Validating Patient-Specific Finite Element Models of Direct Electrocortical Stimulation

Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke rehabilitation and brain-computer interfaces. However, the electrophysiological mechanisms that result in a therapeutic effect remain unclear....

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neuroscience Vol. 15; p. 691701
Main Authors Charlebois, Chantel M., Caldwell, David J., Rampersad, Sumientra M., Janson, Andrew P., Ojemann, Jeffrey G., Brooks, Dana H., MacLeod, Rob S., Butson, Christopher R., Dorval, Alan D.
Format Journal Article
LanguageEnglish
Published Lausanne Frontiers Research Foundation 02.08.2021
Frontiers Media S.A
Subjects
Online AccessGet full text
ISSN1662-453X
1662-4548
1662-453X
DOI10.3389/fnins.2021.691701

Cover

Loading…
Abstract Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke rehabilitation and brain-computer interfaces. However, the electrophysiological mechanisms that result in a therapeutic effect remain unclear. Patient-specific computational models are promising tools to predict the voltages in the brain and better understand the neural and clinical response to DECS, but the accuracy of such models has not been directly validated in humans. A key hurdle to modeling DECS is accurately locating the electrodes on the cortical surface due to brain shift after electrode implantation. Despite the inherent uncertainty introduced by brain shift, the effects of electrode localization parameters have not been investigated. The goal of this study was to validate patient-specific computational models of DECS against in vivo voltage recordings obtained during DECS and quantify the effects of electrode localization parameters on simulated voltages on the cortical surface. We measured intracranial voltages in six epilepsy patients during DECS and investigated the following electrode localization parameters: principal axis, Hermes, and Dykstra electrode projection methods combined with 0, 1, and 2 mm of cerebral spinal fluid (CSF) below the electrodes. Greater CSF depth between the electrode and cortical surface increased model errors and decreased predicted voltage accuracy. The electrode localization parameters that best estimated the recorded voltages across six patients with varying amounts of brain shift were the Hermes projection method and a CSF depth of 0 mm ( r = 0.92 and linear regression slope = 1.21). These results are the first to quantify the effects of electrode localization parameters with in vivo intracranial recordings and may serve as the basis for future studies investigating the neuronal and clinical effects of DECS for epilepsy, stroke, and other emerging closed-loop applications.
AbstractList Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke rehabilitation and brain-computer interfaces. However, the electrophysiological mechanisms that result in a therapeutic effect remain unclear. Patient-specific computational models are promising tools to predict the voltages in the brain and better understand the neural and clinical response to DECS, but the accuracy of such models has not been directly validated in humans. A key hurdle to modeling DECS is accurately locating the electrodes on the cortical surface due to brain shift after electrode implantation. Despite the inherent uncertainty introduced by brain shift, the effects of electrode localization parameters have not been investigated. The goal of this study was to validate patient-specific computational models of DECS against in vivo voltage recordings obtained during DECS and quantify the effects of electrode localization parameters on simulated voltages on the cortical surface. We measured intracranial voltages in six epilepsy patients during DECS and investigated the following electrode localization parameters: principal axis, Hermes, and Dykstra electrode projection methods combined with 0, 1, and 2 mm of cerebral spinal fluid (CSF) below the electrodes. Greater CSF depth between the electrode and cortical surface increased model errors and decreased predicted voltage accuracy. The electrode localization parameters that best estimated the recorded voltages across six patients with varying amounts of brain shift were the Hermes projection method and a CSF depth of 0 mm (r = 0.92 and linear regression slope = 1.21). These results are the first to quantify the effects of electrode localization parameters with in vivo intracranial recordings and may serve as the basis for future studies investigating the neuronal and clinical effects of DECS for epilepsy, stroke, and other emerging closed-loop applications.Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke rehabilitation and brain-computer interfaces. However, the electrophysiological mechanisms that result in a therapeutic effect remain unclear. Patient-specific computational models are promising tools to predict the voltages in the brain and better understand the neural and clinical response to DECS, but the accuracy of such models has not been directly validated in humans. A key hurdle to modeling DECS is accurately locating the electrodes on the cortical surface due to brain shift after electrode implantation. Despite the inherent uncertainty introduced by brain shift, the effects of electrode localization parameters have not been investigated. The goal of this study was to validate patient-specific computational models of DECS against in vivo voltage recordings obtained during DECS and quantify the effects of electrode localization parameters on simulated voltages on the cortical surface. We measured intracranial voltages in six epilepsy patients during DECS and investigated the following electrode localization parameters: principal axis, Hermes, and Dykstra electrode projection methods combined with 0, 1, and 2 mm of cerebral spinal fluid (CSF) below the electrodes. Greater CSF depth between the electrode and cortical surface increased model errors and decreased predicted voltage accuracy. The electrode localization parameters that best estimated the recorded voltages across six patients with varying amounts of brain shift were the Hermes projection method and a CSF depth of 0 mm (r = 0.92 and linear regression slope = 1.21). These results are the first to quantify the effects of electrode localization parameters with in vivo intracranial recordings and may serve as the basis for future studies investigating the neuronal and clinical effects of DECS for epilepsy, stroke, and other emerging closed-loop applications.
Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke rehabilitation and brain-computer interfaces. However, the electrophysiological mechanisms that result in a therapeutic effect remain unclear. Patient-specific computational models are promising tools to predict the voltages in the brain and better understand the neural and clinical response to DECS, but the accuracy of such models has not been directly validated in humans. A key hurdle to modeling DECS is accurately locating the electrodes on the cortical surface due to brain shift after electrode implantation. Despite the inherent uncertainty introduced by brain shift, the effects of electrode localization parameters have not been investigated. The goal of this study was to validate patient-specific computational models of DECS against in vivo voltage recordings obtained during DECS and quantify the effects of electrode localization parameters on simulated voltages on the cortical surface. We measured intracranial voltages in six epilepsy patients during DECS and investigated the following electrode localization parameters: principal axis, Hermes, and Dykstra electrode projection methods combined with 0, 1, and 2 mm of cerebral spinal fluid (CSF) below the electrodes. Greater CSF depth between the electrode and cortical surface increased model errors and decreased predicted voltage accuracy. The electrode localization parameters that best estimated the recorded voltages across six patients with varying amounts of brain shift were the Hermes projection method and a CSF depth of 0 mm (r = 0.92 and linear regression slope = 1.21). These results are the first to quantify the effects of electrode localization parameters with in vivo intracranial recordings and may serve as the basis for future studies investigating the neuronal and clinical effects of DECS for epilepsy, stroke, and other emerging closed-loop applications.
Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke rehabilitation and brain-computer interfaces. However, the electrophysiological mechanisms that result in a therapeutic effect remain unclear. Patient-specific computational models are promising tools to predict the voltages in the brain and better understand the neural and clinical response to DECS, but the accuracy of such models has not been directly validated in humans. A key hurdle to modeling DECS is accurately locating the electrodes on the cortical surface due to brain shift after electrode implantation. Despite the inherent uncertainty introduced by brain shift, the effects of electrode localization parameters have not been investigated. The goal of this study was to validate patient-specific computational models of DECS against in vivo voltage recordings obtained during DECS and quantify the effects of electrode localization parameters on simulated voltages on the cortical surface. We measured intracranial voltages in six epilepsy patients during DECS and investigated the following electrode localization parameters: principal axis, Hermes, and Dykstra electrode projection methods combined with 0, 1, and 2 mm of cerebral spinal fluid (CSF) below the electrodes. Greater CSF depth between the electrode and cortical surface increased model errors and decreased predicted voltage accuracy. The electrode localization parameters that best estimated the recorded voltages across six patients with varying amounts of brain shift were the Hermes projection method and a CSF depth of 0 mm ( r = 0.92 and linear regression slope = 1.21). These results are the first to quantify the effects of electrode localization parameters with in vivo intracranial recordings and may serve as the basis for future studies investigating the neuronal and clinical effects of DECS for epilepsy, stroke, and other emerging closed-loop applications.
Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke rehabilitation and brain-computer interfaces. However, the electrophysiological mechanisms that result in a therapeutic effect remain unclear. Patient-specific computational models are promising tools to predict the voltages in the brain and better understand the neural and clinical response to DECS, but the accuracy of such models has not been directly validated in humans. A key hurdle to modeling DECS is accurately locating the electrodes on the cortical surface due to brain shift after electrode implantation. Despite the inherent uncertainty introduced by brain shift, the effects of electrode localization parameters have not been investigated. The goal of this study was to validate patient-specific computational models of DECS against in vivo voltage recordings obtained during DECS and quantify the effects of electrode localization parameters on simulated voltages on the cortical surface. We measured intracranial voltages in six epilepsy patients during DECS and investigated the following electrode localization parameters: principal axis, Hermes, and Dykstra electrode projection methods combined with 0, 1, and 2 mm of cerebral spinal fluid (CSF) below the electrodes. Greater CSF depth between the electrode and cortical surface increased model errors and decreased predicted voltage accuracy. The electrode localization parameters that best predicted the recorded voltages across six patients with varying amounts of brain shift were the Hermes projection method and a CSF depth of 0 mm (r=0.92 and linear regression slope = 1.21). These results are the first to quantify the effects of electrode localization parameters with in vivo intracranial recordings and may serve as the basis for future studies investigating the neuronal and clinical effects of DECS for epilepsy, stroke, and other emerging closed-loop applications.
Author Rampersad, Sumientra M.
Caldwell, David J.
MacLeod, Rob S.
Dorval, Alan D.
Ojemann, Jeffrey G.
Charlebois, Chantel M.
Janson, Andrew P.
Brooks, Dana H.
Butson, Christopher R.
AuthorAffiliation 6 Department of Electrical and Computer Engineering, Northeastern University , Boston, MA , United States
3 Department of Bioengineering, University of Washington , Seattle, WA , United States
4 Center for Neurotechnology, University of Washington , Seattle, WA , United States
1 Department of Biomedical Engineering, University of Utah , Salt Lake City, UT , United States
8 Department of Neurology, Neurosurgery and Psychiatry, University of Utah , Salt Lake City, UT , United States
7 Department of Neurological Surgery, University of Washington , Seattle, WA , United States
5 Medical Scientist Training Program, University of Washington , Seattle, WA , United States
2 Scientific Computing and Imaging (SCI) Institute, University of Utah , Salt Lake City, UT , United States
AuthorAffiliation_xml – name: 8 Department of Neurology, Neurosurgery and Psychiatry, University of Utah , Salt Lake City, UT , United States
– name: 3 Department of Bioengineering, University of Washington , Seattle, WA , United States
– name: 4 Center for Neurotechnology, University of Washington , Seattle, WA , United States
– name: 7 Department of Neurological Surgery, University of Washington , Seattle, WA , United States
– name: 5 Medical Scientist Training Program, University of Washington , Seattle, WA , United States
– name: 2 Scientific Computing and Imaging (SCI) Institute, University of Utah , Salt Lake City, UT , United States
– name: 6 Department of Electrical and Computer Engineering, Northeastern University , Boston, MA , United States
– name: 1 Department of Biomedical Engineering, University of Utah , Salt Lake City, UT , United States
Author_xml – sequence: 1
  givenname: Chantel M.
  surname: Charlebois
  fullname: Charlebois, Chantel M.
– sequence: 2
  givenname: David J.
  surname: Caldwell
  fullname: Caldwell, David J.
– sequence: 3
  givenname: Sumientra M.
  surname: Rampersad
  fullname: Rampersad, Sumientra M.
– sequence: 4
  givenname: Andrew P.
  surname: Janson
  fullname: Janson, Andrew P.
– sequence: 5
  givenname: Jeffrey G.
  surname: Ojemann
  fullname: Ojemann, Jeffrey G.
– sequence: 6
  givenname: Dana H.
  surname: Brooks
  fullname: Brooks, Dana H.
– sequence: 7
  givenname: Rob S.
  surname: MacLeod
  fullname: MacLeod, Rob S.
– sequence: 8
  givenname: Christopher R.
  surname: Butson
  fullname: Butson, Christopher R.
– sequence: 9
  givenname: Alan D.
  surname: Dorval
  fullname: Dorval, Alan D.
BookMark eNp1kk1v1DAQhiNURD_gB3CLxIVLFn_FTi5IqLRQqQik8nWzHHu8eOXYi-0g8e_x7rZSW4mTrZl3nhmP39PmKMQATfMSoxWlw_jGBhfyiiCCV3zEAuEnzQnmnHSspz-P7t2Pm9OcNwhxMjDyrDmmjKGBE3zS_PiuvDOquLBuv9QDQulutqCddbq9dMEVaC88zDXefooGfG6jbd-7BLrsErqkqGMqTivf3hQ3L75SYnjePLXKZ3hxe5413y4vvp5_7K4_f7g6f3fdaSZQ6fCIBw3Iam4Y6i2lFgFBqDcD5ZMYjBaAxUiFAEbNZDRMTFBmlJowFRx6etZcHbgmqo3cJjer9FdG5eQ-ENNaqt10HmTf45HigVngjClrJoSF4HqiGjMBXFTW2wNru0wz1GahJOUfQB9mgvsl1_GPrMP2FPEKeH0LSPH3ArnI2WUN3qsAccmS9PUDyCjQUKWvHkk3cUmhrqqqekEREQOuKnFQ6RRzTmCldmW_39rfeYmR3BlB7o0gd0aQByPUSvyo8u4Z_6_5Bz6WuMo
CitedBy_id crossref_primary_10_1038_s41598_023_28769_9
crossref_primary_10_1016_j_cmpb_2023_107889
crossref_primary_10_1038_s41598_021_03414_5
crossref_primary_10_2139_ssrn_4049696
crossref_primary_10_1016_j_compbiomed_2022_106407
Cites_doi 10.1310/tsr1502-160
10.1016/j.brs.2015.06.009
10.3171/2013.2.JNS121450
10.1159/000098989
10.1016/j.clinph.2006.09.012
10.1038/nn.3883
10.1109/10.605429
10.1016/j.neuroimage.2018.01.088
10.3171/jns.1989.71.3.0316
10.1523/JNEUROSCI.3967-10.2010
10.1016/j.clinph.2005.10.005
10.1038/srep27353
10.1016/j.neuroimage.2011.11.046
10.1145/2629697
10.3171/jns.2006.105.6.894
10.1016/j.neuroimage.2012.09.041
10.1016/j.eplepsyres.2011.01.011
10.1016/j.brs.2013.02.001
10.1016/j.jneumeth.2008.06.028
10.1159/000101243
10.1016/j.clinph.2009.02.002
10.1227/01.NEU.0000197100.63931.04
10.1093/brain/awaa188
10.1109/10.554770
10.1016/s0920-1211(00)00137-6
10.1371/journal.pone.0176132
10.3171/jns.2000.93.2.0214
10.1016/j.clinph.2011.06.005
10.1016/j.neuroimage.2010.10.059
10.1177/1545968315575613
10.1016/j.mri.2012.05.001
10.1097/00006123-198911000-00015
10.3171/JNS/2008/108/4/0707
10.1109/EMBC.2015.7318340
10.1001/jamaneurol.2016.2857
10.1016/j.brs.2010.01.003
10.1111/epi.12525
10.1002/hbm.24419
10.1016/j.clinph.2005.03.027
10.1088/1741-2560/11/5/056024
10.1088/1741-2560/5/4/009
10.1016/j.neuroimage.2012.06.039
10.1016/j.clinph.2005.10.007
10.1016/j.media.2004.02.001
10.1371/journal.pone.0128590
10.1002/ana.25975
10.1016/j.neuroimage.2006.09.034
10.1109/TOH.2016.2591952
10.1002/ana.24974
10.1155/2018/1056132
10.1097/00004728-199209000-00018
10.1212/WNL.0000000000001280
10.1371/journal.pone.0108028
10.1007/BF02345810
10.1109/EMBC.2012.6346069
10.1080/01621459.1974.10482955
10.1142/S0129065709001914
10.1038/nature10489
10.1038/s41598-019-38619-2
10.1016/j.jneumeth.2016.08.007
10.1109/TBME.2004.827925
10.1016/j.neuroimage.2019.116431
10.1016/j.jneumeth.2009.10.005
10.7554/eLife.18834
10.1002/ana.25567
10.1109/IEMBS.2011.6091826
10.1109/TBME.2013.2292025
10.1088/1741-2560/2/4/010
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2021 Charlebois, Caldwell, Rampersad, Janson, Ojemann, Brooks, MacLeod, Butson and Dorval.
Copyright © 2021 Charlebois, Caldwell, Rampersad, Janson, Ojemann, Brooks, MacLeod, Butson and Dorval. 2021 Charlebois, Caldwell, Rampersad, Janson, Ojemann, Brooks, MacLeod, Butson and Dorval
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2021 Charlebois, Caldwell, Rampersad, Janson, Ojemann, Brooks, MacLeod, Butson and Dorval.
– notice: Copyright © 2021 Charlebois, Caldwell, Rampersad, Janson, Ojemann, Brooks, MacLeod, Butson and Dorval. 2021 Charlebois, Caldwell, Rampersad, Janson, Ojemann, Brooks, MacLeod, Butson and Dorval
DBID AAYXX
CITATION
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2021.691701
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_55193184fe644afdb01776cb3c147e67
PMC8365306
10_3389_fnins_2021_691701
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: National Institutes of Health
  grantid: P41 GM103545; R24 GM136986
– fundername: National Science Foundation
  grantid: 1747505; IIS-1515168; IIS-1515167; IIS-1514790; EEC-1028725
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ACXDI
ADRAZ
AEGXH
AENEX
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M48
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RNS
RPM
W2D
3V.
7XB
8FK
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c470t-1918ce0fc6d405f33f0e2005d836b78dc7e179377e43dbdceb4734daab1376e53
IEDL.DBID M48
ISSN 1662-453X
1662-4548
IngestDate Wed Aug 27 01:26:12 EDT 2025
Thu Aug 21 18:16:33 EDT 2025
Fri Sep 05 08:52:52 EDT 2025
Fri Jul 25 11:41:46 EDT 2025
Tue Jul 01 01:39:25 EDT 2025
Thu Apr 24 22:56:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-1918ce0fc6d405f33f0e2005d836b78dc7e179377e43dbdceb4734daab1376e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
This article was submitted to Brain Imaging Methods, a section of the journal Frontiers in Neuroscience
Reviewed by: Georgios Naros, University of Tübingen, Germany; Clayton Scott Bingham, Case Western Reserve University, United States
Edited by: Dong Song, University of Southern California, United States
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnins.2021.691701
PMID 34408621
PQID 2557302781
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_55193184fe644afdb01776cb3c147e67
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8365306
proquest_miscellaneous_2562829708
proquest_journals_2557302781
crossref_citationtrail_10_3389_fnins_2021_691701
crossref_primary_10_3389_fnins_2021_691701
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-02
PublicationDateYYYYMMDD 2021-08-02
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-02
  day: 02
PublicationDecade 2020
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationYear 2021
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Si (B60) 2015; 41
Dalal (B17) 2008; 174
Brown (B6) 2006; 58
LaViolette (B45) 2011; 94
Ojemann (B53) 1989; 71
Seo (B58) 2015; 10
Sillay (B61) 2013; 6
Elias (B21) 2020; 89
Johnson (B39) 2020; 143
Seo (B59) 2016; 6
Hill (B31) 2000; 93
Lundstrom (B48) 2016; 73
Sebastiano (B57) 2006; 117
Davis (B18) 1983; 46
Wongsarnpigoon (B69) 2008; 5
Wagner (B66) 2004; 51
Howell (B34) 2014; 61
Cronin (B15) 2016; 9
Dadarlat (B16) 2015; 18
Levy (B47) 2016; 30
Yang (B71) 2012; 63
Velasco (B65) 2009; 19
Berger (B2) 1989; 25
Kim (B43) 2014; 9
Manola (B50) 2005; 43
Fedorov (B23) 2012; 30
Suminski (B62) 2010; 30
Brang (B5) 2016; 273
Dembek (B19) 2019; 86
Fiocchi (B24) 2018; 2018
Morris (B51) 2004; 25
Brown (B7) 1974; 69
Hastreiter (B28) 2004; 8
Levy (B46) 2008; 108
Wongsarnpigoon (B70) 2012; 123
Huang (B36) 2017; 6
Pieters (B54) 2013; 118
Rice (B56) 2013; 64
Butson (B9) 2011; 54
Gunalan (B27) 2017; 12
Chaturvedi (B13) 2010; 3
Puonti (B55) 2020; 208
Baumann (B1) 1997; 44
Howell (B33) 2019; 40
Bergey (B4) 2015; 84
Elisevich (B22) 2006; 105
Wei (B67) 2005; 2
Thielscher (B64) 2015
Child (B14) 2014; 55
Dykstra (B20) 2012; 59
Butson (B10) 2006; 117
Grzeszczuk (B25) 1992; 16
Hermes (B30) 2010; 185
Butson (B8) 2007; 34
Caldwell (B12) 2019; 9
Berger (B3) 1992; 58
Hunter (B37) 2005; 116
Tao (B63) 2009; 120
Klaes (B44) 2014; 11
Haueisen (B29) 1997; 44
Johnson (B38) 2007; 57
Horn (B32) 2017; 82
Kim (B40) 2015; 8
O’Doherty (B52) 2011; 479
Kim (B41) 2011
Huang (B35) 2008; 15
Manola (B49) 2007; 118
Kim (B42) 2012; 2012
Guler (B26) 2018; 173
Caldwell (B11) 2019
Winkler (B68) 2000; 41
References_xml – volume: 15
  start-page: 160
  year: 2008
  ident: B35
  article-title: Cortical stimulation for upper limb recovery following ischemic stroke: a small phase II pilot study of a fully implanted stimulator.
  publication-title: Top. Stroke Rehabil.
  doi: 10.1310/tsr1502-160
– volume: 8
  start-page: 914
  year: 2015
  ident: B40
  article-title: Validation of computational studies for electrical brain stimulation with phantom head experiments.
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2015.06.009
– volume: 118
  start-page: 1086
  year: 2013
  ident: B54
  article-title: Recursive grid partitioning on a cortical surface model: an optimized technique for the localization of implanted subdural electrodes.
  publication-title: J. Neurosurg.
  doi: 10.3171/2013.2.JNS121450
– volume: 58
  start-page: 153
  year: 1992
  ident: B3
  article-title: Intraoperative brain mapping techniques in neuro-oncology.
  publication-title: Stereotact. Funct. Neurosurg.
  doi: 10.1159/000098989
– volume: 57
  start-page: 1
  year: 2007
  ident: B38
  article-title: BRAINSFit: mutual information rigid registrations of whole-brain 3D images, using the insight toolkit.
  publication-title: Insight J.
– volume: 118
  start-page: 464
  year: 2007
  ident: B49
  article-title: Anodal vs cathodal stimulation of motor cortex: a modeling study.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2006.09.012
– volume: 18
  start-page: 138
  year: 2015
  ident: B16
  article-title: A learning-based approach to artificial sensory feedback leads to optimal integration.
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3883
– volume: 44
  start-page: 727
  year: 1997
  ident: B29
  article-title: Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.605429
– volume: 173
  start-page: 35
  year: 2018
  ident: B26
  article-title: Computationally optimized ECoG stimulation with local safety constraints.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.01.088
– volume: 71
  start-page: 316
  year: 1989
  ident: B53
  article-title: Cortical language localization in left, dominant hemisphere. An electrical stimulation mapping investigation in 117 patients.
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.1989.71.3.0316
– volume: 30
  start-page: 16777
  year: 2010
  ident: B62
  article-title: Incorporating feedback from multiple sensory modalities enhances brain-machine interface control.
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3967-10.2010
– volume: 117
  start-page: 341
  year: 2006
  ident: B57
  article-title: A rapid and reliable procedure to localize subdural electrodes in presurgical evaluation of patients with drug-resistant focal epilepsy.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.10.005
– volume: 6
  start-page: 27353
  year: 2016
  ident: B59
  article-title: Effect of anatomically realistic full-head model on activation of cortical neurons in subdural cortical stimulation-a computational study.
  publication-title: Sci. Rep.
  doi: 10.1038/srep27353
– volume: 59
  start-page: 3563
  year: 2012
  ident: B20
  article-title: Individualized localization and cortical surface-based registration of intracranial electrodes.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.046
– volume: 41
  start-page: 1
  year: 2015
  ident: B60
  article-title: TetGen, a delaunay-based quality tetrahedral mesh generator.
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/2629697
– volume: 105
  start-page: 894
  year: 2006
  ident: B22
  article-title: Long-term electrical stimulation-induced inhibition of partial epilepsy. Case report.
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.2006.105.6.894
– volume: 64
  start-page: 476
  year: 2013
  ident: B56
  article-title: Subject position affects EEG magnitudes.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.09.041
– volume: 94
  start-page: 102
  year: 2011
  ident: B45
  article-title: 3D visualization of subdural electrode shift as measured at craniotomy reopening.
  publication-title: Epilepsy Res.
  doi: 10.1016/j.eplepsyres.2011.01.011
– volume: 6
  start-page: 718
  year: 2013
  ident: B61
  article-title: Long-term measurement of impedance in chronically implanted depth and subdural electrodes during responsive neurostimulation in humans.
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2013.02.001
– year: 2019
  ident: B11
  article-title: Dissertation thesis.
  publication-title: Engineering Direct Electrical Stimulation of Human Sensorimotor Cortex.
– volume: 174
  start-page: 106
  year: 2008
  ident: B17
  article-title: Localization of neurosurgically implanted electrodes via photograph-MRI-radiograph coregistration.
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2008.06.028
– volume: 46
  start-page: 57
  year: 1983
  ident: B18
  article-title: Reduction of intractable seizures using cerebellar stimulation.
  publication-title: Appl. Neurophysiol.
  doi: 10.1159/000101243
– volume: 120
  start-page: 748
  year: 2009
  ident: B63
  article-title: The accuracy and reliability of 3D CT/MRI co-registration in planning epilepsy surgery.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2009.02.002
– volume: 58
  start-page: 464
  year: 2006
  ident: B6
  article-title: Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study.
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000197100.63931.04
– volume: 143
  start-page: 2607
  year: 2020
  ident: B39
  article-title: Structural connectivity predicts clinical outcomes of deep brain stimulation for Tourette syndrome.
  publication-title: Brain
  doi: 10.1093/brain/awaa188
– volume: 44
  start-page: 220
  year: 1997
  ident: B1
  article-title: The electrical conductivity of human cerebrospinal fluid at body temperature.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.554770
– volume: 41
  start-page: 169
  year: 2000
  ident: B68
  article-title: Usefulness of 3-D reconstructed images of the human cerebral cortex for localization of subdural electrodes in epilepsy surgery.
  publication-title: Epilepsy Res.
  doi: 10.1016/s0920-1211(00)00137-6
– volume: 12
  start-page: e0176132
  year: 2017
  ident: B27
  article-title: Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0176132
– volume: 93
  start-page: 214
  year: 2000
  ident: B31
  article-title: Sources of error in comparing functional magnetic resonance imaging and invasive electrophysiological recordings.
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.2000.93.2.0214
– volume: 123
  start-page: 160
  year: 2012
  ident: B70
  article-title: Computer-based model of epidural motor cortex stimulation: effects of electrode position and geometry on activation of cortical neurons.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2011.06.005
– volume: 25
  start-page: 77
  year: 2004
  ident: B51
  article-title: A computer-generated stereotactic “virtual subdural grid” to guide resective epilepsy surgery.
  publication-title: Am. J. Neuroradiol.
– volume: 54
  start-page: 2096
  year: 2011
  ident: B9
  article-title: Probabilistic analysis of activation volumes generated during deep brain stimulation.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.10.059
– volume: 30
  start-page: 107
  year: 2016
  ident: B47
  article-title: Epidural electrical stimulation for stroke rehabilitation: results of the prospective, multicenter, randomized, single-blinded everest trial.
  publication-title: Neurorehabil. Neural Repair
  doi: 10.1177/1545968315575613
– volume: 30
  start-page: 1323
  year: 2012
  ident: B23
  article-title: 3D Slicer as an image computing platform for the quantitative imaging network.
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 25
  start-page: 786
  year: 1989
  ident: B2
  article-title: Brain mapping techniques to maximize resection, safety, and seizure control in children with brain tumors.
  publication-title: Neurosurgery
  doi: 10.1097/00006123-198911000-00015
– volume: 108
  start-page: 707
  year: 2008
  ident: B46
  article-title: Cortical stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and efficacy.
  publication-title: J. Neurosurg.
  doi: 10.3171/JNS/2008/108/4/0707
– year: 2015
  ident: B64
  article-title: Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS?
  publication-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
  doi: 10.1109/EMBC.2015.7318340
– volume: 73
  start-page: 1370
  year: 2016
  ident: B48
  article-title: Chronic subthreshold cortical stimulation to treat focal epilepsy.
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2016.2857
– volume: 3
  start-page: 65
  year: 2010
  ident: B13
  article-title: Patient-specific models of deep brain stimulation: influence of field model complexity on neural activation predictions.
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2010.01.003
– volume: 55
  start-page: e18
  year: 2014
  ident: B14
  article-title: Chronic subthreshold subdural cortical stimulation for the treatment of focal epilepsy originating from eloquent cortex.
  publication-title: Epilepsia
  doi: 10.1111/epi.12525
– volume: 40
  start-page: 889
  year: 2019
  ident: B33
  article-title: Quantifying the axonal pathways directly stimulated in therapeutic subcallosal cingulate deep brain stimulation.
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24419
– volume: 116
  start-page: 1984
  year: 2005
  ident: B37
  article-title: Locating chronically implanted subdural electrodes using surface reconstruction.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.03.027
– volume: 11
  start-page: 056024
  year: 2014
  ident: B44
  article-title: A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/5/056024
– volume: 5
  start-page: 443
  year: 2008
  ident: B69
  article-title: Computational modeling of epidural cortical stimulation.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/5/4/009
– volume: 63
  start-page: 157
  year: 2012
  ident: B71
  article-title: Localization of dense intracranial electrode arrays using magnetic resonance imaging.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.06.039
– volume: 117
  start-page: 447
  year: 2006
  ident: B10
  article-title: Sources and effects of electrode impedance during deep brain stimulation.
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.10.007
– volume: 8
  start-page: 447
  year: 2004
  ident: B28
  article-title: Strategies for brain shift evaluation.
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.02.001
– volume: 10
  start-page: e0128590
  year: 2015
  ident: B58
  article-title: Computational study of subdural cortical stimulation: effects of simulating anisotropic conductivity on activation of cortical neurons.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0128590
– volume: 89
  start-page: 426
  year: 2020
  ident: B21
  article-title: Probabilistic mapping of deep brain stimulation: insights from 15 years of therapy.
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25975
– volume: 34
  start-page: 661
  year: 2007
  ident: B8
  article-title: Patient-specific analysis of the volume of tissue activated during deep brain stimulation.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2006.09.034
– volume: 9
  start-page: 515
  year: 2016
  ident: B15
  article-title: Task-specific somatosensory feedback via cortical stimulation in humans.
  publication-title: IEEE Trans. Haptics
  doi: 10.1109/TOH.2016.2591952
– volume: 82
  start-page: 67
  year: 2017
  ident: B32
  article-title: Connectivity predicts deep brain stimulation outcome in Parkinson disease.
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24974
– volume: 2018
  start-page: 1056132
  year: 2018
  ident: B24
  article-title: Modelling of the current density distributions during cortical electric stimulation for neuropathic pain treatment.
  publication-title: Comput. Math. Methods Med.
  doi: 10.1155/2018/1056132
– volume: 16
  start-page: 764
  year: 1992
  ident: B25
  article-title: Retrospective fusion of radiographic and MR data for localization of subdural electrodes.
  publication-title: J. Comput. Assist. Tomogr.
  doi: 10.1097/00004728-199209000-00018
– volume: 84
  start-page: 810
  year: 2015
  ident: B4
  article-title: Long-term treatment with responsive brain stimulation in adults with refractory partial seizures.
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000001280
– volume: 9
  start-page: e108028
  year: 2014
  ident: B43
  article-title: Computational study on subdural cortical stimulation – the influence of the head geometry, anisotropic conductivity, and electrode configuration.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0108028
– volume: 43
  start-page: 335
  year: 2005
  ident: B50
  article-title: Modelling motor cortex stimulation for chronic pain control: electrical potential field, activating functions and responses of simple nerve fibre models.
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02345810
– volume: 2012
  start-page: 867
  year: 2012
  ident: B42
  article-title: The computational study of subdural cortical stimulation: a quantitative analysis of voltage and current stimulation.
  publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.
  doi: 10.1109/EMBC.2012.6346069
– volume: 69
  start-page: 364
  year: 1974
  ident: B7
  article-title: Robust tests for the equality of variances.
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1974.10482955
– volume: 19
  start-page: 139
  year: 2009
  ident: B65
  article-title: Neuromodulation of epileptic foci in patients with non-lesional refractory motor epilepsy.
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065709001914
– volume: 479
  start-page: 228
  year: 2011
  ident: B52
  article-title: Active tactile exploration using a brain-machine-brain interface.
  publication-title: Nature
  doi: 10.1038/nature10489
– volume: 9
  start-page: 20317
  year: 2019
  ident: B12
  article-title: Direct stimulation of somatosensory cortex results in slower reaction times compared to peripheral touch in humans.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-38619-2
– volume: 273
  start-page: 64
  year: 2016
  ident: B5
  article-title: Registering imaged ECoG electrodes to human cortex: a geometry-based technique.
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2016.08.007
– volume: 51
  start-page: 1586
  year: 2004
  ident: B66
  article-title: Three-dimensional head model simulation of transcranial magnetic stimulation.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.827925
– volume: 208
  start-page: 116431
  year: 2020
  ident: B55
  article-title: Value and limitations of intracranial recordings for validating electric field modeling for transcranial brain stimulation.
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116431
– volume: 185
  start-page: 293
  year: 2010
  ident: B30
  article-title: Automated electrocorticographic electrode localization on individually rendered brain surfaces.
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2009.10.005
– volume: 6
  start-page: e18834
  year: 2017
  ident: B36
  article-title: Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation.
  publication-title: Elife
  doi: 10.7554/eLife.18834
– volume: 86
  start-page: 527
  year: 2019
  ident: B19
  article-title: Probabilistic sweet spots predict motor outcome for deep brain stimulation in Parkinson disease.
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.25567
– year: 2011
  ident: B41
  article-title: Computational study of subdural and epidural cortical stimulation of the motor cortex
  publication-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
  doi: 10.1109/IEMBS.2011.6091826
– volume: 61
  start-page: 297
  year: 2014
  ident: B34
  article-title: Influences of interpolation error, electrode geometry, and the electrode-tissue interface on models of electric fields produced by deep brain stimulation.
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2292025
– volume: 2
  start-page: 139
  year: 2005
  ident: B67
  article-title: Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/2/4/010
SSID ssj0062842
Score 2.2931013
Snippet Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 691701
SubjectTerms bioelectricity simulation
Brain
Cerebrospinal fluid
Computational neuroscience
Convulsions & seizures
direct electrocortical stimulation
electrocorticography
Electrodes
Epilepsy
finite element modeling
Interfaces
Localization
Magnetic resonance imaging
Mathematical models
Methods
Neuroscience
patient-specific modeling
Patients
Rehabilitation
Stroke
Voltage
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PTxUxEG4IJy5EBeJTNDUhHkhWum_7Y_eIhBfCwZgIyG3TdlrdBPqIPg7-9860-17Yi164brtpO51O52un3zB2ZAlFK-EraDtXydr6qnMCKufQvWhs0CrmKN8v-uJaXt6q2yepvigmrNADF8GdKHIxEIbEgDu3jeBQhYz2rvG1NEHnd-SiE2swVWywRqM7L3eYCMG6k5iGRNzc8_qT7oiBfLILZbL-iYc5jY98suEsXrDd0VPkp6WHL9lWSK_Y3mlClHz_h3_kOXYzH4rvse836E7TQ4X0g38tTKlVziwfB88XA_mV_LwEinPKfnb3my8jL-aOCigTDsLQfK7Nv62G-zGp1z67XpxfnV1UY8qEyksjVhWir9YHEb0G9MRi00QR6NwI2kY704I3gVakMUE24HCATppGgrWuRksTVHPAttMyhdeMOwsSnO7ASy8dgA3gVAwAcR5MDXHGxFqEvR_5xCmtxV2PuIKk3mep9yT1vkh9xo43vzwUMo1_Vf5M87KpSDzY-QNqRz9qR_8_7Zixw_Ws9uPixEaUMnRd22IbHzbFuKzorsSmsHykOprumI1oZ8xMtGHSoWlJGn5mgm4UtkIo9uY5RvCW7ZBQcszh_JBtr349hnfoB63c-6zyfwHTIQn4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9UwDI9gu3BBwEAUBgoS4oAU1r6mSXtCG3pPE4dpAga7VUmcjEpbOra3A_89dpr3RC-7NqnSOrbz80dsxt4bsqKb0gloOytkZZzobAnCWoQXtfGqCSnL90Qdn8mv5815drjd5rTKjU5MihpGRz7yA4S-mmJsbfX5-o-grlEUXc0tNB6yXVTBLfL57tHy5PTbRhcrVL4p3qnobhCC8ymuiWZZdxDiEKle96L6pDqqSj47mVIB_xnqnOdM_ncIrZ6wxxk98sNpu5-yBz4-Y3uHES3nq7_8A0_5nMlRvsd-_USITZcX4gU_naqnitRtPgyOrwbCmnw5JY9z6oh2ecvHwCcVSAPUHQdN0-Tr5t_Xw1Vu9PWcna2WP74ci9xGQTipy7VAi6x1vgxOAaKzUNeh9ORLgrZWVrfgtCcp1drLGiz-oJW6lmCMrVD7-KZ-wXbiGP1Lxq0BCVZ14KSTFsB4sE3wAGHhdQWhYOWGhL3LNcap1cVlj7YGUb1PVO-J6v1E9YJ93L5yPRXYuG_yEe3LdiLVxk4PxpuLPota3xAoRcM1eMR6JoBFpaOVs7WrpPZKF2x_s6t9FlhcZMteBXu3HUZRo_iJiX68ozmK4s66bAumZ9ww-6D5SBx-p6LdSOwGzbNX9y_-mj2i300Zhot9trO-ufNvEPWs7dvM2v8AmRIFUg
  priority: 102
  providerName: ProQuest
Title Validating Patient-Specific Finite Element Models of Direct Electrocortical Stimulation
URI https://www.proquest.com/docview/2557302781
https://www.proquest.com/docview/2562829708
https://pubmed.ncbi.nlm.nih.gov/PMC8365306
https://doaj.org/article/55193184fe644afdb01776cb3c147e67
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7YUXBBuIwqg8CfGAlJE0jp0-ILShVtMkpgko7M3y5xapc6HrJPbfc-ek1SJNe42dOD5__X535zuA95pYdJXbzNVjk_FC22xscpcZg_Ci1F5UIXn5nomTGT-9qC62YJ3eqhPgzYPUjvJJzZbzw39_777ggv9MjBPP208hNpEib4-KQzGm-OJPYAcPJkFc7BvfGBUE7sTJ-CnoohAi9dbI-fAnesdUiubfg6B9B8p7J9L0OTzroCQ7asf-BWz5uAt7RxFp9PUd-8CSc2fSmu_B71-It-kmQ7xk520o1Sylng-NZdOGgCebtJ7kjNKjzW_YIrB2P6QCSpWDPDUpvtmPVXPdZf16CbPp5OfXk6zLqZBZLvNVhvSstj4PVjiEaqEsQ-5JseTqUhhZOys9LVkpPS-dwQ4aLkvutDYFbkW-Kl_BdlxE_xqY0Y47I8bOcsuNc9o7UwXvXBh5WbgwgHwtQmW7gOOU92KukHiQ1FWSuiKpq1bqA_i4eeVPG23jscrHNC6bihQoOz1YLC9Vt-5URQgVWWzwCPx0cAZ3ICmsKW3BpRdyAPvrUVXryaeQZkmy59bYxsGmGNcdGVN09ItbqiPICC3zegCyNxt6P9Qvic1ViuCNwq6Qq715vPG38JS6m9wNR_uwvVre-ncIgVZmCDvHk7Pz78OkQhimaf4fs8cKZw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB1V2wNcEKUgFlowEnBACs2HYycHhFrY1ZaWVQUt9JbGXyVSm5R2K9Q_xW9kxklW5NJbr2uvsjseT97zjOcBvC6JRaehDkyWq4BHpQ5yFZpAKYQXSWlF6nyV71zMjviX4_R4Bf72d2GorLKPiT5Qm0bTGfkWQl9JObYs-njxOyDVKMqu9hIarVvs2Zs_SNmuPux-xvV9E8fTyeGnWdCpCgSay3ARIEHJtA2dFgbBiksSF1o6WjFZIpTMjJaWnFZKyxOjjLaKy4SbslQRbkZLKhEY8lc53WgdwerOZH7wrY_9AoO9z68KuouEZKDNoyINzLdcXdXUHzyO3oucuqAP3oReMGCAcoc1mv-99KYP4UGHVtl2615rsGLrR7C-XSNTP79hb5mvH_UH8-vw8wdCerosUZ-yg7Zba-DV7V2l2bQibMsmbbE6IwW2syvWONaGXBogNR6kwv5snX1fVOedsNhjOLoTAz-BUd3U9ikwVRpulMiN5porY0prVOqsMS62MjJuDGFvwkJ3Pc1JWuOsQG5DVi-81QuyetFafQzvll-5aBt63DZ5h9ZlOZF6cfsPmsvTotvaRUogGImys4gtS2cUBjkptEp0xKUVcgwb_aoWXYDAhyzdeQyvlsO4tSlfU9a2uaY5gvLcMszGIAfeMPhBw5G6-uWbhKOxU6SDz25_-Eu4Nzv8ul_s7873nsN9-uu-ujHegNHi8tpuIuJaqBedmzM4ueud9Q_On0Jj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwlxQUBBLLRgJOCAFDYPx04OCLV0Vy1FqxVQ6C2NXyVSm_SxFepf49cx4yQrcumt17WjZMcz4_k84_kA3pSEotNQBybLVcCjUge5Ck2gFIYXSWlF6nyV71zsHfIvR-nRGvzt78JQWWXvE72jNo2mM_IJhr6ScmxZNHFdWcRid_bp_CIgBinKtPZ0Gq2KHNibPwjfrj7u7-Jav43j2fTH572gYxgINJfhMkCwkmkbOi0MBi4uSVxo6ZjFZIlQMjNaWlJgKS1PjDLaKi4TbspSRWiYlhgj0P2vS9wV-QjWd6bzxbd-HxDo-H2uVdC9JAQGbU4VIWE-cXVVU6_wOPogcuqIPtgVPXnAIOId1mv-twHOHsKDLnJl262qPYI1Wz-Gje0aUfvZDXvHfC2pP6TfgF8_MbynixP1CVu0nVsDz3TvKs1mFcW5bNoWrjNiYzu9Yo1jrfulAWLmQVjsz9nZ92V11pGMPYHDOxHwUxjVTW2fAVOl4UaJ3GiuuTKmtEalzhrjYisj48YQ9iIsdNffnGg2TgvEOST1wku9IKkXrdTH8H71yHnb3OO2yTu0LquJ1Jfb_9BcnhSdmRcpBcQImp3FOLN0RqHDk0KrREdcWiHHsNmvatE5C3zJSrXH8Ho1jGZOuZuyts01zRGU85ZhNgY50IbBBw1H6uq3bxiOwk4RGj6__eWv4B5aVPF1f37wAu7TP_eFjvEmjJaX13YLg6-letlpOYPjuzasf2zIRo8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validating+Patient-Specific+Finite+Element+Models+of+Direct+Electrocortical+Stimulation&rft.jtitle=Frontiers+in+neuroscience&rft.au=Charlebois%2C+Chantel+M&rft.au=Caldwell%2C+David+J&rft.au=Rampersad%2C+Sumientra+M&rft.au=Janson%2C+Andrew+P&rft.date=2021-08-02&rft.pub=Frontiers+Research+Foundation&rft.issn=1662-4548&rft.eissn=1662-453X&rft_id=info:doi/10.3389%2Ffnins.2021.691701&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon