Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates

Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by m...

Full description

Saved in:
Bibliographic Details
Published inCommunications biology Vol. 1; no. 1; p. 172
Main Authors Shenkman, Marina, Ron, Efrat, Yehuda, Rivka, Benyair, Ron, Khalaila, Isam, Lederkremer, Gerardo Z.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones. Marina Shenkman et al. show that the ERAD mannosidases EDEM1 and EDEM2 have bona fide mannosidase activity in vitro. The activity of these enzymes is substantially faster when their glycoprotein substrates are in the unfolded state, suggesting a mechanism for efficient ERAD targeting of unfolded or misfolded glycoproteins.
AbstractList Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones.
Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones. Marina Shenkman et al. show that the ERAD mannosidases EDEM1 and EDEM2 have bona fide mannosidase activity in vitro. The activity of these enzymes is substantially faster when their glycoprotein substrates are in the unfolded state, suggesting a mechanism for efficient ERAD targeting of unfolded or misfolded glycoproteins.
Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones.Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones.
Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I (ERManI) and the EDEM protein family participate in this process. However, whether the EDEMs are truly mannosidases can be addressed only by measuring mannosidase activity in vitro. Here, we reveal EDEM1 and EDEM2 mannosidase activities in vitro. Whereas ERManI significantly trims free N-glycans, activity of the EDEMs is modest on free oligosaccharides and on glycoproteins. However, mannosidase activity of ERManI and the EDEMs is significantly higher on a denatured glycoprotein. The EDEMs associate with oxidoreductases, protein disulfide isomerase, and especially TXNDC11, enhancing mannosidase activity on glycoproteins but not on free N-glycans. The finding that substrate unfolded status increases mannosidase activity solves an important conundrum, as current models suggest general slow mannose trimming. As we show, misfolded or unfolded glycoproteins are subject to differentially faster trimming (and targeting to ERAD) than well-folded ones.Marina Shenkman et al. show that the ERAD mannosidases EDEM1 and EDEM2 have bona fide mannosidase activity in vitro. The activity of these enzymes is substantially faster when their glycoprotein substrates are in the unfolded state, suggesting a mechanism for efficient ERAD targeting of unfolded or misfolded glycoproteins.
ArticleNumber 172
Author Ron, Efrat
Benyair, Ron
Khalaila, Isam
Shenkman, Marina
Lederkremer, Gerardo Z.
Yehuda, Rivka
Author_xml – sequence: 1
  givenname: Marina
  surname: Shenkman
  fullname: Shenkman, Marina
  organization: School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University
– sequence: 2
  givenname: Efrat
  surname: Ron
  fullname: Ron, Efrat
  organization: School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University
– sequence: 3
  givenname: Rivka
  surname: Yehuda
  fullname: Yehuda, Rivka
  organization: Avram and Stella Goldstein–Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev
– sequence: 4
  givenname: Ron
  surname: Benyair
  fullname: Benyair, Ron
  organization: School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University
– sequence: 5
  givenname: Isam
  surname: Khalaila
  fullname: Khalaila, Isam
  organization: Avram and Stella Goldstein–Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev
– sequence: 6
  givenname: Gerardo Z.
  surname: Lederkremer
  fullname: Lederkremer, Gerardo Z.
  email: gerardo@post.tau.ac.il
  organization: School of Molecular Cell Biology and Biotechnology, George Wise Faculty of Life Sciences, Tel Aviv University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30374462$$D View this record in MEDLINE/PubMed
BookMark eNp9UctuFDEQtFAQCSEfwAVZ4sJlwK8Z2xckFJaHlIgLnC2P3bNxNGsvtifS_n28bAIhEhysbrmrqsuu5-gopggIvaTkLSVcvSuCEcI7QlU7UnTqCTphXOuOD4IdPeiP0Vkp14QQqrUeuHiGjjnhUoiBnSC4tDGmErwtgK2r4SbUHU4TXn1cXVJso__VMexhC9EXnGK7xEuc0uzB41JthT2-XkHIeD3vXNrmVCFEXJax1Nzm5QV6Otm5wNldPUU_Pq2-n3_pLr59_nr-4aJzQpLacU57OvXK61Y9d7a3iinnOAg6acFGb0cyMjY6JrUbRj4Qp6SVXNjeE0v4KXp_0N0u4wa8g9j2z2abw8bmnUk2mL8nMVyZdboxA9WCMtEE3twJ5PRzgVLNJhQH82wjpKUYRplkhAnZN-jrR9DrtOTYnmcYV3rQvVS6oV49dPTbyn0CDSAPAJdTKRkm40L705D2BsNsKDH7uM0hbtPiNvu4jWpM-oh5L_4_DjtwSsPGNeQ_pv9NugWErLul
CitedBy_id crossref_primary_10_4052_tigg_2108_2E
crossref_primary_10_7554_eLife_53455
crossref_primary_10_1002_chem_202004158
crossref_primary_10_1016_j_tibs_2019_04_012
crossref_primary_10_4052_tigg_2108_2J
crossref_primary_10_3389_fpls_2022_952246
crossref_primary_10_1016_j_mcpro_2021_100125
crossref_primary_10_1111_gtc_13117
crossref_primary_10_1534_g3_119_400868
crossref_primary_10_1016_j_sbi_2020_11_004
crossref_primary_10_1039_D1OB00428J
crossref_primary_10_1177_17534259211030563
crossref_primary_10_1016_j_bbrc_2022_04_094
crossref_primary_10_1016_j_ajhg_2021_05_010
crossref_primary_10_1007_s11033_022_07932_x
crossref_primary_10_3389_fgene_2023_1215984
crossref_primary_10_1099_jgv_0_001980
crossref_primary_10_1096_fj_202100856R
crossref_primary_10_3390_cells9092138
crossref_primary_10_3390_ijms21103468
crossref_primary_10_1016_j_bbagen_2020_129812
crossref_primary_10_3390_cimb46040197
crossref_primary_10_7554_eLife_70357
crossref_primary_10_3390_ijms22042172
crossref_primary_10_1111_sji_13307
crossref_primary_10_3390_ijms23010117
crossref_primary_10_3390_ijms241512171
crossref_primary_10_1155_2019_8384913
crossref_primary_10_1016_j_isci_2020_100973
crossref_primary_10_1093_plcell_koae141
crossref_primary_10_1165_rcmb_2021_0114OC
crossref_primary_10_1007_s10930_019_09831_w
crossref_primary_10_1371_journal_pcbi_1008654
crossref_primary_10_1038_s41580_023_00633_8
crossref_primary_10_3390_biology11020199
crossref_primary_10_1038_s41467_024_49998_0
crossref_primary_10_3389_fpls_2020_625033
crossref_primary_10_1016_j_mce_2019_110630
crossref_primary_10_3390_ijms20061307
crossref_primary_10_1073_pnas_2322927121
Cites_doi 10.1006/abio.1997.2199
10.1083/jcb.201404075
10.1074/jbc.M112.438275
10.1093/glycob/cwq001
10.1074/jbc.M512191200
10.1093/jb/mvu008
10.1016/j.molcel.2011.01.021
10.1126/science.1159293
10.1093/glycob/cwp175
10.3390/molecules20022475
10.1074/jbc.M110.154849
10.1074/jbc.RA118.003129
10.1002/cbic.201700081
10.1038/nrm4073
10.1083/jcb.200809198
10.1074/jbc.M115.703256
10.1038/ncomms11786
10.1080/07924259.2000.9652402
10.1186/s12860-015-0047-7
10.1007/s10719-009-9268-3
10.1016/j.sbi.2009.06.004
10.1016/j.bbrc.2006.08.186
10.1073/pnas.94.21.11363
10.1074/jbc.M111.311290
10.1091/mbc.e07-05-0505
10.1073/pnas.1611213113
10.1016/j.semcdb.2014.11.006
10.1016/j.semcdb.2014.12.001
10.1074/jbc.M809725200
10.1016/j.jmb.2016.04.020
10.1016/j.molcel.2011.04.027
10.1371/journal.pone.0042998
10.1073/pnas.1608795113
10.1007/s10719-011-9362-1
10.1091/mbc.e10-12-0944
10.1091/mbc.e14-06-1152
10.1091/mbc.12.6.1711
10.1074/jbc.M305929200
10.1016/j.str.2017.04.001
10.1074/jbc.271.24.14496
10.3791/1899
ContentType Journal Article
Copyright The Author(s) 2018
The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s42003-018-0174-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2399-3642
ExternalDocumentID PMC6194124
30374462
10_1038_s42003_018_0174_8
Genre Journal Article
GrantInformation_xml – fundername: Israel Science Foundation (ISF)
  grantid: 1593/16
  funderid: https://doi.org/10.13039/501100003977
– fundername: ;
  grantid: 1593/16
GroupedDBID 0R~
53G
88I
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
C6C
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
HYE
M2P
M7P
M~E
NAO
O9-
OK1
PGMZT
PIMPY
RNT
RPM
AAYXX
CITATION
PHGZM
PHGZT
AAJSJ
AASML
AJTQC
EBLON
EJD
NPM
SNYQT
3V.
7XB
8FE
8FH
8FK
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c470t-33151f58d9151d3ca5a828cc3e41f942bdab0b22bc279c6b360c87a734a5d0a03
IEDL.DBID C6C
ISSN 2399-3642
IngestDate Thu Aug 21 14:05:56 EDT 2025
Fri Jul 11 10:45:40 EDT 2025
Fri Jul 25 11:46:02 EDT 2025
Thu Apr 03 07:02:27 EDT 2025
Thu Apr 24 22:59:50 EDT 2025
Tue Jul 01 03:01:16 EDT 2025
Fri Feb 21 02:40:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-33151f58d9151d3ca5a828cc3e41f942bdab0b22bc279c6b360c87a734a5d0a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s42003-018-0174-8
PMID 30374462
PQID 2389695789
PQPubID 4669726
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6194124
proquest_miscellaneous_2127202475
proquest_journals_2389695789
pubmed_primary_30374462
crossref_citationtrail_10_1038_s42003_018_0174_8
crossref_primary_10_1038_s42003_018_0174_8
springer_journals_10_1038_s42003_018_0174_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Communications biology
PublicationTitleAbbrev Commun Biol
PublicationTitleAlternate Commun Biol
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Hagiwara (CR29) 2011; 41
Marin (CR32) 2012; 7
Olivari (CR15) 2006; 349
Timms (CR27) 2016; 7
Ushioda (CR31) 2008; 321
Shenkman, Ogen-Shtern, Lederkremer (CR39) 2017; 7
Hosokawa, Kamiya, Kamiya, Kato, Nagata (CR8) 2009; 284
Kuribara (CR36) 2017; 18
Abdu, Yehezkel, Sagi (CR41) 2000; 37
Tannous, Pisoni, Hebert, Molinari (CR5) 2015; 41
Roth (CR26) 2010; 27
Ogen-Shtern, Avezov, Shenkman, Benyair, Lederkremer (CR13) 2016; 428
Kuster, Wheeler, Hunter, Dwek, Harvey (CR42) 1997; 250
Benyair (CR14) 2015; 26
Liu, Fujimori, Weissman (CR21) 2016; 113
Shenkman (CR33) 2013; 288
Lai, Otero, Hendershot, Snapp (CR28) 2012; 287
Lederkremer (CR4) 2009; 19
Maegawa (CR30) 2017; 25
Ninagawa (CR12) 2014; 206
Mikami (CR9) 2010; 20
Frenkel, Gregory, Kornfeld, Lederkremer (CR2) 2003; 278
Kamhi-Nesher (CR25) 2001; 12
Hosokawa (CR11) 2010; 20
Gauss, Kanehara, Carvalho, Ng, Aebi (CR20) 2011; 42
Tolchinsky, Yuk, Ayalon, Lodish, Lederkremer (CR24) 1996; 271
Yu, Ito, Wada, Hosokawa (CR18) 2018; 293
Aikawa, Matsuo, Ito (CR37) 2012; 29
Clerc (CR19) 2009; 184
Shenkman, Ayalon, Lederkremer (CR23) 1997; 94
Hirao (CR17) 2006; 281
CR40
Sokolowska, Pilka, Sandvig, Wegrzyn, Slominska-Wojewodzka (CR34) 2015; 16
Satoh, Yamaguchi, Kato (CR10) 2015; 20
Xiang, Karaveg, Moremen (CR35) 2016; 113
Xu, Ng (CR6) 2015; 16
Aikawa, Takeda, Matsuo, Ito (CR38) 2014; 155
Groisman, Shenkman, Ron, Lederkremer (CR7) 2011; 286
Benyair, Ogen-Shtern, Lederkremer (CR3) 2015; 41
Ron (CR16) 2011; 22
Pfeiffer (CR22) 2016; 291
Avezov, Frenkel, Ehrlich, Herscovics, Lederkremer (CR1) 2008; 19
RT Timms (174_CR27) 2016; 7
J Aikawa (174_CR37) 2012; 29
B Groisman (174_CR7) 2011; 286
T Satoh (174_CR10) 2015; 20
MB Marin (174_CR32) 2012; 7
E Avezov (174_CR1) 2008; 19
N Hosokawa (174_CR11) 2010; 20
GZ Lederkremer (174_CR4) 2009; 19
J Aikawa (174_CR38) 2014; 155
M Shenkman (174_CR33) 2013; 288
U Abdu (174_CR41) 2000; 37
A Pfeiffer (174_CR22) 2016; 291
S Tolchinsky (174_CR24) 1996; 271
M Shenkman (174_CR23) 1997; 94
K Hirao (174_CR17) 2006; 281
S Clerc (174_CR19) 2009; 184
T Kuribara (174_CR36) 2017; 18
Z Frenkel (174_CR2) 2003; 278
R Gauss (174_CR20) 2011; 42
YC Liu (174_CR21) 2016; 113
K Mikami (174_CR9) 2010; 20
174_CR40
S Olivari (174_CR15) 2006; 349
S Kamhi-Nesher (174_CR25) 2001; 12
I Sokolowska (174_CR34) 2015; 16
A Tannous (174_CR5) 2015; 41
S Ninagawa (174_CR12) 2014; 206
KI Maegawa (174_CR30) 2017; 25
S Yu (174_CR18) 2018; 293
Y Xiang (174_CR35) 2016; 113
R Ushioda (174_CR31) 2008; 321
M Hagiwara (174_CR29) 2011; 41
Z Roth (174_CR26) 2010; 27
N Ogen-Shtern (174_CR13) 2016; 428
C Xu (174_CR6) 2015; 16
N Hosokawa (174_CR8) 2009; 284
R Benyair (174_CR3) 2015; 41
CW Lai (174_CR28) 2012; 287
R Benyair (174_CR14) 2015; 26
M Shenkman (174_CR39) 2017; 7
E Ron (174_CR16) 2011; 22
B Kuster (174_CR42) 1997; 250
References_xml – volume: 250
  start-page: 82
  year: 1997
  end-page: 101
  ident: CR42
  article-title: Sequencing of N-linked oligosaccharides directly from protein gels: in-gel deglycosylation followed by matrix-assisted laser desorption/ionization mass spectrometry and normal-phase high-performance liquid chromatography
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1997.2199
– volume: 206
  start-page: 347
  year: 2014
  end-page: 356
  ident: CR12
  article-title: EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201404075
– volume: 288
  start-page: 2167
  year: 2013
  end-page: 2178
  ident: CR33
  article-title: . A shared endoplasmic reticulum-associated degradation pathway involving the EDEM1 protein for glycosylated and nonglycosylated proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.438275
– volume: 20
  start-page: 567
  year: 2010
  end-page: 575
  ident: CR11
  article-title: EDEM1 accelerates the trimming ofalpha1,2-linked mannose on the C branch of N-glycans
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwq001
– volume: 281
  start-page: 9650
  year: 2006
  end-page: 9658
  ident: CR17
  article-title: EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M512191200
– volume: 155
  start-page: 375
  year: 2014
  end-page: 384
  ident: CR38
  article-title: Trimming of glucosylated N-glycans by human ERalpha1,2-mannosidase I
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvu008
– volume: 41
  start-page: 432
  year: 2011
  end-page: 444
  ident: CR29
  article-title: Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.01.021
– volume: 321
  start-page: 569
  year: 2008
  end-page: 572
  ident: CR31
  article-title: ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER
  publication-title: Sci. (New Y., N. Y.)
  doi: 10.1126/science.1159293
– volume: 20
  start-page: 310
  year: 2010
  end-page: 321
  ident: CR9
  article-title: The sugar-binding ability of human OS-9 and its involvement in ER-associated degradation
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwp175
– volume: 20
  start-page: 2475
  year: 2015
  end-page: 2491
  ident: CR10
  article-title: Emerging structural insights into glycoprotein quality control coupled with N-glycan processing in the endoplasmic reticulum
  publication-title: Molecules
  doi: 10.3390/molecules20022475
– volume: 286
  start-page: 1292
  year: 2011
  end-page: 1300
  ident: CR7
  article-title: Mannose trimming is required for delivery of a glycoprotein from EDEM1 to XTP3-B and to late endoplasmic reticulum-associated degradation steps
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.154849
– volume: 293
  start-page: 10663
  year: 2018
  end-page: 10674
  ident: CR18
  article-title: ER-resident protein 46 (ERp46) triggers the mannose-trimming activity of ER degradation-enhancing alpha-mannosidase-like protein 3 (EDEM3)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.003129
– volume: 18
  start-page: 1027
  year: 2017
  end-page: 1035
  ident: CR36
  article-title: Selective manipulation of discrete mannosidase activities in the endoplasmic reticulum by using reciprocally selective inhibitors
  publication-title: Chembiochem
  doi: 10.1002/cbic.201700081
– volume: 16
  start-page: 742
  year: 2015
  end-page: 752
  ident: CR6
  article-title: Glycosylation-directed quality control of protein folding
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm4073
– volume: 184
  start-page: 159
  year: 2009
  end-page: 172
  ident: CR19
  article-title: Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200809198
– volume: 291
  start-page: 12195
  year: 2016
  end-page: 12207
  ident: CR22
  article-title: A complex of Htm1 and the oxidoreductase Pdi1 accelerates degradation of Misfolded glycoproteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.703256
– volume: 7
  year: 2016
  ident: CR27
  article-title: Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11786
– volume: 37
  start-page: 75
  year: 2000
  end-page: 83
  ident: CR41
  article-title: Oocyte development and polypeptide dynamics during ovarian maturation in the red-claw crayfish Cherax quadricarinatus
  publication-title: Invert. Reprod. Dev.
  doi: 10.1080/07924259.2000.9652402
– volume: 16
  year: 2015
  ident: CR34
  article-title: Hydrophobicity of protein determinants influences the recognition of substrates by EDEM1 and EDEM2 in human cells
  publication-title: BMC Cell Biol.
  doi: 10.1186/s12860-015-0047-7
– volume: 27
  start-page: 159
  year: 2010
  end-page: 169
  ident: CR26
  article-title: N-glycan moieties of the crustacean egg yolk protein and their glycosylation sites
  publication-title: Glycoconj. J.
  doi: 10.1007/s10719-009-9268-3
– ident: CR40
– volume: 19
  start-page: 515
  year: 2009
  end-page: 523
  ident: CR4
  article-title: Glycoprotein folding, quality control and ER-associated degradation
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2009.06.004
– volume: 349
  start-page: 1278
  year: 2006
  end-page: 1284
  ident: CR15
  article-title: EDEM1 regulates ER-associated degradation by accelerating de-mannosylation of folding-defective polypeptides and by inhibiting their covalent aggregation
  publication-title: Biochem Biophys. Res Commun.
  doi: 10.1016/j.bbrc.2006.08.186
– volume: 94
  start-page: 11363
  year: 1997
  end-page: 11368
  ident: CR23
  article-title: Endoplasmic reticulum quality control of asialoglycoprotein receptor H2a involves a determinant for retention and not retrieval
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.21.11363
– volume: 287
  start-page: 7969
  year: 2012
  end-page: 7978
  ident: CR28
  article-title: ERdj4 protein is a soluble endoplasmic reticulum (ER) DnaJ family protein that interacts with ER-associated degradation machinery
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.311290
– volume: 19
  start-page: 216
  year: 2008
  end-page: 225
  ident: CR1
  article-title: Endoplasmic reticulum (ER) mannosidase I is compartmentalized and required for N-glycan trimming to Man5-6GlcNAc2 in glycoprotein ER-associated degradation
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e07-05-0505
– volume: 7
  start-page: e2393
  year: 2017
  ident: CR39
  article-title: [2-3H]Mannose-labeling and analysis of N-linked oligosaccharides
  publication-title: Bioprotocol
– volume: 113
  start-page: E7890
  year: 2016
  end-page: e7899
  ident: CR35
  article-title: Substrate recognition and catalysis by GH47 alpha-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1611213113
– volume: 41
  start-page: 99
  year: 2015
  end-page: 109
  ident: CR3
  article-title: Glycan regulation of ER-associated degradation through compartmentalization
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2014.11.006
– volume: 41
  start-page: 79
  year: 2015
  end-page: 89
  ident: CR5
  article-title: N-linked sugar-regulated protein folding and quality control in the ER
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2014.12.001
– volume: 284
  start-page: 17061
  year: 2009
  end-page: 17068
  ident: CR8
  article-title: Human OS-9, a lectin required for glycoprotein endoplasmic reticulum-associated degradation, recognizes mannose-trimmed N-glycans
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M809725200
– volume: 428
  start-page: 3194
  year: 2016
  end-page: 3205
  ident: CR13
  article-title: Mannosidase IA is in quality control vesicles and participates in glycoprotein targeting to ERAD
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2016.04.020
– volume: 42
  start-page: 782
  year: 2011
  end-page: 793
  ident: CR20
  article-title: A complex of Pdi1p and the mannosidase Htm1p initiates clearance of unfolded glycoproteins from the endoplasmic reticulum
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.04.027
– volume: 7
  start-page: e42998
  year: 2012
  ident: CR32
  article-title: Tyrosinase degradation is prevented when EDEM1 lacks the intrinsically disordered region
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0042998
– volume: 113
  start-page: E4015
  year: 2016
  end-page: 4024
  ident: CR21
  article-title: Htm1p-Pdi1p is a folding-sensitive mannosidase that marks N-glycoproteins for ER-associated protein degradation
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1608795113
– volume: 29
  start-page: 35
  year: 2012
  end-page: 45
  ident: CR37
  article-title: In vitro mannose trimming property of human ER alpha-1,2 mannosidase I
  publication-title: Glycoconj. J.
  doi: 10.1007/s10719-011-9362-1
– volume: 22
  start-page: 3945
  year: 2011
  end-page: 3954
  ident: CR16
  article-title: Bypass of glycan-dependent glycoprotein delivery to ERAD by up-regulated EDEM1
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e10-12-0944
– volume: 26
  start-page: 172
  year: 2015
  end-page: 184
  ident: CR14
  article-title: Mammalian ER mannosidase I resides in quality control vesicles, where it encounters its glycoprotein substrates
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e14-06-1152
– volume: 12
  start-page: 1711
  year: 2001
  end-page: 1723
  ident: CR25
  article-title: A novel quality control compartment derived from the endoplasmic reticulum
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.12.6.1711
– volume: 278
  start-page: 34119
  year: 2003
  end-page: 34124
  ident: CR2
  article-title: Endoplasmic reticulum-associated degradation of mammalian glycoproteins involves sugar chain trimming to Man6-5GlcNAc2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M305929200
– volume: 25
  start-page: 846
  year: 2017
  end-page: 857
  ident: CR30
  article-title: The highly dynamic nature of ERdj5 is key to efficient elimination of aberrant protein oligomers through ER-associated degradation
  publication-title: Structure
  doi: 10.1016/j.str.2017.04.001
– volume: 271
  start-page: 14496
  year: 1996
  end-page: 14503
  ident: CR24
  article-title: Membrane-bound versus secreted forms of human asialoglycoprotein receptor subunits–role of a juxtamembrane pentapeptide
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.24.14496
– volume: 206
  start-page: 347
  year: 2014
  ident: 174_CR12
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201404075
– volume: 286
  start-page: 1292
  year: 2011
  ident: 174_CR7
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.154849
– volume: 94
  start-page: 11363
  year: 1997
  ident: 174_CR23
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.21.11363
– volume: 113
  start-page: E4015
  year: 2016
  ident: 174_CR21
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1608795113
– volume: 349
  start-page: 1278
  year: 2006
  ident: 174_CR15
  publication-title: Biochem Biophys. Res Commun.
  doi: 10.1016/j.bbrc.2006.08.186
– volume: 41
  start-page: 79
  year: 2015
  ident: 174_CR5
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2014.12.001
– volume: 288
  start-page: 2167
  year: 2013
  ident: 174_CR33
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.438275
– volume: 42
  start-page: 782
  year: 2011
  ident: 174_CR20
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.04.027
– volume: 250
  start-page: 82
  year: 1997
  ident: 174_CR42
  publication-title: Anal. Biochem.
  doi: 10.1006/abio.1997.2199
– volume: 321
  start-page: 569
  year: 2008
  ident: 174_CR31
  publication-title: Sci. (New Y., N. Y.)
  doi: 10.1126/science.1159293
– volume: 20
  start-page: 2475
  year: 2015
  ident: 174_CR10
  publication-title: Molecules
  doi: 10.3390/molecules20022475
– volume: 26
  start-page: 172
  year: 2015
  ident: 174_CR14
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e14-06-1152
– volume: 37
  start-page: 75
  year: 2000
  ident: 174_CR41
  publication-title: Invert. Reprod. Dev.
  doi: 10.1080/07924259.2000.9652402
– volume: 293
  start-page: 10663
  year: 2018
  ident: 174_CR18
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.003129
– volume: 18
  start-page: 1027
  year: 2017
  ident: 174_CR36
  publication-title: Chembiochem
  doi: 10.1002/cbic.201700081
– volume: 29
  start-page: 35
  year: 2012
  ident: 174_CR37
  publication-title: Glycoconj. J.
  doi: 10.1007/s10719-011-9362-1
– volume: 287
  start-page: 7969
  year: 2012
  ident: 174_CR28
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.311290
– volume: 19
  start-page: 515
  year: 2009
  ident: 174_CR4
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2009.06.004
– volume: 155
  start-page: 375
  year: 2014
  ident: 174_CR38
  publication-title: J. Biochem.
  doi: 10.1093/jb/mvu008
– ident: 174_CR40
  doi: 10.3791/1899
– volume: 27
  start-page: 159
  year: 2010
  ident: 174_CR26
  publication-title: Glycoconj. J.
  doi: 10.1007/s10719-009-9268-3
– volume: 41
  start-page: 99
  year: 2015
  ident: 174_CR3
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2014.11.006
– volume: 20
  start-page: 310
  year: 2010
  ident: 174_CR9
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwp175
– volume: 284
  start-page: 17061
  year: 2009
  ident: 174_CR8
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M809725200
– volume: 41
  start-page: 432
  year: 2011
  ident: 174_CR29
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.01.021
– volume: 16
  start-page: 742
  year: 2015
  ident: 174_CR6
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm4073
– volume: 271
  start-page: 14496
  year: 1996
  ident: 174_CR24
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.24.14496
– volume: 20
  start-page: 567
  year: 2010
  ident: 174_CR11
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwq001
– volume: 428
  start-page: 3194
  year: 2016
  ident: 174_CR13
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2016.04.020
– volume: 291
  start-page: 12195
  year: 2016
  ident: 174_CR22
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.703256
– volume: 7
  start-page: e2393
  year: 2017
  ident: 174_CR39
  publication-title: Bioprotocol
– volume: 25
  start-page: 846
  year: 2017
  ident: 174_CR30
  publication-title: Structure
  doi: 10.1016/j.str.2017.04.001
– volume: 16
  year: 2015
  ident: 174_CR34
  publication-title: BMC Cell Biol.
  doi: 10.1186/s12860-015-0047-7
– volume: 281
  start-page: 9650
  year: 2006
  ident: 174_CR17
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M512191200
– volume: 7
  start-page: e42998
  year: 2012
  ident: 174_CR32
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0042998
– volume: 113
  start-page: E7890
  year: 2016
  ident: 174_CR35
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1611213113
– volume: 22
  start-page: 3945
  year: 2011
  ident: 174_CR16
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e10-12-0944
– volume: 278
  start-page: 34119
  year: 2003
  ident: 174_CR2
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M305929200
– volume: 19
  start-page: 216
  year: 2008
  ident: 174_CR1
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e07-05-0505
– volume: 12
  start-page: 1711
  year: 2001
  ident: 174_CR25
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.12.6.1711
– volume: 184
  start-page: 159
  year: 2009
  ident: 174_CR19
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200809198
– volume: 7
  year: 2016
  ident: 174_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11786
SSID ssj0001999634
Score 2.251124
Snippet Extensive mannose trimming of nascent glycoprotein N-glycans signals their targeting to endoplasmic reticulum-associated degradation (ERAD). ER mannosidase I...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 172
SubjectTerms 13
13/106
631/80/221
631/80/458/1524
631/80/470/1463
631/80/474/2287
82
82/16
82/29
82/80
Biology
Biomedical and Life Sciences
Endoplasmic reticulum
Glycoproteins
Life Sciences
Mannose
Mannosidase
N-glycans
Oligosaccharides
Polysaccharides
Protein disulfide-isomerase
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB6aDYVcQtJXnGyDCj21iNiSLMmnkJQNodBQSgO5GVmS24XFTuvdQ_59RrK9yzY0YLCxJPz4RjMjjTQfwEeHNs97zimOfyRFLZlRXUtDCyNlbgsuVORP-XYjr2_F17v8bphw64ZllaNOjIratTbMkZ-haSlkgfJVnN__oYE1KkRXBwqNHdhFFaxx8LV7Obv5_mMzyxL8eS7GcCbXZ52Iy7HSLKzhUoLqbYP0xMt8uljyn4hpNERXB7A_eJDkoof8EF745hW87DklH16DD7THLcoYmicSdi0EcgjS1mSGvzwjpnHxipGe_rYjbYM3yQoFbeG8I3GHUagfQwjk1-LBtjGZw7whHWqZmM22ewO3V7OfX67pwKVArVDpknKOpr3OtSvw7Lg1ucGxlrXci6wuBKucqdKKscoyVVhZcZlarYziwuQuNSl_C5OmbfwREITR155J1KNG2NxrLxBsHGnmgmFLlUA6_tDSDonGA9_FoowBb67LHoMSMSgDBqVO4NO6yX2fZeO5ytMRpXLocF25EY8EPqyLsauE-IdpfLvCOlkIOjOh8gTe9aCun8ZDHh4hWQJqC-51hZCGe7ukmf-O6bjDPBB6SQl8HgVj81r__Yjj5z_iBPZYL6J4TGGy_Lvy79H7WVang4g_ArgRAYw
  priority: 102
  providerName: ProQuest
Title Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates
URI https://link.springer.com/article/10.1038/s42003-018-0174-8
https://www.ncbi.nlm.nih.gov/pubmed/30374462
https://www.proquest.com/docview/2389695789
https://www.proquest.com/docview/2127202475
https://pubmed.ncbi.nlm.nih.gov/PMC6194124
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-mQ_BF_LY6RwSflGKbpEn7qGMigiKi4FtJ01QHoxW7Pfjfe0nXyRwKQqGludC0d7275C6_AzjN0eYZw5iP8x_ho5YM_bgQyk-UEJFOGJeufsrdvbh55rcv0UsHwnYvjEvad5CWTk232WEXNXdZVEFoU68k9-MV6FrkdivUAzH4XlaxDjzjbfySxcs9Fy3Qklu5nB35I0TqLM_1JmzMXEZy2QxyCzqm3Ia1pojk5w4YW-e4QqFCe0TsNgVbDYJUBRniNw6JKnN3RUlT77YmVYk3yRQla5ybnLgtRZbexQzI6_hTVw69YVSSGtWKg6-td-H5evg0uPFnxRN8zWUw8RlDW15EcZ7gOWdaRQonV1ozw8Mi4TTLVRZklGaaykSLjIlAx1JJxlWUBypge7BaVqU5AIJ8M4WhAhWn4joyseHIXZxaRpxiT-lB0H7QVM-QxW2Bi3HqItwsThsepMiD1PIgjT04m3d5b2A1_iLutVxKZ39YnaKrkYgE9U3iwcm8Gf8NG_BQpammSBPaKDPlMvJgv2Hq_GnMAu9wQT2QC-yeE1jc7cWWcvTm8Lftwg-6RR6ct4LxPaxfX-LwX9RHsE4bicWjB6uTj6k5Ru9nkvWhezW8f3jsO7nvuzWEL8bL_8Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVoheEG8CBYwEF5DVxHbs5IAQj622tF0h1Eq9Bcd2aKVVUsiu0P4pfiNjJ9nVUtFbpUiJHOc5n2c8Hns-gFcWbZ5znFP0fyRFLZnQrJKa5lrK1ORcqMCfcjSR4xPx5TQ93YA_w1oYP61y0IlBUdvG-DHyXTQtucwRX_n7i5_Us0b56OpAodHB4sAtfqPL1r7b_4zyfc3Y3uj405j2rALUCBXPKOdo5Ko0sznuLTc61eh1GMOdSKpcsNLqMi4ZKw1TuZEll7HJlFZc6NTGOuZ43xuwJbAcFcHWx9Hk67fVqI73H7gYwqc8221FmP4VJ37OmBI0WzeAl3q1lydn_hOhDYZv7w7c7nus5EMHsbuw4ep7cLPjsFzcB-dplhvENJpD4ldJeDIK0lRkhCJOiK5tOGKko9ttSVNjIZkjsKfWWRJWNPn6IWRBfkwXpgnJI85r0qJWC9lz2wdwci1_-SFs1k3tHgNB2LjKMYl6WwuTuswJBBd6tqlgeKWKIB5-aGH6xOaeX2NahAA7z4pOBgXKoPAyKLII3iwvueiyelxVeWeQUtE38LZYwTGCl8vT2DR9vEXXrpljncQHuZlQaQSPOqEun8Z93h8hWQRqTdzLCj7t9_qZ-vwspP_2407YK4vg7QCM1Wv99yOeXP0RL-DW-PjosDjcnxw8hW3WwRW3Hdic_Zq7Z9jzmpXPe7gT-H7dLewvlQk97Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dS9xAcLAWS19KW22b1uoKfVJSk_1MHsvVw48qfVDwbdnsbqxwJGLuHvz3zm4uJ9ejBSGQkJ0lm53Z-diZnQH45lDmec9YivaPTJFL5mlRS5OWRkphS8ZVrJ9yfiGPr_jptbheAzGchYlB-zGlZWTTQ3TYYcdjFFWWh9ArxdPi-52rX8BLVLezYHON5OhpayUo8YwPPkxWrPZelkIrquVqhORfbtIofcZv4c1cbSQ_-oG-gzXfvIeNvpDkwyb4UOu4RcJCmUTCUYVQEYK0NTnCec6JaVx8oqSveduRtsGXZIbUNXHekXisKMBHvwG5mTzYNmZwuG1Ih6wlprDttuBqfHQ5Ok7nBRRSy1U2TRlDeV6LwpV4d8waYdDAspZ5ntclp5UzVVZRWlmqSisrJjNbKKMYN8JlJmMfYL1pG_8JCOLO155KZJ6GW-ELzxHDaF4KTrGnSiAbJlTbeXbxUORioqOXmxW6x4FGHOiAA10ksL_octen1vgf8PaAJT1fZZ1GdaOUJfKcMoG9RTOuj-D0MI1vZwiTB08z5Uok8LFH6uJrLCTf4ZImoJbQvQAIubeXW5rbPzEHd9j8QdUogYOBMJ6G9c-f-Pws6F149fvnWP86uTj7Aq9pT7x4bcP69H7mv6IyNK12Iuk_ApG1ATw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mannosidase+activity+of+EDEM1+and+EDEM2+depends+on+an+unfolded+state+of+their+glycoprotein+substrates&rft.jtitle=Communications+biology&rft.au=Shenkman%2C+Marina&rft.au=Ron%2C+Efrat&rft.au=Yehuda%2C+Rivka&rft.au=Benyair%2C+Ron&rft.date=2018-01-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2399-3642&rft.volume=1&rft.issue=1&rft_id=info:doi/10.1038%2Fs42003-018-0174-8&rft.externalDocID=10_1038_s42003_018_0174_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon