Image-Based Human Age Estimation by Manifold Learning and Locally Adjusted Robust Regression

Estimating human age automatically via facial image analysis has lots of potential real-world applications, such as human computer interaction and multimedia communication. However, it is still a challenging problem for the existing computer vision systems to automatically and effectively estimate h...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 17; no. 7; pp. 1178 - 1188
Main Authors Guodong Guo, Yun Fu, Dyer, C.R., Huang, T.S.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.07.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Age
Online AccessGet full text

Cover

Loading…
Abstract Estimating human age automatically via facial image analysis has lots of potential real-world applications, such as human computer interaction and multimedia communication. However, it is still a challenging problem for the existing computer vision systems to automatically and effectively estimate human ages. The aging process is determined by not only the person's gene, but also many external factors, such as health, living style, living location, and weather conditions. Males and females may also age differently. The current age estimation performance is still not good enough for practical use and more effort has to be put into this research direction. In this paper, we introduce the age manifold learning scheme for extracting face aging features and design a locally adjusted robust regressor for learning and prediction of human ages. The novel approach improves the age estimation accuracy significantly over all previous methods. The merit of the proposed approaches for image-based age estimation is shown by extensive experiments on a large internal age database and the public available FG-NET database.
AbstractList Estimating human age automatically via facial image analysis has lots of potential real-world applications, such as human computer interaction and multimedia communication. However, it is still a challenging problem for the existing computer vision systems to automatically and effectively estimate human ages. The aging process is determined by not only the person's gene, but also many external factors, such as health, living style, living location, and weather conditions. Males and females may also age differently. The current age estimation performance is still not good enough for practical use and more effort has to be put into this research direction. In this paper, we introduce the age manifold learning scheme for extracting face aging features and design a locally adjusted robust regressor for learning and prediction of human ages. The novel approach improves the age estimation accuracy significantly over all previous methods. The merit of the proposed approaches for image-based age estimation is shown by extensive experiments on a large internal age database and the public available FG-NET database.
Estimating human age automatically via facial image analysis has lots of potential real-world applications, such as human computer interaction and multimedia communication.
Estimating human age automatically via facial image analysis has lots of potential real-world applications, such as human computer interaction and multimedia communication. However, it is still a challenging problem for the existing computer vision systems to automatically and effectively estimate human ages. The aging process is determined by not only the person's gene, but also many external factors, such as health, living style, living location, and weather conditions. Males and females may also age differently. The current age estimation performance is still not good enough for practical use and more effort has to be put into this research direction. In this paper, we introduce the age manifold learning scheme for extracting face aging features and design a locally adjusted robust regressor for learning and prediction of human ages. The novel approach improves the age estimation accuracy significantly over all previous methods. The merit of the proposed approaches for image-based age estimation is shown by extensive experiments on a large internal age database and the public available FG-NET database.Estimating human age automatically via facial image analysis has lots of potential real-world applications, such as human computer interaction and multimedia communication. However, it is still a challenging problem for the existing computer vision systems to automatically and effectively estimate human ages. The aging process is determined by not only the person's gene, but also many external factors, such as health, living style, living location, and weather conditions. Males and females may also age differently. The current age estimation performance is still not good enough for practical use and more effort has to be put into this research direction. In this paper, we introduce the age manifold learning scheme for extracting face aging features and design a locally adjusted robust regressor for learning and prediction of human ages. The novel approach improves the age estimation accuracy significantly over all previous methods. The merit of the proposed approaches for image-based age estimation is shown by extensive experiments on a large internal age database and the public available FG-NET database.
Author Dyer, C.R.
Guodong Guo
Huang, T.S.
Yun Fu
Author_xml – sequence: 1
  surname: Guodong Guo
  fullname: Guodong Guo
  organization: Dept. of Comput. Sci., North Carolina Central Univ., Durham, NC
– sequence: 2
  surname: Yun Fu
  fullname: Yun Fu
  organization: Dept. of Comput. Sci., North Carolina Central Univ., Durham, NC
– sequence: 3
  givenname: C.R.
  surname: Dyer
  fullname: Dyer, C.R.
– sequence: 4
  givenname: T.S.
  surname: Huang
  fullname: Huang, T.S.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20419680$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18586625$$D View this record in MEDLINE/PubMed
BookMark eNp9kc9rFDEUx4NU7A89exBkENTTbJNMkkmOa6l2YUUp9SaEJPNmyTKTtMnMYf97s-5aoYee8gKf73t8v99zdBJiAITeErwgBKvLu9XPBcVYLhRlVOIX6IwoRmqMGT0pM-Zt3RKmTtF5zluMCeNEvEKnRHIpBOVn6PdqNBuov5gMXXUzjyZUyw1U13nyo5l8DJXdVd9N8H0cumoNJgUfNpUJ5ROdGYZdtey2c56K_DbaMlS3sEmQc9G-Ri97M2R4c3wv0K-v13dXN_X6x7fV1XJdO9biqSbMKCdbqVoB1LrGGmAt6wx1hJvG9dIWrx0njlmpsFUKc2hlS3inesF721ygz4e99yk-zJAnPfrsYBhMgDhnLSUWTAreFPLTs6RQVEjMeQE_PAG3cU6huNBSNA0TnO2h90dotiN0-j6V0NJO_4u3AB-PgMklrD6Z4Hx-5ChmRJV7hbs8cC7FnBP0_1dhvS9al6L1vmh9KLoo-BOF89PfwqZk_PCM7t1B5wHg8UrxQohUzR9ZGbIl
CODEN IIPRE4
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2927825
crossref_primary_10_1016_j_patrec_2018_03_013
crossref_primary_10_1109_TNNLS_2018_2808332
crossref_primary_10_1007_s11277_022_09501_8
crossref_primary_10_1016_j_patcog_2015_12_003
crossref_primary_10_1016_j_eswa_2019_112942
crossref_primary_10_1007_s11042_013_1399_7
crossref_primary_10_18632_aging_101629
crossref_primary_10_9708_jksci_2016_21_8_077
crossref_primary_10_7717_peerj_cs_1395
crossref_primary_10_1109_TIP_2021_3139226
crossref_primary_10_1134_S1054661815030244
crossref_primary_10_1155_2015_840840
crossref_primary_10_1016_j_imavis_2017_08_005
crossref_primary_10_3389_fdata_2022_1025806
crossref_primary_10_1049_iet_bmt_2014_0103
crossref_primary_10_1007_s00414_020_02346_5
crossref_primary_10_1145_3090311
crossref_primary_10_1016_j_patcog_2019_04_028
crossref_primary_10_3390_app8101943
crossref_primary_10_1007_s10462_019_09750_3
crossref_primary_10_2200_S00536ED1V01Y201309COV005
crossref_primary_10_1109_TPAMI_2011_115
crossref_primary_10_1109_TMM_2016_2608786
crossref_primary_10_1016_j_neucom_2013_09_025
crossref_primary_10_1007_s11042_015_3230_0
crossref_primary_10_1109_ACCESS_2020_2969549
crossref_primary_10_1109_TKDE_2010_209
crossref_primary_10_1016_j_compscitech_2018_10_006
crossref_primary_10_1016_j_neucom_2014_08_041
crossref_primary_10_1016_j_procs_2015_06_092
crossref_primary_10_1109_TMM_2017_2786869
crossref_primary_10_1080_14786451_2014_885030
crossref_primary_10_32604_cmc_2023_034605
crossref_primary_10_1109_TIFS_2009_2038751
crossref_primary_10_1016_j_buildenv_2023_110137
crossref_primary_10_1007_s11263_016_0940_3
crossref_primary_10_1109_ACCESS_2016_2635147
crossref_primary_10_1111_jerd_12125
crossref_primary_10_1016_j_patrec_2013_08_009
crossref_primary_10_1109_TGRS_2017_2752217
crossref_primary_10_1109_ACCESS_2018_2889873
crossref_primary_10_1109_TETCI_2018_2864554
crossref_primary_10_1109_TPAMI_2013_51
crossref_primary_10_1007_s00371_015_1137_4
crossref_primary_10_1109_LSP_2019_2893064
crossref_primary_10_1016_j_patcog_2016_03_032
crossref_primary_10_1016_j_patcog_2012_09_011
crossref_primary_10_1109_TCSVT_2020_3040296
crossref_primary_10_1007_s11042_015_2668_4
crossref_primary_10_1155_2014_769101
crossref_primary_10_1016_j_imavis_2012_07_009
crossref_primary_10_1109_TIFS_2018_2819124
crossref_primary_10_1007_s00500_022_07333_z
crossref_primary_10_1016_j_image_2011_03_004
crossref_primary_10_1007_s00779_018_1171_0
crossref_primary_10_1016_j_cviu_2020_102961
crossref_primary_10_3390_app11104549
crossref_primary_10_3390_app8091601
crossref_primary_10_1109_ACCESS_2017_2761849
crossref_primary_10_5626_JOK_2015_42_12_1575
crossref_primary_10_1007_s11063_018_9930_5
crossref_primary_10_3390_sym10090385
crossref_primary_10_1109_TMM_2011_2167317
crossref_primary_10_1007_s00530_017_0534_0
crossref_primary_10_1007_s10462_020_09855_0
crossref_primary_10_1109_ACCESS_2020_2994322
crossref_primary_10_1109_TNNLS_2016_2607757
crossref_primary_10_1186_s41074_017_0035_2
crossref_primary_10_1109_TCSVT_2024_3422661
crossref_primary_10_1007_s12530_017_9175_y
crossref_primary_10_1109_TPAMI_2017_2679739
crossref_primary_10_3390_app12115306
crossref_primary_10_1109_TIP_2024_3364074
crossref_primary_10_1016_j_patcog_2017_01_007
crossref_primary_10_1049_iet_bmt_2019_0104
crossref_primary_10_1016_j_image_2019_08_003
crossref_primary_10_1109_TSMC_2016_2618916
crossref_primary_10_1007_s11042_017_4516_1
crossref_primary_10_1016_j_eswa_2016_09_024
crossref_primary_10_1109_TCSVT_2020_2981117
crossref_primary_10_1016_j_patcog_2017_01_009
crossref_primary_10_7763_IJMLC_2012_V2_99
crossref_primary_10_18100_ijamec_265362
crossref_primary_10_1007_s11042_018_6049_7
crossref_primary_10_1109_THMS_2014_2376874
crossref_primary_10_1109_LSP_2017_2661983
crossref_primary_10_1109_TIFS_2019_2902823
crossref_primary_10_1109_TCYB_2015_2416321
crossref_primary_10_1016_j_jvlc_2009_01_011
crossref_primary_10_1109_TIP_2014_2387379
crossref_primary_10_1007_s11042_018_6342_5
crossref_primary_10_1016_j_neucom_2020_07_149
crossref_primary_10_1109_TIP_2019_2916768
crossref_primary_10_1080_01431161_2019_1574993
crossref_primary_10_1007_s40747_017_0035_y
crossref_primary_10_1109_TCSVT_2016_2637379
crossref_primary_10_1109_TIP_2016_2602078
crossref_primary_10_1016_j_imavis_2018_05_003
crossref_primary_10_1109_LSP_2016_2602538
crossref_primary_10_1142_S0218213012500297
crossref_primary_10_1016_j_measurement_2015_07_042
crossref_primary_10_1007_s11042_022_14094_2
crossref_primary_10_3390_e21070647
crossref_primary_10_1007_s10044_021_01022_7
crossref_primary_10_1109_TSMCC_2012_2192727
crossref_primary_10_1109_TPAMI_2017_2779808
crossref_primary_10_25046_aj070630
crossref_primary_10_1016_j_patcog_2016_10_026
crossref_primary_10_1109_TCSVT_2019_2923262
crossref_primary_10_1109_ACCESS_2019_2928843
crossref_primary_10_1109_TCSVT_2020_2965739
crossref_primary_10_1007_s11042_022_12927_8
crossref_primary_10_1016_j_patcog_2010_12_005
crossref_primary_10_1109_ACCESS_2019_2923626
crossref_primary_10_1088_1757_899X_428_1_012043
crossref_primary_10_1109_TIP_2017_2655445
crossref_primary_10_1016_j_media_2021_102091
crossref_primary_10_1016_j_neucom_2017_08_062
crossref_primary_10_1109_TCSVT_2017_2782709
crossref_primary_10_1007_s10845_024_02505_0
crossref_primary_10_1007_s11042_020_09850_1
crossref_primary_10_1016_j_neucom_2018_06_051
crossref_primary_10_1109_TIP_2015_2425545
crossref_primary_10_1016_j_patcog_2019_107178
crossref_primary_10_1016_j_patcog_2017_06_028
crossref_primary_10_3390_app13127110
crossref_primary_10_3390_s20020328
crossref_primary_10_1016_j_neucom_2017_01_064
crossref_primary_10_1109_TNNLS_2020_2978508
crossref_primary_10_1109_TPAMI_2010_36
crossref_primary_10_1016_j_neucom_2014_03_074
crossref_primary_10_1093_comjnl_bxy050
crossref_primary_10_1097_PSN_0000000000000410
crossref_primary_10_1016_j_neucom_2016_02_039
crossref_primary_10_1109_TIP_2016_2547587
crossref_primary_10_1007_s12065_020_00363_2
crossref_primary_10_1016_j_cviu_2014_04_006
crossref_primary_10_1007_s11265_020_01609_z
crossref_primary_10_1007_s11042_023_15889_7
crossref_primary_10_1016_j_imavis_2020_103945
crossref_primary_10_1088_1742_6596_1299_1_012039
crossref_primary_10_1016_j_imavis_2017_06_004
crossref_primary_10_1007_s11063_015_9423_8
crossref_primary_10_1109_TNNLS_2017_2783384
crossref_primary_10_1109_TIFS_2011_2156787
crossref_primary_10_5772_52862
crossref_primary_10_1109_TCSVT_2020_3024766
crossref_primary_10_1186_s41074_019_0054_2
crossref_primary_10_3390_s16070994
crossref_primary_10_2478_acss_2024_0018
crossref_primary_10_1051_matecconf_201823202021
crossref_primary_10_4218_etrij_17_0117_0078
crossref_primary_10_1007_s10916_019_1335_0
crossref_primary_10_1016_j_neunet_2020_07_006
crossref_primary_10_1002_cpe_6660
crossref_primary_10_1109_TPAMI_2017_2669035
crossref_primary_10_1016_j_neucom_2014_06_047
crossref_primary_10_1109_TPAMI_2013_134
crossref_primary_10_1007_s41060_023_00450_4
crossref_primary_10_1109_TPAMI_2019_2910523
crossref_primary_10_1109_TPAMI_2019_2910522
crossref_primary_10_1049_iet_bmt_2016_0169
crossref_primary_10_1016_j_neucom_2016_01_101
crossref_primary_10_3390_sym12010146
crossref_primary_10_1134_S1054661816030184
crossref_primary_10_4274_mirt_galenos_2022_63644
crossref_primary_10_1007_s12652_020_02785_3
crossref_primary_10_1109_TIP_2022_3188061
crossref_primary_10_1007_s10462_019_09765_w
crossref_primary_10_1016_j_jvcir_2018_10_026
crossref_primary_10_1155_2018_1712686
crossref_primary_10_1007_s13369_017_2493_3
crossref_primary_10_1007_s11042_017_4572_6
crossref_primary_10_1109_TIFS_2015_2480381
crossref_primary_10_1109_TMM_2011_2177647
crossref_primary_10_1016_j_imavis_2014_04_011
crossref_primary_10_1109_TIFS_2017_2766583
crossref_primary_10_1109_TMM_2020_2969793
crossref_primary_10_1109_TIFS_2017_2695456
crossref_primary_10_1109_TIP_2016_2580939
crossref_primary_10_1109_TGRS_2015_2448086
crossref_primary_10_1016_j_neucom_2018_12_003
crossref_primary_10_3934_mbe_2024198
crossref_primary_10_1016_j_cviu_2016_08_008
crossref_primary_10_1016_j_patcog_2017_10_036
crossref_primary_10_1109_TGRS_2018_2823750
crossref_primary_10_1016_j_future_2022_10_009
crossref_primary_10_1007_s13369_018_3293_0
crossref_primary_10_1007_s00779_011_0425_x
crossref_primary_10_1109_TSMCB_2010_2097588
crossref_primary_10_3390_rs11232858
crossref_primary_10_1109_ACCESS_2021_3085971
crossref_primary_10_1016_j_neucom_2016_10_010
crossref_primary_10_1109_TIFS_2012_2213812
crossref_primary_10_1109_TIFS_2017_2746062
crossref_primary_10_4054_DemRes_2019_40_9
crossref_primary_10_1109_TIP_2016_2535284
crossref_primary_10_2174_2213275912666190417151247
crossref_primary_10_1016_j_procs_2024_04_282
crossref_primary_10_1007_s11063_019_09993_9
crossref_primary_10_1016_j_neucom_2014_01_040
crossref_primary_10_1007_s11263_019_01165_5
crossref_primary_10_1109_ACCESS_2020_3034801
crossref_primary_10_1109_TIFS_2015_2462732
crossref_primary_10_1109_TPAMI_2019_2937294
crossref_primary_10_3389_fnins_2023_1136934
crossref_primary_10_1016_j_heliyon_2020_e03751
crossref_primary_10_1007_s11042_021_10739_w
crossref_primary_10_1109_TPAMI_2009_39
crossref_primary_10_3233_JIFS_202485
crossref_primary_10_1080_01431161_2022_2102951
crossref_primary_10_1109_LSP_2018_2822241
crossref_primary_10_1007_s11554_019_00903_9
crossref_primary_10_1109_TIP_2019_2948288
crossref_primary_10_1109_TPAMI_2019_2943860
crossref_primary_10_1109_JBHI_2020_2977224
crossref_primary_10_1007_s11042_015_2485_9
crossref_primary_10_1016_j_sigpro_2013_07_025
crossref_primary_10_1109_TIFS_2014_2359646
crossref_primary_10_1109_TIP_2015_2481327
crossref_primary_10_1117_1_JEI_26_2_023007
crossref_primary_10_1109_TIP_2016_2633868
crossref_primary_10_1016_j_imavis_2016_08_009
crossref_primary_10_1155_2014_242846
crossref_primary_10_1587_transinf_E93_D_2875
crossref_primary_10_1109_TIFS_2020_2965298
crossref_primary_10_1007_s11042_013_1815_z
crossref_primary_10_1002_mef2_50
crossref_primary_10_1109_TIFS_2010_2069560
crossref_primary_10_1016_j_neucom_2015_03_078
crossref_primary_10_5402_2012_505974
crossref_primary_10_1049_iet_bmt_2014_0053
crossref_primary_10_1097_PSN_0000000000000357
crossref_primary_10_1109_TIP_2015_2412377
Cites_doi 10.1109/WACV.2008.4544009
10.1109/CVPR.2007.383055
10.1109/TSMCB.2005.846658
10.1109/ICCV.2007.4409069
10.1109/TMM.2008.921847
10.1145/1180639.1180711
10.1109/TIP.2006.881945
10.1007/BFb0054760
10.1109/TCSVT.2006.877398
10.1006/cviu.1997.0549
10.1109/TNN.2002.806626
10.1162/jocn.1991.3.1.71
10.1109/ICME.2007.4284917
10.1109/ICCV.2007.4409050
10.1068/p271233
10.1126/science.290.5500.2268
10.1109/ICME.2007.4284595
10.1109/TSMCB.2003.817091
10.1016/S0262-8856(01)00046-4
10.1109/TNN.2002.1021882
10.1109/CVPR.2006.187
10.1109/34.993553
10.1109/TIP.2006.881993
10.1109/CVPR.2005.214
10.1016/j.patrec.2006.02.007
10.1126/science.290.5500.2323
10.1109/34.683777
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: 2008 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TIP.2008.924280
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
MEDLINE
Technology Research Database
Technology Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1188
ExternalDocumentID 2329113791
18586625
20419680
10_1109_TIP_2008_924280
4531189
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c470t-14a9c878976e2bc3bae474da2c15a3cf8b110d51c4b890b9905e78715d9f65fb3
IEDL.DBID RIE
ISSN 1057-7149
IngestDate Fri Jul 11 01:37:14 EDT 2025
Fri Jul 11 10:21:47 EDT 2025
Mon Jun 30 05:12:27 EDT 2025
Wed Feb 19 01:43:14 EST 2025
Mon Jul 21 09:12:10 EDT 2025
Tue Jul 01 02:02:41 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Tue Aug 26 16:47:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Performance evaluation
nonlinear regression
Automatic classification
Age estimation
human age estimation
support vector machine (SVM)
Vision system
Support vector machine
Multimedia communication
manifold learning
Learning
Accuracy
Database
Man machine relation
Localization
Age manifold
Computer vision
Meteorological phenomenon
Non linear regression
Ageing
Regression analysis
Vector method
Signal classification
Image analysis
locally adjusted robust regression
support vector regression (SVR)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c470t-14a9c878976e2bc3bae474da2c15a3cf8b110d51c4b890b9905e78715d9f65fb3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 18586625
PQID 863346545
PQPubID 85429
PageCount 11
ParticipantIDs pascalfrancis_primary_20419680
proquest_miscellaneous_69268055
proquest_journals_863346545
pubmed_primary_18586625
crossref_primary_10_1109_TIP_2008_924280
ieee_primary_4531189
crossref_citationtrail_10_1109_TIP_2008_924280
proquest_miscellaneous_880648653
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-07-01
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-07-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2008
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref32
ref10
fu (ref6) 2005
ref2
ref17
ref16
ref18
duda (ref5) 2000
gunn (ref11) 1997
(ref1) 0
joachims (ref20) 1999
ref24
ref23
ref26
ref25
ref22
he (ref19) 2003
ref21
ref27
vapnik (ref35) 1998
ref29
ref8
ref7
ref9
ref4
roweis (ref28) 2000; 290
ref3
References_xml – year: 1999
  ident: ref20
  publication-title: Advances in Kernel MethodsSupport Vector Learning
– ident: ref14
  doi: 10.1109/WACV.2008.4544009
– ident: ref31
  doi: 10.1109/CVPR.2007.383055
– ident: ref12
  doi: 10.1109/TSMCB.2005.846658
– ident: ref24
  doi: 10.1109/ICCV.2007.4409069
– ident: ref7
  doi: 10.1109/TMM.2008.921847
– ident: ref10
  doi: 10.1145/1180639.1180711
– year: 2005
  ident: ref6
  publication-title: Locally Linear Embedded Eigenspace Analysis IFP-TR
– ident: ref2
  doi: 10.1109/TIP.2006.881945
– ident: ref3
  doi: 10.1007/BFb0054760
– ident: ref9
  doi: 10.1109/TCSVT.2006.877398
– year: 1998
  ident: ref35
  publication-title: Statistical Learning Theory
– ident: ref21
  doi: 10.1006/cviu.1997.0549
– year: 2003
  ident: ref19
  article-title: locality preserving projections
  publication-title: NIPS
– ident: ref16
  doi: 10.1109/TNN.2002.806626
– ident: ref32
  doi: 10.1162/jocn.1991.3.1.71
– ident: ref8
  doi: 10.1109/ICME.2007.4284917
– ident: ref34
  doi: 10.1109/ICCV.2007.4409050
– ident: ref4
  doi: 10.1068/p271233
– ident: ref30
  doi: 10.1126/science.290.5500.2268
– ident: ref33
  doi: 10.1109/ICME.2007.4284595
– ident: ref23
  doi: 10.1109/TSMCB.2003.817091
– year: 1997
  ident: ref11
  publication-title: Support vector machines for classification and regression Tech Rep
– ident: ref18
  doi: 10.1016/S0262-8856(01)00046-4
– ident: ref17
  doi: 10.1016/S0262-8856(01)00046-4
– ident: ref15
  doi: 10.1109/TNN.2002.1021882
– ident: ref27
  doi: 10.1109/CVPR.2006.187
– year: 0
  ident: ref1
  publication-title: The FG-NET Aging Database
– ident: ref22
  doi: 10.1109/34.993553
– ident: ref26
  doi: 10.1109/TIP.2006.881993
– year: 2000
  ident: ref5
  publication-title: Pattern Classification
– ident: ref13
  doi: 10.1109/CVPR.2005.214
– ident: ref29
  doi: 10.1016/j.patrec.2006.02.007
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref28
  article-title: nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: ref25
  doi: 10.1109/34.683777
SSID ssj0014516
Score 2.4878023
Snippet Estimating human age automatically via facial image analysis has lots of potential real-world applications, such as human computer interaction and multimedia...
SourceID proquest
pubmed
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1178
SubjectTerms Adjustment
Age
Age manifold
Aging
Aging - physiology
Algorithms
Application software
Applied sciences
Artificial Intelligence
Computer science; control theory; systems
Computer vision
Estimating
Exact sciences and technology
Face
Face - anatomy & histology
Face - physiology
Feature extraction
Human
human age estimation
Human computer interaction
Humans
Image analysis
Image databases
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Image processing
Information, signal and communications theory
Learning
locally adjusted robust regression
manifold learning
Manifolds
Multimedia communication
Multimedia communications
nonlinear regression
Pattern Recognition, Automated - methods
Pattern recognition. Digital image processing. Computational geometry
Regression Analysis
Reproducibility of Results
Robustness
Sensitivity and Specificity
Signal and communications theory
Signal processing
Signal representation. Spectral analysis
Signal, noise
Studies
support vector machine (SVM)
support vector regression (SVR)
Telecommunications and information theory
Vision systems
Weathering
Title Image-Based Human Age Estimation by Manifold Learning and Locally Adjusted Robust Regression
URI https://ieeexplore.ieee.org/document/4531189
https://www.ncbi.nlm.nih.gov/pubmed/18586625
https://www.proquest.com/docview/863346545
https://www.proquest.com/docview/69268055
https://www.proquest.com/docview/880648653
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjFIoPHDiQbR62Yx8X1KpFWoSqVuoBKYpje1VYkqq7OZRfz_ixoSBWIidHtqU4M5757HkBvJUWn1zK1PBSpVQaF6ys8NTKtHa5UaSVLlB49pmfXtJPV-xqC96PsTDGGO98Ziau6W35um8Hd1V2RJFhciG3YRsPbiFWa7QYuIKz3rLJqrRC2B_T-OSZPLo4-xKcJvGsUQhf-00wwbkrj31PGfnqKs43slni77GhrsVm4OkV0MkuzNafHvxOvk-GlZq0P__K6vi_a3sMjyISJdPAOk9gy3R7sBtRKYl7frkHD--lLNyHr2c_UAKlH1D5aeItAGQ6N-QYJUUIgiTqjsya7tr2C01i9tY5aTp8cWpzcUem-tvgLlnJea-wQc7NPDjjdk_h8uT44uNpGis0pC2tslWa00a2ohKIaUyh2lI1hlZUN0Wbs6ZsrVBIAM3yliohM4WajxmUEDnT0nJmVfkMdrq-My-AMG24w2I4UdLCKJEpSy1vEFAhpmEqgcmaVHUb05e7KhqL2h9jMlkjmUNRzUDmBN6NE25C5o7NQ_cdQcZhkRYJHP7BC2N_kVEUXG7ewZo56rj1l7XgZemS1LEE3oy9uGedIabpTD8say4LnM1wBNkwAqUqp4KzMoHngel-ryHy7st_f_QBPAguLc6j-BXsrG4H8xpx00od-g3zC6lSEP8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH8a4wAcGGxsZBubDxw4kC4ftmMfu2lTC-uEpk7aASmKY6eClQTR5jD-ep5jNwxEJXJyZFuK857f-9nvC-CtrPCJpQwNT1VIpbHBygpPrUxrmxtFVtIGCk-u-OiGfrhltxvwvo-FMcZ0zmdmYJudLV83ZWuvyk4oMkws5CN4jHqfxS5aq7cZ2JKznW2TZWGGwN8n8okjeTIdf3Juk3jaSERX_U0wwbktkP1AHXX1Vax3ZLHAH1S5yhbroWengi62YLL6eOd5cjdol2pQ_vwrr-P_ru4FPPdYlAwd87yEDVNvw5bHpcTv-sU2PHuQtHAHPo-_oQwKT1H9adLZAMhwZsg5ygoXBknUPZkU9ZeqmWvi87fOSFHji1Wc83sy1F9be81KrhuFDXJtZs4dt34FNxfn07NR6Gs0hCXNomUY00KWIhOIakyiylQVhmZUF0kZsyItK6GQAJrFJVVCRgp1HzMoI2KmZcVZpdJd2Kyb2rwGwrThFo3hREkTo0SkKlrxAiEVohqmAhisSJWXPoG5raMxz7uDTCRzJLMrq-nIHMC7fsJ3l7tj_dAdS5B-mKdFAEd_8ELfn0QURZedd7Bijtxv_kUueJraNHUsgOO-F3etNcUUtWnaRc5lgrMZjiBrRqBc5VRwlgaw55ju9xo87-7_-6OP4cloOrnML8dXHw_gqXNwsf7Fh7C5_NGaN4iiluqo2zy_AAYKFEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image-Based+Human+Age+Estimation+by+Manifold+Learning+and+Locally+Adjusted+Robust+Regression&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Guo%2C+Guodong&rft.au=Fu%2C+Yun&rft.au=Dyer%2C+C+R&rft.au=Huang%2C+T+S&rft.date=2008-07-01&rft.issn=1057-7149&rft.volume=17&rft.issue=7&rft_id=info:doi/10.1109%2FTIP.2008.924280&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon