Image-Based Human Age Estimation by Manifold Learning and Locally Adjusted Robust Regression
Estimating human age automatically via facial image analysis has lots of potential real-world applications, such as human computer interaction and multimedia communication. However, it is still a challenging problem for the existing computer vision systems to automatically and effectively estimate h...
Saved in:
Published in | IEEE transactions on image processing Vol. 17; no. 7; pp. 1178 - 1188 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.07.2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Estimating human age automatically via facial image analysis has lots of potential real-world applications, such as human computer interaction and multimedia communication. However, it is still a challenging problem for the existing computer vision systems to automatically and effectively estimate human ages. The aging process is determined by not only the person's gene, but also many external factors, such as health, living style, living location, and weather conditions. Males and females may also age differently. The current age estimation performance is still not good enough for practical use and more effort has to be put into this research direction. In this paper, we introduce the age manifold learning scheme for extracting face aging features and design a locally adjusted robust regressor for learning and prediction of human ages. The novel approach improves the age estimation accuracy significantly over all previous methods. The merit of the proposed approaches for image-based age estimation is shown by extensive experiments on a large internal age database and the public available FG-NET database. |
---|---|
AbstractList | Estimating human age automatically via facial image analysis has lots of potential real-world applications, such as human computer interaction and multimedia communication. However, it is still a challenging problem for the existing computer vision systems to automatically and effectively estimate human ages. The aging process is determined by not only the person's gene, but also many external factors, such as health, living style, living location, and weather conditions. Males and females may also age differently. The current age estimation performance is still not good enough for practical use and more effort has to be put into this research direction. In this paper, we introduce the age manifold learning scheme for extracting face aging features and design a locally adjusted robust regressor for learning and prediction of human ages. The novel approach improves the age estimation accuracy significantly over all previous methods. The merit of the proposed approaches for image-based age estimation is shown by extensive experiments on a large internal age database and the public available FG-NET database. Estimating human age automatically via facial image analysis has lots of potential real-world applications, such as human computer interaction and multimedia communication. Estimating human age automatically via facial image analysis has lots of potential real-world applications, such as human computer interaction and multimedia communication. However, it is still a challenging problem for the existing computer vision systems to automatically and effectively estimate human ages. The aging process is determined by not only the person's gene, but also many external factors, such as health, living style, living location, and weather conditions. Males and females may also age differently. The current age estimation performance is still not good enough for practical use and more effort has to be put into this research direction. In this paper, we introduce the age manifold learning scheme for extracting face aging features and design a locally adjusted robust regressor for learning and prediction of human ages. The novel approach improves the age estimation accuracy significantly over all previous methods. The merit of the proposed approaches for image-based age estimation is shown by extensive experiments on a large internal age database and the public available FG-NET database.Estimating human age automatically via facial image analysis has lots of potential real-world applications, such as human computer interaction and multimedia communication. However, it is still a challenging problem for the existing computer vision systems to automatically and effectively estimate human ages. The aging process is determined by not only the person's gene, but also many external factors, such as health, living style, living location, and weather conditions. Males and females may also age differently. The current age estimation performance is still not good enough for practical use and more effort has to be put into this research direction. In this paper, we introduce the age manifold learning scheme for extracting face aging features and design a locally adjusted robust regressor for learning and prediction of human ages. The novel approach improves the age estimation accuracy significantly over all previous methods. The merit of the proposed approaches for image-based age estimation is shown by extensive experiments on a large internal age database and the public available FG-NET database. |
Author | Dyer, C.R. Guodong Guo Huang, T.S. Yun Fu |
Author_xml | – sequence: 1 surname: Guodong Guo fullname: Guodong Guo organization: Dept. of Comput. Sci., North Carolina Central Univ., Durham, NC – sequence: 2 surname: Yun Fu fullname: Yun Fu organization: Dept. of Comput. Sci., North Carolina Central Univ., Durham, NC – sequence: 3 givenname: C.R. surname: Dyer fullname: Dyer, C.R. – sequence: 4 givenname: T.S. surname: Huang fullname: Huang, T.S. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20419680$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18586625$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc9rFDEUx4NU7A89exBkENTTbJNMkkmOa6l2YUUp9SaEJPNmyTKTtMnMYf97s-5aoYee8gKf73t8v99zdBJiAITeErwgBKvLu9XPBcVYLhRlVOIX6IwoRmqMGT0pM-Zt3RKmTtF5zluMCeNEvEKnRHIpBOVn6PdqNBuov5gMXXUzjyZUyw1U13nyo5l8DJXdVd9N8H0cumoNJgUfNpUJ5ROdGYZdtey2c56K_DbaMlS3sEmQc9G-Ri97M2R4c3wv0K-v13dXN_X6x7fV1XJdO9biqSbMKCdbqVoB1LrGGmAt6wx1hJvG9dIWrx0njlmpsFUKc2hlS3inesF721ygz4e99yk-zJAnPfrsYBhMgDhnLSUWTAreFPLTs6RQVEjMeQE_PAG3cU6huNBSNA0TnO2h90dotiN0-j6V0NJO_4u3AB-PgMklrD6Z4Hx-5ChmRJV7hbs8cC7FnBP0_1dhvS9al6L1vmh9KLoo-BOF89PfwqZk_PCM7t1B5wHg8UrxQohUzR9ZGbIl |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2927825 crossref_primary_10_1016_j_patrec_2018_03_013 crossref_primary_10_1109_TNNLS_2018_2808332 crossref_primary_10_1007_s11277_022_09501_8 crossref_primary_10_1016_j_patcog_2015_12_003 crossref_primary_10_1016_j_eswa_2019_112942 crossref_primary_10_1007_s11042_013_1399_7 crossref_primary_10_18632_aging_101629 crossref_primary_10_9708_jksci_2016_21_8_077 crossref_primary_10_7717_peerj_cs_1395 crossref_primary_10_1109_TIP_2021_3139226 crossref_primary_10_1134_S1054661815030244 crossref_primary_10_1155_2015_840840 crossref_primary_10_1016_j_imavis_2017_08_005 crossref_primary_10_3389_fdata_2022_1025806 crossref_primary_10_1049_iet_bmt_2014_0103 crossref_primary_10_1007_s00414_020_02346_5 crossref_primary_10_1145_3090311 crossref_primary_10_1016_j_patcog_2019_04_028 crossref_primary_10_3390_app8101943 crossref_primary_10_1007_s10462_019_09750_3 crossref_primary_10_2200_S00536ED1V01Y201309COV005 crossref_primary_10_1109_TPAMI_2011_115 crossref_primary_10_1109_TMM_2016_2608786 crossref_primary_10_1016_j_neucom_2013_09_025 crossref_primary_10_1007_s11042_015_3230_0 crossref_primary_10_1109_ACCESS_2020_2969549 crossref_primary_10_1109_TKDE_2010_209 crossref_primary_10_1016_j_compscitech_2018_10_006 crossref_primary_10_1016_j_neucom_2014_08_041 crossref_primary_10_1016_j_procs_2015_06_092 crossref_primary_10_1109_TMM_2017_2786869 crossref_primary_10_1080_14786451_2014_885030 crossref_primary_10_32604_cmc_2023_034605 crossref_primary_10_1109_TIFS_2009_2038751 crossref_primary_10_1016_j_buildenv_2023_110137 crossref_primary_10_1007_s11263_016_0940_3 crossref_primary_10_1109_ACCESS_2016_2635147 crossref_primary_10_1111_jerd_12125 crossref_primary_10_1016_j_patrec_2013_08_009 crossref_primary_10_1109_TGRS_2017_2752217 crossref_primary_10_1109_ACCESS_2018_2889873 crossref_primary_10_1109_TETCI_2018_2864554 crossref_primary_10_1109_TPAMI_2013_51 crossref_primary_10_1007_s00371_015_1137_4 crossref_primary_10_1109_LSP_2019_2893064 crossref_primary_10_1016_j_patcog_2016_03_032 crossref_primary_10_1016_j_patcog_2012_09_011 crossref_primary_10_1109_TCSVT_2020_3040296 crossref_primary_10_1007_s11042_015_2668_4 crossref_primary_10_1155_2014_769101 crossref_primary_10_1016_j_imavis_2012_07_009 crossref_primary_10_1109_TIFS_2018_2819124 crossref_primary_10_1007_s00500_022_07333_z crossref_primary_10_1016_j_image_2011_03_004 crossref_primary_10_1007_s00779_018_1171_0 crossref_primary_10_1016_j_cviu_2020_102961 crossref_primary_10_3390_app11104549 crossref_primary_10_3390_app8091601 crossref_primary_10_1109_ACCESS_2017_2761849 crossref_primary_10_5626_JOK_2015_42_12_1575 crossref_primary_10_1007_s11063_018_9930_5 crossref_primary_10_3390_sym10090385 crossref_primary_10_1109_TMM_2011_2167317 crossref_primary_10_1007_s00530_017_0534_0 crossref_primary_10_1007_s10462_020_09855_0 crossref_primary_10_1109_ACCESS_2020_2994322 crossref_primary_10_1109_TNNLS_2016_2607757 crossref_primary_10_1186_s41074_017_0035_2 crossref_primary_10_1109_TCSVT_2024_3422661 crossref_primary_10_1007_s12530_017_9175_y crossref_primary_10_1109_TPAMI_2017_2679739 crossref_primary_10_3390_app12115306 crossref_primary_10_1109_TIP_2024_3364074 crossref_primary_10_1016_j_patcog_2017_01_007 crossref_primary_10_1049_iet_bmt_2019_0104 crossref_primary_10_1016_j_image_2019_08_003 crossref_primary_10_1109_TSMC_2016_2618916 crossref_primary_10_1007_s11042_017_4516_1 crossref_primary_10_1016_j_eswa_2016_09_024 crossref_primary_10_1109_TCSVT_2020_2981117 crossref_primary_10_1016_j_patcog_2017_01_009 crossref_primary_10_7763_IJMLC_2012_V2_99 crossref_primary_10_18100_ijamec_265362 crossref_primary_10_1007_s11042_018_6049_7 crossref_primary_10_1109_THMS_2014_2376874 crossref_primary_10_1109_LSP_2017_2661983 crossref_primary_10_1109_TIFS_2019_2902823 crossref_primary_10_1109_TCYB_2015_2416321 crossref_primary_10_1016_j_jvlc_2009_01_011 crossref_primary_10_1109_TIP_2014_2387379 crossref_primary_10_1007_s11042_018_6342_5 crossref_primary_10_1016_j_neucom_2020_07_149 crossref_primary_10_1109_TIP_2019_2916768 crossref_primary_10_1080_01431161_2019_1574993 crossref_primary_10_1007_s40747_017_0035_y crossref_primary_10_1109_TCSVT_2016_2637379 crossref_primary_10_1109_TIP_2016_2602078 crossref_primary_10_1016_j_imavis_2018_05_003 crossref_primary_10_1109_LSP_2016_2602538 crossref_primary_10_1142_S0218213012500297 crossref_primary_10_1016_j_measurement_2015_07_042 crossref_primary_10_1007_s11042_022_14094_2 crossref_primary_10_3390_e21070647 crossref_primary_10_1007_s10044_021_01022_7 crossref_primary_10_1109_TSMCC_2012_2192727 crossref_primary_10_1109_TPAMI_2017_2779808 crossref_primary_10_25046_aj070630 crossref_primary_10_1016_j_patcog_2016_10_026 crossref_primary_10_1109_TCSVT_2019_2923262 crossref_primary_10_1109_ACCESS_2019_2928843 crossref_primary_10_1109_TCSVT_2020_2965739 crossref_primary_10_1007_s11042_022_12927_8 crossref_primary_10_1016_j_patcog_2010_12_005 crossref_primary_10_1109_ACCESS_2019_2923626 crossref_primary_10_1088_1757_899X_428_1_012043 crossref_primary_10_1109_TIP_2017_2655445 crossref_primary_10_1016_j_media_2021_102091 crossref_primary_10_1016_j_neucom_2017_08_062 crossref_primary_10_1109_TCSVT_2017_2782709 crossref_primary_10_1007_s10845_024_02505_0 crossref_primary_10_1007_s11042_020_09850_1 crossref_primary_10_1016_j_neucom_2018_06_051 crossref_primary_10_1109_TIP_2015_2425545 crossref_primary_10_1016_j_patcog_2019_107178 crossref_primary_10_1016_j_patcog_2017_06_028 crossref_primary_10_3390_app13127110 crossref_primary_10_3390_s20020328 crossref_primary_10_1016_j_neucom_2017_01_064 crossref_primary_10_1109_TNNLS_2020_2978508 crossref_primary_10_1109_TPAMI_2010_36 crossref_primary_10_1016_j_neucom_2014_03_074 crossref_primary_10_1093_comjnl_bxy050 crossref_primary_10_1097_PSN_0000000000000410 crossref_primary_10_1016_j_neucom_2016_02_039 crossref_primary_10_1109_TIP_2016_2547587 crossref_primary_10_1007_s12065_020_00363_2 crossref_primary_10_1016_j_cviu_2014_04_006 crossref_primary_10_1007_s11265_020_01609_z crossref_primary_10_1007_s11042_023_15889_7 crossref_primary_10_1016_j_imavis_2020_103945 crossref_primary_10_1088_1742_6596_1299_1_012039 crossref_primary_10_1016_j_imavis_2017_06_004 crossref_primary_10_1007_s11063_015_9423_8 crossref_primary_10_1109_TNNLS_2017_2783384 crossref_primary_10_1109_TIFS_2011_2156787 crossref_primary_10_5772_52862 crossref_primary_10_1109_TCSVT_2020_3024766 crossref_primary_10_1186_s41074_019_0054_2 crossref_primary_10_3390_s16070994 crossref_primary_10_2478_acss_2024_0018 crossref_primary_10_1051_matecconf_201823202021 crossref_primary_10_4218_etrij_17_0117_0078 crossref_primary_10_1007_s10916_019_1335_0 crossref_primary_10_1016_j_neunet_2020_07_006 crossref_primary_10_1002_cpe_6660 crossref_primary_10_1109_TPAMI_2017_2669035 crossref_primary_10_1016_j_neucom_2014_06_047 crossref_primary_10_1109_TPAMI_2013_134 crossref_primary_10_1007_s41060_023_00450_4 crossref_primary_10_1109_TPAMI_2019_2910523 crossref_primary_10_1109_TPAMI_2019_2910522 crossref_primary_10_1049_iet_bmt_2016_0169 crossref_primary_10_1016_j_neucom_2016_01_101 crossref_primary_10_3390_sym12010146 crossref_primary_10_1134_S1054661816030184 crossref_primary_10_4274_mirt_galenos_2022_63644 crossref_primary_10_1007_s12652_020_02785_3 crossref_primary_10_1109_TIP_2022_3188061 crossref_primary_10_1007_s10462_019_09765_w crossref_primary_10_1016_j_jvcir_2018_10_026 crossref_primary_10_1155_2018_1712686 crossref_primary_10_1007_s13369_017_2493_3 crossref_primary_10_1007_s11042_017_4572_6 crossref_primary_10_1109_TIFS_2015_2480381 crossref_primary_10_1109_TMM_2011_2177647 crossref_primary_10_1016_j_imavis_2014_04_011 crossref_primary_10_1109_TIFS_2017_2766583 crossref_primary_10_1109_TMM_2020_2969793 crossref_primary_10_1109_TIFS_2017_2695456 crossref_primary_10_1109_TIP_2016_2580939 crossref_primary_10_1109_TGRS_2015_2448086 crossref_primary_10_1016_j_neucom_2018_12_003 crossref_primary_10_3934_mbe_2024198 crossref_primary_10_1016_j_cviu_2016_08_008 crossref_primary_10_1016_j_patcog_2017_10_036 crossref_primary_10_1109_TGRS_2018_2823750 crossref_primary_10_1016_j_future_2022_10_009 crossref_primary_10_1007_s13369_018_3293_0 crossref_primary_10_1007_s00779_011_0425_x crossref_primary_10_1109_TSMCB_2010_2097588 crossref_primary_10_3390_rs11232858 crossref_primary_10_1109_ACCESS_2021_3085971 crossref_primary_10_1016_j_neucom_2016_10_010 crossref_primary_10_1109_TIFS_2012_2213812 crossref_primary_10_1109_TIFS_2017_2746062 crossref_primary_10_4054_DemRes_2019_40_9 crossref_primary_10_1109_TIP_2016_2535284 crossref_primary_10_2174_2213275912666190417151247 crossref_primary_10_1016_j_procs_2024_04_282 crossref_primary_10_1007_s11063_019_09993_9 crossref_primary_10_1016_j_neucom_2014_01_040 crossref_primary_10_1007_s11263_019_01165_5 crossref_primary_10_1109_ACCESS_2020_3034801 crossref_primary_10_1109_TIFS_2015_2462732 crossref_primary_10_1109_TPAMI_2019_2937294 crossref_primary_10_3389_fnins_2023_1136934 crossref_primary_10_1016_j_heliyon_2020_e03751 crossref_primary_10_1007_s11042_021_10739_w crossref_primary_10_1109_TPAMI_2009_39 crossref_primary_10_3233_JIFS_202485 crossref_primary_10_1080_01431161_2022_2102951 crossref_primary_10_1109_LSP_2018_2822241 crossref_primary_10_1007_s11554_019_00903_9 crossref_primary_10_1109_TIP_2019_2948288 crossref_primary_10_1109_TPAMI_2019_2943860 crossref_primary_10_1109_JBHI_2020_2977224 crossref_primary_10_1007_s11042_015_2485_9 crossref_primary_10_1016_j_sigpro_2013_07_025 crossref_primary_10_1109_TIFS_2014_2359646 crossref_primary_10_1109_TIP_2015_2481327 crossref_primary_10_1117_1_JEI_26_2_023007 crossref_primary_10_1109_TIP_2016_2633868 crossref_primary_10_1016_j_imavis_2016_08_009 crossref_primary_10_1155_2014_242846 crossref_primary_10_1587_transinf_E93_D_2875 crossref_primary_10_1109_TIFS_2020_2965298 crossref_primary_10_1007_s11042_013_1815_z crossref_primary_10_1002_mef2_50 crossref_primary_10_1109_TIFS_2010_2069560 crossref_primary_10_1016_j_neucom_2015_03_078 crossref_primary_10_5402_2012_505974 crossref_primary_10_1049_iet_bmt_2014_0053 crossref_primary_10_1097_PSN_0000000000000357 crossref_primary_10_1109_TIP_2015_2412377 |
Cites_doi | 10.1109/WACV.2008.4544009 10.1109/CVPR.2007.383055 10.1109/TSMCB.2005.846658 10.1109/ICCV.2007.4409069 10.1109/TMM.2008.921847 10.1145/1180639.1180711 10.1109/TIP.2006.881945 10.1007/BFb0054760 10.1109/TCSVT.2006.877398 10.1006/cviu.1997.0549 10.1109/TNN.2002.806626 10.1162/jocn.1991.3.1.71 10.1109/ICME.2007.4284917 10.1109/ICCV.2007.4409050 10.1068/p271233 10.1126/science.290.5500.2268 10.1109/ICME.2007.4284595 10.1109/TSMCB.2003.817091 10.1016/S0262-8856(01)00046-4 10.1109/TNN.2002.1021882 10.1109/CVPR.2006.187 10.1109/34.993553 10.1109/TIP.2006.881993 10.1109/CVPR.2005.214 10.1016/j.patrec.2006.02.007 10.1126/science.290.5500.2323 10.1109/34.683777 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
Copyright_xml | – notice: 2008 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
DOI | 10.1109/TIP.2008.924280 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | MEDLINE Technology Research Database Technology Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 1188 |
ExternalDocumentID | 2329113791 18586625 20419680 10_1109_TIP_2008_924280 4531189 |
Genre | orig-research Journal Article |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG IQODW CGR CUY CVF ECM EIF NPM PKN Z5M 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c470t-14a9c878976e2bc3bae474da2c15a3cf8b110d51c4b890b9905e78715d9f65fb3 |
IEDL.DBID | RIE |
ISSN | 1057-7149 |
IngestDate | Fri Jul 11 01:37:14 EDT 2025 Fri Jul 11 10:21:47 EDT 2025 Mon Jun 30 05:12:27 EDT 2025 Wed Feb 19 01:43:14 EST 2025 Mon Jul 21 09:12:10 EDT 2025 Tue Jul 01 02:02:41 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Tue Aug 26 16:47:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Performance evaluation nonlinear regression Automatic classification Age estimation human age estimation support vector machine (SVM) Vision system Support vector machine Multimedia communication manifold learning Learning Accuracy Database Man machine relation Localization Age manifold Computer vision Meteorological phenomenon Non linear regression Ageing Regression analysis Vector method Signal classification Image analysis locally adjusted robust regression support vector regression (SVR) |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c470t-14a9c878976e2bc3bae474da2c15a3cf8b110d51c4b890b9905e78715d9f65fb3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 18586625 |
PQID | 863346545 |
PQPubID | 85429 |
PageCount | 11 |
ParticipantIDs | pascalfrancis_primary_20419680 proquest_miscellaneous_69268055 proquest_journals_863346545 pubmed_primary_18586625 crossref_primary_10_1109_TIP_2008_924280 ieee_primary_4531189 crossref_citationtrail_10_1109_TIP_2008_924280 proquest_miscellaneous_880648653 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-07-01 |
PublicationDateYYYYMMDD | 2008-07-01 |
PublicationDate_xml | – month: 07 year: 2008 text: 2008-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2008 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref32 ref10 fu (ref6) 2005 ref2 ref17 ref16 ref18 duda (ref5) 2000 gunn (ref11) 1997 (ref1) 0 joachims (ref20) 1999 ref24 ref23 ref26 ref25 ref22 he (ref19) 2003 ref21 ref27 vapnik (ref35) 1998 ref29 ref8 ref7 ref9 ref4 roweis (ref28) 2000; 290 ref3 |
References_xml | – year: 1999 ident: ref20 publication-title: Advances in Kernel MethodsSupport Vector Learning – ident: ref14 doi: 10.1109/WACV.2008.4544009 – ident: ref31 doi: 10.1109/CVPR.2007.383055 – ident: ref12 doi: 10.1109/TSMCB.2005.846658 – ident: ref24 doi: 10.1109/ICCV.2007.4409069 – ident: ref7 doi: 10.1109/TMM.2008.921847 – ident: ref10 doi: 10.1145/1180639.1180711 – year: 2005 ident: ref6 publication-title: Locally Linear Embedded Eigenspace Analysis IFP-TR – ident: ref2 doi: 10.1109/TIP.2006.881945 – ident: ref3 doi: 10.1007/BFb0054760 – ident: ref9 doi: 10.1109/TCSVT.2006.877398 – year: 1998 ident: ref35 publication-title: Statistical Learning Theory – ident: ref21 doi: 10.1006/cviu.1997.0549 – year: 2003 ident: ref19 article-title: locality preserving projections publication-title: NIPS – ident: ref16 doi: 10.1109/TNN.2002.806626 – ident: ref32 doi: 10.1162/jocn.1991.3.1.71 – ident: ref8 doi: 10.1109/ICME.2007.4284917 – ident: ref34 doi: 10.1109/ICCV.2007.4409050 – ident: ref4 doi: 10.1068/p271233 – ident: ref30 doi: 10.1126/science.290.5500.2268 – ident: ref33 doi: 10.1109/ICME.2007.4284595 – ident: ref23 doi: 10.1109/TSMCB.2003.817091 – year: 1997 ident: ref11 publication-title: Support vector machines for classification and regression Tech Rep – ident: ref18 doi: 10.1016/S0262-8856(01)00046-4 – ident: ref17 doi: 10.1016/S0262-8856(01)00046-4 – ident: ref15 doi: 10.1109/TNN.2002.1021882 – ident: ref27 doi: 10.1109/CVPR.2006.187 – year: 0 ident: ref1 publication-title: The FG-NET Aging Database – ident: ref22 doi: 10.1109/34.993553 – ident: ref26 doi: 10.1109/TIP.2006.881993 – year: 2000 ident: ref5 publication-title: Pattern Classification – ident: ref13 doi: 10.1109/CVPR.2005.214 – ident: ref29 doi: 10.1016/j.patrec.2006.02.007 – volume: 290 start-page: 2323 year: 2000 ident: ref28 article-title: nonlinear dimensionality reduction by locally linear embedding publication-title: Science doi: 10.1126/science.290.5500.2323 – ident: ref25 doi: 10.1109/34.683777 |
SSID | ssj0014516 |
Score | 2.4878023 |
Snippet | Estimating human age automatically via facial image analysis has lots of potential real-world applications, such as human computer interaction and multimedia... |
SourceID | proquest pubmed pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1178 |
SubjectTerms | Adjustment Age Age manifold Aging Aging - physiology Algorithms Application software Applied sciences Artificial Intelligence Computer science; control theory; systems Computer vision Estimating Exact sciences and technology Face Face - anatomy & histology Face - physiology Feature extraction Human human age estimation Human computer interaction Humans Image analysis Image databases Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Information, signal and communications theory Learning locally adjusted robust regression manifold learning Manifolds Multimedia communication Multimedia communications nonlinear regression Pattern Recognition, Automated - methods Pattern recognition. Digital image processing. Computational geometry Regression Analysis Reproducibility of Results Robustness Sensitivity and Specificity Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Studies support vector machine (SVM) support vector regression (SVR) Telecommunications and information theory Vision systems Weathering |
Title | Image-Based Human Age Estimation by Manifold Learning and Locally Adjusted Robust Regression |
URI | https://ieeexplore.ieee.org/document/4531189 https://www.ncbi.nlm.nih.gov/pubmed/18586625 https://www.proquest.com/docview/863346545 https://www.proquest.com/docview/69268055 https://www.proquest.com/docview/880648653 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjFIoPHDiQbR62Yx8X1KpFWoSqVuoBKYpje1VYkqq7OZRfz_ixoSBWIidHtqU4M5757HkBvJUWn1zK1PBSpVQaF6ys8NTKtHa5UaSVLlB49pmfXtJPV-xqC96PsTDGGO98Ziau6W35um8Hd1V2RJFhciG3YRsPbiFWa7QYuIKz3rLJqrRC2B_T-OSZPLo4-xKcJvGsUQhf-00wwbkrj31PGfnqKs43slni77GhrsVm4OkV0MkuzNafHvxOvk-GlZq0P__K6vi_a3sMjyISJdPAOk9gy3R7sBtRKYl7frkHD--lLNyHr2c_UAKlH1D5aeItAGQ6N-QYJUUIgiTqjsya7tr2C01i9tY5aTp8cWpzcUem-tvgLlnJea-wQc7NPDjjdk_h8uT44uNpGis0pC2tslWa00a2ohKIaUyh2lI1hlZUN0Wbs6ZsrVBIAM3yliohM4WajxmUEDnT0nJmVfkMdrq-My-AMG24w2I4UdLCKJEpSy1vEFAhpmEqgcmaVHUb05e7KhqL2h9jMlkjmUNRzUDmBN6NE25C5o7NQ_cdQcZhkRYJHP7BC2N_kVEUXG7ewZo56rj1l7XgZemS1LEE3oy9uGedIabpTD8say4LnM1wBNkwAqUqp4KzMoHngel-ryHy7st_f_QBPAguLc6j-BXsrG4H8xpx00od-g3zC6lSEP8 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4wAcGGxsZBubDxw4kC4ftmMfu2lTC-uEpk7aASmKY6eClQTR5jD-ep5jNwxEJXJyZFuK857f-9nvC-CtrPCJpQwNT1VIpbHBygpPrUxrmxtFVtIGCk-u-OiGfrhltxvwvo-FMcZ0zmdmYJudLV83ZWuvyk4oMkws5CN4jHqfxS5aq7cZ2JKznW2TZWGGwN8n8okjeTIdf3Juk3jaSERX_U0wwbktkP1AHXX1Vax3ZLHAH1S5yhbroWengi62YLL6eOd5cjdol2pQ_vwrr-P_ru4FPPdYlAwd87yEDVNvw5bHpcTv-sU2PHuQtHAHPo-_oQwKT1H9adLZAMhwZsg5ygoXBknUPZkU9ZeqmWvi87fOSFHji1Wc83sy1F9be81KrhuFDXJtZs4dt34FNxfn07NR6Gs0hCXNomUY00KWIhOIakyiylQVhmZUF0kZsyItK6GQAJrFJVVCRgp1HzMoI2KmZcVZpdJd2Kyb2rwGwrThFo3hREkTo0SkKlrxAiEVohqmAhisSJWXPoG5raMxz7uDTCRzJLMrq-nIHMC7fsJ3l7tj_dAdS5B-mKdFAEd_8ELfn0QURZedd7Bijtxv_kUueJraNHUsgOO-F3etNcUUtWnaRc5lgrMZjiBrRqBc5VRwlgaw55ju9xo87-7_-6OP4cloOrnML8dXHw_gqXNwsf7Fh7C5_NGaN4iiluqo2zy_AAYKFEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image-Based+Human+Age+Estimation+by+Manifold+Learning+and+Locally+Adjusted+Robust+Regression&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Guo%2C+Guodong&rft.au=Fu%2C+Yun&rft.au=Dyer%2C+C+R&rft.au=Huang%2C+T+S&rft.date=2008-07-01&rft.issn=1057-7149&rft.volume=17&rft.issue=7&rft_id=info:doi/10.1109%2FTIP.2008.924280&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |