.001 – volume: 288 start-page: 2167 year: 2013 ident: 174_CR33 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.438275 – volume: 42 start-page: 782 year: 2011 ident: 174_CR20 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.04.027 – volume: 250 start-page: 82 year: 1997 ident: 174_CR42 publication-title: Anal. Biochem. doi: 10.1006/abio.1997.2199 – volume: 321 start-page: 569 year: 2008 ident: 174_CR31 publication-title: Sci. (New Y., N. Y.) doi: 10.1126/science.1159293 – volume: 20 start-page: 2475 year: 2015 ident: 174_CR10 publication-title: Molecules doi: 10.3390/molecules20022475 – volume: 26 start-page: 172 year: 2015 ident: 174_CR14 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e14-06-1152 – volume: 37 start-page: 75 year: 2000 ident: 174_CR41 publication-title: Invert. Reprod. Dev. doi: 10.1080/07924259.2000.9652402 – volume: 293 start-page: 10663 year: 2018 ident: 174_CR18 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.003129 – volume: 18 start-page: 1027 year: 2017 ident: 174_CR36 publication-title: Chembiochem doi: 10.1002/cbic.201700081 – volume: 29 start-page: 35 year: 2012 ident: 174_CR37 publication-title: Glycoconj. J. doi: 10.1007/s10719-011-9362-1 – volume: 287 start-page: 7969 year: 2012 ident: 174_CR28 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.311290 – volume: 19 start-page: 515 year: 2009 ident: 174_CR4 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2009.06.004 – volume: 155 start-page: 375 year: 2014 ident: 174_CR38 publication-title: J. Biochem. doi: 10.1093/jb/mvu008 – ident: 174_CR40 doi: 10.3791/1899 – volume: 27 start-page: 159 year: 2010 ident: 174_CR26 publication-title: Glycoconj. J. doi: 10.1007/s10719-009-9268-3 – volume: 41 start-page: 99 year: 2015 ident: 174_CR3 publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2014.11.006 – volume: 20 start-page: 310 year: 2010 ident: 174_CR9 publication-title: Glycobiology doi: 10.1093/glycob/cwp175 – volume: 284 start-page: 17061 year: 2009 ident: 174_CR8 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M809725200 – volume: 41 start-page: 432 year: 2011 ident: 174_CR29 publication-title: Mol. Cell doi: 10.1016/j.molcel.2011.01.021 – volume: 16 start-page: 742 year: 2015 ident: 174_CR6 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm4073 – volume: 271 start-page: 14496 year: 1996 ident: 174_CR24 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.24.14496 – volume: 20 start-page: 567 year: 2010 ident: 174_CR11 publication-title: Glycobiology doi: 10.1093/glycob/cwq001 – volume: 428 start-page: 3194 year: 2016 ident: 174_CR13 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2016.04.020 – volume: 291 start-page: 12195 year: 2016 ident: 174_CR22 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.703256 – volume: 7 start-page: e2393 year: 2017 ident: 174_CR39 publication-title: Bioprotocol – volume: 25 start-page: 846 year: 2017 ident: 174_CR30 publication-title: Structure doi: 10.1016/j.str.2017.04.001 – volume: 16 year: 2015 ident: 174_CR34 publication-title: BMC Cell Biol. doi: 10.1186/s12860-015-0047-7 – volume: 281 start-page: 9650 year: 2006 ident: 174_CR17 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M512191200 – volume: 7 start-page: e42998 year: 2012 ident: 174_CR32 publication-title: PloS ONE doi: 10.1371/journal.pone.0042998 – volume: 113 start-page: E7890 year: 2016 ident: 174_CR35 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1611213113 – volume: 22 start-page: 3945 year: 2011 ident: 174_CR16 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e10-12-0944 – volume: 278 start-page: 34119 year: 2003 ident: 174_CR2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M305929200 – volume: 19 start-page: 216 year: 2008 ident: 174_CR1 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e07-05-0505 – volume: 12 start-page: 1711 year: 2001 ident: 174_CR25 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.12.6.1711 – volume: 184 start-page: 159 year: 2009 ident: 174_CR19 publication-title: J. Cell Biol. doi: 10.1083/jcb.200809198 – volume: 7 year: 2016 ident: 174_CR27 publication-title: Nat. Commun. doi: 10.1038/ncomms11786 |
SSID | ssj0001999634 |
Score | 2.251124 |
Snippet | Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 172 |
SubjectTerms | 13 13/106 631/80/221 631/80/458/1524 631/80/470/1463 631/80/474/2287 82 82/16 82/29 82/80 Biology Biomedical and Life Sciences Endoplasmic reticulum Glycoproteins Life Sciences Mannose Mannosidase N-glycans Oligosaccharides Polysaccharides Protein disulfide-isomerase |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6aDYVcQtJXnGyDCj21iNiSLMmnkJQNodBQSgO5GVmS24XFTuvdQ_59RrK9yzY0YLCxJPz4RjMjjTQfwEeHNs97zimOfyRFLZlRXUtDCyNlbgsuVORP-XYjr2_F17v8bphw64ZllaNOjIratTbMkZ-haSlkgfJVnN__oYE1KkRXBwqNHdhFFaxx8LV7Obv5_mMzyxL8eS7GcCbXZ52Iy7HSLKzhUoLqbYP0xMt8uljyn4hpNERXB7A_eJDkoof8EF745hW87DklH16DD7THLcoYmicSdi0EcgjS1mSGvzwjpnHxipGe_rYjbYM3yQoFbeG8I3GHUagfQwjk1-LBtjGZw7whHWqZmM22ewO3V7OfX67pwKVArVDpknKOpr3OtSvw7Lg1ucGxlrXci6wuBKucqdKKscoyVVhZcZlarYziwuQuNSl_C5OmbfwREITR155J1KNG2NxrLxBsHGnmgmFLlUA6_tDSDonGA9_FoowBb67LHoMSMSgDBqVO4NO6yX2fZeO5ytMRpXLocF25EY8EPqyLsauE-IdpfLvCOlkIOjOh8gTe9aCun8ZDHh4hWQJqC-51hZCGe7ukmf-O6bjDPBB6SQl8HgVj81r__Yjj5z_iBPZYL6J4TGGy_Lvy79H7WVang4g_ArgRAYw priority: 102 providerName: ProQuest |
Title | Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates |
URI | https://link.springer.com/article/10.1038/s42003-018-0174-8 https://www.ncbi.nlm.nih.gov/pubmed/30374462 https://www.proquest.com/docview/2389695789 https://www.proquest.com/docview/2127202475 https://pubmed.ncbi.nlm.nih.gov/PMC6194124 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-mQ_BF_LY6RwSflGKbpEn7qGMigiKi4FtJ01QHoxW7Pfjfe0nXyRwKQqGludC0d7275C6_AzjN0eYZw5iP8x_ho5YM_bgQyk-UEJFOGJeufsrdvbh55rcv0UsHwnYvjEvad5CWTk232WEXNXdZVEFoU68k9-MV6FrkdivUAzH4XlaxDjzjbfySxcs9Fy3Qklu5nB35I0TqLM_1JmzMXEZy2QxyCzqm3Ia1pojk5w4YW-e4QqFCe0TsNgVbDYJUBRniNw6JKnN3RUlT77YmVYk3yRQla5ybnLgtRZbexQzI6_hTVw69YVSSGtWKg6-td-H5evg0uPFnxRN8zWUw8RlDW15EcZ7gOWdaRQonV1ozw8Mi4TTLVRZklGaaykSLjIlAx1JJxlWUBypge7BaVqU5AIJ8M4WhAhWn4joyseHIXZxaRpxiT-lB0H7QVM-QxW2Bi3HqItwsThsepMiD1PIgjT04m3d5b2A1_iLutVxKZ39YnaKrkYgE9U3iwcm8Gf8NG_BQpammSBPaKDPlMvJgv2Hq_GnMAu9wQT2QC-yeE1jc7cWWcvTm8Lftwg-6RR6ct4LxPaxfX-LwX9RHsE4bicWjB6uTj6k5Ru9nkvWhezW8f3jsO7nvuzWEL8bL_8Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVoheEG8CBYwEF5DVxHbs5IAQj622tF0h1Eq9Bcd2aKVVUsiu0P4pfiNjJ9nVUtFbpUiJHOc5n2c8Hns-gFcWbZ5znFP0fyRFLZnQrJKa5lrK1ORcqMCfcjSR4xPx5TQ93YA_w1oYP61y0IlBUdvG-DHyXTQtucwRX_n7i5_Us0b56OpAodHB4sAtfqPL1r7b_4zyfc3Y3uj405j2rALUCBXPKOdo5Ko0sznuLTc61eh1GMOdSKpcsNLqMi4ZKw1TuZEll7HJlFZc6NTGOuZ43xuwJbAcFcHWx9Hk67fVqI73H7gYwqc8221FmP4VJ37OmBI0WzeAl3q1lydn_hOhDYZv7w7c7nus5EMHsbuw4ep7cLPjsFzcB-dplhvENJpD4ldJeDIK0lRkhCJOiK5tOGKko9ttSVNjIZkjsKfWWRJWNPn6IWRBfkwXpgnJI85r0qJWC9lz2wdwci1_-SFs1k3tHgNB2LjKMYl6WwuTuswJBBd6tqlgeKWKIB5-aGH6xOaeX2NahAA7z4pOBgXKoPAyKLII3iwvueiyelxVeWeQUtE38LZYwTGCl8vT2DR9vEXXrpljncQHuZlQaQSPOqEun8Z93h8hWQRqTdzLCj7t9_qZ-vwspP_2407YK4vg7QCM1Wv99yOeXP0RL-DW-PjosDjcnxw8hW3WwRW3Hdic_Zq7Z9jzmpXPe7gT-H7dLewvlQk97Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS9xAcLAWS19KW22b1uoKfVJSk_1MHsvVw48qfVDwbdnsbqxwJGLuHvz3zm4uJ9ejBSGQkJ0lm53Z-diZnQH45lDmec9YivaPTJFL5mlRS5OWRkphS8ZVrJ9yfiGPr_jptbheAzGchYlB-zGlZWTTQ3TYYcdjFFWWh9ArxdPi-52rX8BLVLezYHON5OhpayUo8YwPPkxWrPZelkIrquVqhORfbtIofcZv4c1cbSQ_-oG-gzXfvIeNvpDkwyb4UOu4RcJCmUTCUYVQEYK0NTnCec6JaVx8oqSveduRtsGXZIbUNXHekXisKMBHvwG5mTzYNmZwuG1Ih6wlprDttuBqfHQ5Ok7nBRRSy1U2TRlDeV6LwpV4d8waYdDAspZ5ntclp5UzVVZRWlmqSisrJjNbKKMYN8JlJmMfYL1pG_8JCOLO155KZJ6GW-ELzxHDaF4KTrGnSiAbJlTbeXbxUORioqOXmxW6x4FGHOiAA10ksL_octen1vgf8PaAJT1fZZ1GdaOUJfKcMoG9RTOuj-D0MI1vZwiTB08z5Uok8LFH6uJrLCTf4ZImoJbQvQAIubeXW5rbPzEHd9j8QdUogYOBMJ6G9c-f-Pws6F149fvnWP86uTj7Aq9pT7x4bcP69H7mv6IyNK12Iuk_ApG1ATw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mannosidase+activity+of+EDEM1+and+EDEM2+depends+on+an+unfolded+state+of+their+glycoprotein+substrates&rft.jtitle=Communications+biology&rft.au=Shenkman%2C+Marina&rft.au=Ron%2C+Efrat&rft.au=Yehuda%2C+Rivka&rft.au=Benyair%2C+Ron&rft.date=2018-01-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2399-3642&rft.volume=1&rft.issue=1&rft_id=info:doi/10.1038%2Fs42003-018-0174-8&rft.externalDocID=10_1038_s42003_018_0174_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon |