Ultrathin two-dimensional superconductivity with strong spin–orbit coupling

We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston–Chandrasekhar limit. The epitaxial thin fi...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 38; pp. 10513 - 10517
Main Authors Nam, Hyoungdo, Chen, Hua, Liu, Tijiang, Kim, Jisun, Zhang, Chendong, Yong, Jie, Lemberger, Thomas R., Kratz, Philip A., Kirtley, John R., Moler, Kathryn, Adams, Philip W., MacDonald, Allan H., Shih, Chih-Kang
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 20.09.2016
Proceedings of the National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston–Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin–orbit coupling that, together with substrate-induced inversionsymmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor’s energy gap.
AbstractList We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston-Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin-orbit coupling that, together with substrate-induced inversion-symmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor's energy gap.
Significance By studying epitaxially grown Pb thin films, this paper explores a new regime in the physics of uniform 2D superconductivity, in which the spin–orbit coupling-induced Rashba splitting is larger than the superconducting gap. The first quantitative determination of superfluid rigidity in nearly atomically thin 2D superconductors was performed using measurement that covers microscopic to macroscopic length scales to establish uniformity. The extraordinarily strong parallel critical fields were discovered, which is greatly in excess of the normal Clogston–Chandrasekhar limit. Moreover, this remarkable behavior is theoretically explained as a consequence of strong spin–orbit coupling in 2D superconductors that are uniform but in the dirty limit.
We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston–Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin–orbit coupling that, together with substrate-induced inversionsymmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor’s energy gap.
Significance By studying epitaxially grown Pb thin films, this paper explores a new regime in the physics of uniform 2D superconductivity, in which the spin–orbit coupling-induced Rashba splitting is larger than the superconducting gap. The first quantitative determination of superfluid rigidity in nearly atomically thin 2D superconductors was performed using measurement that covers microscopic to macroscopic length scales to establish uniformity. The extraordinarily strong parallel critical fields were discovered, which is greatly in excess of the normal Clogston–Chandrasekhar limit. Moreover, this remarkable behavior is theoretically explained as a consequence of strong spin–orbit coupling in 2D superconductors that are uniform but in the dirty limit. We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston–Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin–orbit coupling that, together with substrate-induced inversion-symmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor’s energy gap.
By studying epitaxially grown Pb thin films, this paper explores a new regime in the physics of uniform 2D superconductivity, in which the spin–orbit coupling-induced Rashba splitting is larger than the superconducting gap. The first quantitative determination of superfluid rigidity in nearly atomically thin 2D superconductors was performed using measurement that covers microscopic to macroscopic length scales to establish uniformity. The extraordinarily strong parallel critical fields were discovered, which is greatly in excess of the normal Clogston–Chandrasekhar limit. Moreover, this remarkable behavior is theoretically explained as a consequence of strong spin–orbit coupling in 2D superconductors that are uniform but in the dirty limit. We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the expected limit set by the interaction of electron spins with a magnetic field, that is, the Clogston–Chandrasekhar limit. The epitaxial thin films are classified as dirty-limit superconductors because their mean-free paths, which are limited by surface scattering, are smaller than their superconducting coherence lengths. The uniformity of superconductivity in these thin films is established by comparing scanning tunneling spectroscopy, scanning superconducting quantum interference device (SQUID) magnetometry, double-coil mutual inductance, and magneto-transport, data that provide average superfluid rigidity on length scales covering the range from microscopic to macroscopic. We argue that the survival of superconductivity at Zeeman energies much larger than the superconducting gap can be understood only as the consequence of strong spin–orbit coupling that, together with substrate-induced inversion-symmetry breaking, produces spin splitting in the normal-state energy bands that is much larger than the superconductor’s energy gap.
Author Zhang, Chendong
Kratz, Philip A.
Moler, Kathryn
Kim, Jisun
Adams, Philip W.
MacDonald, Allan H.
Nam, Hyoungdo
Lemberger, Thomas R.
Kirtley, John R.
Liu, Tijiang
Yong, Jie
Shih, Chih-Kang
Chen, Hua
Author_xml – sequence: 1
  givenname: Hyoungdo
  surname: Nam
  fullname: Nam, Hyoungdo
  organization: Department of Physics, The University of Texas at Austin, Austin, TX 78712
– sequence: 2
  givenname: Hua
  surname: Chen
  fullname: Chen, Hua
  organization: Department of Physics, The University of Texas at Austin, Austin, TX 78712
– sequence: 3
  givenname: Tijiang
  surname: Liu
  fullname: Liu, Tijiang
  organization: Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803
– sequence: 4
  givenname: Jisun
  surname: Kim
  fullname: Kim, Jisun
  organization: Department of Physics, The University of Texas at Austin, Austin, TX 78712
– sequence: 5
  givenname: Chendong
  surname: Zhang
  fullname: Zhang, Chendong
  organization: Department of Physics, The University of Texas at Austin, Austin, TX 78712
– sequence: 6
  givenname: Jie
  surname: Yong
  fullname: Yong, Jie
  organization: Department of Physics, The Ohio State University, Columbus, OH 43210
– sequence: 7
  givenname: Thomas R.
  surname: Lemberger
  fullname: Lemberger, Thomas R.
  organization: Department of Physics, The Ohio State University, Columbus, OH 43210
– sequence: 8
  givenname: Philip A.
  surname: Kratz
  fullname: Kratz, Philip A.
  organization: Department of Physics and Applied Physics, Stanford University, Stanford, CA 94305
– sequence: 9
  givenname: John R.
  surname: Kirtley
  fullname: Kirtley, John R.
  organization: Department of Physics and Applied Physics, Stanford University, Stanford, CA 94305
– sequence: 10
  givenname: Kathryn
  surname: Moler
  fullname: Moler, Kathryn
  organization: Department of Physics and Applied Physics, Stanford University, Stanford, CA 94305
– sequence: 11
  givenname: Philip W.
  surname: Adams
  fullname: Adams, Philip W.
  organization: Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803
– sequence: 12
  givenname: Allan H.
  surname: MacDonald
  fullname: MacDonald, Allan H.
  organization: Department of Physics, The University of Texas at Austin, Austin, TX 78712
– sequence: 13
  givenname: Chih-Kang
  surname: Shih
  fullname: Shih, Chih-Kang
  organization: Department of Physics, The University of Texas at Austin, Austin, TX 78712
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27601678$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1321028$$D View this record in Osti.gov
BookMark eNpdkc1u1DAUhS3Uik4H1qxAEWy6SXv9E8feVEJVKZWK2NC15TjOjEcZO9hOq-54B96wT4LLlBZYWdb5fHzPPYdozwdvEXqD4RhDS08mr9Mx5hhL3mJMX6AFBolrziTsoQUAaWvBCDtAhyltAEA2Al6iA9JywLwVC_TlesxR57XzVb4Nde-21icXvB6rNE82muD72WR34_Jddevyuko5Br-q0uT8_Y-fIXYuVybM0-j86hXaH_SY7OvHc4muP51_O_tcX329uDz7eFUb1kKuiezkAGC6gXaaYSrJ0LQwEFLunQDoB9MwaqmUojOiIVIywzS1hFIjLevpEp3ufKe529reWF9CjGqKbqvjnQraqX8V79ZqFW5UA7QRkhWD9zuDkLJTybhszbpk9dZkhSnBQESBjh5_ieH7bFNWW5eMHUftbZiTwoIQxnlTTJfow3_oJsyxbPE3VcJIwppCnewoE0NK0Q5PE2NQD32qhz7Vc5_lxbu_gz7xfwoswNsdsEk5xGedsxZzAvQXkTepyA
CitedBy_id crossref_primary_10_1063_5_0025151
crossref_primary_10_1039_C8CP00697K
crossref_primary_10_1103_PhysRevResearch_2_023254
crossref_primary_10_1038_s42005_018_0091_7
crossref_primary_10_1038_d41586_018_02329_y
crossref_primary_10_1103_PhysRevB_106_094501
crossref_primary_10_1103_PhysRevB_96_035437
crossref_primary_10_1103_PhysRevMaterials_5_064802
crossref_primary_10_1103_PhysRevB_107_094504
crossref_primary_10_1038_s41535_021_00406_6
crossref_primary_10_1134_S0021364022601816
crossref_primary_10_1038_nature25768
crossref_primary_10_1103_PhysRevB_108_214509
crossref_primary_10_1088_0953_2048_30_1_013003
crossref_primary_10_1103_PhysRevB_102_155406
crossref_primary_10_3390_met13061140
crossref_primary_10_1103_PhysRevB_100_094512
crossref_primary_10_1103_PhysRevLett_127_127003
crossref_primary_10_1063_5_0039983
crossref_primary_10_1103_PhysRevB_103_235149
crossref_primary_10_1021_acs_nanolett_2c02501
crossref_primary_10_1088_1361_648X_ab0bf4
crossref_primary_10_1088_1361_6528_ac238d
crossref_primary_10_1038_s41467_019_11607_w
crossref_primary_10_1103_PhysRevB_102_144518
crossref_primary_10_1103_PhysRevB_95_100503
crossref_primary_10_1038_s41467_021_21642_1
crossref_primary_10_1103_PhysRevB_106_224518
crossref_primary_10_1209_0295_5075_128_27001
crossref_primary_10_1103_PhysRevB_103_024504
crossref_primary_10_1103_PhysRevB_96_174512
crossref_primary_10_1103_PhysRevB_108_064504
crossref_primary_10_1063_1_5012043
crossref_primary_10_1103_PhysRevB_98_134505
crossref_primary_10_1103_PhysRevLett_121_227701
crossref_primary_10_1103_PhysRevB_107_174516
crossref_primary_10_1007_s11433_022_2000_y
crossref_primary_10_1002_pssb_202200095
crossref_primary_10_1103_PhysRevB_102_035150
crossref_primary_10_1007_s43673_021_00028_x
crossref_primary_10_1021_acs_inorgchem_9b01362
crossref_primary_10_1103_PhysRevResearch_2_012064
crossref_primary_10_1038_s41467_018_07778_7
crossref_primary_10_1103_PhysRevB_104_214514
crossref_primary_10_1038_s41563_018_0061_1
crossref_primary_10_1088_1674_1056_acbf29
crossref_primary_10_1103_PhysRevMaterials_5_013805
Cites_doi 10.1103/PhysRevLett.107.217003
10.1088/0256-307X/29/3/037402
10.1038/nmat3654
10.1126/science.1142159
10.1103/PhysRevB.76.014522
10.1126/science.1105130
10.1143/JJAP.51.015702
10.1126/science.aaa7154
10.1103/PhysRev.129.2413
10.1017/CBO9780511813467.010
10.1103/PhysRevB.84.104525
10.1038/ncomms1946
10.1103/PhysRevLett.101.167001
10.1103/RevModPhys.83.1057
10.1038/nphys707
10.1103/PhysRevLett.96.027005
10.1103/PhysRevLett.90.216106
10.1103/PhysRevB.87.184505
10.1038/nphys244
10.1103/PhysRevB.90.054503
10.1103/PhysRevLett.87.037004
10.1103/PhysRev.135.A550
10.1103/PhysRevLett.107.207001
10.1038/nmat4153
10.1103/PhysRevB.84.014517
10.1016/0022-3697(59)90036-8
10.1088/0022-3719/6/7/010
10.1103/PhysRevLett.25.1578
10.1126/science.273.5272.226
10.1103/PhysRevB.92.165104
10.1038/nphys1499
10.1038/nphys2287
10.1103/PhysRevB.85.224518
10.1126/science.1170775
10.1038/374434a0
10.1103/PhysRevLett.102.076801
10.1103/PhysRevB.52.13570
10.1103/PhysRevLett.105.097001
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Sep 20, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Sep 20, 2016
DBID NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OTOTI
5PM
DOI 10.1073/pnas.1611967113
DatabaseName PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Virology and AIDS Abstracts

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Ultrathin 2D superconductivity with strong SOC
EISSN 1091-6490
EndPage 10517
ExternalDocumentID 1321028
4202815771
10_1073_pnas_1611967113
27601678
26471620
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: U.S. Department of Energy (DOE)
  grantid: DE-FG02-08ER46533
– fundername: U.S. Department of Energy (DOE)
  grantid: DE-FG02- 07ER46420
– fundername: Welch Foundation
  grantid: TBF1473
– fundername: Welch Foundation
  grantid: F-1672
– fundername: DOD | Office of Naval Research (ONR)
  grantid: ONR-N00014-14-1-0330
– fundername: National Science Foundation (NSF)
  grantid: DMR-1506678
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
ADQXQ
79B
OTOTI
ZA5
5PM
ID FETCH-LOGICAL-c470t-29b9f00cbf3ba41392f570f22f3bb800dfc543e3998bc852994c4a3e233c9e4d3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:10:52 EDT 2024
Tue Jun 25 16:21:04 EDT 2024
Fri Aug 16 05:19:14 EDT 2024
Thu Oct 10 15:54:01 EDT 2024
Fri Aug 23 04:57:56 EDT 2024
Sat Sep 28 08:46:20 EDT 2024
Sun Oct 20 12:38:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Keywords Rashba
Zeeman
superconductivity
spin–orbit coupling
ultrathin film
Language English
License Freely available online through the PNAS open access option.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-29b9f00cbf3ba41392f570f22f3bb800dfc543e3998bc852994c4a3e233c9e4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
FG02-08ER46533; FG02- 07ER46420
2Present address: Department of Physics, University of Maryland, College Park, MD 20742.
Contributed by Allan H. MacDonald, July 29, 2016 (sent for review March 21, 2016; reviewed by Eva Y. Andrei and Laura Greene)
Author contributions: H.N., H.C., T.R.L., J.R.K., K.M., P.W.A., A.H.M., and C.-K.S. designed research; H.N., H.C., T.L., J.K., C.Z., J.Y., T.R.L., P.A.K., J.R.K., K.M., P.W.A., A.H.M., and C.-K.S. performed research; H.N., H.C., T.L., J.K., C.Z., J.Y., T.R.L., P.A.K., J.R.K., K.M., P.W.A., A.H.M., and C.-K.S. analyzed data; and H.N., H.C., T.R.L., J.R.K., K.M., P.W.A., A.H.M., and C.-K.S. wrote the paper.
Reviewers: E.Y.A., Rutgers; and L.G., National Magnet Lab.
1Present address: Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803.
OpenAccessLink https://www.pnas.org/content/pnas/113/38/10513.full.pdf
PMID 27601678
PQID 1825439245
PQPubID 42026
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5035894
osti_scitechconnect_1321028
proquest_miscellaneous_1822466550
proquest_journals_1825439245
crossref_primary_10_1073_pnas_1611967113
pubmed_primary_27601678
jstor_primary_26471620
PublicationCentury 2000
PublicationDate 2016-09-20
PublicationDateYYYYMMDD 2016-09-20
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
Proceedings of the National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
– name: Proceedings of the National Academy of Sciences
References 11461584 - Phys Rev Lett. 2001 Jul 16;87(3):037004
19257703 - Phys Rev Lett. 2009 Feb 20;102(7):076801
15591197 - Science. 2004 Dec 10;306(5703):1915-7
23708327 - Nat Mater. 2013 Jul;12(7):634-40
9980555 - Phys Rev B Condens Matter. 1995 Nov 1;52(18):13570-13575
22181760 - Phys Rev Lett. 2011 Nov 11;107(20):207001
19407146 - Science. 2009 Jun 5;324(5932):1314-7
22181915 - Phys Rev Lett. 2011 Nov 18;107(21):217003
22760630 - Nat Commun. 2012 Jul 03;3:931
8662503 - Science. 1996 Jul 12;273(5272):226-8
12786570 - Phys Rev Lett. 2003 May 30;90(21):216106
16486621 - Phys Rev Lett. 2006 Jan 20;96(2):027005
25419814 - Nat Mater. 2015 Mar;14(3):285-9
26472763 - Science. 2015 Oct 30;350(6260):542-5
17569857 - Science. 2007 Jun 15;316(5831):1594-7
18999704 - Phys Rev Lett. 2008 Oct 17;101(16):167001
20868184 - Phys Rev Lett. 2010 Aug 27;105(9):097001
Ashcroft NW (e_1_3_3_29_2) 1976
Ioffe LB (e_1_3_3_38_2) 1981; 81
Larkin AI (e_1_3_3_36_2) 1964; 47
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
Meservey R (e_1_3_3_28_2) 1969
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
Chaikin PM (e_1_3_3_26_2) 1995
e_1_3_3_24_2
Tinkham M (e_1_3_3_31_2) 2004
e_1_3_3_23_2
Lu SM (e_1_3_3_40_2) 2012; 51
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_9_2
  doi: 10.1103/PhysRevLett.107.217003
– ident: e_1_3_3_14_2
  doi: 10.1088/0256-307X/29/3/037402
– ident: e_1_3_3_16_2
  doi: 10.1038/nmat3654
– ident: e_1_3_3_4_2
  doi: 10.1126/science.1142159
– ident: e_1_3_3_34_2
  doi: 10.1103/PhysRevB.76.014522
– ident: e_1_3_3_1_2
  doi: 10.1126/science.1105130
– volume: 51
  start-page: 015702
  year: 2012
  ident: e_1_3_3_40_2
  article-title: Scanning tunneling spectroscopy observation of electronic resonances originating from 1 × 1 potential on the dense Pb overlayer on Si(111)
  publication-title: Jpn J Appl Phys
  doi: 10.1143/JJAP.51.015702
  contributor:
    fullname: Lu SM
– ident: e_1_3_3_11_2
  doi: 10.1126/science.aaa7154
– ident: e_1_3_3_32_2
  doi: 10.1103/PhysRev.129.2413
– volume: 81
  start-page: 707
  year: 1981
  ident: e_1_3_3_38_2
  article-title: Properties of superconductors with a smeared transition temperature
  publication-title: Zh Eksp Teor Fiz
  contributor:
    fullname: Ioffe LB
– start-page: 117
  volume-title: Superconductivity
  year: 1969
  ident: e_1_3_3_28_2
  contributor:
    fullname: Meservey R
– start-page: 495
  volume-title: Principles of Condensed Matter Physics
  year: 1995
  ident: e_1_3_3_26_2
  doi: 10.1017/CBO9780511813467.010
  contributor:
    fullname: Chaikin PM
– ident: e_1_3_3_24_2
  doi: 10.1103/PhysRevB.84.104525
– ident: e_1_3_3_15_2
  doi: 10.1038/ncomms1946
– start-page: 384
  volume-title: Introduction to Superconductivity
  year: 2004
  ident: e_1_3_3_31_2
  contributor:
    fullname: Tinkham M
– ident: e_1_3_3_5_2
  doi: 10.1103/PhysRevLett.101.167001
– ident: e_1_3_3_19_2
  doi: 10.1103/RevModPhys.83.1057
– ident: e_1_3_3_42_2
  doi: 10.1038/nphys707
– ident: e_1_3_3_3_2
  doi: 10.1103/PhysRevLett.96.027005
– ident: e_1_3_3_39_2
  doi: 10.1103/PhysRevLett.90.216106
– ident: e_1_3_3_10_2
  doi: 10.1103/PhysRevB.87.184505
– start-page: 29
  volume-title: Solid State Physics
  year: 1976
  ident: e_1_3_3_29_2
  contributor:
    fullname: Ashcroft NW
– ident: e_1_3_3_2_2
  doi: 10.1038/nphys244
– ident: e_1_3_3_20_2
  doi: 10.1103/PhysRevB.90.054503
– ident: e_1_3_3_33_2
  doi: 10.1103/PhysRevLett.87.037004
– ident: e_1_3_3_35_2
  doi: 10.1103/PhysRev.135.A550
– ident: e_1_3_3_12_2
  doi: 10.1103/PhysRevLett.107.207001
– ident: e_1_3_3_17_2
  doi: 10.1038/nmat4153
– ident: e_1_3_3_23_2
  doi: 10.1103/PhysRevB.84.014517
– ident: e_1_3_3_37_2
  doi: 10.1016/0022-3697(59)90036-8
– ident: e_1_3_3_25_2
  doi: 10.1088/0022-3719/6/7/010
– ident: e_1_3_3_30_2
  doi: 10.1103/PhysRevLett.25.1578
– ident: e_1_3_3_41_2
  doi: 10.1126/science.273.5272.226
– ident: e_1_3_3_21_2
  doi: 10.1103/PhysRevB.92.165104
– ident: e_1_3_3_13_2
  doi: 10.1038/nphys1499
– ident: e_1_3_3_7_2
  doi: 10.1038/nphys2287
– ident: e_1_3_3_43_2
  doi: 10.1103/PhysRevB.85.224518
– ident: e_1_3_3_6_2
  doi: 10.1126/science.1170775
– ident: e_1_3_3_27_2
  doi: 10.1038/374434a0
– volume: 47
  start-page: 1136
  year: 1964
  ident: e_1_3_3_36_2
  article-title: Nonuniform state of superconductors
  publication-title: Zh Eksp Teor Fiz
  contributor:
    fullname: Larkin AI
– ident: e_1_3_3_22_2
  doi: 10.1103/PhysRevLett.102.076801
– ident: e_1_3_3_8_2
  doi: 10.1103/PhysRevB.52.13570
– ident: e_1_3_3_18_2
  doi: 10.1103/PhysRevLett.105.097001
SSID ssj0009580
Score 2.5245643
Snippet We report on a study of epitaxially grown ultrathin Pb films that are only a few atoms thick and have parallel critical magnetic fields much higher than the...
Significance By studying epitaxially grown Pb thin films, this paper explores a new regime in the physics of uniform 2D superconductivity, in which the...
Significance By studying epitaxially grown Pb thin films, this paper explores a new regime in the physics of uniform 2D superconductivity, in which the...
By studying epitaxially grown Pb thin films, this paper explores a new regime in the physics of uniform 2D superconductivity, in which the spin–orbit...
SourceID pubmedcentral
osti
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 10513
SubjectTerms Magnetic fields
Physical Sciences
Scattering
Spectrum analysis
Superconductivity
Superconductors
Thin films
Title Ultrathin two-dimensional superconductivity with strong spin–orbit coupling
URI https://www.jstor.org/stable/26471620
https://www.ncbi.nlm.nih.gov/pubmed/27601678
https://www.proquest.com/docview/1825439245
https://search.proquest.com/docview/1822466550
https://www.osti.gov/biblio/1321028
https://pubmed.ncbi.nlm.nih.gov/PMC5035894
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTt0wEB0Bq25QKQUCFLlSF3SRexM_8lhWqAhagVj0Suyi2HEgEjjRTa667T_0D_slncnjAhWrKqsozms89pyxj48BPoVWFUbG2he5Ur7ECODnhQh9baMS3VnStCKxLa6ji4X8dqtuN0BNa2F60r7R1cw9PM5cdd9zK5tHM594YvObqzMVCJWkcr4Jm7EQU4q-VtpNhnUnHLtfyeWk5xOLeePydoYQB70uDkPaQocTJSSiPdaeRaWBmIh9dI2t7DXk-S-B8llEOn8L2yOUZF-GT96BDevewc7YWFt2OipKf96Fq8UDidDeV451P2u_IEX_QY2DtavGLjEnJtnXfh8JRiOzrKUR8jvWNpX78-t3vdRVx0y9ouW7d-9hcf71x9mFP-6j4GMtBJ3PU52WQWB0KXSOQSvlpYqDknM81wgYi9IoKSxClUSbRGGAkkbmwnIhTGplIfZgy9XOHgCzpbImorlImSCUKTSXxghpBCKxCA8PTic7Zs0gl5H109yxyMj62ZP1Pdjr7bwuh9CM5KwCD47I8BlCANKxNUT4MV0W0mojnnhwPNVHNjY3fCrlufhfUnnwcX0ZGwrNfuTO1qu-DEdfxIzMg_2h-p5ePbqBB_GLil0XIBHul1fQN3sx7tEXD__7ziN4gyAsIg4KD45hq1uu7AcEOp0-QYh_-f2kd--_7Sf-Dg
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtUwEB2VsoANUKCQtkCQWJRFchM_8liiiuoCvRWLXtRdFDtOG9Em0U2iSqz4B_6QL2Emj9uH2ICyiuwksmbGcxwfnwF45xuZaREqh6dSOgIzgJNm3HeUCXJ0Z0HbisS2OA7mS_H5VJ5ugJzOwvSkfa0Kt7y4dMvivOdW1pd6NvHEZl8XB9LjMorF7B7cx3hlclqkr7V2o-HkCcMJWDAxKfqEfFaXaeMiyEG_C32fiugwIoUEVGXtRl4aqIk4S1cYZ3_DnncplDdy0uFj-DaNZqCifHe7Vrn6xx2hx38e7hN4NKJU-8PQvAUbpnwKW-M80Nj7o1j1-2ewWF6Qvu15UdrtVeVkVCxgEPqwm642K1xuk6JsX6LCpp--dkM_38_spi7K3z9_VStVtLauOjoZfPYclocfTw7mzliiwUEDe63DYhXnnqdVzlWK-TBmuQy9nDG8V4hFs1xLwQ2ioEjpSGLuE1qk3DDOdWxExrdhs6xK8xJsk0ujA9rmFBGipEwxoTUXmiPIC_CyYH8yUFIPShxJv4Me8oTMmlyb1YLt3oDrfoj6SCnLs2CXLJoguiCJXE1cIt0mPh1kYpEFe5OhkzGS8a20hMZxCWnB23UzxiBtrKSlqbq-D0M3x8WeBS8Gv7j-9OhfFoS3PGbdgfS9b7egH_Q636Pdd_77yTfwYH6yOEqOPh1_2YWHiPUCorowbw8221VnXiGeatXrPnr-AK8RHxw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtUwEB1BkRCbQoGWtAWCxKIscpP4kccSFa7Ko1UXXKliE8WO00a0SXSTCIkV_8Af8iXM5HF7W7GqsoriJLJmxnNsH58BeOsbmWkRKoenUjoCM4CTZtx3lAlydGdB24rEtjgJjhbi85k8Wyv11ZP2tSpm5eXVrCwuem5lfaXdiSfmnh4fSo_LKBZuneXufXiAMcvCaaK-0tuNhtMnDAdhwcSk6hNyty7TZoZAB30v9H0qpMOIGBJQpbW13DTQE3GkrjDW_oc_b9Mo1_LS_DF8n3o00FF-zLpWzfSvW2KPd-ryE9gc0ar9fmiyBfdM-RS2xvGgsQ9G0ep3z-B4cUk6txdFabc_KyejogGD4IfddLVZ4rSblGX7UhU2Lf7aDS3Cn9tNXZR_f_-plqpobV11dEL4_Dks5h-_HR45Y6kGBw3ttQ6LVZx7nlY5VynmxZjlMvRyxvBeISbNci0FN4iGIqUjiTlQaJFywzjXsREZ34aNsirNC7BNLo0OaLtTRIiWMsWE1lxojmAvwMuCg8lIST0ociT9TnrIEzJtcm1aC7Z7I67aIfojxSzPgj2yaoIog6RyNXGKdJv4dKCJRRbsT8ZOxojGr9JUGvslpAVvVo8xFmmDJS1N1fVtGLo7Tvos2Bl84_rXo49ZEN7wmlUD0vm--QR9odf7Hm2_e-c3X8PD0w_z5Ounky978AghX0CMF-btw0a77MxLhFWtetUH0D-kvCGc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrathin+two-dimensional+superconductivity+with+strong+spin%E2%80%93orbit+coupling&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Nam%2C+Hyoungdo&rft.au=Chen%2C+Hua&rft.au=Liu%2C+Tijiang&rft.au=Kim%2C+Jisun&rft.date=2016-09-20&rft.pub=Proceedings+of+the+National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=38&rft_id=info:doi/10.1073%2Fpnas.1611967113&rft.externalDocID=1321028
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon