A subtype of cancer-associated fibroblasts with lower expression of alpha-smooth muscle actin suppresses stemness through BMP4 in oral carcinoma

Cancer-associated fibroblasts (CAFs) demonstrate the characteristics of myofibroblast differentiation by often expressing the ultrastructure of alpha-smooth muscle actin (αSMA). However, heterogeneity among cancer-associated fibroblasts (CAFs), with respect to αSMA expression, has been demonstrated...

Full description

Saved in:
Bibliographic Details
Published inOncogenesis (New York, NY) Vol. 7; no. 10; pp. 78 - 15
Main Authors Patel, Ankit Kumar, Vipparthi, Kavya, Thatikonda, Venu, Arun, Indu, Bhattacharjee, Samsiddhi, Sharan, Rajeev, Arun, Pattatheyil, Singh, Sandeep
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.10.2018
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cancer-associated fibroblasts (CAFs) demonstrate the characteristics of myofibroblast differentiation by often expressing the ultrastructure of alpha-smooth muscle actin (αSMA). However, heterogeneity among cancer-associated fibroblasts (CAFs), with respect to αSMA expression, has been demonstrated in several clinical studies of oral cancer. Like normal stem cells, stem-like cancer cells (SLCCs) are also regulated extrinsically by its microenvironment; therefore, we postulated that the heterogeneous oral-CAFs would differently regulate oral-SLCCs. Using transcriptomics, we clearly demonstrated that the gene expression differences between oral tumor-derived CAFs were indeed the molecular basis of heterogeneity. This also grouped these CAFs in two distinct clusters, which were named as C1 and C2. Interestingly, the oral-CAFs belonging to C1 or C2 clusters showed low or high αSMA-score, respectively. Our data with tumor tissues and in vitro co-culture experiments interestingly demonstrated a negative correlation between αSMA-score and cell proliferation, whereas, the frequency of oral-SLCCs was significantly positively correlated with αSMA-score. The oral-CAF-subtype with lower score for αSMA (C1-type CAFs) was more supportive for cell proliferation but suppressive for the self-renewal growth of oral-SLCCs. Further, we found the determining role of BMP4 in C1-type CAFs-mediated suppression of self-renewal of oral-SLCCs. Overall, we have discovered an unexplored interaction between CAFs with lower-αSMA expression and SLCCs in oral tumors and provided the first evidence about the involvement of CAF-expressed BMP4 in regulation of self-renewal of oral-SLCCs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2157-9024
2157-9024
DOI:10.1038/s41389-018-0087-x