A Novel Cooling Device for Targeted Brain Temperature Control and Therapeutic Hypothermia: Feasibility Study in an Animal Model
Background Therapeutic hypothermia (i.e., temperature management) is an effective option for improving survival and neurological outcome after cardiac arrest and is potentially useful for the care of the critically ill neurological patient. We analyzed the feasibility of a device to control the temp...
Saved in:
Published in | Neurocritical care Vol. 25; no. 3; pp. 464 - 472 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.12.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1541-6933 1556-0961 |
DOI | 10.1007/s12028-016-0257-7 |
Cover
Loading…
Summary: | Background
Therapeutic hypothermia (i.e., temperature management) is an effective option for improving survival and neurological outcome after cardiac arrest and is potentially useful for the care of the critically ill neurological patient. We analyzed the feasibility of a device to control the temperature of the brain by controlling the temperature of the blood flowing through the neck.
Methods
A lumped parameter dynamic model, with one-dimensional heat transfer, was used to predict cooling effects and to test experimental hypotheses. The cooling system consisted of a flexible collar and was tested on 4 adult sheep, in which brain and body temperatures were invasively monitored for the duration of the experiment.
Results
Model-based simulations predicted a lowering of the temperature of the brain and the body following the onset of cooling, with a rate of 0.4 °C/h for the brain and 0.2 °C/h for the body. The experimental findings showed comparable cooling rates in the two body compartments, with temperature reductions of 0.6 (0.2) °C/h for the brain and 0.6 (0.2) °C/h for the body. For a 70 kg adult human subject, we predict a temperature reduction of 0.64 °C/h for the brain and 0.43 °C/h for the body.
Conclusions
This work demonstrates the feasibility of using a non-invasive method to induce brain hypothermia using a portable collar. This device demonstrated an optimal safety profile and represents a potentially useful method for the administration of mild hypothermia and temperature control (i.e., treatment of hyperpyrexia) in cardiac arrest and critically ill neurologic patients. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1541-6933 1556-0961 |
DOI: | 10.1007/s12028-016-0257-7 |