Decline in the contribution of microbial residues to soil organic carbon along a subtropical elevation gradient
There has been an increasing interest in studying microbial necromasses and their contribution to soil organic carbon (SOC) accumulation. However, it remains unclear how the interaction among climate, plants, and soil influence the microbial anabolism and how microbial necromass contribute to SOC fo...
Saved in:
Published in | The Science of the total environment Vol. 749; p. 141583 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
20.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There has been an increasing interest in studying microbial necromasses and their contribution to soil organic carbon (SOC) accumulation. However, it remains unclear how the interaction among climate, plants, and soil influence the microbial anabolism and how microbial necromass contribute to SOC formation. Here, we assessed the relative contribution of microbial residues to SOC pool across a subtropical elevation gradient (ranged from 630 to 2130 m a.s.l.) representing a subtropical ecosystem on Wuyi Mountain in China, by using amino sugars as tracers. Analysis of topsoil (0–10 cm) amino sugars and the composition of microbial community across this gradient revealed that the soil total amino sugars accounting for 12.2–25.7% of the SOC pool, decreased with increasing elevation. Moreover, the linear reduction in the bacterial-derived carbon (C) and an increase in the ratio of fungal- to bacterial-derived C with increasing elevation suggested the reduction in the contribution of bacterial-derived C to SOC pool across this elevation gradient. The divergent changes in the contribution of the microbial residues to SOC infer a potential change in SOC composition and stability. The microbial-derived SOC formation and its climatic responses are influenced by the interaction of vegetation types and soil properties, with soil amorphous Fe being the determiner of soil amino sugar accrual. Our work highlights the importance of understanding ecosystem type and mineral composition in regulating microbial-mediated SOC formation and accumulation in responses to climate change in subtropical ecosystems.
[Display omitted]
•Soil amino sugars were measured along a subtropical elevation gradient.•The microbial residues related to SOC reduced with increasing elevation.•Soil mineral protection impaired the microbial necromass formation in soils.•Fungal-derived carbon contributed more to SOC than the bacterial-derived carbon. |
---|---|
AbstractList | There has been an increasing interest in studying microbial necromasses and their contribution to soil organic carbon (SOC) accumulation. However, it remains unclear how the interaction among climate, plants, and soil influence the microbial anabolism and how microbial necromass contribute to SOC formation. Here, we assessed the relative contribution of microbial residues to SOC pool across a subtropical elevation gradient (ranged from 630 to 2130 m a.s.l.) representing a subtropical ecosystem on Wuyi Mountain in China, by using amino sugars as tracers. Analysis of topsoil (0–10 cm) amino sugars and the composition of microbial community across this gradient revealed that the soil total amino sugars accounting for 12.2–25.7% of the SOC pool, decreased with increasing elevation. Moreover, the linear reduction in the bacterial-derived carbon (C) and an increase in the ratio of fungal- to bacterial-derived C with increasing elevation suggested the reduction in the contribution of bacterial-derived C to SOC pool across this elevation gradient. The divergent changes in the contribution of the microbial residues to SOC infer a potential change in SOC composition and stability. The microbial-derived SOC formation and its climatic responses are influenced by the interaction of vegetation types and soil properties, with soil amorphous Fe being the determiner of soil amino sugar accrual. Our work highlights the importance of understanding ecosystem type and mineral composition in regulating microbial-mediated SOC formation and accumulation in responses to climate change in subtropical ecosystems. There has been an increasing interest in studying microbial necromasses and their contribution to soil organic carbon (SOC) accumulation. However, it remains unclear how the interaction among climate, plants, and soil influence the microbial anabolism and how microbial necromass contribute to SOC formation. Here, we assessed the relative contribution of microbial residues to SOC pool across a subtropical elevation gradient (ranged from 630 to 2130 m a.s.l.) representing a subtropical ecosystem on Wuyi Mountain in China, by using amino sugars as tracers. Analysis of topsoil (0-10 cm) amino sugars and the composition of microbial community across this gradient revealed that the soil total amino sugars accounting for 12.2-25.7% of the SOC pool, decreased with increasing elevation. Moreover, the linear reduction in the bacterial-derived carbon (C) and an increase in the ratio of fungal- to bacterial-derived C with increasing elevation suggested the reduction in the contribution of bacterial-derived C to SOC pool across this elevation gradient. The divergent changes in the contribution of the microbial residues to SOC infer a potential change in SOC composition and stability. The microbial-derived SOC formation and its climatic responses are influenced by the interaction of vegetation types and soil properties, with soil amorphous Fe being the determiner of soil amino sugar accrual. Our work highlights the importance of understanding ecosystem type and mineral composition in regulating microbial-mediated SOC formation and accumulation in responses to climate change in subtropical ecosystems. There has been an increasing interest in studying microbial necromasses and their contribution to soil organic carbon (SOC) accumulation. However, it remains unclear how the interaction among climate, plants, and soil influence the microbial anabolism and how microbial necromass contribute to SOC formation. Here, we assessed the relative contribution of microbial residues to SOC pool across a subtropical elevation gradient (ranged from 630 to 2130 m a.s.l.) representing a subtropical ecosystem on Wuyi Mountain in China, by using amino sugars as tracers. Analysis of topsoil (0-10 cm) amino sugars and the composition of microbial community across this gradient revealed that the soil total amino sugars accounting for 12.2-25.7% of the SOC pool, decreased with increasing elevation. Moreover, the linear reduction in the bacterial-derived carbon (C) and an increase in the ratio of fungal- to bacterial-derived C with increasing elevation suggested the reduction in the contribution of bacterial-derived C to SOC pool across this elevation gradient. The divergent changes in the contribution of the microbial residues to SOC infer a potential change in SOC composition and stability. The microbial-derived SOC formation and its climatic responses are influenced by the interaction of vegetation types and soil properties, with soil amorphous Fe being the determiner of soil amino sugar accrual. Our work highlights the importance of understanding ecosystem type and mineral composition in regulating microbial-mediated SOC formation and accumulation in responses to climate change in subtropical ecosystems.There has been an increasing interest in studying microbial necromasses and their contribution to soil organic carbon (SOC) accumulation. However, it remains unclear how the interaction among climate, plants, and soil influence the microbial anabolism and how microbial necromass contribute to SOC formation. Here, we assessed the relative contribution of microbial residues to SOC pool across a subtropical elevation gradient (ranged from 630 to 2130 m a.s.l.) representing a subtropical ecosystem on Wuyi Mountain in China, by using amino sugars as tracers. Analysis of topsoil (0-10 cm) amino sugars and the composition of microbial community across this gradient revealed that the soil total amino sugars accounting for 12.2-25.7% of the SOC pool, decreased with increasing elevation. Moreover, the linear reduction in the bacterial-derived carbon (C) and an increase in the ratio of fungal- to bacterial-derived C with increasing elevation suggested the reduction in the contribution of bacterial-derived C to SOC pool across this elevation gradient. The divergent changes in the contribution of the microbial residues to SOC infer a potential change in SOC composition and stability. The microbial-derived SOC formation and its climatic responses are influenced by the interaction of vegetation types and soil properties, with soil amorphous Fe being the determiner of soil amino sugar accrual. Our work highlights the importance of understanding ecosystem type and mineral composition in regulating microbial-mediated SOC formation and accumulation in responses to climate change in subtropical ecosystems. There has been an increasing interest in studying microbial necromasses and their contribution to soil organic carbon (SOC) accumulation. However, it remains unclear how the interaction among climate, plants, and soil influence the microbial anabolism and how microbial necromass contribute to SOC formation. Here, we assessed the relative contribution of microbial residues to SOC pool across a subtropical elevation gradient (ranged from 630 to 2130 m a.s.l.) representing a subtropical ecosystem on Wuyi Mountain in China, by using amino sugars as tracers. Analysis of topsoil (0–10 cm) amino sugars and the composition of microbial community across this gradient revealed that the soil total amino sugars accounting for 12.2–25.7% of the SOC pool, decreased with increasing elevation. Moreover, the linear reduction in the bacterial-derived carbon (C) and an increase in the ratio of fungal- to bacterial-derived C with increasing elevation suggested the reduction in the contribution of bacterial-derived C to SOC pool across this elevation gradient. The divergent changes in the contribution of the microbial residues to SOC infer a potential change in SOC composition and stability. The microbial-derived SOC formation and its climatic responses are influenced by the interaction of vegetation types and soil properties, with soil amorphous Fe being the determiner of soil amino sugar accrual. Our work highlights the importance of understanding ecosystem type and mineral composition in regulating microbial-mediated SOC formation and accumulation in responses to climate change in subtropical ecosystems. [Display omitted] •Soil amino sugars were measured along a subtropical elevation gradient.•The microbial residues related to SOC reduced with increasing elevation.•Soil mineral protection impaired the microbial necromass formation in soils.•Fungal-derived carbon contributed more to SOC than the bacterial-derived carbon. |
ArticleNumber | 141583 |
Author | Lin, Weisheng Xiong, Xiaoling Yang, Yusheng Yang, Liuming Xie, Jinsheng Lyu, Maokui Li, Xiaojie |
Author_xml | – sequence: 1 givenname: Liuming surname: Yang fullname: Yang, Liuming organization: Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China – sequence: 2 givenname: Maokui orcidid: 0000-0002-9567-2170 surname: Lyu fullname: Lyu, Maokui email: 228lmk@163.com organization: Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China – sequence: 3 givenname: Xiaojie surname: Li fullname: Li, Xiaojie organization: Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China – sequence: 4 givenname: Xiaoling surname: Xiong fullname: Xiong, Xiaoling organization: Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China – sequence: 5 givenname: Weisheng surname: Lin fullname: Lin, Weisheng organization: Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China – sequence: 6 givenname: Yusheng surname: Yang fullname: Yang, Yusheng organization: Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China – sequence: 7 givenname: Jinsheng surname: Xie fullname: Xie, Jinsheng email: jshxie@163.com organization: Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32814205$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URNPCK4CXbCb4Z8b2LFhUBVqkSmxgbXk8d8KNJnawPZH69jhNy4JNvLmS9Z1z7XOuyEWIAQj5wNmaM64-bdfZY4kFwmEtmKi3Le-MfEVW3Oi-4UyoC7JirDVNr3p9Sa5y3rJ6tOFvyKUUhreCdSsSv4CfMQDFQMtvoD6GknBYCsZA40R36FMc0M00QcZxgUxLpDniTGPauICeepeGCrs5hg11NC9DSXGPvmpghoN7stokNyKE8pa8ntyc4d3zvCa_vn39eXvfPPy4-35789D4VrPSiKkdnDIAXasH6TsAkFPPlBSMGwNGwuD0qNTEpt57AOc6BV7o-qtx5BLkNfl48t2n-Ke-utgdZg_z7ALEJVvRG9Vy1itzHm1lp7uu50f0_TO6DDsY7T7hzqVH-5JnBT6fgJpazgkmW2t6SqAkh7PlzB77s1v7rz977M-e-qt6_Z_-ZcV55c1JCTXVA0I6chA8jJjAFztGPOvxF-JtvH8 |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2022_154427 crossref_primary_10_1016_j_scitotenv_2024_173203 crossref_primary_10_1016_j_scitotenv_2024_170295 crossref_primary_10_3390_f14071467 crossref_primary_10_1016_j_ecolind_2023_111262 crossref_primary_10_1016_j_jenvman_2024_120288 crossref_primary_10_1016_j_catena_2021_105707 crossref_primary_10_1016_j_scitotenv_2021_145298 crossref_primary_10_1016_j_scitotenv_2024_172530 crossref_primary_10_1016_j_geoderma_2022_116079 crossref_primary_10_1016_j_scitotenv_2023_162701 crossref_primary_10_1016_j_still_2024_106441 crossref_primary_10_1016_j_catena_2024_108006 crossref_primary_10_1016_j_scitotenv_2020_144842 crossref_primary_10_1016_j_eti_2025_104074 crossref_primary_10_1111_sum_12860 crossref_primary_10_1016_j_scitotenv_2022_157645 crossref_primary_10_1093_aob_mcae212 crossref_primary_10_3390_f15111980 crossref_primary_10_1007_s11368_024_03794_x crossref_primary_10_1111_gcb_16660 crossref_primary_10_1186_s40663_021_00334_8 crossref_primary_10_1016_j_apsoil_2025_105951 crossref_primary_10_1016_j_apsoil_2025_106049 crossref_primary_10_1111_gcb_16978 crossref_primary_10_3389_fmicb_2021_646124 crossref_primary_10_3390_f14081678 crossref_primary_10_1016_j_envres_2023_116081 crossref_primary_10_1016_j_apsoil_2023_104902 crossref_primary_10_1016_j_soilbio_2022_108927 crossref_primary_10_1111_1365_2745_13899 crossref_primary_10_1016_j_soilbio_2024_109438 crossref_primary_10_1016_j_soilbio_2022_108600 crossref_primary_10_1111_sum_12895 crossref_primary_10_1111_gcb_17302 crossref_primary_10_1111_gcb_15664 crossref_primary_10_1016_j_foreco_2022_120074 crossref_primary_10_3389_fmicb_2024_1478134 crossref_primary_10_1016_j_catena_2024_107864 |
Cites_doi | 10.1111/gcb.14781 10.1111/gcb.15206 10.1126/science.1201609 10.1071/FP12309 10.1038/ncomms2224 10.1038/s41467-018-05891-1 10.1016/j.soilbio.2013.08.024 10.1038/ngeo2520 10.1111/j.1365-2486.2012.02665.x 10.1016/j.soilbio.2010.06.021 10.1016/j.soilbio.2016.08.014 10.1016/j.soilbio.2015.09.011 10.1007/s00374-015-1035-y 10.1111/j.1365-2486.2008.01598.x 10.1111/gcb.12113 10.1016/j.geoderma.2020.114198 10.1007/s00374-018-1288-3 10.1016/j.geoderma.2016.02.019 10.1016/j.soilbio.2017.07.007 10.1038/nature10386 10.1007/BF00388810 10.2136/sssaj1999.6351188x 10.1038/s41561-018-0258-6 10.1016/j.soilbio.2005.09.002 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 10.1016/j.soilbio.2019.107687 10.1038/ncomms13630 10.3390/f10060468 10.1016/j.soilbio.2019.04.004 10.1016/j.geoderma.2020.114470 10.1038/nature12033 10.1111/1365-2435.13428 10.1016/S0038-0717(01)00158-4 10.1016/0038-0717(96)00117-4 10.1126/science.1160232 10.1038/nclimate2322 10.1016/j.soilbio.2015.07.021 10.1111/geb.12070 10.1016/j.scitotenv.2018.07.055 10.1038/nmicrobiol.2016.35 10.1016/j.tree.2007.09.006 10.1038/nature04514 10.1186/s40168-018-0488-2 10.1007/s00374-018-1314-5 10.1016/j.soilbio.2007.03.020 10.1016/j.soilbio.2003.10.013 10.1016/j.soilbio.2008.08.017 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright © 2020 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright © 2020 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2020.141583 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 32814205 10_1016_j_scitotenv_2020_141583 S0048969720351123 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSJ SSZ T5K ~02 ~G- ~KM 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW SSH WUQ XPP ZXP ZY4 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c470t-2f4ba68ee547b3c5eee3f906320188e83eba7d66f0f9cceeaa56ec27142dd13e3 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 15:05:18 EDT 2025 Thu Jul 10 18:04:51 EDT 2025 Wed Feb 19 02:29:13 EST 2025 Thu Apr 24 22:59:47 EDT 2025 Tue Jul 01 04:24:31 EDT 2025 Fri Feb 23 02:47:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | SOC formation Subtropical elevation gradient Microbial necromass Amino sugars Climate changes |
Language | English |
License | Copyright © 2020 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-2f4ba68ee547b3c5eee3f906320188e83eba7d66f0f9cceeaa56ec27142dd13e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9567-2170 |
PMID | 32814205 |
PQID | 2435755918 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2986410968 proquest_miscellaneous_2435755918 pubmed_primary_32814205 crossref_citationtrail_10_1016_j_scitotenv_2020_141583 crossref_primary_10_1016_j_scitotenv_2020_141583 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2020_141583 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-20 |
PublicationDateYYYYMMDD | 2020-12-20 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | The Science of the total environment |
PublicationTitleAlternate | Sci Total Environ |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Cotrufo, Soong, Horton, Campbell, Haddix, Wall, Parton (bb0040) 2015; 8 Glaser, Turrión, Alef (bb0075) 2004; 36 Schmidt, Torn, Abiven, Dittmar, Guggenberger, Janssens, Kleber, Kögel-Knabner, Lehmann, Manning, Nannipieri, Rasse, Weiner, Trumbore (bb0190) 2011; 478 Xu, Zhou, Ruan, Luo, Wang (bb0240) 2010; 42 Blagodatskaya, Kuzyakov (bb0025) 2013; 67 Joergensen (bb0110) 2018; 54 Lü, Xie, Wang, Guo, Wang, Liu, Chen, Chen, Yang (bb0165) 2015; 51 Engelking, Flessa, Joergensen (bb6000) 2007; 39 Gunina, Kuzyakov (bb0090) 2015; 90 He, Li, Perumal, Feng, Fang, Xie, Sievert, Wang (bb0095) 2016; 1 Lyu, Xie, Vadeboncoeur, Wang, Qiu, Ren, Yang, Kuzyakov (bb0170) 2018; 54 Cyle, Hill, Young, Jenkins, Hancock, Schroeder (bb0045) 2016; 103 Giardina, Litton, Crow, Asner (bb0070) 2014; 4 Ding, Chen, Zhang, Liang, He, Horwath (bb0055) 2019; 135 IPCC (bb0105) 2014 Amelung (bb0005) 2001 Kögel-Knabner (bb0130) 2002; 34 Cotrufo, Wallenstein, Boot, Denef, Paul (bb0035) 2013; 19 Sokol, Bradford (bb0210) 2019; 12 Dungait, Hopkins, Gregory, Whitmore (bb0060) 2012; 18 Kallenbach, Frey, Grandy (bb0120) 2016; 7 Wang, Wang, Pei, Xia, Peng, Sun, Wang, Gao, Chen, Liu, Dai, Jiang, Fang, Liang, Wu, Bai (bb0225) 2020; 141 Yang, Chen, Li, Wang, Zhong, Yang, Lin, Yang (bb0245) 2019; 10 Pan, Birdsey, Fang, Houghton, Kauppi, Kurz, Phillips, Shvidenko, Lewis, Canadell, Ciais, Jackson, Pacala, McGuire, Piao, Rautiainen, Sitch, Hayes (bb0185) 2011; 333 Ma, Zhu, Wang, Chen, Dai, Feng, Su, Hu, Li, Han, Liang, Bai, Liang (bb0180) 2018; 9 Joergensen, Wichern (bb0115) 2008; 40 Park (bb7000) 2010 Serna-Chavez, Fierer, Van Bodegom (bb0195) 2013; 22 Khan, Mack, Castillo, Kaiser, Joergensen (bb0125) 2016; 271 Zhang, Amelung (bb0250) 1996; 28 Li, Xie, Zhang, Lyu, Xiong, Liu, Lin, Yang (bb0140) 2020; 364 Fan, Yang, Zhong, Yang, Lin, Guo, Chen, Yang (bb0065) 2020; 375 Liu, Li, Castelle, Probst, Zhou, Pan, Liu, Banfield, Gu (bb0155) 2018; 6 Wang, Wang, Cotrufo, Sun, Jiang, Liu, Bai (bb0230) 2020 Cernusak, Winter, Dalling, Holtum, Jaramillo, Körner, Leakey, Norby, Poulter, Turner (bb0030) 2013; 40 Trumbore, Czimczik (bb0220) 2008; 321 Shao, He, Zhang, Xie, Bao, Liang (bb0205) 2018; 644 Zhu, Lin, Chen, Tan, Guo (bb0255) 1982; 2 Liang, Amelung, Lehmann, Kastner (bb0150) 2019; 25 Lyu, Nie, Giardina, Vadeboncoeur, Ren, Fu, Wang, Jin, Liu, Xie (bb0175) 2019; 33 Guggenberger, Frey, Six, Paustian, Elliott (bb0085) 1999; 63 Körner (bb0135) 2007; 22 Baldocchi, Falge, Gu, Olson, Hollinger, Running, Anthoni, Bernhofer, Davis, Evans, Fuentes, Goldstein, Katul, Law, Lee, Malhi, Meyers, Munger, Oechel, Paw, K.T., Pilegaar, Schmid, Valentini, Verma, Vesala, Wilson, Wofsy (bb0020) 2001; 82 Gregorich, Carter (bb0080) 2007 Appuhn, Joergensen (bb0015) 2006; 38 Liang, Balser (bb0145) 2012; 3 White, Davis, Nickels, King, Bobbie (bb0235) 1979; 40 Hickler, Smith, Prentice, Mjöfors, Miller, Arneth, Sykes (bb0100) 2008; 14 Davidson, Janssens (bb0050) 2006; 440 Lloyd, Schreiber, Petersen, Kjeldsen, Lever, Steen, Stepanauskas, Richter, Kleindienst, Lenk, Schramm, Jorgensen (bb0160) 2013; 496 Shao, Zhao, Zhang, Hu, Xie, Yan, Han, He, Zhang (bb0200) 2017; 114 Struecker, Joergensen (bb0215) 2015; 91 Lloyd (10.1016/j.scitotenv.2020.141583_bb0160) 2013; 496 Cotrufo (10.1016/j.scitotenv.2020.141583_bb0035) 2013; 19 Gregorich (10.1016/j.scitotenv.2020.141583_bb0080) 2007 Cernusak (10.1016/j.scitotenv.2020.141583_bb0030) 2013; 40 Joergensen (10.1016/j.scitotenv.2020.141583_bb0110) 2018; 54 Ding (10.1016/j.scitotenv.2020.141583_bb0055) 2019; 135 Gunina (10.1016/j.scitotenv.2020.141583_bb0090) 2015; 90 Kögel-Knabner (10.1016/j.scitotenv.2020.141583_bb0130) 2002; 34 Zhu (10.1016/j.scitotenv.2020.141583_bb0255) 1982; 2 Struecker (10.1016/j.scitotenv.2020.141583_bb0215) 2015; 91 Glaser (10.1016/j.scitotenv.2020.141583_bb0075) 2004; 36 Hickler (10.1016/j.scitotenv.2020.141583_bb0100) 2008; 14 Davidson (10.1016/j.scitotenv.2020.141583_bb0050) 2006; 440 Shao (10.1016/j.scitotenv.2020.141583_bb0205) 2018; 644 Lyu (10.1016/j.scitotenv.2020.141583_bb0170) 2018; 54 Sokol (10.1016/j.scitotenv.2020.141583_bb0210) 2019; 12 Shao (10.1016/j.scitotenv.2020.141583_bb0200) 2017; 114 Lyu (10.1016/j.scitotenv.2020.141583_bb0175) 2019; 33 Liang (10.1016/j.scitotenv.2020.141583_bb0145) 2012; 3 Liu (10.1016/j.scitotenv.2020.141583_bb0155) 2018; 6 Kallenbach (10.1016/j.scitotenv.2020.141583_bb0120) 2016; 7 White (10.1016/j.scitotenv.2020.141583_bb0235) 1979; 40 Serna-Chavez (10.1016/j.scitotenv.2020.141583_bb0195) 2013; 22 Blagodatskaya (10.1016/j.scitotenv.2020.141583_bb0025) 2013; 67 Cyle (10.1016/j.scitotenv.2020.141583_bb0045) 2016; 103 Engelking (10.1016/j.scitotenv.2020.141583_bb6000) 2007; 39 He (10.1016/j.scitotenv.2020.141583_bb0095) 2016; 1 Zhang (10.1016/j.scitotenv.2020.141583_bb0250) 1996; 28 Wang (10.1016/j.scitotenv.2020.141583_bb0225) 2020; 141 Joergensen (10.1016/j.scitotenv.2020.141583_bb0115) 2008; 40 Guggenberger (10.1016/j.scitotenv.2020.141583_bb0085) 1999; 63 Lü (10.1016/j.scitotenv.2020.141583_bb0165) 2015; 51 Amelung (10.1016/j.scitotenv.2020.141583_bb0005) 2001 Trumbore (10.1016/j.scitotenv.2020.141583_bb0220) 2008; 321 Xu (10.1016/j.scitotenv.2020.141583_bb0240) 2010; 42 IPCC (10.1016/j.scitotenv.2020.141583_bb0105) Liang (10.1016/j.scitotenv.2020.141583_bb0150) 2019; 25 Pan (10.1016/j.scitotenv.2020.141583_bb0185) 2011; 333 Yang (10.1016/j.scitotenv.2020.141583_bb0245) 2019; 10 Cotrufo (10.1016/j.scitotenv.2020.141583_bb0040) 2015; 8 Khan (10.1016/j.scitotenv.2020.141583_bb0125) 2016; 271 Wang (10.1016/j.scitotenv.2020.141583_bb0230) 2020 Dungait (10.1016/j.scitotenv.2020.141583_bb0060) 2012; 18 Appuhn (10.1016/j.scitotenv.2020.141583_bb0015) 2006; 38 Ma (10.1016/j.scitotenv.2020.141583_bb0180) 2018; 9 Schmidt (10.1016/j.scitotenv.2020.141583_bb0190) 2011; 478 Baldocchi (10.1016/j.scitotenv.2020.141583_bb0020) 2001; 82 Li (10.1016/j.scitotenv.2020.141583_bb0140) 2020; 364 Fan (10.1016/j.scitotenv.2020.141583_bb0065) 2020; 375 Giardina (10.1016/j.scitotenv.2020.141583_bb0070) 2014; 4 Park (10.1016/j.scitotenv.2020.141583_bb7000) 2010 Körner (10.1016/j.scitotenv.2020.141583_bb0135) 2007; 22 |
References_xml | – volume: 25 start-page: 3578 year: 2019 end-page: 3590 ident: bb0150 article-title: Quantitative assessment of microbial necromass contribution to soil organic matter publication-title: Glob. Chang. Biol. – start-page: 233 year: 2001 end-page: 270 ident: bb0005 article-title: Methods using amino sugars as markers for microbial residues in soil publication-title: Assessment Methods for Soil Carbon – volume: 1 start-page: 16035 year: 2016 ident: bb0095 article-title: Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments publication-title: Nat. Microbiol. – volume: 39 start-page: 2111 year: 2007 end-page: 2118 ident: bb6000 article-title: Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil publication-title: Soil Biol. Biochem. – volume: 34 start-page: 139 year: 2002 end-page: 162 ident: bb0130 article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter publication-title: Soil Biol. Biochem. – volume: 67 start-page: 192 year: 2013 end-page: 211 ident: bb0025 article-title: Active microorganisms in soil: critical review of estimation criteria and approaches publication-title: Soil Biol. Biochem. – volume: 3 start-page: 1222 year: 2012 ident: bb0145 article-title: Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool publication-title: Nat. Commun. – volume: 103 start-page: 138 year: 2016 end-page: 148 ident: bb0045 article-title: Substrate quality influences organic matter accumulation in the soil silt and clay fraction publication-title: Soil Biol. Biochem. – volume: 135 start-page: 13 year: 2019 end-page: 19 ident: bb0055 article-title: Warming increases microbial residue contribution to soil organic carbon in an alpine meadow publication-title: Soil Biol. Biochem. – volume: 141 start-page: 107687 year: 2020 ident: bb0225 article-title: Stabilization of microbial residues in soil organic matter after two years of decomposition publication-title: Soil Biol. Biochem. – volume: 114 start-page: 114 year: 2017 end-page: 120 ident: bb0200 article-title: Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession publication-title: Soil Biol. Biochem. – volume: 51 start-page: 857 year: 2015 end-page: 867 ident: bb0165 article-title: Forest conversion stimulated deep soil C losses and decreased C recalcitrance through priming effect in subtropical China publication-title: Biol. Fertil. Soils – volume: 8 start-page: 776 year: 2015 end-page: 779 ident: bb0040 article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss publication-title: Nat. Geosci. – volume: 42 start-page: 1811 year: 2010 end-page: 1815 ident: bb0240 article-title: Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China publication-title: Soil Biol. Biochem. – volume: 18 start-page: 1781 year: 2012 end-page: 1796 ident: bb0060 article-title: Soil organic matter turnover is governed by accessibility not recalcitrance publication-title: Glob. Chang. Biol. – volume: 91 start-page: 310 year: 2015 end-page: 317 ident: bb0215 article-title: Microorganisms and their substrate utilization patterns in topsoil and subsoil layers of two silt loams, differing in soil organic C accumulation due to colluvial processes publication-title: Soil Biol. Biochem. – volume: 6 start-page: 102 year: 2018 ident: bb0155 article-title: Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages publication-title: Microbiome – volume: 12 start-page: 46 year: 2019 ident: bb0210 article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input publication-title: Nat. Geosci. – volume: 36 start-page: 399 year: 2004 end-page: 407 ident: bb0075 article-title: Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis publication-title: Soil Biol. Biochem. – volume: 54 start-page: 559 year: 2018 end-page: 568 ident: bb0110 article-title: Amino sugars as specific indices for fungal and bacterial residues in soil publication-title: Biol. Fertil. Soils – volume: 4 start-page: 822 year: 2014 end-page: 827 ident: bb0070 article-title: Warming-related increases in soil CO publication-title: Nat. Clim. Chang. – volume: 644 start-page: 1286 year: 2018 end-page: 1291 ident: bb0205 article-title: Responses of microbial residues to simulated climate change in a semiarid grassland publication-title: Sci. Total Environ. – year: 2014 ident: bb0105 article-title: Fifth assessment report, climate change 2014: impacts, adaptation, and vulnerability – volume: 33 start-page: 2226 year: 2019 end-page: 2238 ident: bb0175 article-title: Litter quality and site characteristics interact to affect the response of priming effect to temperature in subtropical forests publication-title: Funct. Ecol. – volume: 440 start-page: 165 year: 2006 end-page: 173 ident: bb0050 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 9 start-page: 3480 year: 2018 ident: bb0180 article-title: Divergent accumulation of microbial necromass and plant lignin components in grassland soils publication-title: Nat. Commun. – volume: 82 start-page: 2415 year: 2001 end-page: 2434 ident: bb0020 article-title: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities publication-title: Bull. Am. Meteorol. Soc. – volume: 22 start-page: 569 year: 2007 end-page: 574 ident: bb0135 article-title: The use of ‘altitude’ in ecological research publication-title: Trends Ecol. Evol. – volume: 54 start-page: 925 year: 2018 end-page: 934 ident: bb0170 article-title: Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils publication-title: Biol. Fertil. Soils – volume: 496 start-page: 215 year: 2013 end-page: 218 ident: bb0160 article-title: Predominant archaea in marine sediments degrade detrital proteins publication-title: Nature – volume: 40 start-page: 2977 year: 2008 end-page: 2991 ident: bb0115 article-title: Quantitative assessment of the fungal contribution to microbial tissue in soil publication-title: Soil Biol. Biochem. – start-page: 1 year: 2010 end-page: 44 ident: bb7000 article-title: Hypothesis testing and statistical power of a test – volume: 478 start-page: 49 year: 2011 end-page: 56 ident: bb0190 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 14 start-page: 1531 year: 2008 end-page: 1542 ident: bb0100 article-title: CO publication-title: Glob. Chang. Biol. – volume: 333 start-page: 988 year: 2011 end-page: 993 ident: bb0185 article-title: A large and persistent carbon sink in the world’s forests publication-title: Science – volume: 28 start-page: 1201 year: 1996 end-page: 1206 ident: bb0250 article-title: Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils publication-title: Soil Biol. Biochem. – volume: 22 start-page: 1162 year: 2013 end-page: 1172 ident: bb0195 article-title: Global drivers and patterns of microbial abundance in soil publication-title: Glob. Ecol. Biogeogr. – volume: 40 start-page: 51 year: 1979 end-page: 62 ident: bb0235 article-title: Determination of the sedimentary microbial biomass by extractible lipid phosphate publication-title: Oecologia – volume: 10 start-page: 468 year: 2019 ident: bb0245 article-title: Conversion of natural evergreen broadleaved forests decreases soil organic carbon but increases the relative contribution of microbial residue in subtropical China publication-title: Forests – volume: 375 start-page: 114470 year: 2020 ident: bb0065 article-title: N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical publication-title: Geoderma – volume: 19 start-page: 988 year: 2013 end-page: 995 ident: bb0035 article-title: The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? publication-title: Glob. Chang. Biol. – volume: 38 start-page: 1040 year: 2006 end-page: 1051 ident: bb0015 article-title: Microbial colonisation of roots as a function of plant species publication-title: Soil Biol. Biochem. – volume: 2 start-page: 152 year: 1982 end-page: 164 ident: bb0255 article-title: The vertical zonation and characteristics soils in Wuyishan publication-title: Wuyi Science Journal – volume: 90 start-page: 87 year: 2015 end-page: 100 ident: bb0090 article-title: Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate publication-title: Soil Biol. Biochem. – volume: 321 start-page: 1455 year: 2008 end-page: 1456 ident: bb0220 article-title: Geology-an uncertain future for soil carbon publication-title: Science – volume: 271 start-page: 115 year: 2016 end-page: 123 ident: bb0125 article-title: Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios publication-title: Geoderma – year: 2007 ident: bb0080 article-title: Soil Sampling and Methods of Analysis – volume: 40 start-page: 531 year: 2013 end-page: 551 ident: bb0030 article-title: Tropical forest responses to increasing atmospheric CO publication-title: Funct. Plant Biol. – volume: 7 start-page: 13630 year: 2016 ident: bb0120 article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls publication-title: Nat. Commun. – volume: 63 start-page: 1188 year: 1999 end-page: 1198 ident: bb0085 article-title: Bacterial and fungal cell wall residues in conventional and no-tillage agroecosystems publication-title: Soil Sci. Soc. Am. J. – volume: 364 start-page: 114198 year: 2020 ident: bb0140 article-title: Substrate availability and soil microbes drive temperature sensitivity of soil organic carbon mineralization to warming along an elevation gradient in subtropical Asia publication-title: Geoderma – year: 2020 ident: bb0230 article-title: Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover publication-title: Glob. Chang. Biol. – volume: 25 start-page: 3578 year: 2019 ident: 10.1016/j.scitotenv.2020.141583_bb0150 article-title: Quantitative assessment of microbial necromass contribution to soil organic matter publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14781 – year: 2020 ident: 10.1016/j.scitotenv.2020.141583_bb0230 article-title: Elevated temperature increases the accumulation of microbial necromass nitrogen in soil via increasing microbial turnover publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15206 – volume: 333 start-page: 988 year: 2011 ident: 10.1016/j.scitotenv.2020.141583_bb0185 article-title: A large and persistent carbon sink in the world’s forests publication-title: Science doi: 10.1126/science.1201609 – start-page: 233 year: 2001 ident: 10.1016/j.scitotenv.2020.141583_bb0005 article-title: Methods using amino sugars as markers for microbial residues in soil – volume: 40 start-page: 531 year: 2013 ident: 10.1016/j.scitotenv.2020.141583_bb0030 article-title: Tropical forest responses to increasing atmospheric CO2: current knowledge and opportunities for future research publication-title: Funct. Plant Biol. doi: 10.1071/FP12309 – volume: 3 start-page: 1222 year: 2012 ident: 10.1016/j.scitotenv.2020.141583_bb0145 article-title: Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool publication-title: Nat. Commun. doi: 10.1038/ncomms2224 – volume: 9 start-page: 3480 year: 2018 ident: 10.1016/j.scitotenv.2020.141583_bb0180 article-title: Divergent accumulation of microbial necromass and plant lignin components in grassland soils publication-title: Nat. Commun. doi: 10.1038/s41467-018-05891-1 – volume: 67 start-page: 192 year: 2013 ident: 10.1016/j.scitotenv.2020.141583_bb0025 article-title: Active microorganisms in soil: critical review of estimation criteria and approaches publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.08.024 – volume: 8 start-page: 776 year: 2015 ident: 10.1016/j.scitotenv.2020.141583_bb0040 article-title: Formation of soil organic matter via biochemical and physical pathways of litter mass loss publication-title: Nat. Geosci. doi: 10.1038/ngeo2520 – volume: 18 start-page: 1781 year: 2012 ident: 10.1016/j.scitotenv.2020.141583_bb0060 article-title: Soil organic matter turnover is governed by accessibility not recalcitrance publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2012.02665.x – ident: 10.1016/j.scitotenv.2020.141583_bb0105 – volume: 42 start-page: 1811 year: 2010 ident: 10.1016/j.scitotenv.2020.141583_bb0240 article-title: Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.06.021 – volume: 103 start-page: 138 year: 2016 ident: 10.1016/j.scitotenv.2020.141583_bb0045 article-title: Substrate quality influences organic matter accumulation in the soil silt and clay fraction publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.08.014 – volume: 91 start-page: 310 year: 2015 ident: 10.1016/j.scitotenv.2020.141583_bb0215 article-title: Microorganisms and their substrate utilization patterns in topsoil and subsoil layers of two silt loams, differing in soil organic C accumulation due to colluvial processes publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.09.011 – volume: 51 start-page: 857 year: 2015 ident: 10.1016/j.scitotenv.2020.141583_bb0165 article-title: Forest conversion stimulated deep soil C losses and decreased C recalcitrance through priming effect in subtropical China publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-015-1035-y – volume: 14 start-page: 1531 year: 2008 ident: 10.1016/j.scitotenv.2020.141583_bb0100 article-title: CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2008.01598.x – volume: 19 start-page: 988 year: 2013 ident: 10.1016/j.scitotenv.2020.141583_bb0035 article-title: The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12113 – volume: 364 start-page: 114198 year: 2020 ident: 10.1016/j.scitotenv.2020.141583_bb0140 article-title: Substrate availability and soil microbes drive temperature sensitivity of soil organic carbon mineralization to warming along an elevation gradient in subtropical Asia publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114198 – volume: 54 start-page: 559 year: 2018 ident: 10.1016/j.scitotenv.2020.141583_bb0110 article-title: Amino sugars as specific indices for fungal and bacterial residues in soil publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-018-1288-3 – volume: 271 start-page: 115 year: 2016 ident: 10.1016/j.scitotenv.2020.141583_bb0125 article-title: Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios publication-title: Geoderma doi: 10.1016/j.geoderma.2016.02.019 – volume: 114 start-page: 114 year: 2017 ident: 10.1016/j.scitotenv.2020.141583_bb0200 article-title: Linkage of microbial residue dynamics with soil organic carbon accumulation during subtropical forest succession publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.07.007 – volume: 478 start-page: 49 year: 2011 ident: 10.1016/j.scitotenv.2020.141583_bb0190 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature doi: 10.1038/nature10386 – volume: 40 start-page: 51 year: 1979 ident: 10.1016/j.scitotenv.2020.141583_bb0235 article-title: Determination of the sedimentary microbial biomass by extractible lipid phosphate publication-title: Oecologia doi: 10.1007/BF00388810 – volume: 2 start-page: 152 year: 1982 ident: 10.1016/j.scitotenv.2020.141583_bb0255 article-title: The vertical zonation and characteristics soils in Wuyishan publication-title: Wuyi Science Journal – volume: 63 start-page: 1188 year: 1999 ident: 10.1016/j.scitotenv.2020.141583_bb0085 article-title: Bacterial and fungal cell wall residues in conventional and no-tillage agroecosystems publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1999.6351188x – volume: 12 start-page: 46 year: 2019 ident: 10.1016/j.scitotenv.2020.141583_bb0210 article-title: Microbial formation of stable soil carbon is more efficient from belowground than aboveground input publication-title: Nat. Geosci. doi: 10.1038/s41561-018-0258-6 – volume: 38 start-page: 1040 year: 2006 ident: 10.1016/j.scitotenv.2020.141583_bb0015 article-title: Microbial colonisation of roots as a function of plant species publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2005.09.002 – volume: 82 start-page: 2415 year: 2001 ident: 10.1016/j.scitotenv.2020.141583_bb0020 article-title: FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2 – volume: 141 start-page: 107687 year: 2020 ident: 10.1016/j.scitotenv.2020.141583_bb0225 article-title: Stabilization of microbial residues in soil organic matter after two years of decomposition publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.107687 – volume: 7 start-page: 13630 year: 2016 ident: 10.1016/j.scitotenv.2020.141583_bb0120 article-title: Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls publication-title: Nat. Commun. doi: 10.1038/ncomms13630 – volume: 10 start-page: 468 year: 2019 ident: 10.1016/j.scitotenv.2020.141583_bb0245 article-title: Conversion of natural evergreen broadleaved forests decreases soil organic carbon but increases the relative contribution of microbial residue in subtropical China publication-title: Forests doi: 10.3390/f10060468 – volume: 135 start-page: 13 year: 2019 ident: 10.1016/j.scitotenv.2020.141583_bb0055 article-title: Warming increases microbial residue contribution to soil organic carbon in an alpine meadow publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.04.004 – volume: 375 start-page: 114470 year: 2020 ident: 10.1016/j.scitotenv.2020.141583_bb0065 article-title: N addition increased microbial residual carbon by altering soil P availability and microbial composition in a subtropical Castanopsis forest publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114470 – start-page: 1 year: 2010 ident: 10.1016/j.scitotenv.2020.141583_bb7000 – volume: 496 start-page: 215 year: 2013 ident: 10.1016/j.scitotenv.2020.141583_bb0160 article-title: Predominant archaea in marine sediments degrade detrital proteins publication-title: Nature doi: 10.1038/nature12033 – volume: 33 start-page: 2226 year: 2019 ident: 10.1016/j.scitotenv.2020.141583_bb0175 article-title: Litter quality and site characteristics interact to affect the response of priming effect to temperature in subtropical forests publication-title: Funct. Ecol. doi: 10.1111/1365-2435.13428 – volume: 34 start-page: 139 year: 2002 ident: 10.1016/j.scitotenv.2020.141583_bb0130 article-title: The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(01)00158-4 – volume: 28 start-page: 1201 year: 1996 ident: 10.1016/j.scitotenv.2020.141583_bb0250 article-title: Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(96)00117-4 – year: 2007 ident: 10.1016/j.scitotenv.2020.141583_bb0080 – volume: 321 start-page: 1455 year: 2008 ident: 10.1016/j.scitotenv.2020.141583_bb0220 article-title: Geology-an uncertain future for soil carbon publication-title: Science doi: 10.1126/science.1160232 – volume: 4 start-page: 822 year: 2014 ident: 10.1016/j.scitotenv.2020.141583_bb0070 article-title: Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate2322 – volume: 90 start-page: 87 year: 2015 ident: 10.1016/j.scitotenv.2020.141583_bb0090 article-title: Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.07.021 – volume: 22 start-page: 1162 year: 2013 ident: 10.1016/j.scitotenv.2020.141583_bb0195 article-title: Global drivers and patterns of microbial abundance in soil publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12070 – volume: 644 start-page: 1286 year: 2018 ident: 10.1016/j.scitotenv.2020.141583_bb0205 article-title: Responses of microbial residues to simulated climate change in a semiarid grassland publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.07.055 – volume: 1 start-page: 16035 year: 2016 ident: 10.1016/j.scitotenv.2020.141583_bb0095 article-title: Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2016.35 – volume: 22 start-page: 569 year: 2007 ident: 10.1016/j.scitotenv.2020.141583_bb0135 article-title: The use of ‘altitude’ in ecological research publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2007.09.006 – volume: 440 start-page: 165 year: 2006 ident: 10.1016/j.scitotenv.2020.141583_bb0050 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature doi: 10.1038/nature04514 – volume: 6 start-page: 102 year: 2018 ident: 10.1016/j.scitotenv.2020.141583_bb0155 article-title: Insights into the ecology, evolution, and metabolism of the widespread Woesearchaeotal lineages publication-title: Microbiome doi: 10.1186/s40168-018-0488-2 – volume: 54 start-page: 925 year: 2018 ident: 10.1016/j.scitotenv.2020.141583_bb0170 article-title: Simulated leaf litter addition causes opposite priming effects on natural forest and plantation soils publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-018-1314-5 – volume: 39 start-page: 2111 year: 2007 ident: 10.1016/j.scitotenv.2020.141583_bb6000 article-title: Shifts in amino sugar and ergosterol contents after addition of sucrose and cellulose to soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.03.020 – volume: 36 start-page: 399 year: 2004 ident: 10.1016/j.scitotenv.2020.141583_bb0075 article-title: Amino sugars and muramic acid—biomarkers for soil microbial community structure analysis publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2003.10.013 – volume: 40 start-page: 2977 year: 2008 ident: 10.1016/j.scitotenv.2020.141583_bb0115 article-title: Quantitative assessment of the fungal contribution to microbial tissue in soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.08.017 |
SSID | ssj0000781 |
Score | 2.5269268 |
Snippet | There has been an increasing interest in studying microbial necromasses and their contribution to soil organic carbon (SOC) accumulation. However, it remains... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 141583 |
SubjectTerms | altitude Amino sugars anabolism Carbon - analysis China climate climate change Climate changes decline Ecosystem ecosystems microbial communities Microbial necromass mineral content necromass SOC formation Soil Soil Microbiology soil organic carbon Subtropical elevation gradient topsoil |
Title | Decline in the contribution of microbial residues to soil organic carbon along a subtropical elevation gradient |
URI | https://dx.doi.org/10.1016/j.scitotenv.2020.141583 https://www.ncbi.nlm.nih.gov/pubmed/32814205 https://www.proquest.com/docview/2435755918 https://www.proquest.com/docview/2986410968 |
Volume | 749 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VRUhICMFCoTwqI3ENTRwnsblVpdXCih4QFb1ZiXdSBS3xajeL1Et_OzNxslUPpQcuiWKNo5HH9nxjzwPgQ0aQQhcyixTpHn7oqJJ1HhmsytwkJRrHRwPfzvLpufp6kV3swPEYC8NulcPeH_b0frceWg6H0TxcNg3H-CptcsP3iIwaOOOnUgXP8o_XN24enMwm3DLTwibqWz5e9N_OEzb9Q4aipFbSZjq9S0PdhUB7TXT6FJ4MEFIcBS6fwQ62E3gYikpeTWDv5CZ2jciGxbuewONwRCdC5NFz8J-R4yJRNK0gGCh6r_Wh_JXwtfjd9Ema6B9kkjdz4kl0Xqx9sxChFpQTrlxVRFwufHspSrHeVN3KL1nuguPWe6mLy1XvVta9gPPTkx_H02iovxA5VcRdJGtFAtOImSqq1GWImNaGMA2BBq1RpyTPYp7ndVwbR8q2LLMcnSwSJedzPl3dg93Wt_gKhNFV4uoY0SBZdHFcmcKltVbaJUh7gtuHfBxz64bk5FwjY2FHL7Rfdissy8KyQVj7EG87LkN-jvu7fBqFam9NNUta5P7O78dpYGkh8u1K2aLfrK0k4FmQfZbof9BwMvyErEaieRnm0JbrVGoauDh7_T_svYFH_MX-NjJ-C7vdaoPvCDV11UG_LA7gwdGX2fSM37PvP2d_Aej7GyI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIgRSVcG2UFooRuo1InFedm-IgpYCewKJm5V4JyjVNl7tZiv133ccO4s4UA5ccnDGluWxZ76x5wHwLSVIIXKeBgnpHvsRQcmrLJBYFpmMCpTaXg3cjrPRffLzIX1Yg_M-Fsa6VXrZ72R6J619y6lfzdNZXdsY30TITNp3RIsa4nXYsNmp0gFsnF1dj8ZPAjkXrnBeQmebOjxz86KhW0Pw9A_ZipxaSaGJ-CUl9RII7ZTR5Q689yiSnbmJ7sIaNkPYdHUl_w5h7-IpfI3I_PldDOGdu6VjLvjoA5gfaEMjkdUNIyTIOsd1XwGLmYr9rrs8TTQGWeX1hObEWsMWpp4yVw5KM13MSyIupqZ5ZAVbLMt2bmaW9cyGrneMZ4_zzrOs_Qj3lxd356PAl2AIdJKHbcCrhHgmEGlhy1iniBhXkmAN4QYhUMTE0nySZVVYSU36tijSDDXPo4RPJvaCdQ8GjWnwEzApykhXIaJEMurCsJS5jiuRCB0hiQV9AFm_5kr7_OS2TMZU9Y5ov9SKWcoySzlmHUC46jhzKTpe7_K9Z6p6ttsUKZLXO5_020DRWbQPLEWDZrlQnLBnTiZaJP5DY_PhR2Q4Es2-20OrWcdc0MKF6ee3TO8YtkZ3tzfq5mp8_QW27R_rfsPDQxi08yUeEYhqy6_-kPwDo7QcMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decline+in+the+contribution+of+microbial+residues+to+soil+organic+carbon+along+a+subtropical+elevation+gradient&rft.jtitle=The+Science+of+the+total+environment&rft.au=Yang%2C+Liuming&rft.au=Lyu%2C+Maokui&rft.au=Li%2C+Xiaojie&rft.au=Xiong%2C+Xiaoling&rft.date=2020-12-20&rft.issn=0048-9697&rft.volume=749&rft.spage=141583&rft_id=info:doi/10.1016%2Fj.scitotenv.2020.141583&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_scitotenv_2020_141583 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |