Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics
This study compared the effect of two principal pyrolysis methods on the chemical characteristics of biochar and the impact on C and N dynamics after soil incorporation. Biochar was produced from wheat straw that was thermally decomposed at 525 °C by slow pyrolysis (SP) in a nitrogen flushed oven an...
Saved in:
Published in | Soil biology & biochemistry Vol. 46; pp. 73 - 79 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Ltd
01.03.2012
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study compared the effect of two principal pyrolysis methods on the chemical characteristics of biochar and the impact on C and N dynamics after soil incorporation. Biochar was produced from wheat straw that was thermally decomposed at 525 °C by slow pyrolysis (SP) in a nitrogen flushed oven and by fast pyrolysis (FP) using a Pyrolysis Centrifuge Reactor (PCR). After 65 days of soil incubation, 2.9% and 5.5% of the SP- and FP-biochar C, respectively, was lost as CO
2, significantly less than the 53% C-loss observed when un-pyrolyzed feedstock straw was incubated. Whereas the SP-biochar appeared completely pyrolyzed, an un-pyrolyzed carbohydrate fraction (8.8% as determined by acid released C6 and C5 sugars) remained in the FP-biochar. This labile fraction possibly supported the higher CO
2 emission and larger microbial biomass (SMB-C) in the FP-biochar soil. Application of fresh FP-biochar to soil immobilized mineral N (43%) during the 65 days of incubation, while application of SP-biochar led to net N mineralization (7%). In addition to the carbohydrate contents, the two pyrolysis methods resulted in different pH (10.1 and 6.8), particle sizes (113 and 23 μm), and BET surface areas (0.6 and 1.6 m
2 g
−1) of the SP- and FP-biochars, respectively. The study showed that independently of pyrolysis method, soil application of the biochar materials had the potential to sequester C, while the pyrolysis method did have a large influence on the mineralization-immobilization of soil N.
► The study compares effects on C and N dynamics of slow- (SP) and fast-pyrolysis (FP) biochar in soil. ► Soil application of FP-biochar caused immobilization of soil N, while SP-biochar did not. ► FP-biochar had a labile un-pyrolyzed biomass fraction, while SP-biochar was fully pyrolyzed. ► The labile FP-biochar fraction supported a higher biochar-C loss and a larger soil microbial biomass. |
---|---|
AbstractList | This study compared the effect of two principal pyrolysis methods on the chemical characteristics of biochar and the impact on C and N dynamics after soil incorporation. Biochar was produced from wheat straw that was thermally decomposed at 525 °C by slow pyrolysis (SP) in a nitrogen flushed oven and by fast pyrolysis (FP) using a Pyrolysis Centrifuge Reactor (PCR). After 65 days of soil incubation, 2.9% and 5.5% of the SP- and FP-biochar C, respectively, was lost as CO
2, significantly less than the 53% C-loss observed when un-pyrolyzed feedstock straw was incubated. Whereas the SP-biochar appeared completely pyrolyzed, an un-pyrolyzed carbohydrate fraction (8.8% as determined by acid released C6 and C5 sugars) remained in the FP-biochar. This labile fraction possibly supported the higher CO
2 emission and larger microbial biomass (SMB-C) in the FP-biochar soil. Application of fresh FP-biochar to soil immobilized mineral N (43%) during the 65 days of incubation, while application of SP-biochar led to net N mineralization (7%). In addition to the carbohydrate contents, the two pyrolysis methods resulted in different pH (10.1 and 6.8), particle sizes (113 and 23 μm), and BET surface areas (0.6 and 1.6 m
2 g
−1) of the SP- and FP-biochars, respectively. The study showed that independently of pyrolysis method, soil application of the biochar materials had the potential to sequester C, while the pyrolysis method did have a large influence on the mineralization-immobilization of soil N.
► The study compares effects on C and N dynamics of slow- (SP) and fast-pyrolysis (FP) biochar in soil. ► Soil application of FP-biochar caused immobilization of soil N, while SP-biochar did not. ► FP-biochar had a labile un-pyrolyzed biomass fraction, while SP-biochar was fully pyrolyzed. ► The labile FP-biochar fraction supported a higher biochar-C loss and a larger soil microbial biomass. This study compared the effect of two principal pyrolysis methods on the chemical characteristics of biochar and the impact on C and N dynamics after soil incorporation. Biochar was produced from wheat straw that was thermally decomposed at 525 degree C by slow pyrolysis (SP) in a nitrogen flushed oven and by fast pyrolysis (FP) using a Pyrolysis Centrifuge Reactor (PCR). After 65 days of soil incubation, 2.9% and 5.5% of the SP- and FP-biochar C, respectively, was lost as CO2, significantly less than the 53% C-loss observed when un-pyrolyzed feedstock straw was incubated. Whereas the SP-biochar appeared completely pyrolyzed, an un-pyrolyzed carbohydrate fraction (8.8% as determined by acid released C6 and C5 sugars) remained in the FP-biochar. This labile fraction possibly supported the higher CO2 emission and larger microbial biomass (SMB-C) in the FP-biochar soil. Application of fresh FP-biochar to soil immobilized mineral N (43%) during the 65 days of incubation, while application of SP-biochar led to net N mineralization (7%). In addition to the carbohydrate contents, the two pyrolysis methods resulted in different pH (10.1 and 6.8), particle sizes (113 and 23 mu m), and BET surface areas (0.6 and 1.6 m2 g-1) of the SP- and FP-biochars, respectively. The study showed that independently of pyrolysis method, soil application of the biochar materials had the potential to sequester C, while the pyrolysis method did have a large influence on the mineralization-immobilization of soil N. This study compared the effect of two principal pyrolysis methods on the chemical characteristics of biochar and the impact on C and N dynamics after soil incorporation. Biochar was produced from wheat straw that was thermally decomposed at 525 °C by slow pyrolysis (SP) in a nitrogen flushed oven and by fast pyrolysis (FP) using a Pyrolysis Centrifuge Reactor (PCR). After 65 days of soil incubation, 2.9% and 5.5% of the SP- and FP-biochar C, respectively, was lost as CO₂, significantly less than the 53% C-loss observed when un-pyrolyzed feedstock straw was incubated. Whereas the SP-biochar appeared completely pyrolyzed, an un-pyrolyzed carbohydrate fraction (8.8% as determined by acid released C6 and C5 sugars) remained in the FP-biochar. This labile fraction possibly supported the higher CO₂ emission and larger microbial biomass (SMB-C) in the FP-biochar soil. Application of fresh FP-biochar to soil immobilized mineral N (43%) during the 65 days of incubation, while application of SP-biochar led to net N mineralization (7%). In addition to the carbohydrate contents, the two pyrolysis methods resulted in different pH (10.1 and 6.8), particle sizes (113 and 23 μm), and BET surface areas (0.6 and 1.6 m² g⁻¹) of the SP- and FP-biochars, respectively. The study showed that independently of pyrolysis method, soil application of the biochar materials had the potential to sequester C, while the pyrolysis method did have a large influence on the mineralization-immobilization of soil N. |
Author | Bruun, Esben W. Egsgaard, Helge Ambus, Per Hauggaard-Nielsen, Henrik |
Author_xml | – sequence: 1 givenname: Esben W. surname: Bruun fullname: Bruun, Esben W. email: esbr@risoe.dtu.dk – sequence: 2 givenname: Per surname: Ambus fullname: Ambus, Per – sequence: 3 givenname: Helge surname: Egsgaard fullname: Egsgaard, Helge – sequence: 4 givenname: Henrik surname: Hauggaard-Nielsen fullname: Hauggaard-Nielsen, Henrik |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25655936$$DView record in Pascal Francis |
BookMark | eNqFkU9vEzEQxS1UJNLCR0DyBcFlg2e9a3vFAaGo0EoRXOBsTby2cLSxg2dTlG-P04QLByqNNJffe_PnXbOrlJNn7DWIJQhQ77dLynHaxLxsBcCyloDhGVuA0UMju9ZcsYUQ0jRCg37Brom2Qoi2B7lg69sQvJuJ58Bpyr85ppEHpJnvjyVPR4rEq7P7iYXnxE-D-OoR-srnQ0n5wRc-HhPuoqOX7HnAifyrS79hPz7ffl_dNetvX-5Xn9aN67SYGwlghjCqjRA9ajkao70IOIBywgxetxstAwKarkN0Ug7YgXd6E1qn6sFe3rC3Z999yb8Onma7i-T8NGHy-UB2ACOUUjBU8t1_SegkqK4-Q1X0zQVFcjiFgslFsvsSd1iOtu1V3w_yxH04c65kouKDdXHGOeY0F4yTBWFPqditvaRiT6nYWuJxof4f9d8BT-k-nnW-_vUh-mLJRZ-cH2Op-dkxxycc_gB-jKr7 |
CODEN | SBIOAH |
CitedBy_id | crossref_primary_10_1016_j_chemosphere_2016_11_151 crossref_primary_10_1016_j_eti_2021_102128 crossref_primary_10_1007_s11368_017_1757_6 crossref_primary_10_3390_agronomy3020275 crossref_primary_10_1016_j_ccst_2022_100065 crossref_primary_10_1016_j_scitotenv_2021_150465 crossref_primary_10_1139_cjss_2019_0092 crossref_primary_10_1371_journal_pone_0161694 crossref_primary_10_1021_acs_energyfuels_0c01054 crossref_primary_10_1021_acs_energyfuels_7b02977 crossref_primary_10_2166_bgs_2019_931 crossref_primary_10_1007_s11356_017_0131_y crossref_primary_10_1016_j_ejsobi_2021_103350 crossref_primary_10_1038_s41598_024_55430_w crossref_primary_10_1016_j_scitotenv_2022_157022 crossref_primary_10_1016_j_pedobi_2022_150861 crossref_primary_10_1007_s10098_020_01969_x crossref_primary_10_1111_gcbb_12037 crossref_primary_10_1111_sum_12546 crossref_primary_10_1061__ASCE_MT_1943_5533_0001924 crossref_primary_10_1111_sum_12787 crossref_primary_10_1016_j_pedsph_2023_03_015 crossref_primary_10_1007_s10668_019_00327_2 crossref_primary_10_3389_fpls_2020_00949 crossref_primary_10_1371_journal_pone_0131592 crossref_primary_10_3390_agronomy13082110 crossref_primary_10_1371_journal_pone_0138781 crossref_primary_10_1016_j_renene_2016_03_087 crossref_primary_10_1016_j_cemconcomp_2017_12_009 crossref_primary_10_1016_j_geoderma_2018_04_022 crossref_primary_10_13080_z_a_2019_106_038 crossref_primary_10_1016_j_soilbio_2016_08_001 crossref_primary_10_1016_j_scitotenv_2020_140378 crossref_primary_10_1007_s42773_024_00376_5 crossref_primary_10_1016_j_chemosphere_2015_05_039 crossref_primary_10_1007_s11368_020_02662_8 crossref_primary_10_1016_j_jclepro_2022_132823 crossref_primary_10_1016_j_geoderma_2016_01_033 crossref_primary_10_1016_j_jaap_2012_10_025 crossref_primary_10_1016_j_soilbio_2013_03_013 crossref_primary_10_3390_biomass2040014 crossref_primary_10_1007_s10457_022_00757_4 crossref_primary_10_1111_gcbb_12266 crossref_primary_10_1007_s00374_021_01542_8 crossref_primary_10_3390_su10030578 crossref_primary_10_1016_j_chemosphere_2021_131176 crossref_primary_10_1016_j_ecoenv_2019_04_073 crossref_primary_10_1016_j_jenvman_2019_109466 crossref_primary_10_1080_03601234_2015_1028830 crossref_primary_10_1016_j_jhazmat_2021_126611 crossref_primary_10_1098_rstb_2020_0180 crossref_primary_10_32604_phyton_2025_059997 crossref_primary_10_1007_s00374_014_0928_5 crossref_primary_10_1038_s41598_023_44147_x crossref_primary_10_1080_10643389_2020_1721980 crossref_primary_10_1186_s40538_020_00182_8 crossref_primary_10_1016_j_biortech_2012_12_094 crossref_primary_10_3390_horticulturae7110418 crossref_primary_10_1016_j_heliyon_2020_e05578 crossref_primary_10_1016_j_jenvman_2022_115473 crossref_primary_10_1016_j_jhazmat_2025_137430 crossref_primary_10_2139_ssrn_3957869 crossref_primary_10_1016_j_agwat_2024_108788 crossref_primary_10_3389_fenvs_2023_1059449 crossref_primary_10_1016_j_agee_2012_06_011 crossref_primary_10_1016_j_scitotenv_2020_142104 crossref_primary_10_1007_s11104_014_2198_2 crossref_primary_10_1016_j_geoderma_2018_09_043 crossref_primary_10_1155_2021_5533780 crossref_primary_10_1088_1748_9326_11_8_084013 crossref_primary_10_2139_ssrn_4006918 crossref_primary_10_1007_s11104_018_3568_y crossref_primary_10_1016_j_still_2016_06_006 crossref_primary_10_3390_su10062077 crossref_primary_10_1016_j_wasman_2022_07_024 crossref_primary_10_1088_1755_1315_347_1_012055 crossref_primary_10_1016_j_geoderma_2018_08_019 crossref_primary_10_1021_acs_energyfuels_2c01201 crossref_primary_10_1007_s42729_024_01620_4 crossref_primary_10_3390_f13071043 crossref_primary_10_3390_rs11232874 crossref_primary_10_3390_w14111691 crossref_primary_10_1007_s11356_014_3820_9 crossref_primary_10_1016_j_cej_2020_124856 crossref_primary_10_1016_j_soilbio_2012_10_035 crossref_primary_10_1080_00380768_2013_821391 crossref_primary_10_2134_jeq2013_08_0324 crossref_primary_10_1007_s42773_022_00166_x crossref_primary_10_3390_app13158801 crossref_primary_10_3390_chemosensors10080344 crossref_primary_10_2136_sssaj2014_01_0025 crossref_primary_10_1016_j_scitotenv_2020_138752 crossref_primary_10_1016_j_soilbio_2013_11_013 crossref_primary_10_1016_j_scitotenv_2020_137422 crossref_primary_10_3390_f10080612 crossref_primary_10_1016_j_scitotenv_2018_12_380 crossref_primary_10_3390_polym14153075 crossref_primary_10_1007_s11368_016_1567_2 crossref_primary_10_1016_j_atmosenv_2017_09_050 crossref_primary_10_1017_S0014479719000218 crossref_primary_10_1002_saj2_20170 crossref_primary_10_1016_j_scitotenv_2023_166171 crossref_primary_10_1080_03650340_2014_977786 crossref_primary_10_3390_horticulturae10050427 crossref_primary_10_1007_s11356_018_1597_y crossref_primary_10_1016_j_geoderma_2018_03_004 crossref_primary_10_3390_agriculture13061120 crossref_primary_10_1007_s11356_018_1682_2 crossref_primary_10_1016_j_eja_2014_09_006 crossref_primary_10_36783_18069657rbcs20220156 crossref_primary_10_1007_s44246_024_00138_9 crossref_primary_10_1080_10643389_2019_1642832 crossref_primary_10_1515_reveh_2018_0007 crossref_primary_10_3390_su13105612 crossref_primary_10_1016_j_scitotenv_2019_135375 crossref_primary_10_1007_s11356_018_3636_0 crossref_primary_10_1371_journal_pone_0086388 crossref_primary_10_1002_ldr_3495 crossref_primary_10_1007_s13593_016_0372_z crossref_primary_10_1016_j_seh_2024_100095 crossref_primary_10_1007_s42729_020_00326_7 crossref_primary_10_1111_gcbb_12119 crossref_primary_10_1007_s11104_025_07206_y crossref_primary_10_1007_s00374_022_01688_z crossref_primary_10_1016_j_ejsobi_2013_12_002 crossref_primary_10_1016_j_joei_2024_101559 crossref_primary_10_1111_gcbb_12234 crossref_primary_10_1016_j_chemosphere_2013_11_066 crossref_primary_10_1016_j_agwat_2023_108565 crossref_primary_10_2134_jeq2012_0163 crossref_primary_10_1016_j_cemconcomp_2017_07_012 crossref_primary_10_1021_ez400165g crossref_primary_10_1016_j_cej_2021_129946 crossref_primary_10_1016_j_chemosphere_2024_143135 crossref_primary_10_1016_j_jwpe_2022_103391 crossref_primary_10_3389_fevo_2023_1177827 crossref_primary_10_1007_s42729_024_01931_6 crossref_primary_10_1021_acssuschemeng_9b03098 crossref_primary_10_2139_ssrn_4119763 crossref_primary_10_1021_ie401918e crossref_primary_10_3390_agronomy13051277 crossref_primary_10_1016_j_biortech_2012_12_165 crossref_primary_10_1016_j_rser_2021_110973 crossref_primary_10_1007_s13165_015_0104_8 crossref_primary_10_1016_j_agee_2016_12_019 crossref_primary_10_1186_s42480_020_00031_3 crossref_primary_10_1016_j_soilbio_2018_12_011 crossref_primary_10_1007_s10163_020_01074_7 crossref_primary_10_1002_jpln_202100150 crossref_primary_10_1016_j_compag_2024_108947 crossref_primary_10_1007_s11104_017_3327_5 crossref_primary_10_1016_j_jclepro_2017_12_090 crossref_primary_10_1007_s11676_014_0522_6 crossref_primary_10_5897_AJAR2016_11654 crossref_primary_10_1016_j_apsoil_2015_06_020 crossref_primary_10_1016_j_cej_2021_130387 crossref_primary_10_32604_phyton_2022_020323 crossref_primary_10_1016_j_sajb_2019_11_015 crossref_primary_10_3390_en14248457 crossref_primary_10_1016_j_watres_2019_115253 crossref_primary_10_17660_ActaHortic_2023_1377_64 crossref_primary_10_1016_j_agee_2020_107109 crossref_primary_10_11648_j_ajep_20241306_18 crossref_primary_10_1016_j_ecoenv_2020_111600 crossref_primary_10_1007_s11104_013_1636_x crossref_primary_10_1016_j_still_2022_105337 crossref_primary_10_1007_s10311_021_01210_1 crossref_primary_10_1111_gcb_15157 crossref_primary_10_1016_j_catena_2024_108203 crossref_primary_10_1007_s11356_014_3451_1 crossref_primary_10_1016_j_chemosphere_2015_05_092 crossref_primary_10_3390_agriculture12071028 crossref_primary_10_1002_2017JG003938 crossref_primary_10_1016_S1002_0160_20_60071_6 crossref_primary_10_1017_S1742170522000412 crossref_primary_10_1021_acssuschemeng_0c02860 crossref_primary_10_1007_s11368_015_1347_4 crossref_primary_10_1016_j_geoderma_2019_114162 crossref_primary_10_3390_agronomy10050683 crossref_primary_10_1002_jpln_201200282 crossref_primary_10_1111_j_1757_1707_2012_01163_x crossref_primary_10_1016_j_apsoil_2020_103821 crossref_primary_10_1080_09064710_2017_1302504 crossref_primary_10_1007_s10163_023_01645_4 crossref_primary_10_1007_s12205_015_0449_2 crossref_primary_10_1371_journal_pone_0206924 crossref_primary_10_1016_j_scitotenv_2020_138955 crossref_primary_10_1071_SR13359 crossref_primary_10_1002_bbb_1447 crossref_primary_10_1007_s11356_016_7829_0 crossref_primary_10_1007_s42773_023_00247_5 crossref_primary_10_3390_su13042018 crossref_primary_10_1007_s42773_020_00052_4 crossref_primary_10_1016_j_scitotenv_2018_08_222 crossref_primary_10_1016_j_biortech_2019_122564 crossref_primary_10_1016_j_soilbio_2015_01_006 crossref_primary_10_1016_j_gca_2020_02_034 crossref_primary_10_1007_s00374_019_01410_6 crossref_primary_10_1007_s11368_020_02753_6 crossref_primary_10_1016_j_renene_2017_10_023 crossref_primary_10_1016_j_agee_2021_107454 crossref_primary_10_3390_agronomy3020313 crossref_primary_10_1016_j_agee_2021_107452 crossref_primary_10_1007_s11368_014_0996_z crossref_primary_10_1016_j_biombioe_2014_10_013 crossref_primary_10_3389_fmats_2022_870184 crossref_primary_10_1111_gcbb_12314 crossref_primary_10_1016_S1002_0160_15_30057_6 crossref_primary_10_1007_s13399_022_02905_3 crossref_primary_10_1007_s11368_021_03090_y crossref_primary_10_1007_s11104_013_1885_8 crossref_primary_10_1016_j_resconrec_2025_108141 crossref_primary_10_3846_16486897_2017_1304943 crossref_primary_10_1016_j_jaap_2021_105405 crossref_primary_10_1080_10643389_2016_1212368 crossref_primary_10_3390_molecules30061332 crossref_primary_10_1071_SR13186 crossref_primary_10_1002_jsfa_7753 crossref_primary_10_1016_j_scitotenv_2021_152495 crossref_primary_10_3390_agriculture13102003 crossref_primary_10_1007_s00374_013_0850_2 crossref_primary_10_1016_j_geoderma_2012_10_002 crossref_primary_10_1016_j_soilbio_2013_01_019 crossref_primary_10_1007_s11356_018_3895_9 crossref_primary_10_1039_c3cy00635b crossref_primary_10_1016_j_envpol_2023_122863 crossref_primary_10_4155_cmt_13_3 crossref_primary_10_1016_j_biombioe_2014_02_030 crossref_primary_10_1016_j_scitotenv_2018_07_402 crossref_primary_10_1021_acs_iecr_5b02698 crossref_primary_10_1016_j_envres_2021_112303 crossref_primary_10_1371_journal_pone_0126841 crossref_primary_10_1007_s10653_018_0224_7 crossref_primary_10_1007_s11104_013_1851_5 crossref_primary_10_1016_j_agee_2014_01_007 crossref_primary_10_1016_j_resconrec_2020_104876 crossref_primary_10_1007_s11104_014_2025_9 crossref_primary_10_1016_j_soilbio_2014_11_012 crossref_primary_10_3390_agronomy4010052 crossref_primary_10_1021_acs_est_4c01829 crossref_primary_10_1111_ejss_12064 crossref_primary_10_1016_S1002_0160_17_60314_X crossref_primary_10_1002_jpln_201300154 crossref_primary_10_1016_j_fuproc_2017_02_019 crossref_primary_10_3390_agronomy4040478 crossref_primary_10_2136_sssaj2014_05_0198 crossref_primary_10_15377_2409_983X_2017_04_3 crossref_primary_10_2134_jeq2014_03_0132 crossref_primary_10_12677_HJSS_2019_72015 crossref_primary_10_1016_j_envint_2021_106527 crossref_primary_10_1016_j_scitotenv_2020_137399 crossref_primary_10_1002_ldr_3797 crossref_primary_10_1016_j_apsoil_2017_03_017 crossref_primary_10_1016_j_still_2023_105978 crossref_primary_10_1016_j_orggeochem_2013_09_006 crossref_primary_10_1016_j_apt_2016_04_018 crossref_primary_10_1016_j_biortech_2018_09_030 crossref_primary_10_1016_j_jaap_2021_105186 crossref_primary_10_1016_j_biombioe_2024_107296 crossref_primary_10_1016_j_wasman_2013_06_013 crossref_primary_10_1007_s42773_025_00440_8 crossref_primary_10_1016_j_scitotenv_2017_12_196 crossref_primary_10_1007_s00344_021_10454_8 crossref_primary_10_1016_j_agee_2015_07_027 crossref_primary_10_1016_j_fuel_2014_03_025 crossref_primary_10_1016_j_ecoenv_2013_07_003 crossref_primary_10_1016_j_jaap_2015_08_016 crossref_primary_10_1016_j_geoderma_2019_114091 crossref_primary_10_1080_09064710_2018_1424232 crossref_primary_10_1016_j_heliyon_2021_e08473 crossref_primary_10_1016_j_scitotenv_2020_144351 crossref_primary_10_1016_j_fuel_2020_118792 crossref_primary_10_1007_s00374_014_0950_7 crossref_primary_10_1016_j_envres_2022_114527 crossref_primary_10_1029_2020JG005981 crossref_primary_10_1007_s11157_017_9450_1 crossref_primary_10_1016_j_agee_2022_108183 crossref_primary_10_1016_j_geoderma_2018_11_006 crossref_primary_10_1016_j_geoderma_2019_113944 crossref_primary_10_1038_srep25127 crossref_primary_10_5194_se_5_499_2014 crossref_primary_10_1016_j_energy_2019_01_035 crossref_primary_10_1016_j_geoderma_2016_11_004 crossref_primary_10_1016_S1002_0160_14_60075_8 crossref_primary_10_1002_jpln_201600477 crossref_primary_10_1017_S1755691012000047 crossref_primary_10_1016_j_ecoenv_2023_115228 crossref_primary_10_1007_s11368_024_03887_7 crossref_primary_10_1007_s13580_019_00133_9 crossref_primary_10_3390_app9071365 crossref_primary_10_1063_1_5144630 crossref_primary_10_1007_s12517_020_05586_2 crossref_primary_10_1016_j_scitotenv_2022_158033 crossref_primary_10_3390_atmos13122038 crossref_primary_10_3390_molecules26185584 crossref_primary_10_1016_j_scitotenv_2020_140065 crossref_primary_10_1007_s10924_023_03108_1 crossref_primary_10_1007_s11368_015_1205_4 crossref_primary_10_1007_s42773_019_00008_3 crossref_primary_10_1016_j_scitotenv_2022_156532 crossref_primary_10_1080_10643389_2023_2190333 crossref_primary_10_1139_cjss_2021_0047 crossref_primary_10_1021_acs_energyfuels_9b00531 crossref_primary_10_3390_agronomy10030449 crossref_primary_10_1016_j_soilbio_2014_01_035 crossref_primary_10_1016_j_geoderma_2025_117237 crossref_primary_10_1016_j_jece_2024_114785 crossref_primary_10_1071_SR14075 crossref_primary_10_1111_ejss_13088 crossref_primary_10_1016_j_ecoenv_2024_116726 crossref_primary_10_1016_j_soilbio_2016_10_014 crossref_primary_10_25047_agriprima_v7i2_555 crossref_primary_10_1016_j_jenvman_2022_117084 crossref_primary_10_3390_su11113211 crossref_primary_10_1016_j_fcr_2024_109611 crossref_primary_10_1016_j_orggeochem_2012_07_009 crossref_primary_10_2478_johh_2021_0024 crossref_primary_10_3390_pr9020276 crossref_primary_10_1007_s12517_018_4074_5 crossref_primary_10_1016_j_geoderma_2018_09_034 crossref_primary_10_1016_j_geoderma_2018_11_007 crossref_primary_10_3390_agronomy10050746 crossref_primary_10_1016_j_envpol_2021_118707 crossref_primary_10_1111_gcbb_13147 crossref_primary_10_1139_cjss_2021_0147 crossref_primary_10_1016_j_scitotenv_2019_01_298 crossref_primary_10_1016_j_scitotenv_2017_06_275 crossref_primary_10_1016_j_agee_2021_107473 crossref_primary_10_3390_agriculture15030300 crossref_primary_10_1016_j_catena_2022_106185 crossref_primary_10_1016_j_biombioe_2017_06_024 crossref_primary_10_1016_j_carbon_2016_12_096 crossref_primary_10_1007_s11356_017_0574_1 crossref_primary_10_1016_j_jenvman_2016_06_063 crossref_primary_10_1016_j_scitotenv_2018_10_060 crossref_primary_10_1007_s42773_019_00009_2 crossref_primary_10_1016_j_envres_2022_114733 crossref_primary_10_1016_j_scitotenv_2022_157766 crossref_primary_10_1007_s11356_020_11016_3 crossref_primary_10_1007_s11368_016_1360_2 crossref_primary_10_1017_S0021859621000277 crossref_primary_10_1016_j_jhazmat_2021_126886 crossref_primary_10_1007_s11368_017_1765_6 crossref_primary_10_1007_s42729_024_01668_2 crossref_primary_10_1007_s11356_014_4067_1 crossref_primary_10_1016_j_scitotenv_2021_145021 crossref_primary_10_1007_s42773_023_00279_x crossref_primary_10_1016_j_rineng_2024_102433 crossref_primary_10_1016_j_ejsobi_2017_11_003 crossref_primary_10_1016_S2095_3119_13_60704_2 crossref_primary_10_1007_s11368_023_03439_5 crossref_primary_10_1016_j_apsoil_2015_08_018 crossref_primary_10_1016_j_jenvman_2019_02_044 crossref_primary_10_1007_s11676_015_0132_y crossref_primary_10_1016_j_jenvman_2022_116095 crossref_primary_10_3389_fenvs_2021_798729 crossref_primary_10_3390_plants9111516 crossref_primary_10_13080_z_a_2019_106_013 crossref_primary_10_1007_s42729_021_00440_0 crossref_primary_10_1016_j_agee_2018_06_007 crossref_primary_10_1016_j_aoas_2019_12_006 crossref_primary_10_3389_fenvs_2022_914766 crossref_primary_10_3390_su151914394 crossref_primary_10_1007_s40003_019_00425_7 crossref_primary_10_1016_j_catena_2020_105046 |
Cites_doi | 10.1016/0038-0717(87)90052-6 10.1016/0038-0717(90)90046-3 10.2136/sssaj2005.0383 10.1007/s00374-003-0707-1 10.1504/IJGEI.2007.013655 10.1002/ep.10446 10.1016/j.orggeochem.2004.03.003 10.1016/S0378-4290(01)00176-9 10.1034/j.1600-0706.2000.890203.x 10.1007/s11104-010-0464-5 10.1111/j.1365-2389.2006.00807.x 10.1021/es903140c 10.1016/j.orggeochem.2009.05.004 10.1016/S0065-2113(10)05002-9 10.1016/j.pedobi.2007.08.002 10.1016/S0038-0717(02)00248-1 10.1080/02773819108051086 10.2134/agronj2009.0083 10.1016/j.gca.2008.01.010 10.1021/ef9901138 10.1016/j.biombioe.2009.03.009 10.1016/j.soilbio.2008.10.016 10.1016/j.biortech.2007.08.054 10.2136/sssaj2008.0232 10.13031/2013.25409 10.1016/j.chemosphere.2009.06.053 10.1023/A:1022833116184 10.1016/j.geoderma.2010.05.012 10.1126/science.1154960 10.1016/j.fcr.2008.10.008 10.1016/j.soilbio.2011.04.018 10.1007/s11104-010-0327-0 10.1016/0038-0717(96)00111-3 10.1016/S0146-6380(99)00120-5 10.1016/j.orggeochem.2008.12.004 10.1016/j.geoderma.2009.10.014 10.1021/es101337x 10.1016/S0146-6380(02)00062-1 10.1002/bbb.169 10.1002/ep.10378 10.1007/s11027-005-9006-5 10.1016/j.biombioe.2010.12.008 10.1016/j.soilbio.2003.10.002 10.1890/06-1847.1 10.1007/s11104-009-0050-x 10.1071/SR08036 10.1021/ef0502397 10.1071/SR07109 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7S9 L.6 7SN 7UA C1K F1W H95 L.G |
DOI | 10.1016/j.soilbio.2011.11.019 |
DatabaseName | CrossRef Pascal-Francis AGRICOLA AGRICOLA - Academic Ecology Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Agriculture |
EISSN | 1879-3428 |
EndPage | 79 |
ExternalDocumentID | 25655936 10_1016_j_soilbio_2011_11_019 S0038071711004111 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CBWCG CNWQP CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HMA HMC HMG HVGLF HZ~ IHE J1W K-O KCYFY KOM LW9 LX3 LY3 LY9 M41 MO0 N9A NHB O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCU SDF SDG SDP SEN SEP SES SEW SIN SPCBC SSA SSJ SSU SSZ T5K TN5 TWZ WUQ XPP Y6R ZMT ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7S9 L.6 7SN 7UA C1K F1W H95 L.G |
ID | FETCH-LOGICAL-c470t-31189fd6b005a73d887e0fa916c089e72b73fa1a844aac339a41ec7bf2c6101e3 |
IEDL.DBID | .~1 |
ISSN | 0038-0717 |
IngestDate | Fri Jul 11 11:28:54 EDT 2025 Fri Jul 11 12:03:44 EDT 2025 Mon Jul 21 09:15:24 EDT 2025 Thu Apr 24 22:54:28 EDT 2025 Tue Jul 01 03:19:46 EDT 2025 Fri Feb 23 02:27:33 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nitrogen immobilization Bio-char Soil microbial biomass Pyrolysis centrifuge reactor Carbon sequestration Triticum aestivum Charcoal Monocotyledones Dynamic characteristic Immobilization Flash pyrolysis Nitrogen Biochar Microbial biomass Cereal crop Carbonization Carbon cycle Soils Nitrogen cycle Gramineae Angiospermae Spermatophyta Soil science Reactor |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-31189fd6b005a73d887e0fa916c089e72b73fa1a844aac339a41ec7bf2c6101e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1431640026 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_918066619 proquest_miscellaneous_1431640026 pascalfrancis_primary_25655936 crossref_citationtrail_10_1016_j_soilbio_2011_11_019 crossref_primary_10_1016_j_soilbio_2011_11_019 elsevier_sciencedirect_doi_10_1016_j_soilbio_2011_11_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-03-01 |
PublicationDateYYYYMMDD | 2012-03-01 |
PublicationDate_xml | – month: 03 year: 2012 text: 2012-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Soil biology & biochemistry |
PublicationYear | 2012 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Wardle, Nilsson, Zackrisson (bib54) 2008; 320 Spokas, Koskinen, Baker, Reicosky (bib49) 2009; 77 Kolb, Fermanich, Dornbush (bib34) 2009; 73 Karaosmanoglu, Isigigur-Ergundenler, Sever (bib33) 2000; 14 Pietikainen, Kiikkila, Fritze (bib47) 2000; 89 Liang, Lehmann, Solomon, Kinyangi, Grossman, O’Neill (bib41) 2006; 70 Lehmann, da Silva, Steiner, Nehls, Zech, Glaser (bib40) 2003; 249 Van Zwieten, Kimber, Morris, Chan, Downie, Rust, Joseph, Cowie (bib52) 2010; 327 Hauggaard-Nielsen, Jensen (bib25) 2001; 72 Wu, Joergensen, Pommerening, Chaussod, Brookes (bib55) 1990; 22 Bech, Larsen, Jensen, Dam-Johansen (bib6) 2009; 33 Bengtsson, Bengtson, Mansson (bib7) 2003; 35 Kaar, Cool, Merriman, Brink (bib32) 1991; 11 Brown (bib14) 2009 Chan, Xu (bib16) 2009 Inscoe, King, Blau (bib27) 1977 Bruun, Hauggaard-Nielsen, Norazana, Egsgaard, Ambus, Jensen, Dam-Johansen (bib15) 2011; 35 Downie, Crosky, Munroe (bib21) 2009 Cheng, Lehmann, Engelhard (bib19) 2008; 72 Nguyen, Lehmann (bib44) 2009; 40 Thomsen, Thygesen, Thomsen (bib51) 2008; 99 Vance, Brookes, Jenkinson (bib53) 1987; 19 Chan, Van Zwieten, Meszaros, Downie, Joseph (bib17) 2008; 46 Laird, Fleming, Wang, Horton, Karlen (bib37) 2010; 158 Major, Rondon, Molina, Riha, Lehmann (bib42) 2010; 333 Bridgwater, Meier, Radlein (bib12) 1999; 30 Sohi, Krull, Lopez-Capel, Bol (bib48) 2010; 105 Craine, Morrow, Fierer (bib20) 2007; 88 Bech, N., 2008. In Situ flash pyrolysis of straw. Ph.D. Dissertation. Department of Chemical and Biochemical Engineering, Technical University of Denmark. Kuzyakov, Subbotina, Chen, Bogomolova, Xu (bib35) 2009; 41 Ambus, Jensen, Robertson (bib1) 2001; 41 Atkinson, Fitzgerald, Hipps (bib3) 2010; 337 Asai, Samson, Stephan, Songyikhangsuthor, Homma, Kiyono, Inoue, Shiraiwa, Horie (bib2) 2009; 111 Baldock, Smernik (bib4) 2002; 33 Hamer, Marschner, Brodowski, Amelung (bib24) 2004; 35 Zimmerman (bib56) 2010; 44 Gaskin, Steiner, Harris, Das, Bibens (bib22) 2008; 51 Brodowski, John, Flessa, Amelung (bib13) 2006; 57 Boateng, Mullen, Goldberg, Hicks, Devine, Lima, McMurtrey (bib8) 2010; 29 Lehmann, Gaunt, Rondon (bib39) 2006; 11 Lee, Kidder, Evans, Paik, Buchanan, Garten, Brown (bib38) 2010; 44 Jenkinson, Brookes, Powlson (bib28) 2004; 36 Brewer, Schmidt-Rohr, Satrio, Brown (bib10) 2009; 28 Chan, Van Zwieten, Meszaros, Downie, Joseph (bib18) 2007; 45 Hilscher, Heister, Siewert, Knicker (bib26) 2009; 40 Oguntunde, Fosu, Ajayi, Van De Giesen (bib46) 2004; 39 Gaskin, Speir, Harris, Das, Lee, Morris, Fisher (bib23) 2010; 102 Joergensen, Mueller, Wolters (bib29) 1996; 28 Joseph, Peacocke, Lehamnn, Munroe (bib31) 2009 Laird, Brown, Amonette, Lehmann (bib36) 2009; 3 Bowen, S., 2006. Biologically-relevant characteristics of dissolved organic carbon (DOC) from soil. Ph.D. Dissertation. School of Biological and Environmental Sciences, University of Stirling, Stirling, UK. Bridgwater, Carson, Coulson (bib11) 2007; 27 Steiner, Das, Garcia, Forster, Zech (bib50) 2008; 51 Novak, Busscher, Watts, Laird, Ahmedna, Niandou (bib45) 2010; 154 Jones, Murphy, Khalid, Ahmad, Edwards-Jones, DeLuca (bib30) 2011; 43 Mohan, Pittman, Steele (bib43) 2006; 20 Lehmann (10.1016/j.soilbio.2011.11.019_bib40) 2003; 249 Wu (10.1016/j.soilbio.2011.11.019_bib55) 1990; 22 Hilscher (10.1016/j.soilbio.2011.11.019_bib26) 2009; 40 Spokas (10.1016/j.soilbio.2011.11.019_bib49) 2009; 77 Brodowski (10.1016/j.soilbio.2011.11.019_bib13) 2006; 57 Wardle (10.1016/j.soilbio.2011.11.019_bib54) 2008; 320 10.1016/j.soilbio.2011.11.019_bib9 Bech (10.1016/j.soilbio.2011.11.019_bib6) 2009; 33 Cheng (10.1016/j.soilbio.2011.11.019_bib19) 2008; 72 Jones (10.1016/j.soilbio.2011.11.019_bib30) 2011; 43 10.1016/j.soilbio.2011.11.019_bib5 Zimmerman (10.1016/j.soilbio.2011.11.019_bib56) 2010; 44 Kaar (10.1016/j.soilbio.2011.11.019_bib32) 1991; 11 Karaosmanoglu (10.1016/j.soilbio.2011.11.019_bib33) 2000; 14 Major (10.1016/j.soilbio.2011.11.019_bib42) 2010; 333 Kolb (10.1016/j.soilbio.2011.11.019_bib34) 2009; 73 Lee (10.1016/j.soilbio.2011.11.019_bib38) 2010; 44 Asai (10.1016/j.soilbio.2011.11.019_bib2) 2009; 111 Bengtsson (10.1016/j.soilbio.2011.11.019_bib7) 2003; 35 Oguntunde (10.1016/j.soilbio.2011.11.019_bib46) 2004; 39 Brown (10.1016/j.soilbio.2011.11.019_bib14) 2009 Craine (10.1016/j.soilbio.2011.11.019_bib20) 2007; 88 Novak (10.1016/j.soilbio.2011.11.019_bib45) 2010; 154 Chan (10.1016/j.soilbio.2011.11.019_bib17) 2008; 46 Steiner (10.1016/j.soilbio.2011.11.019_bib50) 2008; 51 Gaskin (10.1016/j.soilbio.2011.11.019_bib22) 2008; 51 Mohan (10.1016/j.soilbio.2011.11.019_bib43) 2006; 20 Downie (10.1016/j.soilbio.2011.11.019_bib21) 2009 Hamer (10.1016/j.soilbio.2011.11.019_bib24) 2004; 35 Gaskin (10.1016/j.soilbio.2011.11.019_bib23) 2010; 102 Ambus (10.1016/j.soilbio.2011.11.019_bib1) 2001; 41 Chan (10.1016/j.soilbio.2011.11.019_bib18) 2007; 45 Sohi (10.1016/j.soilbio.2011.11.019_bib48) 2010; 105 Kuzyakov (10.1016/j.soilbio.2011.11.019_bib35) 2009; 41 Pietikainen (10.1016/j.soilbio.2011.11.019_bib47) 2000; 89 Joseph (10.1016/j.soilbio.2011.11.019_bib31) 2009 Brewer (10.1016/j.soilbio.2011.11.019_bib10) 2009; 28 Hauggaard-Nielsen (10.1016/j.soilbio.2011.11.019_bib25) 2001; 72 Lehmann (10.1016/j.soilbio.2011.11.019_bib39) 2006; 11 Van Zwieten (10.1016/j.soilbio.2011.11.019_bib52) 2010; 327 Laird (10.1016/j.soilbio.2011.11.019_bib36) 2009; 3 Joergensen (10.1016/j.soilbio.2011.11.019_bib29) 1996; 28 Vance (10.1016/j.soilbio.2011.11.019_bib53) 1987; 19 Inscoe (10.1016/j.soilbio.2011.11.019_bib27) 1977 Atkinson (10.1016/j.soilbio.2011.11.019_bib3) 2010; 337 Bridgwater (10.1016/j.soilbio.2011.11.019_bib11) 2007; 27 Nguyen (10.1016/j.soilbio.2011.11.019_bib44) 2009; 40 Bruun (10.1016/j.soilbio.2011.11.019_bib15) 2011; 35 Liang (10.1016/j.soilbio.2011.11.019_bib41) 2006; 70 Laird (10.1016/j.soilbio.2011.11.019_bib37) 2010; 158 Baldock (10.1016/j.soilbio.2011.11.019_bib4) 2002; 33 Bridgwater (10.1016/j.soilbio.2011.11.019_bib12) 1999; 30 Chan (10.1016/j.soilbio.2011.11.019_bib16) 2009 Thomsen (10.1016/j.soilbio.2011.11.019_bib51) 2008; 99 Jenkinson (10.1016/j.soilbio.2011.11.019_bib28) 2004; 36 Boateng (10.1016/j.soilbio.2011.11.019_bib8) 2010; 29 |
References_xml | – volume: 43 start-page: 1723 year: 2011 end-page: 1731 ident: bib30 article-title: Short-term biochar-induced increase in soil CO publication-title: Soil Biology & Biochemistry – volume: 102 start-page: 623 year: 2010 end-page: 633 ident: bib23 article-title: Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield publication-title: Agronomy Journal – volume: 40 start-page: 332 year: 2009 end-page: 342 ident: bib26 article-title: Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil publication-title: Organic Geochemistry – volume: 327 start-page: 235 year: 2010 end-page: 246 ident: bib52 article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility publication-title: Plant and Soil – volume: 27 start-page: 204 year: 2007 end-page: 216 ident: bib11 article-title: A comparison and fast and slow pyrolysis liquids from mallee publication-title: International Journal of Global Energy Issues – volume: 105 start-page: 47 year: 2010 end-page: 82 ident: bib48 article-title: A review of biochar and its use and function in soil publication-title: Advances in Agronomy – volume: 39 start-page: 295 year: 2004 end-page: 299 ident: bib46 article-title: Effects of charcoal production on maize yield, chemical properties and texture of soil publication-title: Biology and Fertility of Soils – volume: 11 start-page: 403 year: 2006 end-page: 427 ident: bib39 article-title: Bio-char sequestration in terrestrial ecosystems – a review publication-title: Mitigation and Adaptation Strategies for Global Change – volume: 333 start-page: 117 year: 2010 end-page: 128 ident: bib42 article-title: Maize yield and nutrition during 4 years after biochar application to a colombian savanna oxisol publication-title: Plant and Soil – volume: 3 start-page: 547 year: 2009 end-page: 562 ident: bib36 article-title: Review of the pyrolysis platform for coproducing bio-oil and biochar publication-title: Biofuels Bioproducts & Biorefining – volume: 320 start-page: 629 year: 2008 ident: bib54 article-title: Fire-derived charcoal causes loss of forest humus publication-title: Science – start-page: 13 year: 2009 end-page: 32 ident: bib21 article-title: Physical properties of biochar publication-title: Biochar for Environmental Management – volume: 51 start-page: 359 year: 2008 end-page: 366 ident: bib50 article-title: Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic ferralsol publication-title: Pedobiologia – volume: 89 start-page: 231 year: 2000 end-page: 242 ident: bib47 article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus publication-title: Oikos – reference: Bowen, S., 2006. Biologically-relevant characteristics of dissolved organic carbon (DOC) from soil. Ph.D. Dissertation. School of Biological and Environmental Sciences, University of Stirling, Stirling, UK. – volume: 44 start-page: 7970 year: 2010 end-page: 7974 ident: bib38 article-title: Characterization of biochars produced from cornstovers for soil amendment publication-title: Environmental Science & Technology – start-page: 127 year: 2009 end-page: 146 ident: bib14 article-title: Biochar production technology publication-title: Biochar for Environmental Management – volume: 20 start-page: 848 year: 2006 end-page: 889 ident: bib43 article-title: Pyrolysis of wood/biomass for bio-oil: a critical review publication-title: Energy & Fuels – volume: 35 start-page: 1182 year: 2011 end-page: 1189 ident: bib15 article-title: Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil publication-title: Biomass & Bioenergy – volume: 249 start-page: 343 year: 2003 end-page: 357 ident: bib40 article-title: Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central amazon basin: fertilizer, manure and charcoal amendments publication-title: Plant and Soil – volume: 51 start-page: 2061 year: 2008 end-page: 2069 ident: bib22 article-title: Effect of low-temperature pyrolysis conditions on biochar for agricultural use publication-title: Transactions of the ASABE – volume: 88 start-page: 2105 year: 2007 end-page: 2113 ident: bib20 article-title: Microbial nitrogen limitation increases decomposition publication-title: Ecology – volume: 33 start-page: 1093 year: 2002 end-page: 1109 ident: bib4 article-title: Chemical composition and bioavailability of thermally, altered pinus resinosa (red pine) wood publication-title: Organic Geochemistry – volume: 337 start-page: 1 year: 2010 end-page: 18 ident: bib3 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant and Soil – reference: Bech, N., 2008. In Situ flash pyrolysis of straw. Ph.D. Dissertation. Department of Chemical and Biochemical Engineering, Technical University of Denmark. – volume: 70 start-page: 1719 year: 2006 end-page: 1730 ident: bib41 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Science Society of America Journal – volume: 158 start-page: 436 year: 2010 end-page: 442 ident: bib37 article-title: Biochar impact on nutrient leaching from a midwestern agricultural soil publication-title: Geoderma – volume: 72 start-page: 185 year: 2001 end-page: 196 ident: bib25 article-title: Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability publication-title: Field Crops Research – volume: 28 start-page: 386 year: 2009 end-page: 396 ident: bib10 article-title: Characterization of biochar from fast pyrolysis and gasification systems publication-title: Environmental Progress & Sustainable Energy – volume: 46 start-page: 437 year: 2008 end-page: 444 ident: bib17 article-title: Using poultry litter biochars as soil amendments publication-title: Australian Journal of Soil Research – volume: 41 start-page: 210 year: 2009 end-page: 219 ident: bib35 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling publication-title: Soil Biology & Biochemistry – volume: 14 start-page: 336 year: 2000 end-page: 339 ident: bib33 article-title: Biochar from the straw-stalk of rapeseed plant publication-title: Energy Fuels – volume: 45 start-page: 629 year: 2007 end-page: 634 ident: bib18 article-title: Agronomic values of greenwaste biochar as a soil amendment publication-title: Australian Journal of Soil Research – volume: 72 start-page: 1598 year: 2008 end-page: 1610 ident: bib19 article-title: Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence publication-title: Geochimica et Cosmochimica Acta – volume: 40 start-page: 846 year: 2009 end-page: 853 ident: bib44 article-title: Black carbon decomposition under varying water regimes publication-title: Organic Geochemistry – volume: 77 start-page: 574 year: 2009 end-page: 581 ident: bib49 article-title: Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a minnesota soil publication-title: Chemosphere – volume: 99 start-page: 4221 year: 2008 end-page: 4228 ident: bib51 article-title: Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis publication-title: Bioresource Technology – volume: 30 start-page: 1479 year: 1999 end-page: 1493 ident: bib12 article-title: An overview of fast pyrolysis of biomass publication-title: Organic Geochemistry – start-page: 317 year: 1977 end-page: 345 ident: bib27 article-title: Microreactions publication-title: Handbook of Derivatives for Chromatography – volume: 35 start-page: 143 year: 2003 end-page: 154 ident: bib7 article-title: Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity publication-title: Soil Biology Biochemistry – volume: 11 start-page: 447 year: 1991 end-page: 463 ident: bib32 article-title: The complete analysis of wood polysaccharides using HPLC publication-title: Journal of Wood Chemistry and Technology – volume: 33 start-page: 999 year: 2009 end-page: 1011 ident: bib6 article-title: Modelling solid-convective flash pyrolysis of straw and wood in the pyrolysis centrifuge reactor publication-title: Biomass Bioenergy – volume: 57 start-page: 539 year: 2006 end-page: 546 ident: bib13 article-title: Aggregate-occluded black carbon in soil publication-title: European Journal of Soil Science – volume: 29 start-page: 175 year: 2010 end-page: 183 ident: bib8 article-title: Sustainable production of bioenergy and biochar from the straw of high-biomass soybean lines via fast pyrolysis publication-title: Environmental Progress & Sustainable Energy – volume: 28 start-page: 1147 year: 1996 end-page: 1153 ident: bib29 article-title: Total carbohydrates of the soil microbial biomass in 0.5 M K publication-title: Soil Biology Biochemistry – start-page: 107 year: 2009 end-page: 126 ident: bib31 article-title: Developing a biochar Classification and Test methods publication-title: Biochar for Environmental Management – volume: 22 start-page: 1167 year: 1990 end-page: 1169 ident: bib55 article-title: Measurement of soil microbial biomass C by fumigation extraction - an automated procedure publication-title: Soil Biology Biochemistry – volume: 44 start-page: 1295 year: 2010 end-page: 1301 ident: bib56 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environmental Science & Technology – volume: 73 start-page: 1173 year: 2009 end-page: 1181 ident: bib34 article-title: Effect of charcoal quantity on microbial biomass and activity in temperate soils publication-title: Soil Science Society of America Journal – volume: 41 start-page: 7 year: 2001 end-page: 15 ident: bib1 article-title: Nitrous oxide and N-leaching losses from agricultural soil: influence of crop residue particle size, quality and placement publication-title: Phyton-Annales Rei Botanicae – volume: 36 start-page: 5 year: 2004 end-page: 7 ident: bib28 article-title: Measuring soil microbial biomass publication-title: Soil Biology & Biochemistry – volume: 154 start-page: 281 year: 2010 end-page: 288 ident: bib45 article-title: Short-term CO publication-title: Geoderma – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: bib53 article-title: An extraction method for measuring soil microbial biomass-C publication-title: Soil Biology & Biochemistry – start-page: 67 year: 2009 end-page: 84 ident: bib16 article-title: Biochar: nutrient properties and their Enhancement publication-title: Biochar for Environmental Management – volume: 111 start-page: 81 year: 2009 end-page: 84 ident: bib2 article-title: Biochar amendment techniques for upland rice production in northern laos 1. Soil physical properties, leaf SPAD and grain yield publication-title: Field Crops Research – volume: 35 start-page: 823 year: 2004 end-page: 830 ident: bib24 article-title: Interactive priming of black carbon and glucose mineralisation publication-title: Organic Geochemistry – volume: 41 start-page: 7 year: 2001 ident: 10.1016/j.soilbio.2011.11.019_bib1 article-title: Nitrous oxide and N-leaching losses from agricultural soil: influence of crop residue particle size, quality and placement publication-title: Phyton-Annales Rei Botanicae – ident: 10.1016/j.soilbio.2011.11.019_bib9 – volume: 19 start-page: 703 year: 1987 ident: 10.1016/j.soilbio.2011.11.019_bib53 article-title: An extraction method for measuring soil microbial biomass-C publication-title: Soil Biology & Biochemistry doi: 10.1016/0038-0717(87)90052-6 – start-page: 107 year: 2009 ident: 10.1016/j.soilbio.2011.11.019_bib31 article-title: Developing a biochar Classification and Test methods – volume: 22 start-page: 1167 year: 1990 ident: 10.1016/j.soilbio.2011.11.019_bib55 article-title: Measurement of soil microbial biomass C by fumigation extraction - an automated procedure publication-title: Soil Biology Biochemistry doi: 10.1016/0038-0717(90)90046-3 – volume: 70 start-page: 1719 year: 2006 ident: 10.1016/j.soilbio.2011.11.019_bib41 article-title: Black carbon increases cation exchange capacity in soils publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2005.0383 – ident: 10.1016/j.soilbio.2011.11.019_bib5 – volume: 39 start-page: 295 year: 2004 ident: 10.1016/j.soilbio.2011.11.019_bib46 article-title: Effects of charcoal production on maize yield, chemical properties and texture of soil publication-title: Biology and Fertility of Soils doi: 10.1007/s00374-003-0707-1 – volume: 27 start-page: 204 year: 2007 ident: 10.1016/j.soilbio.2011.11.019_bib11 article-title: A comparison and fast and slow pyrolysis liquids from mallee publication-title: International Journal of Global Energy Issues doi: 10.1504/IJGEI.2007.013655 – volume: 29 start-page: 175 year: 2010 ident: 10.1016/j.soilbio.2011.11.019_bib8 article-title: Sustainable production of bioenergy and biochar from the straw of high-biomass soybean lines via fast pyrolysis publication-title: Environmental Progress & Sustainable Energy doi: 10.1002/ep.10446 – volume: 35 start-page: 823 year: 2004 ident: 10.1016/j.soilbio.2011.11.019_bib24 article-title: Interactive priming of black carbon and glucose mineralisation publication-title: Organic Geochemistry doi: 10.1016/j.orggeochem.2004.03.003 – volume: 72 start-page: 185 year: 2001 ident: 10.1016/j.soilbio.2011.11.019_bib25 article-title: Evaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availability publication-title: Field Crops Research doi: 10.1016/S0378-4290(01)00176-9 – volume: 89 start-page: 231 year: 2000 ident: 10.1016/j.soilbio.2011.11.019_bib47 article-title: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus publication-title: Oikos doi: 10.1034/j.1600-0706.2000.890203.x – volume: 337 start-page: 1 year: 2010 ident: 10.1016/j.soilbio.2011.11.019_bib3 article-title: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review publication-title: Plant and Soil doi: 10.1007/s11104-010-0464-5 – volume: 57 start-page: 539 year: 2006 ident: 10.1016/j.soilbio.2011.11.019_bib13 article-title: Aggregate-occluded black carbon in soil publication-title: European Journal of Soil Science doi: 10.1111/j.1365-2389.2006.00807.x – volume: 44 start-page: 1295 year: 2010 ident: 10.1016/j.soilbio.2011.11.019_bib56 article-title: Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) publication-title: Environmental Science & Technology doi: 10.1021/es903140c – start-page: 13 year: 2009 ident: 10.1016/j.soilbio.2011.11.019_bib21 article-title: Physical properties of biochar – volume: 40 start-page: 846 year: 2009 ident: 10.1016/j.soilbio.2011.11.019_bib44 article-title: Black carbon decomposition under varying water regimes publication-title: Organic Geochemistry doi: 10.1016/j.orggeochem.2009.05.004 – volume: 105 start-page: 47 year: 2010 ident: 10.1016/j.soilbio.2011.11.019_bib48 article-title: A review of biochar and its use and function in soil publication-title: Advances in Agronomy doi: 10.1016/S0065-2113(10)05002-9 – volume: 51 start-page: 359 year: 2008 ident: 10.1016/j.soilbio.2011.11.019_bib50 article-title: Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic ferralsol publication-title: Pedobiologia doi: 10.1016/j.pedobi.2007.08.002 – volume: 35 start-page: 143 year: 2003 ident: 10.1016/j.soilbio.2011.11.019_bib7 article-title: Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity publication-title: Soil Biology Biochemistry doi: 10.1016/S0038-0717(02)00248-1 – volume: 11 start-page: 447 year: 1991 ident: 10.1016/j.soilbio.2011.11.019_bib32 article-title: The complete analysis of wood polysaccharides using HPLC publication-title: Journal of Wood Chemistry and Technology doi: 10.1080/02773819108051086 – volume: 102 start-page: 623 year: 2010 ident: 10.1016/j.soilbio.2011.11.019_bib23 article-title: Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield publication-title: Agronomy Journal doi: 10.2134/agronj2009.0083 – volume: 72 start-page: 1598 year: 2008 ident: 10.1016/j.soilbio.2011.11.019_bib19 article-title: Natural oxidation of black carbon in soils: changes in molecular form and surface charge along a climosequence publication-title: Geochimica et Cosmochimica Acta doi: 10.1016/j.gca.2008.01.010 – volume: 14 start-page: 336 year: 2000 ident: 10.1016/j.soilbio.2011.11.019_bib33 article-title: Biochar from the straw-stalk of rapeseed plant publication-title: Energy Fuels doi: 10.1021/ef9901138 – volume: 33 start-page: 999 year: 2009 ident: 10.1016/j.soilbio.2011.11.019_bib6 article-title: Modelling solid-convective flash pyrolysis of straw and wood in the pyrolysis centrifuge reactor publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2009.03.009 – start-page: 317 year: 1977 ident: 10.1016/j.soilbio.2011.11.019_bib27 article-title: Microreactions – volume: 41 start-page: 210 year: 2009 ident: 10.1016/j.soilbio.2011.11.019_bib35 article-title: Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2008.10.016 – volume: 99 start-page: 4221 year: 2008 ident: 10.1016/j.soilbio.2011.11.019_bib51 article-title: Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis publication-title: Bioresource Technology doi: 10.1016/j.biortech.2007.08.054 – volume: 73 start-page: 1173 year: 2009 ident: 10.1016/j.soilbio.2011.11.019_bib34 article-title: Effect of charcoal quantity on microbial biomass and activity in temperate soils publication-title: Soil Science Society of America Journal doi: 10.2136/sssaj2008.0232 – volume: 51 start-page: 2061 year: 2008 ident: 10.1016/j.soilbio.2011.11.019_bib22 article-title: Effect of low-temperature pyrolysis conditions on biochar for agricultural use publication-title: Transactions of the ASABE doi: 10.13031/2013.25409 – volume: 77 start-page: 574 year: 2009 ident: 10.1016/j.soilbio.2011.11.019_bib49 article-title: Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a minnesota soil publication-title: Chemosphere doi: 10.1016/j.chemosphere.2009.06.053 – volume: 249 start-page: 343 year: 2003 ident: 10.1016/j.soilbio.2011.11.019_bib40 article-title: Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central amazon basin: fertilizer, manure and charcoal amendments publication-title: Plant and Soil doi: 10.1023/A:1022833116184 – volume: 158 start-page: 436 year: 2010 ident: 10.1016/j.soilbio.2011.11.019_bib37 article-title: Biochar impact on nutrient leaching from a midwestern agricultural soil publication-title: Geoderma doi: 10.1016/j.geoderma.2010.05.012 – volume: 320 start-page: 629 year: 2008 ident: 10.1016/j.soilbio.2011.11.019_bib54 article-title: Fire-derived charcoal causes loss of forest humus publication-title: Science doi: 10.1126/science.1154960 – volume: 111 start-page: 81 year: 2009 ident: 10.1016/j.soilbio.2011.11.019_bib2 article-title: Biochar amendment techniques for upland rice production in northern laos 1. Soil physical properties, leaf SPAD and grain yield publication-title: Field Crops Research doi: 10.1016/j.fcr.2008.10.008 – volume: 43 start-page: 1723 year: 2011 ident: 10.1016/j.soilbio.2011.11.019_bib30 article-title: Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2011.04.018 – volume: 333 start-page: 117 year: 2010 ident: 10.1016/j.soilbio.2011.11.019_bib42 article-title: Maize yield and nutrition during 4 years after biochar application to a colombian savanna oxisol publication-title: Plant and Soil doi: 10.1007/s11104-010-0327-0 – volume: 28 start-page: 1147 year: 1996 ident: 10.1016/j.soilbio.2011.11.019_bib29 article-title: Total carbohydrates of the soil microbial biomass in 0.5 M K2SO4 soil extracts publication-title: Soil Biology Biochemistry doi: 10.1016/0038-0717(96)00111-3 – volume: 30 start-page: 1479 year: 1999 ident: 10.1016/j.soilbio.2011.11.019_bib12 article-title: An overview of fast pyrolysis of biomass publication-title: Organic Geochemistry doi: 10.1016/S0146-6380(99)00120-5 – volume: 40 start-page: 332 year: 2009 ident: 10.1016/j.soilbio.2011.11.019_bib26 article-title: Mineralisation and structural changes during the initial phase of microbial degradation of pyrogenic plant residues in soil publication-title: Organic Geochemistry doi: 10.1016/j.orggeochem.2008.12.004 – volume: 154 start-page: 281 year: 2010 ident: 10.1016/j.soilbio.2011.11.019_bib45 article-title: Short-term CO2 mineralization after additions of biochar and switchgrass to a typic kandiudult publication-title: Geoderma doi: 10.1016/j.geoderma.2009.10.014 – volume: 44 start-page: 7970 year: 2010 ident: 10.1016/j.soilbio.2011.11.019_bib38 article-title: Characterization of biochars produced from cornstovers for soil amendment publication-title: Environmental Science & Technology doi: 10.1021/es101337x – volume: 33 start-page: 1093 year: 2002 ident: 10.1016/j.soilbio.2011.11.019_bib4 article-title: Chemical composition and bioavailability of thermally, altered pinus resinosa (red pine) wood publication-title: Organic Geochemistry doi: 10.1016/S0146-6380(02)00062-1 – volume: 3 start-page: 547 year: 2009 ident: 10.1016/j.soilbio.2011.11.019_bib36 article-title: Review of the pyrolysis platform for coproducing bio-oil and biochar publication-title: Biofuels Bioproducts & Biorefining doi: 10.1002/bbb.169 – volume: 28 start-page: 386 year: 2009 ident: 10.1016/j.soilbio.2011.11.019_bib10 article-title: Characterization of biochar from fast pyrolysis and gasification systems publication-title: Environmental Progress & Sustainable Energy doi: 10.1002/ep.10378 – start-page: 127 year: 2009 ident: 10.1016/j.soilbio.2011.11.019_bib14 article-title: Biochar production technology – volume: 11 start-page: 403 year: 2006 ident: 10.1016/j.soilbio.2011.11.019_bib39 article-title: Bio-char sequestration in terrestrial ecosystems – a review publication-title: Mitigation and Adaptation Strategies for Global Change doi: 10.1007/s11027-005-9006-5 – volume: 35 start-page: 1182 year: 2011 ident: 10.1016/j.soilbio.2011.11.019_bib15 article-title: Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil publication-title: Biomass & Bioenergy doi: 10.1016/j.biombioe.2010.12.008 – start-page: 67 year: 2009 ident: 10.1016/j.soilbio.2011.11.019_bib16 article-title: Biochar: nutrient properties and their Enhancement – volume: 36 start-page: 5 year: 2004 ident: 10.1016/j.soilbio.2011.11.019_bib28 article-title: Measuring soil microbial biomass publication-title: Soil Biology & Biochemistry doi: 10.1016/j.soilbio.2003.10.002 – volume: 88 start-page: 2105 year: 2007 ident: 10.1016/j.soilbio.2011.11.019_bib20 article-title: Microbial nitrogen limitation increases decomposition publication-title: Ecology doi: 10.1890/06-1847.1 – volume: 327 start-page: 235 year: 2010 ident: 10.1016/j.soilbio.2011.11.019_bib52 article-title: Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility publication-title: Plant and Soil doi: 10.1007/s11104-009-0050-x – volume: 46 start-page: 437 year: 2008 ident: 10.1016/j.soilbio.2011.11.019_bib17 article-title: Using poultry litter biochars as soil amendments publication-title: Australian Journal of Soil Research doi: 10.1071/SR08036 – volume: 20 start-page: 848 year: 2006 ident: 10.1016/j.soilbio.2011.11.019_bib43 article-title: Pyrolysis of wood/biomass for bio-oil: a critical review publication-title: Energy & Fuels doi: 10.1021/ef0502397 – volume: 45 start-page: 629 year: 2007 ident: 10.1016/j.soilbio.2011.11.019_bib18 article-title: Agronomic values of greenwaste biochar as a soil amendment publication-title: Australian Journal of Soil Research doi: 10.1071/SR07109 |
SSID | ssj0002513 |
Score | 2.5436122 |
Snippet | This study compared the effect of two principal pyrolysis methods on the chemical characteristics of biochar and the impact on C and N dynamics after soil... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 73 |
SubjectTerms | Agronomy. Soil science and plant productions Bio-char biochar Biochemistry and biology Biological and medical sciences carbohydrate content carbon dioxide Carbon sequestration centrifuges Charcoal Chemical, physicochemical, biochemical and biological properties emissions Fundamental and applied biological sciences. Psychology microbial biomass Microbiology mineralization nitrogen Nitrogen immobilization ovens particle size Physics, chemistry, biochemistry and biology of agricultural and forest soils polymerase chain reaction pyrolysis Pyrolysis centrifuge reactor Soil microbial biomass Soil science soil treatment sugars surface area Triticum aestivum wheat straw |
Title | Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics |
URI | https://dx.doi.org/10.1016/j.soilbio.2011.11.019 https://www.proquest.com/docview/1431640026 https://www.proquest.com/docview/918066619 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kHlREfGJ9lBW8pm2abXdzLEGpr54UegubZFdaSlKaFPHib3cm2SiiInhMyCbDzGZmPnbmG4BLOTAYB_q-o4T0EKCYxME82TiRj8Eu4RFGLTrRfRgPRk_8dtKfrEFQ98JQWaX1_ZVPL721vdOx2uwsplPq8SWydFeUpGdu2d_LuaBd3n77LPPA-G2JdyU164jPLp7OjPhy59E0q5g8icyTCHd-jk_bC5Wj1kw17uKb5y7D0fUu7Ng8kg0rUfdgTaf7sDV8XlouDb0PG0E9zO0A7iuW4pxlhuXz7IWpNGFG5QVbvC6zkpaEoYjUg8WylJHELCgfGjN8W0qFniypptfnh_B0ffUYjBw7SMGJuegW6Gdd6ZtkQL-cEl6CjkV3jcLMMO5KX4teJDyjXCU5Vyr2PF9xV8ciMr0YsytXe0fQSLNUHwNLpIgVdUBpL0GswxWmFz0iyIkjOjDtNoHX6gtjyzJOwy7mYV1ONgut1kPSOiKQELXehPbHskVFs_HXAlnbJvyyX0IMBX8tbX2x5ccHMfvr04DDJlzUxg3RTHSColKdrXLESR7CS8KtTWC_POO7kjCh65_8X8RT2MSrXlXrdgaNYrnS55j8FFGr3N0tWB_e3I3G75YGAqQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1RT9swED4x9sAQQoxtosCYJ22PoU3i1s4DD6gbKqP0CSTePMexp6KSVE0R6gt_ij_IXeKA0IaQJvGaxI51Z999J999B_BN9hz6gW4SaCFjDFBcFiBOdkGaoLPLeIpei250T0e9wTn_ddG9WIK7phaG0iq97a9temWt_ZO2l2Z7Oh5TjS-RpYeiIj3DI-szK0_s4gbjtvLg-Acq-XsUHf086w8C31ogMFx05mh5Qpm4rEebUIs4w6NmO04jVjIdmVgRpSJ2OtSSc61NHCeah9aI1EUG8UZoY5z3DbzlaC6obcL-7WNeCQIGz_QrqTpIPJYNtS-JoHeSjouaOpTYQ4nh598OcW2qS1STq_tr_OUqKv93tAHrHriyw1o272HJ5puwevhn5sk77Cas9JvucR9gWNMil6xwrJwUN0znGXO6nLPpYlZUPCgMl0hFX6zIGa2Y9auPRgxnyymzlGWLXF-NTfkRzl9FvJ9gOS9yuwUsk8JoKrmycYbBFdeIZyJi5DEp3dB2WsAb8Snjac2pu8ZENflrl8pLXZHUMeRRKPUW7D8Mm9a8Hi8NkI1u1JMNqtD3vDR074kuH36IcLNLHRVb8LVRrkI10ZWNzm1xXWJgFmM8S4FyC9gz3yShpCA0TLb_f4lfYGVwdjpUw-PRyQ68wzdRnWi3C8vz2bX9jMhrnu5VO53B79c-WvfxoD3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+slow+and+fast+pyrolysis+biochar+on+soil+C+and+N+turnover+dynamics&rft.jtitle=Soil+biology+%26+biochemistry&rft.au=Bruun%2C+Esben+W&rft.au=Ambus%2C+Per&rft.au=Egsgaard%2C+Helge&rft.au=Hauggaard-Nielsen%2C+Henrik&rft.date=2012-03-01&rft.issn=0038-0717&rft.volume=46+p.73-79&rft.spage=73&rft.epage=79&rft_id=info:doi/10.1016%2Fj.soilbio.2011.11.019&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-0717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-0717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-0717&client=summon |